
HaMLet
To Be Or Not To Be Standard ML

Version 2.0.1

2025/07/27

Andreas Rossberg

rossberg@mpi-sws.org

rossberg@mpi-sws.org

Contents

1 Introduction 4

1.1 Goals . 4

1.2 Bugs in the Definition . 4

1.3 Related Work . 5

1.4 Copyright . 5

2 Usage 5

2.1 Download . 5

2.2 Systems Supported . 5

2.3 Prerequisites . 6

2.4 Installation . 6

2.5 Using the HaMLet Stand-Alone . 7

2.6 Using HaMLet from within an SML System 8

2.7 Bootstrapping . 10

2.8 Limitations . 10

3 Overview of the Implementation 11

3.1 Structure of the Definition . 11

3.2 Modularisation . 11

3.3 Mapping Syntactic and Semantic Objects 12

3.4 Mapping Inference Rules . 13

3.5 Naming Conventions . 13

3.6 Side Effects . 14

4 Abstract Syntax and Parsing 14

4.1 Files . 14

4.2 Abstract Syntax Tree and Annotations . 15

4.3 Parsing and Lexing . 16

4.4 Grammar Ambiguities and Parsing Problems 16

4.5 Infix Resolution . 17

4.6 Derived Forms . 17

4.7 Syntactic Restrictions . 18

5 Elaboration 18

5.1 Files . 18

5.2 Types and Unification . 19

5.3 Type Names . 19

5.4 Environment Representation . 19

5.5 Elaboration Rules . 19

5.6 Type Inference . 20

5.7 Type Schemes . 21

5.8 Overloading and Flexible Records . 22

5.9 Recursive Bindings and Datatype Declarations 23

5.10 Module Elaboration . 24

5.11 Signature Matching . 24

2

5.12 Checking Patterns . 24

6 Evaluation 25

6.1 Files . 25

6.2 Value Representation . 25

6.3 Evaluation Rules . 26

7 Toplevel 27

7.1 Files . 27

7.2 Program Execution . 27

7.3 Plugging . 28

8 Library 28

8.1 Files . 28

8.2 Language/Library Interaction . 28

8.3 Primitives . 29

8.4 Primitive Library Types . 30

8.5 The use Function . 30

8.6 Library Implementation . 30

9 Compilation to JavaScript 30

9.1 Usage . 31

9.2 Files . 32

9.3 Translation . 32

9.4 Runtime . 35

10 Conclusion 36

A Mistakes and Ambiguities in the Definition 38

A.1 Issues in Chapter 2 (Syntax of the Core) 38

A.2 Issues in Chapter 3 (Syntax of Modules) 39

A.3 Issues in Chapter 4 (Static Semantics for the Core) 40

A.4 Issues in Chapter 5 (Static Semantics for Modules) 43

A.5 Issues in Chapter 6 (Dynamic Semantics for the Core) 44

A.6 Issues in Chapter 7 (Dynamic Semantics for Modules) 44

A.7 Issues in Chapter 8 (Programs) . 45

A.8 Issues in Appendix A (Derived Forms) . 46

A.9 Issues in Appendix B (Full Grammar) . 47

A.10 Issues in Appendix D (The Initial Dynamic Basis) 49

A.11 Issues in Appendix E (Overloading) . 49

A.12 Issues in Appendix G (What’s New?) . 50

B History 52

3

1 Introduction

HaMLet is an implementation of Standard ML (SML’97), as defined in The Definition of

Standard ML [MTHM97] – simply referred to as the Definition in the following text. HaM-

Let mainly is an interactive interpreter but also provides several alternative ways of oper-

ation, including a simple compiler to JavaScript [ES12]. Moreover, HaMLet can perform

different phases of execution – like parsing, type checking, and evaluation – selectively.

In particular, it is possible to execute programs in an untyped manner, thus exploring the

space where “programs can go wrong”.

1.1 Goals

The primary purpose of HaMLet is not to provide yet another SML system. Its goal is to be

a faithful model implementation and a test bed for experimentation with the SML language

semantics as specified in the Definition. It also might serve educational purposes. The main

feature of HaMLet therefore is the design of its source code: it follows the formalisation

of the Definition as closely as possible, only deviating where it is unavoidable. The idea

has been to try to translate the Definition into an “executable specification”. Much care has

been taken to resemble names, operations, and rule structure used in the Definition and the

Commentary [MT91]. Moreover, the source code contains references to the corresponding

sections in the Definition wherever available.

On the other hand, HaMLet tries hard to get even the obscure details of the Definition right.

There are some “features” of SML that are artefacts of its formal specification and are not

straight-forward to implement. See the conclusion in Section 10 for an overview.

Efficiency was not a goal. Execution speed of HaMLet is not competitive in any way, since

it naively implements the interpretative evaluation rules from the Definition. Usability was

no priority either. The error messages given by HaMLet are usually rudimentary, to avoid

complicating the implementation.

Since version 2, HaMLet stores the outcome of elaboration (type and environment informa-

tion) into every node of a program’s abstract syntax tree. We hope that this makes HaMLet

more viable as a front-end for experimental language implementation work, for which the

lack of access to type information in later phases turned out to be a major hurdle.

HaMLet has of course been written entirely in SML’97 and is able to bootstrap itself (see

2.7).

1.2 Bugs in the Definition

The Definition is a complex formal piece of work, and so it is unavoidable that it contains

several mistakes, ambiguities, and omissions. Many of these are inherited from the previous

language version SML’90 [MTH90] and have been documented accurately by Kahrs [K93,

K96]. Those, which still seem to be present or are new to SML’97, are listed in Appendix

A.

The general approach we take for resolving ambiguities and fixing bugs is doing it in the

‘most natural’ way. Mostly, this is obvious, sometimes it is not. Moreover, in cases where

the Definition allows implementations some freedom (e.g. the choice of context taken into

account to resolve overloading) we choose the most restrictive view, so that HaMLet only

accepts those programs that ought to be portable across all possible implementations. The

appendix discusses the resolutions we chose.

4

1.3 Related Work

HaMLet owes much of its existence to the first version of the ML Kit [BRTT93]. While

the original Kit shared a similar motivation and a lot of inspiration came from that work,

more recent versions moved the Kit into another direction. We hope that HaMLet can fill

the resulting gap.

We also believe that HaMLet is considerably simpler and closer to the Definition. More-

over, unlike the ML Kit, it even implements the dynamic semantics of SML directly. On

the other hand, HaMLet is probably less suited to serve as a library for real world projects,

since no part of it has been tuned for efficiency in any way.

1.4 Copyright

Copyright of the HaMLet sources 1999-2025 by Andreas Rossberg.

The HaMLet source package includes portions of the SML/NJ library, which is copyright

1989-1998 by Lucent Technologies.

See LICENSE.txt files for detailed copyright notices, licenses and disclaimers.

HaMLet is free, and we would be happy if others experiment with it. Feel free to modify

the sources in whatever way you want.

Please post any questions, bug reports, critiques, and other comments to

rossberg@mpi-sws.org

2 Usage

2.1 Download

HaMLet is available from the following web page:

http://www.mpi-sws.org/hamlet/

The distribution contains a tar ball of the SML sources and this documentation.

2.2 Systems Supported

HaMLet can be readily built with the following SML systems:

• SML of New Jersey (110 or higher) [NJ07]

• Poly/ML (5.0 or higher) [M07]

• Moscow ML (2.0 or higher) [RRS00]

• Alice ML (1.4 or higher) [AT06]

• MLton (20010706 or higher) [CFJW05]

• ML Kit (4.3.0 or higher) [K06]

• SML# (0.20 or higher) [ST07]

You can produce an executable HaMLet standalone with all systems. The first four also

allow you to use HaMLet from within their interactive toplevel. This gives access to a

slightly richer interface (see Section 2.6).

5

rossberg@mpi-sws.org
http://www.mpi-sws.org/hamlet/

Other SML systems have not been tested, but should of course work fine provided they

support the full language and a reasonable subset of the Standard Basis Library [GR04].

2.3 Prerequisites

HaMLet makes use of the Standard ML Basis Library [GR04]1. In addition it uses two

functors from the SML/NJ library [NJ98], namely BinarySetFn and BinaryMapFn,

to implement finite sets and maps.

To generate lexer and parser, ML-Lex [AMT94] and ML-Yacc [TA00] have been used. The

distribution contains all generated files, though, so you only have to install those tools if

you plan to modify the grammar.

The SML/NJ library as well as ML-Lex and ML-Yacc are freely available as part of the

SML of New Jersey distribution. However, the HaMLet distribution contains all necessary

files from the SML/NJ library and the ML-Yacc runtime library. They can be found in the

smlnj-lib subdirectory, respectively.2

2.4 Installation

To build a stand-alone HaMLet program, go to the HaMLet source directory and invoke

one of the following commands:3

make with-smlnj

make with-mlton

make with-poly

make with-alice

make with-mosml

make with-mlkit

make with-smlsharp

depending on what SML system you want to compile with. This will produce an executable

named hamlet in the same directory, which can be used as described in Section 2.5.4

The above make targets use the fastest method of building HaMLet from scratch. Most

SML systems allow for incremental compilation that, after changes, only rebuilds those

parts of the system that are affected. To perform an incremental built, use the following

commands, respectively:5

make with-smlnj+

make with-alice+

make with-mosml+

make with-mlkit+

1Despite some incompatible changes between the two, HaMLet sources work with the latest specification of

the Basis [GR04] as well as the previously available version [GR96].
2The sources of the SML/NJ library are copyrighted ©1989-1998 by Lucent Technologies. See

http://cm.bell-labs.com/cm/cs/what/smlnj/license.html for copyright notice, license and

disclaimer.
3Under DOS-based systems, Cygwin is required.
4If you are compiling with a version of Moscow ML prior to 2.10, then you need to patch the definition of

FIXES_mosml as indicated in the Makefile.
5Currently, this only matters for Moscow ML and Alice ML, which employ batch compilers. The other systems

either always build incrementally (SML/NJ, ML Kit), or do not support separate compilation at all (MLton,

Poly/ML).

6

http://cm.bell-labs.com/cm/cs/what/smlnj/license.html

For other SML systems that are not directly supported, the makefile offers a way to build a

single monolithic file containing all of the HaMLet modules:

make hamlet-bundle.sml

In principle, the resulting file should compile on all SML systems. In practice however,

some might require additional tweaks to work around omissions or bugs in the provided

implementation of the Standard Basis Library [GR04].6

After HaMLet has been built, you should be able to execute it as described in 2.5. Under

Unixes, you have the option of installing HaMLet first:

make INSTALLDIR=mypath install

The default for mypath is /usr/local/hamlet. You should include your path in the

PATH environment variable, of course.

2.5 Using the HaMLet Stand-Alone

After building HaMLet successfully with one of the SML systems, you should be able to

start a HaMLet session by simply executing the command

hamlet [-mode] [file ...]

The mode option you can provide, controls how HaMLet processes its input. It is one of

• -p: parsing mode (only parse input)

• -l: elaboration mode (parse and elaborate input)

• -v: evaluation mode (parse and evaluate input)

• -x: execution mode (parse, elaborate, and evaluate input)

• -j: JavaScript compilation mode (parse, elaborate, and compile input)

Execution mode is the default behaviour. Parsing mode will output the abstract syntax

tree of the program in an intuitive S-expression format that should be suitable for further

processing by external tools. Elaboration mode only type-checks the program, without

running it.

Evaluation mode does not perform static analysis, so it can actually generate runtime type

errors. They will be properly handled and result in corresponding error messages. Eval-

uation mode also has an unavoidable glitch with regard to overloaded constants: since no

type information is available in evaluation mode, all constants will be assigned their de-

fault type. This can cause different results for some calculations. To see this, consider the

following example:

0w1 div (0w2 * 0w128) and

0w1 div (0w2 * 0w128) : Word8.word

Although both variants only differ in an added type annotation, the latter will have a com-

pletely different result – namely cause a division by zero and thus a Div exception (see

also Appendix A.11). In evaluation mode, however, both are indistinguishable, and the

second will actually behave like the first. You can still force calculation to be performed in

8 bit words by performing explicit conversions:

6Of the systems supported, SML/NJ, Moscow ML, the ML Kit, and SML# required such work-arounds, which

appear as wrapper files for Standard Basis modules in the fix directory of the HaMLet source.

7

val word8 = Word8.fromLarge;

word8 0w1 div (word8 0w2 * word8 0w128);

Note that LargeWord.word = word in HaMLet.

JavaScript compilation mode will parse and elaborate, and then output JavaScript state-

ments that are equivalent to the SML source. See Section 9 for more details.

If no file argument has been given you will enter an interactive session in the requested

mode, just like in other SML systems. Input may spread multiple lines and is terminated

by either an empty line, or a line whose last character is a semicolon. Aborting the session

via Ctrl-D will exit HaMLet (end of file, Ctrl-Z on DOS-based systems).

Otherwise, all files are processed in order of appearance. HaMLet interprets the Definition

very strictly and thus requires every source file to be terminated by a semicolon. A file

name may be prefixed by @ in which case it is taken to be an indirection file containing a

white space separated list of other file names and expands to that list. Expansion is done

recursively, i.e. the file may contain @-prefixed indirections on its own.

HaMLet currently provides a considerable part, but not yet the complete obligatory subset

of the Standard Basis Library [GR04]. In particular, support for OS functionality is weak.

Most basic types and corresponding operations are fully implemented, though. Support for

the Basis Library can be turned off by passing the flag “-b -” on the command line (with

an argument different from “-” this flag actually changes the load path for the library).

There are several things to note about HaMLet’s output:

• Types and signatures are always fully expanded, in order to closely resemble the

underlying semantic objects.

• Similarly, structure values are shown in full expansion.

• Signatures are annotated with the set of type names bound (as a comment).

• Similarly, the type name set of an inferred static basis is printed, though only elabo-

ration mode.

2.6 Using HaMLet from within an SML System

You can also use HaMLet from within the interactive toplevel of a given SML system.

This allows you to access the various modules described in the following sections of this

document directly and experiment with them.

In most interactive SML systems – particularly HaMLet itself, see 2.7 – you should be able

to load the HaMLet modules by evaluating

use "hamlet.sml";

As this requires recompiling everything, there are more comfortable ways for some partic-

ular systems:

• Under SML of New Jersey, it suffices to start SML/NJ in the HaMLet directory and

evaluate7

CM.make "sources.cm";

7In ancient versions of SML/NJ, i.e., before 110.20, the proper call would be CM.make().

8

• Under Moscow ML, first go to the HaMLet directory and invoke

make interactive-mosml

Then start Moscow ML and type

load "Sml";

Loading HaMLet into an SML session will create (besides others) a structure named Sml,

providing the following signature:

signature SML =

sig

val basisPath : string option ref

val parseString : string -> unit

val elabString : string -> unit

val evalString : string -> unit

val execString : string -> unit

val compileJSString : string -> unit

val parseFile : string -> unit

val elabFile : string -> unit

val evalFile : string -> unit

val execFile : string -> unit

val compileJSFile : string -> unit

val parseFiles : string list -> unit

val elabFiles : string list -> unit

val evalFiles : string list -> unit

val execFiles : string list -> unit

val compileJSFiles : string list -> unit

val parseSession : unit -> unit

val elabSession : unit -> unit

val evalSession : unit -> unit

val execSession : unit -> unit

val compileJSSession : unit -> unit

end

The functions here come in four obvious groups:

• xString processes a program contained in the string given.

• xFile processes a program contained in a file whose name is given.

• xFiles processes a whole set of files in an incremental manner.

• xSession starts an interactive session, that can be exited by pressing Ctrl-D (end

of file, Ctrl-Z on DOS-based systems).

Each call processes the program in the initial basis. For incremental processing, functions

from the xFiles or xSession group have to be used.

In each group there are five functions providing selective phases of execution:

• parseX just parses a program.

• elabX parses and elaborates a program.

• evalX parses and evaluates a program.

• execX parses, elaborates, and evaluates a program.

9

• compileJSX parses, elaborates, and compiles a program to JavaScript.

These functions correspond to the different execution modes of the stand-alone HaMLet

(see Section 2.5). They all print the resulting environments on stdOut, or a suitable

error message on stdErr if processing does not succeed (parse functions just print OK on

success). During processing of a file list or an interactive session, errors cause the current

input to be skipped, but not abortion of the session.

Finally, provides basisPath gives a way to configure the directory from which HaMLet

loads the Standard Basis Library. The default is SOME "basis", as a path relative to the

HaMLet binary. If set to NONE, no library is loaded, and only a bare minimum environment

is provided, roughly resembling the initial basis from the Definition (plus the magic use

function described in Section 8.5).

2.7 Bootstrapping

Since HaMLet has been written purely in strict SML’97, it is able to bootstrap itself. The

file hamlet.sml provided in the source directory allows bootstrapping an interactive

HaMLet session by starting the HaMLet stand-alone via

hamlet hamlet.sml wrap-hamlet.sml

Alternatively, the file can be use’d from within a HaMLet session. It will load all necessary

modules enabling interactive use as described in 2.6.

Beware that loading the full Basis Library in the bootstrapped version will require a huge

amount of virtual memory. If you are brave and have lots of memory and patience you

can even try a second bootstrapping iteration from within a session on the bootstrapped

HaMLet. Then, HaMLet not only type-checks itself but does also execute the type checker

and evaluator itself. You should expect at least two orders of magnitude slowdown for each

bootstrapping iteration, due to the naive interpretative evaluation.

2.8 Limitations

In its current version, HaMLet is not completely accurate with respect to some aspects of

the SML language. The following list gives an overview:

• Parsing: The grammar in the Definition together with its informal disambiguation

rules is rather over-ambitious. It is not possible to parse it with finite look-ahead,

as required by conventional parsing technology – at least not without performing a

major nightmare of grammar transformations first. Consequently, all existing SML

implementations disallow some phrases that ought to be legal according to the Defi-

nition. The most obvious examples are mixtures of fvalbinds and case expressions

like in

fun f p1 = case e1 of p2 => e2

| f p3 = e3

No effort has been made to get this working in HaMLet. However, HaMLet is still

more accurate than other SML implementations. For example, it parses the dreaded

where type ... and type derived form for signature expressions correctly (see

Section 4.4).

• Library: HaMLet does provide a significant portion of the Standard Basis Library,

but it is not complete.

10

3 Overview of the Implementation

The implementation of HaMLet follows the Definition as closely as possible. The idea is

to come as close as possible to the ideal of an executable version of the Definition. Where

the sources deviate, they usually do so for one of the following reasons:

• the non-deterministic nature of some of the rules (e.g. guessing the right types in the

static semantics of the core),

• the informal style of some parts (e.g. the restrictions in [4.11]),

• bugs or omissions in the Definition (see Appendix A).

We will explain non-trivial deviations from the Definition where appropriate.

The remainder of this document does not try to explain details of the Definition – the

Commentary [MT91] is much better suited for that purpose, despite being based on the

SML’90 Definition [MTH90]. Neither is this document a tutorial to type inference. The

explanations given here merely describe the relation between the HaMLet source code

and the formalism of the Definition. We makes reference to both, so it’s best if you have

Definition and HaMLet sources side by side. We use section numbers in brackets as above

to refer to individual sections of the Definition. Unbracketed section numbers are cross

references within this document.

Most explanations we give here will be rather terse and cover only general ideas without

going into too much detail. The intention is that the source code speaks for itself for most

part.

3.1 Structure of the Definition

The Definition specifies four main aspects of the SML language:

1. Syntax

2. Static semantics

3. Dynamic semantics

4. Program Execution

Syntax is the most conventional part of a language definition. The process of recognizing

and checking program syntax is usually referred to as parsing. The static semantics is

mainly concerned with the typing rules. The process of checking validity of a program

with respect to the static semantics is called elaboration by the Definition. The dynamic

semantics specifies how the actual evaluation of program phrases has to be performed.

The last aspect essentially describes how the interactive toplevel of an SML system should

work, i.e. how parsing, elaboration, and evaluation are connected. The complete processing

of a program, performing all three aforementioned phases, is known as execution.

The four aspects are covered in separate chapters of the Definition. Further destructuring

is done by distinguishing between core language and module language. This factorisation

of the language specification is described in more detail in the preface and the first chapter

of the Definition.

3.2 Modularisation

HaMLet resembles the structure of the Definition quite directly. For most chapters of the

Definition there is a corresponding module, or a group of modules, implementing that

11

aspect of the language, namely these are:

Chapter 2 and 3 parse/Lexer, Parser, SyntacticRestrictionsX

Chapter 4 elab/ElabCore

Chapter 5 elab/ElabModule

Chapter 6 eval/EvalCore

Chapter 7 eval/EvalModule

Chapter 8 program/Program

Appendix A parse/DerivedFormsX

Appendix B parse/Parser

Appendix C elab/InitialStaticBasis

Appendix D eval/InitialDynamicBasis

Appendix E elab/OverloadingClass (roughly)

Most other modules implement objects and operations defined at the beginning of each of

the different chapters, which are used by the main modules. The source of every module

cross-references the specific subsections of the Definition relevant for the types, operations,

or rule implementations contained in it.

Altogether, it should be quite simple to map particular HaMLet modules to concepts in the

Definition and vice versa. To make the mapping as obvious as possible, we followed quite

strict naming conventions (see 3.5). Each of the following sections of this document will

cover implementation of one of the language aspects mentioned in 3.1. At the beginning of

each section we will list all modules relevant to that part of the implementation.

As a rule, each source file contains exactly one signature, structure, or functor. The only

exceptions are the files IdsX, Syntax, each containing a collection of simple functor

applications, and the files containing the modulesAddr, ExName, Lab, Stamp, TyName,

TyVar, which also provide implementations of sets and maps of the corresponding objects.

3.3 Mapping Syntactic and Semantic Objects

The sets representing the different phrase classes of the SML syntax are defined inductively

through the BNF grammars in the Definition. These sets are mapped to appropriate SML

datatypes in obvious ways, using fields of type option for optional phrases.

All sets defining semantic objects in the Definition have been mapped to SML types as

directly as possible:

primitive objects (without structure) abstract types

products (A×B) tuple types (A * B)

disjoint unions (A ∪B) datatypes (A of A | B of B)

k-ary products (∪k≥0A
k) list types (A list)

finite sets (Fin(A)) instances of the FinSet functor

finite maps (A
fin
→ B) instances of the FinMap functor

In some places, we had to relax these conventions somewhat and turn some additional types

into datatypes to cope with mutual recursion between definitions. For example, environ-

ments are always rendered as datatypes.

Except for the primitive simple objects, no type definitions are abstract, i.e., type defi-

nitions representing structured sets from the semantics are always kept transparent. The

sole reason is to allow the most literal translation of rules operating on semantic objects.

Clearly, regarding this aspect, the HaMLet sources should not serve as an example for good

12

modularisation practice...

3.4 Mapping Inference Rules

Usually, each group of inference rules in the Definition is implemented by one function.

For rules of the form

A ⊢ phrase ⇒ A′

the corresponding function has type

A * phrase -> A’

Each individual rule corresponds to one function clause. More specifically, an inference

rule of the form:

A1 ⊢ phrase1 ⇒ A′
1 · · · An ⊢ phrasen ⇒ A′

n
side condition

A ⊢ phrase ⇒ A′
(k)

maps to a function clause of the form:

elabPhraseClass args (A, phrase) =

(* [Rule k] *)

let

val A1’ = elabPhraseClass1(A1, phrase1)

(* ... *)

val An’ = elabPhraseClassN(An, phraseN)

in

if not(side condition) then

error("message")

else

A’

end

Here, args denotes possible additional arguments that we sometimes need to pass around.

There are exceptions to this scheme for rules that are not purely structural, e.g. rules 34

and 35 of the static semantics [4.10] are represented by one case only. Moreover, we deal

slightly differently with the state and exception conventions in the dynamic semantics (see

6.3).

If one of a rule’s premise is not met, an appropriate message is usually generated and an

exception is raised through the Error module.

3.5 Naming Conventions

Structures and functors are named after the main type they define, the objects they generate,

or the aspects of the Definition they implement (with one exception: the structure contain-

ing type Int is named Inter to avoid conflicts with the structure Int of the Standard

Basis Library). The corresponding signatures are named accordingly.

Several structures come in groups, representing the separation of core and module language

(and even the program layer). Orthogonal grouping happens for aspects similar in the

static and dynamic semantics. The structure names reflect those connections in an obvious

way, by including the words -Core-, -Module-, or -Program-, and -Static- or

-Dynamic-.

13

Types representing sets defined in the Definition are always named after that set even if

this conflicts with the usual SML conventions with respect to capitalisation. Functions

are also named after the corresponding operation if it is defined in the Definition or the

Commentary [MT91]. Variables are named as in the Definition, with Greek letters spelled

out. Moreover, type definitions usually include a comment indicating how variables of that

type will be named.

On all other occasions obvious names have been chosen, following conventions established

by the Standard Basis Library [GR04] or the SML/NJ library [NJ98] where possible.

3.6 Side Effects

SML is not purely functional, and neither is the HaMLet implementation. It uses state

whenever that is the most natural thing to do, or if it considerably simplifies code. State

comes into play for the following:

• inside the lexer, to handle nested comments,

• inside the parser, to maintain the infix environment,

• in the abstract syntax tree, to annotate elaboration results,

• to generate time stamps, e.g. for type and exception names,

• in the representation of type terms, to allow destructive unification,

• during elaboration, to collect unresolved overloaded and flexible types,

• during evaluation, to maintain the program’s state.

And of course, the code generated by Lex and Yacc uses state internally.

Other side effects are the output of error and warning messages in the Error structure.

4 Abstract Syntax and Parsing

4.1 Files

The following modules are related to parsing and representation of the abstract syntax tree:

syntax/

Source representation of source regions

Annotation representation of AST annotations

IdFn generic identifier representation

LongIdFn

IdsCore instantiated identifier classes

IdsModule

TyVar type variable representation

Lab label representation

SCon special constants

SyntaxCoreFn abstract syntax tree definition

SyntaxModuleFn

SyntaxProgramFn

Syntax AST instantiations

PPCore printing of core AST

14

PPModule printing of module AST

PPProgram printing of program AST

PPSyntax auxiliary PP functions

IdStatus identifier status

parse/

Lexer lexical analysis (via ML-Lex)

LocLexer wrapper computing line locations

Parser syntactical analysis (via ML-Yacc)

Infix infix parser

Parse parser plugging

DerivedFormsCore derived forms transformation

DerivedFormsModule

DerivedFormsProgram

BindingObjectsCore objects for binding analysis

BindingObjectsModule

BindingEnv operations on binding environment

BindingContext operations on binding context

BindingBasis operations on binding basis

SyntacticRestrictionsCore verifying syntactic restrictions

SyntacticRestrictionsModule

SyntacticRestrictionsProgram

elab/

ScopeTyVars scoping analysis for type variables

4.2 Abstract Syntax Tree and Annotations

The abstract syntax tree (AST) is split into three layers, corresponding to the SML core and

module language and the thin program toplevel, respectively (modules GrammarXFn).

It represents the bare grammar, without derived forms. One notable exception has been

made for structure sharing constraints, which are included since they cannot be handled

as a purely syntactic derived form (see A.8). Infix directives [2.6] and application have

been dropped from the core grammar, as they do not appear in the semantic rules of the

Definition. However, we have to keep occurrences of the op keyword in order to do infix

resolution (see 4.5).

Each identifier class is represented by its own abstract type. Most of them – except TyVar

and Lab, which require special operations – are generated from the IdFn and LongIdFn

functors.

Special constants are represented as strings containing the distinguished part of their lexical

appearance – their actual values cannot be calculated before overloading resolution.

AST nodes consist of two parts: the actual syntax datatype and an annotation. The module

Annotation defines an auxiliary datatype with an infix constructor to make construction

and matching of nodes convenient:

datatype (’a, ’b) phrase = @@ of ’a * ’b annotation

15

With this type, the AST representation of an application expression can be written and

pattern-matched as APPExp(func, arg)@@A, for example, where A is the annotation

for this AST node.

The annotation itself is a static property list containing at least a loc property recording the

character region in the original source text that this node corresponds to. The tail of each

property list is functorised per phrase class in the AST definitions (functors Syntax*Fn).

The respective instantiations (file Syntax) define these property lists to contain a property

elab, which will contain the outcome of elaboration to every node. For phrase types, it

consists of the exact result returned by the respective elaboration rule, whereas identifier

nodes are annotated with the classification these identifiers had in the environment at the

respective point of use or definition (in particular, value identifiers are annotated with their

respective polymorphic type scheme, whereas the expression node containing them is an-

notated with the instantiated type). Match and ValBind phrases have an additional property

exhaustive that records whether the respective pattern is exhaustive.

More concretely, the source location of an AST node can be retrieved by invoking the func-

tion Annotation.loc A on its annotation value A; the static semantic object associated

with a node via Annotation.get(Annotation.elab A) (after successful elabo-

ration, otherwise the access will fail with an Option exception). The implementation of

the JavaScript compiler (see Section 9) contains some examples of such usage.

4.3 Parsing and Lexing

Parser and lexer have been generated using ML-Yacc [TA00] and ML-Lex [AMT94] which

are part of the SML/NJ distribution [NJ07]. The parser builds an abstract syntax tree using

the syntax types described in Section 4.2.

Most parts of the parser and lexer specifications (files Parser.grm and Lexer.lex)

are straightforward. However, we have to take some care to handle all those overlapping

lexical classes correctly, which requires the introduction of some additional token classes

(see comments in Lexer.lex). Nested comments are treated through a side-effecting

counter for nesting depth.

A substantial number of grammar transformations is unavoidable to deal with LALR con-

flicts in the original SML grammar (see 4.4 and comments in Parser.grm). Some hack-

ing is necessary to do infix resolution directly during parsing (see 4.5).

Semantic actions of the parser apply the appropriate constructors of the grammar types or

a transformation function provided by the modules handling derived forms (see 4.6).

4.4 Grammar Ambiguities and Parsing Problems

ML-Yacc is a conventional LALR(1) parser generator. Unfortunately, the exact grammar

given in the Definition, together with the disambiguation rules given in its [Appendix A]

define a language that cannot be parsed by standard parsing technology, as it would require

infinite look-ahead. The HaMLet parser is therefore incapable of handling all language

constructs that are legal according to a strict reading of the Definition. The most annoying

example of a problematic phrase is a case expression as right hand side of a function

binding (see A.9). Most people consider this a bug on the side of the Definition. Conse-

quently, we make no attempt to fix it in HaMLet. It could only be dealt with correctly either

by horrendous grammar transformations or by some really nasty and expensive lexer hack

[K93].

16

Disambiguation of expressions is left to ML-Yacc, we simply specify suitable keyword

precedences. This seems to be the most appropriate thing to do, as the disambiguation

rules in the Definition are ambiguous an contradictory by themselves (see A.9).

The SML grammar contains several other ambiguities on the declaration level (see A.1,

A.2 and A.7). We resolve them in the ‘most natural’ ways:

• Semicolons are simply parsed as declarations or specifications, not as separators (cf.

A.1).

• Sequential declarations and specifications are parsed left associative.

• Sharing specifications are also left associative, effectively at the same precedence

level as sequential specifications.

• Core level declarations are reduced to structure declarations as soon as possible. This

determines ambiguous local declarations (cf. A.2).

Several auxiliary phrase classes have been introduced to implement these disambiguations.

Some heavy transformations of the grammar are necessary to deal with the dreaded where

type . . .and type derived form for signature expressions [Appendix A, Figure 19]: for

every nonterminal x that can end in a sigexp and may be followed by another subphrase y
separated by the keyword ‘and’ we had to introduce auxiliary nonterminals of the form

x__AND_y

whose semantic actions build two parts of the abstract syntax tree: the subtree for x and the

subtree for y.

Further grammar transformations are needed to cope with as patterns and datatype decla-

ration vs. datatype replication.

4.5 Infix Resolution

Since ML-Yacc does not support attributes, and we did not want to introduce a separate

infix resolution pass, the parser maintains an infix environment J which is initialised and

updated via side effects in the semantic actions of several pseudo productions. Applications

– infix or not – are first parsed as lists of atomic symbols and then transformed by the

module Infix which is invoked at the appropriate places in the semantic actions. The

infix parser in that module is essentially a simple hand-coded LR Parser.

The parser is parameterised over its initial infix environment. After successful parsing it

returns the modified infix environment along with the AST.

4.6 Derived Forms

To translate derived forms, three modules corresponding to the three grammar layers pro-

vide transformation functions that rewrite the grammatical forms to their equivalent forms,

as specified in Appendix A of the Definition (modules DerivedFormsX). These func-

tions are named similar to the constructors in the AST types so that the parser itself does

not have to distinguish between constructors of bare syntax forms and pseudo construc-

tors for derived forms. To ensure that all node annotations are unique (given that they are

stateful), some of the rewritings perfermed by these functions need to duplicate annotations

accordingly.

17

The Definition describes the fvalbind derived form rather inaccurately. We made it a bit

more precise by introducing several additional phrase classes (see A.9). Most of the parsing

happens in the Infix module in this case, though.

Note that the structure sharing syntax is not a proper derived form since it requires context

information about the involved structures (see A.8). It therefore was moved to the bare

grammar.

4.7 Syntactic Restrictions

The BNF grammar given in the Definition actually specifies a superset of all legal programs,

which is further restricted by a set of syntactic constraints [Section 2.9, 3.5]. The parser

accepts this precise superset, and the syntactic restrictions are verified in a separate pass.

Unfortunately, not all of the restrictions given in the Definition are purely syntactic (see

A.1). In general, it requires full binding analysis to infer identifier status and type variable

scoping.

Checking of syntactic restrictions has hence been implemented as a separate inference pass

over the whole program. The pass closely mirrors the static semantics. It computes respec-

tive binding environments that record the identifier status of value identifiers. For modules,

it has to include structures, functors and signatures as well, because the effect of open

relies on the environments they produce. Likewise, type environments are needed to reflect

the effect of datatype replication. In essence, binding environments are isomorphic to in-

terfaces in the dynamic semantics [Section 7.2]. As an extension, a binding basis includes

signatures and functors. For the latter, we only need to maintain the result environment.

Last, a binding context includes a set of bound type variables.

5 Elaboration

5.1 Files

The following modules represent objects of the static semantics and implement elaboration:

elab/

StaticObjectsCore definition of semantic objects

StaticObjectsModule

TyName type names

Type operations on types

TypeFcn operations on type functions

TypeScheme operations on type schemes

OverloadingClass overloading classes

StaticEnv environment instantiation

Sig operations on signatures

FunSig operations on functor signatures

StaticBasis operations on basis

ElabCore implementation of elaboration rules

ElabModule

Clos expansiveness check and closure

18

CheckPattern pattern redundancy and exhaustiveness checking

5.2 Types and Unification

Types are represented according to the mapping explained in Section 3.3 (see the modules

StaticObjectsCore and Type). However, since type inference has to do unification

(see 5.6), which we prefer to do destructively for simplicity, each type node actually is

wrapped into a reference. A simple graph algorithm is required to retain sharing when

cloning types. All other type operations besides unification have functional semantics.

In order to avoid confusion (cf. A.12) our type representation distinguishes undetermined

types (introduced during type inference, see 5.6) from explicit type variables. This requires

an additional kind of node in our type representation. Moreover, we have another kind of

undetermined type node to deal with overloaded types (see 5.8). Finally, we need a third

additional node that replaces undetermined types once they become determined, in order

to retain sharing.

All operations on types have been implemented in a very straightforward way. To keep

the sources simple and faithful to the Definition we chose not to use any optimisations like

variable levels or similar techniques often used in real compilers.

5.3 Type Names

Type names (moduleTyName) are generated by a global stamp generator (moduleStamp).

As described in the Definition, they carry attributes for arity and equality.

To simplify the task of checking exhaustiveness of patterns type names have been equipped

with an additional attribute denoting the span of the type, i.e. the number of constructors

(see 5.12). For pretty printing purposes, we also remember the original type constructor of

each type name.

5.4 Environment Representation

In order to share as much code as possible between the rather similar environments of the

static and the dynamic semantics, as well as the interfaces Int in the dynamic semantics

of modules, we introduce a functor GenericEnvFn that defines the representation and

implements the common operations on environments.

Unfortunately, there exists a mutual recursion between environments and their range sets,

in the static semantics (via TyStr) as well as in the dynamic semantics (via Val and FcnClo-

sure). This precludes passing the environment range types as functor arguments. Instead,

we make all environment types polymorphic over the corresponding range types. The in-

stantiating modules (StaticEnv, DynamicEnv, and Inter) tie the knot appropriately.

5.5 Elaboration Rules

Elaboration implements the inference rules of sections [4.10] and [5.7] (modulesElabCore

and ElabModule). It also checks the further restrictions in [4.11].

The inference rules have been mapped to SML functions as described in 3.4. They store

the result of elaboration into the elab property of the respective AST annotations. To

19

this end, the modules Annotation and AnnotationElab (the latter in file Syntax)

specify two convenient operators, -> and |->. This information can be retrieved from the

AST as described in Section 4.2.

Additional arguments needed in some places of Core elaboration are encapsulated in an

auxiliary record deferred: a flag indicating whether we are currently elaborating a

toplevel declaration (in order to implement restriction 3 in [4.11] properly), a list of un-

resolved types (for overloading resolution and flexible records, see 5.8), and a list of fn

matches (to defer checking of exhaustiveness until after overloading resolution, see 5.12

and 5.8). For modules, we pass down the equality attribute of type descriptions (see 5.10).

Note that most of the side conditions on type names could be ignored since they are mostly

ensured by construction using stamps. We included them anyway, to be consistent and to

have an additional sanity check. At some places these checks are not accurate, though,

since the types examined can still contain type inference holes which may be filled with

type names later. To be faithful, we hence employ time stamps on type names and type

holes, such that violations of prior side conditions can be discovered during type inference,

as we explain in the next section.

5.6 Type Inference

The inference rules for core elaboration are non-deterministic. For example, when enter-

ing a new identifier representing a pattern variable into the environment, rule 34 [4.10]

essentially guesses its correct type. A deterministic implementation of type inference is

the standard algorithm W by Damas/Milner [DM82]. Informally, when it has to guess a

type non-deterministically it introduces a fresh type variable as a placeholder. We pre-

fer to speak of undetermined types instead, since type variables already exist in a slightly

different sense in the semantics of SML (cf. A.12).

Wherever an inference rule imposes an equality constraint on two types because the same

meta-variable appears in different premises, the algorithm tries to unify the two types de-

rived. After a value declaration has been checked, one can safely turn remaining unde-

termined types into type variables and universally quantify the inferred type over them, if

they do not appear in the context. SML’s value restriction does restrict this closure to non-

expansive declarations, however [4.7, 4.8]. Note that (explicit) type variables can only be

unified with themselves.

We use an imperative variant of the algorithm where unification happens destructively

[C87], so that we do not have to deal with substitutions, and the form of the elaboration

functions is kept more in line with the inference rules in the Definition.

Undetermined types are identified by stamps. They carry two additional attributes: an

equality constraint, telling whether the type has to admit equality, and a time stamp, which

records the relative order in which undetermined types and type names have been intro-

duced. During unification with undetermined types we have to take care to properly enforce

and propagate these attributes.

When instantiating type variables to undetermined types [4.10, rule 2], the undetermined

type inherits the equality attribute from the variable. An undetermined equality type in-

duces equality on any type it is unified with. In particular, if an undetermined equality

type is unified with an undetermined non-equality type, equality is induced on the latter

(function Type.unify).

Likewise, when a type is unified with an undetermined type, the latter’s time stamp is

propagated to all subterms of the former. That is, nested undetermined types inherit the

time stamp if their own is not older already. Type names must always be older than the time

20

stamp – unification fails, when a type name is encountered that is newer. This mechanism is

used to prevent unification with types which contain type names that have been introduced

after the undetermined type. For example, the snippet

let

val r = ref NONE

datatype t = C

in

r := SOME C

end

must not type-check – the type of r may not mention t (otherwise the freshness side condi-

tion on names for datatypes [4.10, rule 17] would be violated). However, type inference can

only find out about this violation at the point of the assignment expression. By comparing

the time stamp of the undetermined type introduced when elaborating the declaration of r,

and the stamp of the type name t, our unification algorithm will discover the violation.

More importantly, the mechanism is sufficient to preclude unification of undetermined

types with local type names, as in the following example:

val r = ref NONE

functor F(type t; val x : t) =

struct

val _ = r := SOME C

end

Obviously, allowing this example would be unsound.

To cope with type inference for records, we have to represent partially determined rows.

The yet undetermined part of a row is represented by a special kind of type variable, a

row variable. This variable has to carry the same attributes as an undetermined type, i.e. an

equality flag and a time stamp, both of which have to be properly propagated on unification.

See also Section 5.8.

5.7 Type Schemes

Type schemes represent polymorphic types, i.e. a type prefixed by a list of quantified type

variables. The only non-trivial operation on type schemes is generalisation [4.5].

We implement the generalisation test via unification: in order to test for ∀α(k).τ ≻ τ ′, we

instantiate α(k) with undetermined types τ (k) and test whether τ [τ (k)/α(k)] can be unified

with τ ′.

To test generalisation between type schemes, ∀α(k).τ ≻ ∀α(k′).τ ′, we first skolemise the

variables α(k′) on the right-hand side by substituting them with fresh type names t(k
′).

Then we proceed by testing for ∀α(k).τ ≻ τ ′[t(k
′)/α(k′)] as described before.

Note that τ may contain undetermined types, stemming from “expansive” declarations for

which the value restriction prevented generalisation. These have to be kept monomorphic,

but naive unification might identify them with one of the skolem types t(k
′) (or a type

containing one) – and hence effectively turn them into polymorphic types! For example,

when checking the signature ascription in the following example,

signature S = sig val f : ’a -> ’a option end

structure X : S =

21

struct

val r = ref NONE

fun f x = !r before r := SOME x

end

the type inferred for the function f contains an undetermined type, the content type of r.

It must be monomorphic, hence the type of f does not generalise the polymorphic type

specified in the signature.8 Comparison of the time stamps of the undetermined type and

the newer type name generated during skolemisation of ’a makes unification between the

two properly fail with our algorithm.

5.8 Overloading and Flexible Records

Overloading is the least formal part of the Definition (see A.11). It is just described in

an appendix, as special case treatment for a handful of given operators and constants. We

tried to generalise the mechanism indicated in the Definition in order to have something a

bit less ad hoc that smoothly integrates with type inference.

To represent type schemes of overloaded identifiers we allow type variables to be con-

strained with overloading classes in a type scheme, i.e. type variables can carry an over-

loading class as an additional optional attribute. When instantiated, such variables are

substituted by overloaded type nodes, constrained by the same overloading class (construc-

tor Type.Overloaded). When we unify an overloaded type with another, determined

type we have to check whether that other type is a type name contained in the given over-

loading class. If yes, overloading has been resolved, if no there is a type error (function

Type.unify).

When unifying two overloaded types, we have to calculate the intersection of the two over-

loading classes. So far, everything is pretty obvious. The shaky part is how to propagate

the default types associated with the classes when we perform intersection.

We formalise an overloading class as a pair of its type name set and the type name being

the designated default:

(T, t) ∈ OverloadingClass = TyNameSet × TyName

Now when we have to intersect two overloading classes (T1, t1) and (T2, t2), there may be

several cases. Let T = T1 ∩ T2:

1. T = ∅. In this case, the constraints on the types are inconsistent and the program in

question is ill-typed.

2. T 6= ∅ and t1 = t2 ∈ T . The overloading has (possibly) been narrowed down and

the default types are consistent.

3. T 6= ∅ and t1 6= t2 and |{t1, t2}∩T | = 1. The overloading has been narrowed down.

The default types differ but only one of them still applies.

4. T 6= ∅ and |{t1, t2} ∩ T | 6= 1. The overloading could be narrowed down, but there

is no unambiguous default type.

Case (3) is a bit subtle. It occurs when checking the following declaration:

fun f(x,y) = (x + y)/y

8Several SML implementations currently get this wrong, opening a soundness hole in their type checkers.

22

Both, + and / are overloaded and default to different types, but in this combination only

real remains as a valid default so that the type of f should default to real × real →
real.9

There are two ways to deal with case (4): either rule it out by enforcing suitable well-

formedness requirements on the overloading classes in the initial basis, or handle it by gen-

eralising overloading classes to contain sets of default values (an error would be flagged if

defaulting actually had to be applied for a non-singular set). We settled for the former alter-

native as it seems to be more in spirit with the Definition and it turns out that the overloading

classes specified in the Definition satisfy the required well-formedness constraints.10

Consequently, we demand the following properties for all pairs of overloading classes

(T, t), (T ′, t′) appearing in a basis:

1. t ∈ T
2. Eq(T) = ∅ ∨ t admits equality

3. T ∩ T ′ = ∅ ∨ |{t, t′} ∩ T ∩ T ′| = 1

where Eq(T) = {t ∈ T | t admits equality}.

The reason for (1) is obvious. (2) guarantees that we do not loose the default by inducing

equality. (3) ensures a unique default whenever we have to unify two overloaded types. (2)

and (3) also allow the resulting set to become empty which represents a type error.

Defaulting is implemented by collecting a list of all unresolved types – this includes flexi-

ble records – during elaboration of value declarations (contained in the additional argument

record D : deferred). Before closing an environment, we iterate over this list to default

remaining overloaded types or discover unresolved flexible records. This implies that the

context determining an overloaded type or flexible record type is the smallest enclosing

core-level declaration of the corresponding overloaded identifier, special constant, or flexi-

ble record, respectively (cf. A.3 and A.11).

Special constants, which are also overloaded, have to be range-checked with respect to their

resolved type [Section E.1]. For this purpose, the list of unresolved types can carry optional

associated special constants. During defaulting we hence also do the corresponding range

checking for all collected special constants.

5.9 Recursive Bindings and Datatype Declarations

Value bindings with rec and datatype declarations are recursive. The inference rules (26,

17 and 19) use the same environment VE or TE on the left hand side of the turnstile that

is to be inferred on its right hand side.

To implement this we build a tentative environment in a first iteration that is not complete

but already contains enough information to perform the actual inference in the second it-

eration. For recursive value bindings we insert undetermined types as placeholders for the

actual types (and unify later), for datatype bindings we leave the constructor environments

empty.

Datatype declarations bring an additional complication because of the side condition that

requires TE to maximise equality. This is being dealt with by first assuming equality for

all new type names and later adjusting all invalid equality attributes in a fixpoint iteration,

until all type structures respect equality (function StaticEnv.maximiseEquality).

9In fact, some SML implementations do not handle this case properly.
10A previous version of HaMLet used the latter alternative. It allows more liberal overloading but may lead to

typing errors due to ambiguous overloading, despite the default mechanism. Moreover, in full generality it raises

additional issues regarding monotonicity of overloading resolution when extending the library.

23

5.10 Module Elaboration

Like for the core language, the inference rules for modules are non-deterministic. In partic-

ular, several rules have to guess type names that have to be consistent with side conditions

enforced further down the inference tree. However, most of these side conditions just en-

sure that type names are unique, i.e. fresh type names are chosen where new types are

introduced. Since we create type names through a stamp mechanism, most of these side

conditions are trivially met. The remaining cases are dealt with by performing suitable

renaming of bound type names with fresh ones, as the Definition already suggests in the

corresponding comments (module ElabModule).

The other remaining bits of non-determinism are guessing the right equality attribute for

type descriptions, which is dealt with by simply passing the required attribute down as an

additional assumption (function ElabModule.elabTypDesc), and for datatype speci-

fications, which require the same fixpoint iteration as datatype declarations in the core (see

5.9).

5.11 Signature Matching

Signature matching is the most complex operation in the SML semantics. As the Definition

describes, it is a combination of realisation and enrichment.

To match an environment E′ against a signature Σ = (T,E) we first calculate an appro-

priate realisation ϕ by traversing E: for all flexible type specifications in E (i.e. those

whose type functions are equal to type names bound in T) we look up the correspond-

ing type in E′ and extend ϕ accordingly. Then we apply the resulting realisation to E
which gives us the potential E−. For this we just have to check whether it is enriched

by E′ which can be done by another simple traversal of E− (functions Sig.match and

StaticEnv.enriches).

The realisation calculated during matching is also used to propagate type information to the

result environment of functor applications (rule 54, module ElabModule). A functor sig-

nature has form (T1)(E1, (T
′
1)E

′
1). To obtain a suitable functor instantiation (E′′, (T ′)E′)

for rule 54 we simply match the environment E of the argument structure to the signature

(T1)E1 which gives E′′ and a realisation ϕ. We can apply ϕ to the functor’s result signa-

ture (T ′
1)E

′
1 to get – after renaming all t ∈ T ′

1 to fresh names t′ ∈ T ′ – the actual (T ′)E′

appearing in the rule.

5.12 Checking Patterns

Section [4.11], items 2 and 3 require checking exhaustiveness and irredundancy of patterns

(module CheckPattern). The basic idea of the algorithm is to perform static matching,

i.e. to traverse the decision tree corresponding to a match and propagate information about

the value to be matched from the context of the current subtree. The knowledge available

on a particular subterm is described by the description type. Moreover, a context

specifies the path from the root to the current subtree.

The algorithm is loosely based on [S96], where more details can be found. To enable this

algorithm, type names carry an additional attribute denoting their span, i.e. the number

of constructors the type possesses (see 5.3). We extend the ideas in the paper to cover

records (behave as non-positional tuples), exception constructors (have infinite span), and

constants (treated like constructors with appropriate, possibly infinite span). Note that we

have to defer checking of patterns until overloading resolution for contained constants has

24

been performed – otherwise we will not know their span.

A context description is not simply a list of constructor applications to term descriptions

as in the paper, but separates constructor application from record aggregation and uses a

nested definition. Instead of lists of negative constructors (and constants) we use sets for

descriptions. Record descriptions are maps from labels to descriptions.

During traversal we construct two sets that remembers the region of every match we en-

countered, and every match we reached. In the end we can discover redundant matches by

taking the difference of the sets. Non-exhaustiveness is detected by remembering whether

we reached a failure leaf in the decision tree.

In the case of exception constructors, equality can only be checked on a syntactic level.

Since there may be aliasing this is merely an approximation (see A.3).

There is a problem with the semantics of sharing and where constraints, which allow

inconsistent datatypes to be equated (see A.3). In this case, no meaningful analysis is

possible, resulting warnings may not make sense. There is nothing we can do but ignore

this problem.

6 Evaluation

6.1 Files

Objects of the dynamic semantics and evaluation rules are implemented by the following

modules:

eval/

DynamicObjectsCore definition of semantic objects

DynamicObjectsModule

Addr addresses

ExName exception names

BasVal basic values

SVal special values

Val operations on values

State operations on state

DynamicEnv operations on environments

Inter operations on interfaces

DynamicBasis operations on basis

IntBasis operations on interface basis

EvalCore implementation of evaluation rules

EvalModule

6.2 Value Representation

Values are represented by a datatype corresponding to what is defined in Section [6.3] of

the Definition (module DynamicObjectsCore). Special values are simply represented

by the corresponding SML types (module SVal). Currently, only the default types and

25

Word8.word are implemented, which represents the minimum requirement of the Stan-

dard Basis.

Basic values are simply represented by strings (module DynamicObjectsCore). How-

ever, the only basic value defined in the Definition is the polymorphic equality =, every-

thing else is left to the library. Consequently, the implementation of the APPLY func-

tion in module BasVal only handles =. For all other basic values it dispatches to the

DynamicLibrary module, which provides an extended, library-specific version of the

APPLY function (see Section 8).

The special value FAIL, which denotes pattern match failure, is not represented directly but

has rather been defined as an exception (see 6.3).

6.3 Evaluation Rules

The rules of the dynamic semantics have been translated to SML following similar conven-

tions as for the static semantics (see Section 3.4). However, to avoid painfully expanding

out all occurrences of the state and exception conventions, we deal with state and excep-

tions in an imperative way. State is not passed around as a functional value but rather

as a reference to the actual state map (module State) that gets updated on assignments.

This avoids threading the state back with the result values. Exception packages (module

Pack) are not passed back either, but are rather transferred by raising a Pack exception.

Similarly, FAIL has been implemented as an exception.

So state is implemented by state and exceptions by exceptions – not really surprising. Con-

sequently, rules of the form

s, A ⊢ phrase ⇒ A′/p, s′

become functions of type

State ref * A * phrase -> A’

which may raise a Pack exception – likewise for rules including FAIL results. We omit

passing in the state where it is not needed. This way the code follows the form of rules

using the state and exception conventions as close as possible (modules EvalCore and

EvalModule).

Failure with respect to a rule’s premise corresponds to a runtime type error. This may

actually occur in evaluation mode and is flagged accordingly.

Evaluation of special constant behaves differently in execution and evaluation mode. In the

former, constants will have been annotated with a proper type name by overloading reso-

lution (see 5.8). In evaluation mode this annotation is missing and the function valSCon

will assume the default type of the corresponding overloading class, respectively. This

implies that the semantics may change (see 2.5).

Note that the rules 182 and 184–186 of the dynamic semantics for modules contain several

errors (see A.6).

26

7 Toplevel

7.1 Files

The remaining modules implement program execution and interactive toplevel:

exec/

Basis the combined basis

Program implementation of rules for programs

elab/

ElabProgram separate elaboration

eval/

EvalProgram separate evaluation

parse/

InitialInfixEnv initial environments

elab/

InitialStaticEnv

InitialStaticBasis

eval/

InitialDynamicEnv

InitialDynamicBasis

infrastruture/

PrettyPrint pretty printing engine

PPMisc auxiliary pretty printing functions

elab/

PPType pretty printing of types

PPStaticEnv ... static environment

PPStaticBasis ... static basis

eval/

PPVal ... values

PPDynamicEnv ... dynamic environment

PPDynamicBasis ... dynamic basis

exec/

PPEnv ... combined environment

PPBasis ... combined basis

main/

Sml main HaMLet interface

Main wrapper for stand-alone version

7.2 Program Execution

The module Program implements the rules in Chapter 8 of the Definition. It follows the

same conventions as used for the evaluation rules (see 3.4 and 6.3).

In addition to the ‘proper’ implementation of the rules as given in the Definition (func-

tion execProgram) the module also features two straightforward variations that suppress

evaluation and elaboration, respectively (elabProgram and evalProgram).

27

Note that a failing elaboration as appearing in rule 187 corresponds to an Error exception.

However, in evaluation mode, any Error exception will instead originate from a runtime

type error.

The remaining task after execution is pretty printing the results. We use an extended version

of a generic pretty printer proposed by Wadler [W98] which features more sophisticated

grouping via boxes (modules PrettyPrint and PPxxx).

In addition to the rule implementations in module Program, which implement inter-

active execution as prescribed by the Definition, we also provide two separate modules

ElabProgram and EvalProgram, which implement separate elaboration and evalua-

tion for program phrases in a manner consistent with the rules for the rest of the language.

These modules are not used for program execution by HaMLet itself, but intended as a

building blocks for language implementations on top of HaMLet. In particular, HaMLet’s

JavaScript compilation mode (Section 9) uses ElabProgram.

7.3 Plugging

The Sml module sets up the standard library (see Section 8), does all necessary I/O inter-

action and invokes the parser and the appropriate function in module Program, passing

the necessary environments.

After processing the input itself the functions in the Sml module process all files that have

been entered into the use queue during evaluation (see 8.5). That may add additional

entries to the queue.

The Main module is only needed for the stand-alone version of HaMLet. It parses the

command line and either starts an appropriate session or reads in the given files.

8 Library

8.1 Files

The library only consists of a hook module and the library implementation files written in

the target language:

lib/

StaticLibrary primitive part of the library (static definitions)

DynamicLibrary primitive part of the library (dynamic definitions)

Use use queue

basis/ the actual library modules

8.2 Language/Library Interaction

The Definition contains several hooks where it explicitly delegates mechanics to the library:

• the set BasVal of basic values and the APPLY function [6.4],

• the initial static basis B0 and infix status [Appendix C],

• the initial dynamic basis B0 [Appendix D],

28

• the basic overloading classes Int, Real, Word, String, Char [E.1].

Realistically, it also would have to allow extending the sets SVal [6.2] and Val [6.3], and

enable the APPLY function to modify the program state (cf. A.5). HaMLet currently only

extends SVal, while other library types are mapped to what is there already (see 8.4). All

respective library extensions are encapsulated into a pair of modules StaticLibrary

and DynamicLibrary that define the parts of these objects that are left open by the

Definition.

However, we split up implementation of the overall library into two layers:

• the primitive layer contains all that cannot be self-hosted in the implemented SML,

• the surface layer defines the actual library.

Let us call the instance of SML that HaMLet implements the hosted language, while the

SML universe in which HaMLet is implemented the hosting language. Many library enti-

ties are definable within the hosted language itself, e.g. the standard ! function. There are

basically three reasons that can force us to make an entity primitive:

• its behaviour cannot be implemented out of nowhere (e.g. I/O operations),

• it is dependent on system properties (e.g. numeric limits), or

• it possesses a special type (e.g. overloaded identifiers).

The StaticLibrary and DynamicLibrarymodules define everything in the hosting

language that has to be primitive (see 8.3), while the rest is implemented within the hosted

language in the modules inside the basis directory (see 8.6). These modules have to

make assumptions about what is defined by the primitive library modules, so that both

layers should be seen in conjunction.

8.3 Primitives

Primitive operations are implemented by means of the APPLY function. Most of them just

fall back to the corresponding operations of the host system.11 We only have to unpack

and repack the value representation and remap possible exceptions. Overloaded primitives

have to perform a trivial type dispatch.

Despite implementing a large number of primitives, the static and dynamic basis exported

does only contain a few things:

• the vector type,

• all overloaded functions,

• the exceptions used by primitives,

• the function use.

(Non-toplevel primitive types and exceptions, like Word8.word and IO.Io, are wrapped

into their residuent structures.) Everything else can be defined from these in the hosted

language.

To enable the hosted language to bind the basic values defined by the primitive library, we

piggy-back the use function. Its dynamic semantics is overloaded and in the static basis

exported by the StaticLibrarymodule it is given type α → β. Applying it to a record

of type {b : string} will return the basic value denoted by the string b Primitive constants

of type τ are available as functions unit → τ . Once all primitives are extracted, the self-

hosted library implementation restricts use to its proper safe type through a type-annotated

rebinding.

11Unfortunately, most SML implementations lack a lot of the obligatory functionality of the Standard Basis

Library. To stay portable among systems we currently restrict ourselves to the common subset.

29

8.4 Primitive Library Types

The dynamic semantics of the Definition do not really allow the addition of arbitrary library

types – in general this would require extending the set Val [6.3]. Moreover, the APPLY

function might require access to the state (see A.5).

But we can at least encode vectors by abusing the record representation. Arrays can then

be implemented on top of vectors and references within the target language. However, this

has to make their implementation type transparent in order to get the special equality for

arrays.

I/O stream types can only be implemented magically as indices into a stateful table that is

not captured by the program state defined in [6.3].

8.5 The use Function

The ‘real’ behaviour of use is implemented by putting all argument strings for which it has

been called into a queue managed by module Use. The Sml module looks at this queue

after processing its main input (see 7.3).

The argument strings are interpreted as file paths, relative paths being resolved with respect

to the current working directory before putting them into the queue. The function reading

source code from a file (Sml.fromFile) always sets the working directory to the base

path of the corresponding file before processing it. This way, use automatically interprets

its argument relative to the location of the current file.

8.6 Library Implementation

The surface library is loaded on startup. The functionSml.loadLib just silently executes

the file basis/all.sml. This file is the hook for reading the rest of the library, it

contains a bunch of calls to use that execute all library modules in a suitable order. Note

that the library files always have to be executed, even if HaMLet is just running in parsing

or elaboration mode – otherwise the contained use applications would not take effect.

The library modules themselves mostly contain straightforward implementations of the

structures specified in the Standard Basis Manual [GR04]. Like the implementation of the

language, the library implementation is mostly an executable specification with no care

for efficiency. All operations not directly implementable and thus represented as primitive

basic values are bound via the secret functionality of the use function (see 8.3).

9 Compilation to JavaScript

Since version 2, HaMLet provides an additional mode of operation under which the input

is translated to equivalent JavaScript code (compatible with EcmaScript edition 3 and later

[ES12]). The main motivation for adding this mode was to provide an example of a simple

compiler that uses HaMLet’s parser and elaborator as its front-end, and especially, uses the

elaboration annotations on the AST (cf. Section 4.2). The JavaScript compiler utilises this

elaboration information in several ways:

• to statically resolve uses of overloaded operators,

• to do arity conversion for functions and constructors,

• to distinguish variable bindings from constructors in patterns,

30

• to distinguish datatype from exception constructors in patterns,

• to compile open declarations and datatype replications,

• to compile scoping of local and abstype declarations,

• to detect shadowing between sequential declarations.

Some of these uses are described below.

9.1 Usage

JavaScript compilation mode is activated from the command line via the flag -j (cf. Section

2.5). With embedded usage it can be invoked through one of the respectivecompileJSxxx

functions from the Sml module (cf. Section 2.6).

HaMLet then outputs JavaScript source code to the standard output, which can be redirected

to a file and be executed in a browser console or a JavaScript shell. The generated code

assumes presence of the runtime functionality provided with the file runtime.js, and a

(translation of) the Standard Basis Library. Invoking

make js

creates a file basis.js in the HaMLet root directory that bundles both of these (the

displayed shadowing warnings can be safely ignored in this case). This file either has to

be loaded into the browser or JavaScript shell first, or it can be prepended to the output

generated for the user program.

HaMLet can bootstrap itself on top of JavaScript: invoking

make hamlet.js

creates a bundled implementation of HaMLet in JavaScript (including the contents of

basis.js). However, it may be necessary to bump the stack size limit of the respec-

tive JavaScript environment to actually execute the generated file.

Some caveats apply when translating SML to JavaScript:

• The compiler needs to use some coding tricks to implement shadowing within the

same declaration scope. In interactive mode, this is not always possible, and a warn-

ing is generated if the compiler discovers toplevel shadowing (see 9.3 for details).

• The standard JavaScript execution environment in the browser does not provide

any real I/O capabilities. The runtime library emulates TextIO’s standard output

(stdOut) through the console.log function. It also emulates a simple file sys-

tem in memory to fake file I/O and provide the functionality from OS.FileSys.

However, standard input from a user can only be simulated statically, by defining a

fixed string for the contents of TextIO.stdIn (see 9.4 for details).

• JavaScript does not (yet) support tail-call optimisation. Our simple translation makes

no attempt to simulate it.

The former two issues are described in more detail in Section 9.3.

In general, our translation is more a proof of concept than an efficient compiler. For ex-

ample, it will naively create a lot of nested closures to directly simulate SML scoping,

instead of renaming identifiers in a whole-program manner. For a more production-quality

compiler, see e.g. SMLtoJs [E08], which is based on the ML Kit [BRTT93].

31

9.2 Files

The compiler isn’t particularly voluminous:

compile-js/

JSSyntax JavaScript kernel AST

PPJS JavaScript pretty printer

IdSetCore computation of free and bound identifiers

IdSetModule

JSTranslateSCon compilation

JSTranslateId

JSTranslateCore

JSTranslateModule

JSTranslateProgram

CompileJS main compiler entry point

runtime.js runtime library

9.3 Translation

To a large extent, the compilation scheme we implement is straightforward. Most types of

SML values have fairly direct counterparts in JavaScript:

• Values of primitive types are translated to the respective JavaScript types: integers,

words and reals to numbers; strings and characters to strings. The respective opera-

tions over these types are implemented accordingly.

• The unit value () is mapped to undefined in JavaScript.

• Other records are translated directly to JavaScript objects with the respective prop-

erty names. In particular, that results in tuples being represented as JavaScript arrays,

e.g., the SML tuple (3, 4) corresponds to the JS array [3, 4]. Projection hence

simply becomes property access, with numeric labels shifted by 1.

• Functions obviously map to JavaScript functions. However, functions whose argu-

ment is an n-ary tuple will be converted to an n-ary function. See below for more

details.

• Datatype values are represented as either strings (for nullary constructors) or objects

(for constructors with arguments). In the former case, the string simply contains the

constructor’s name, in the latter the object has one property named after the construc-

tor, which carries the constructor argument. For example, NONE becomes ’NONE’,

and SOME 3 becomes {’SOME’: 3},and 1::2::nil, which is short for ::(1,

::(2, nil)) in SML, becomes {’::’: [1, {’::’: [2, ’nil’]}]}. Pat-

tern matching simply does the respective string comparison, or checks for the pres-

ence of a property with the constructor’s name (via JavaScript’s in operator).

Constructors themselves (i.e., n-ary constructors) are represented by functions, in

order to enable using them in a first-class fashion. Like for other functions, tupled

arguments will be flattened into an n-ary argument list.

• Exceptions are represented as either instances of JavaScript’s Error function (for

nullary exceptions) or as instances of a new function, named after the exception,

whose prototype is Error (for constructors with arguments). In the former case,

32

the constructor’s name is used as the error name, in the latter, the error value will

have a property "of" carrying the argument (in contrast to datatype constructors

we cannot use the constructor name, since that can be aliased). Tupled arguments

to exception functions will again be flattened into an n-ary argument list. Pattern

matching a nullary exception is a simple identity comparison, whereas matching

other exceptions becomes an instanceof test.

• References are represented as objects of the form {ref: x}.

• Vectors and arrays are mapped to JavaScript arrays.

• Structures and functors become objects and functions in the obvious manner. Signa-

ture annotations yield a new object with only the exported fields.

• Finally, types and signatures are completely erased by the translation.

SML identifiers are mostly mapped to JavaScript identifiers directly. However, in some

cases some extra work is required:

• JavaScript keywords are escaped with a leading underscore.

• The tick ’ in alphanumeric identifiers is replaced by $.

• Symbolic identifiers are translated into clear text, escaped and separated by under-

scores. For example, := becomes _colon_equal.

• To separate structure and functor name spaces from values, identifiers in these spaces

are escaped with $ and $$, respectively. (Types and signatures are erased, so don’t

matter.)

Note that identifiers starting with an underscore _ or tick ’ are not valid SML, so we can

make liberal use of both initial underscores or $ for escaping.

Most other language constructs can also be translated fairly directly. However, there are

two aspects to the translation that require a bit more work: arity conversion for functions

and non-trivial scoping. We sketch these briefly in the following.

Arity Conversion

To produce the most natural JavaScript functions in the common case, we translate all

functions that have a tuple type for argument (including unit as the 0-tuple) to a Java-

Script function with the respective number of arguments. Analogously, all calls with a

tuple as argument are converted to a call with an argument list.

Unfortunately, these transformations induce extra complications due to polymorphism and

abstract types:

• When calling a function with an abstract type for argument, this type may actually

be implemented as a tuple, and consequently, the function may expect an unboxed

argument list. In these cases, we introduce a runtime check for a tuple (i.e., an array

on the Javacript side) before the call, and if so, call the function via JavaScript’s

apply method, which performs the unboxing (after slicing off the hole at position

0 of the array representing the tuple).

For example, given the functions f : t -> unit, where t is an abstract type, the

call f x generates the following JavaScript:

(_SML._isTuple(x) ? f.apply(undefined, x) : f(x))

where _SML._isTuple is a function from the runtime library (see Section 9.4)

implemented as follows:

33

function _isTuple(x) {

return x instanceof _JS.Array

&& !(x instanceof _SML.Vector._constructor);

}

• Dually, if a function is defined with a single parameter of abstract type (including a

polymorphic type variable), it might actually be instantiated to a tuple. Hence, for

such polymorphic functions we insert a transformation that boxes the arguments

array into a tuple if its length is not 1 at runtime (where ‘boxing’ the empty array

produces the undefined value).

For example,

fun id x = x

will be translated into

var id = function() {

var x = _SML._tuplifyArgs(arguments);

return x;

}

to make sure that a call like id(3, 4) actually returns a tuple. Here, the function

_SML._tuplifyArgs is again part of our runtime, and defined as:

function _tuplifyArgs(args) {

return args.length <= 1 ? args[0] : [].slice.call(args);

}

If the arguments object consists of multiple arguments, this function converts them

into our representation of a tuple (see above). Otherwise, if there is only one value,

it is returned. Or, if the arguments array happens to be empty, x[0] produces the

value undefined, as desired.

Performing these dynamic conversions avoid the need for monomorphisation and defunc-

torisation that would otherwise be necessary to fully handle arity conversion.

Scoping

A second problem is the lack of suitable scoping constructs in JavaScript, which compli-

cates the translation of SML declarations. For starters, JavaScript has no let-like con-

struct, so we have to simulate local scopes through a function abstraction. For example,

3 + let val x = 1; val y = 2 in x + y end

becomes

3 + (function(){ var x = 1; var y = 2; return x + y })()

But SML also allows shadowing within a single scope. We want to avoid renaming, so

we deal with these cases by splitting a scope where an overlap is introduced, such that the

shadowing happens in a nested (function) scope on the JavaScript side. From there, all

non-shadowed variables are returned packed up as an object, which is then “opened” in the

original scope. For example,

val a = 1

val f = fn() => a

val a = 2

val b = (f(), a) (* b = (1, 2) *)

34

is translated to the following JavaScript:

var _x1 =

(function() {

var a = 1;

return (function() {

var f = function() { return a; };

var a = 2;

var b = [f(), a]; // b == [1, 2]

return {a: a, b: b, f: f};

})();

})();

var a = _x1.a;

var b = _x1.b;

var f = _x1.f;

A similar scheme is used to translate local and abstype declarations.

One caveat with this transformation is that it requires the whole extent of the remaining

scope to be known, so that it can be wrapped into the auxiliary functions. Consequently, it

does not generally work in the toplevel scope, which is allowed to be extended and com-

piled incrementally. Every program phrase will create global bindings, which in JavaScript

are mutable. If a program shadows a previous binding, its translation hence will overwrite

(i.e., mutate) that binding. For example, the slight variation of the previous examples with

extra semicolons (which turns each declaration into a separate program phrase),

val a = 1;

val f = fn() => a;

val a = 2;

val b = (f(), a); (* b = (1, 2) *)

simply becomes

var a = 1;

var f = function() { return a; };

var a = 2;

var b = [f(), a]; // b == [2, 2] !

which obviously is incorrect.

A warning is generated if the compiler discovers toplevel shadowing that could potentially

yield to incorrect code. To avoid this issue, either avoid top-level shadowing, or do not use

semicolons as separators. (If we did not compile the toplevel that way, then it would not be

possible to concatenate translated programs.)

9.4 Runtime

In the interpreted mode of execution, HaMLet self-hosts all SML language primitives in

SML itself, as we described in Section 8. These primitives are made available to the hosted

language via the use function. When compiling to JavaScript, the same primitives (includ-

ing the use function itself) must be implemented in JavaScript.

The implementation of this runtime library lives in runtime.js. It contains the initial

dynamic basis, i.e., all primitive toplevel values, and an object _SML that hosts all internal

35

runtime functionality. In particular, all library primitives accessible via the use function

are located in nested objects (corresponding to library structures) of _SML. In addition, it

contains a couple of internal helpers and internal store, distinguished by attribute names

starting with an underscore.

Most of the runtime implementation is straightforward, only I/O requires jumping through

some hoops:

• The standard JavaScript execution environment is the browser, and hence does not

provide any real I/O capabilities. The runtime library emulates TextIO.stdOut

and TextIO.stdErr through the console.log function (with extra buffering).

TextIO.stdIn cannot be emulated directly, but a fixed input can be simulated by

the runtime with its internal _SML.TextIO._stdIn.content reference. By

setting it to an appropriate string before running the generated program, the runtime

will pretend actual input. For example, assigning

_SML.TextIO._stdIn.content =

"input line 1\ninput line 2\ninput line\n";

(in JavaScript land) will make the runtime behave as if the user had input three re-

spective lines and then generated EOF (e.g., as if pressing Ctrl-D on a Unix system).

• A similar work-around is available for emulating the command line. From within

JavaScript, one can set the values of _SML.CommandLine._name (initially, the

string"hamlet") and _SML.CommandLine._arguments (by default an empty

array) to customise the results of the respective functions from the CommandLine

structure.

• The runtime also simulates a simple file system in memory. This is initially empty,

consisting only of the root directory. A directory structure can easily be created

in SML. It can also be pre-configured on the JavaScript side, by appropriate calls

to _SML.OS.FileSys.mkdir, and can then be pre-populated with files via the

convenience function _SML.OS.FileSys.file. For example, the JavaScript

calls

_SML.OS.FileSys.mkDir("a");

_SML.OS.FileSys.mkDir("a/b");

_SML.file("foo.txt", "Hello");

_SML.file("a/bar.txt", "world\n");

_SML.file("a/b/baz.bin", "\x53\x4d\x4c");

would create a simple directory structure with three files.

Given these hacks, it should be sufficiently easy to run SML programs with simple simu-

lated I/O in the browser.

10 Conclusion

HaMLet has been implemented with the idea of transforming the formalism of the Defini-

tion into SML source code as directly as possible. Not everything can be translated 1-to-1,

though, because of the non-deterministic nature of some aspects of the rules, and also due

to the set of additional informal rules that describe parts of the language.

Still, much care has been taken to get even the obscure details of these parts of the semantics

right. For example, HaMLet goes to some length to treat the following correctly:

36

• not accepting additional syntactic phrases (e.g. with as or fun),

• parsing of the where type ... and derived form,

• expansion of derived forms (e.g. withtype, definitional type specifications),

• checking syntactic restrictions separately,

• val rec (binding rules, dynamic semantics),

• distinction of type variables from undetermined types,

• overloading resolution,

• flexible records,

• dynamic semantics.

The test directory in the HaMLet distribution contains some contrived examples exercis-

ing these corner cases and other code that is rejected by several SML systems despite being

correct according to the Definition. HaMLet accepts all but two of them. Consequently, we

are positive that HaMLet is more accurate in implementing the SML language specification

than most other systems. There still are some deviations, though:

• inability to parse some legal SML programs (especially fun/case, see 4.4),

• non-principal types for equality polymorphic functions in abstype (see A.3),

• non-principal types for non-generalized declarations in functors (see A.4).

We consider all of these minor, since no existing SML implementations is able to deal with

them. They are arguably mistakes on the side of the Definition, see A.8, A.1 and A.3.

Still, we hope to fix these issues in future releases. Moreover, we plan to provide a more

complete implementation of the Standard Basis Library.

Acknowledgements

Thanks go to the following people who knowingly or unknowingly helped in putting to-

gether HaMLet and its documentation:

• Stefan Kahrs, Claudio Russo, Matthias Blume, Matthew Fluet, Derek Dreyer, Stephen

Weeks, Bob Harper, Greg Morrisett, John Reppy, John Dias, David Matthews, Yan

Chen, and people on the sml-implementers list for discussions about aspects and

rough edges of the SML semantics,

• all people participating in the discussions on the sml-evolution list, the Successor

ML wiki, and the SML evolution meeting,

• the authors of the original ML Kit [BRTT93], for their great work that inspired HaM-

Let,

• of course, the designers of ML and authors of the Definition, for the magnificent

language. :)

37

A Mistakes and Ambiguities in the Definition

This appendix lists all bugs, ambiguities and ‘grey areas’ in the Definition that are known

to the author. Many of them were already present in the previous SML’90 version of the

Definition [MTH90] (besides quite a lot that have been corrected in the revision) and are

covered by Kahrs [K93, K96] in detail. Bugs new to SML’97 or not covered by Kahrs are

marked with * and (*), respectively.

Where appropriate we give a short explanation and rationale of how we fixed or resolved

an issue for HaMLet.

A.1 Issues in Chapter 2 (Syntax of the Core)

Section 2.4 (Identifiers):

• The treatment of = as an identifier is extremely ad-hoc. The wording suggests that

there are in fact two variants of the identifier class VId, one including and the other

excluding = . The former is used in expressions, the latter everywhere else.

Section 2.5 (Lexical analysis):

• In [2.2] the Definition includes only space, tab, newline, and formfeed into the set

of obligatory formatting characters that are allowed in source code. However, some

major platforms require use of the carriage return character in text files. In order to

achieve portability of sources across platforms it should be included as well.

For consistency, HaMLet allows all formatting characters, for which there is explicit

escape syntax, i.e. it includes vertical tab and carriage return.

Section 2.6 (Infixed Operators):

• The Definition says that “the only required use of op is in prefixing a non-infixed

occurrence of an identifier which has infix status”. This is rather vague, since it is

not clear whether occurrences in constructor and exception bindings count as “non-

infixed” [K93].

We assume that op is only necessary in expressions and patterns and completely

optional in constructor and exception bindings. This is consistent with the fact that

op is not even allowed in the corresponding descriptions in signatures.

Section 2.8 (Grammar), Figure 4 (Expressions, Matches, Declarations and Bindings):

• (*) The syntax rules for dec are highly ambiguous. The productions for empty dec-

larations and sequencing allow the derivation of arbitrary sequences of empty decla-

rations for any input.

HaMLet does not allow empty declarations as part of sequences without a separating

semicolon. On the other hand, every single semicolon is parsed as a sequence of two

empty declarations.

• Another ambiguity is that a sequence of the form dec1 dec2 dec3 can be reduced in

two ways to dec: either via dec12 dec3 or via dec1 dec23 [K93]. See also A.2.

We choose right associative sequencing, i.e. the latter parse, because that is most in

line with the syntax for toplevel declarations.

Section 2.9 (Syntactic Restrictions):

38

• * The restriction that valbinds may not bind the same identifier twice (2nd bullet)

is not a syntactic restriction as it depends on the identifier status of the vids in the

patterns of a valbind . Identifier status is derived by the elaboration rules. Similarly,

the restriction on type variable shadowing (last bullet) is dependent on context and

computation of unguarded type variables [Section 4.6].

We implement checks for syntactic restrictions as a separate inference pass over the

complete program that closely mirrors the static semantics. Ideally, all syntactic

restrictions rather should have been defined as appropriate side conditions in the

rules of the static and dynamic semantics by the Definition. Interestingly, semantic

checks are already done for duplicate variables in patterns (rules 39 and 43), whereas

these were still syntactic restrictions in the SML’90 edition.

• * An important syntactic restriction is missing:

“Any tyvar occurring on the right side of a typbind or datbind of the

form tyvarseq tycon = · · · must occur in tyvarseq .”

This restriction is analogous to the one given for tyvar s in type specifications [3.5,

item 4]. Without it the type system would be unsound. 12

We added a corresponding check.

A.2 Issues in Chapter 3 (Syntax of Modules)

Section 3.4 (Grammar for Modules), Figure 6 (Structure and Signature Expressions):

• The syntax rules for strdec contain the same ambiguities with respect to sequencing

and empty declarations as those for dec (see A.1).

Consequently, we use equivalent disambiguation rules.

• Moreover, there are two different ways to reduce a sequence dec1 dec2 of core dec-

larations into a strdec: via strdec1 strdec2 and via dec [K93]. Both parses are not

equivalent since they provide different contexts for overloading resolution [Appendix

E]. For example, appearing on structure level, the two declarations

fun f x = x + x

val a = f 1.0

may be valid if parsed as dec, but do not type check if parsed as strdec1 strdec2
because overloading of + gets defaulted to int.

We choose to always reduce to strdec as soon as possible, because that variant is

simpler to implement and solves other problems as well (see A.7). Note that we use

smaller contexts for overloading resolution (see 5.8) so that the way of parsing here

actually would have no effect on the admissibility of programs.

• Similarly, it is possible to parse a structure-level local declaration containing only

core declarations in two ways: as a dec or as a strdec [K93]. This produces the same

semantic ambiguity.

As above, we reduce to strdec as early as possible.

Section 3.4 (Grammar for Modules), Figure 7 (Specifications):

12Interestingly enough, in the SML’90 Definition the restriction was present, but the corresponding one for

specifications was missing [MT91, K93].

39

• Similar as for dec and strdec, there exist ambiguities in parsing empty and sequenced

specs.

We resolve them consistently.

• The ambiguity extends to sharing specifications. Consider:

type t

type u

sharing type t = u

This snippet can be parsed in at least three ways, with the sharing constraint taking

scope over either both, or only one, or neither type specification. Since only the first

alternative can be elaborated successfully, the validity of the program depends on

how the ambiguity is resolved.

We always extend the scope of a sharing constraint as far to the left as possible. That

is a conservative choice, since all shared types must be specified in the respective

scope and specifications may not contain duplicate type constructors.

Section 3.4 (Grammar for Modules), Figure 8 (Functors and Top-level Declarations):

• * Finally, another ambiguity exists for reducing a sequence strdec1 strdec2 to a

topdec: it can be done either by first reducing to strdec, or to strdec1 topdec2. The

latter is more restrictive with respect to free type variables (but see A.12 with regard

to this).

We use a consistent disambiguation method, i.e., reduce as early as possible.

Altogether, ignoring the infinite number of derivations involving empty declarations, the

grammar in the Definition allows three ambiguous ways to reduce a sequence of two decs

to a topdec, as shown by the following diagram. All imply different semantics. The cor-

responding diagram for a sequence of three declarations would merely fit on a page. A

further ambiguity arises at the program level (see A.7).

dec1 dec2

dec strdec1 strdec2

strdec strdec1 topdec2

topdec

A.3 Issues in Chapter 4 (Static Semantics for the Core)

Section 4.8 (Non-expansive Expressions):

• * The definition of non-expansiveness is purely syntactic and does only consider

the right-hand side of a binding. However, an exception may result from matching

against a non-exhaustive pattern on the left-hand side. It is rather inconsistent to dis-

allow raise expressions in non-expansive bindings but allow implicit exceptions

in the disguise of pattern match failure. More seriously, the possibility of exceptions

stemming from polymorphic bindings is incompatible with type passing implemen-

tations.

40

This is no real bug but rather a design error. HaMLet implements the Defintion as is.

Section 4.9 (Type Structures and Type Environments):

• The definition of the Abs operator demands introduction of “new distinct” type

names. However, type names can only be new relative to a context. To be precise,

Abs would thus need an additional argument C [K96].

This is no issue on the implementation side, since fresh type names can simply be

generated through stamping.

• Values in abstype declarations that are potentially polymorphic but require equal-

ity have no principal type [K96]. For example, in the declaration

abstype t = T with

fun eq(x, y) = x = y

end

the principal type of eq inside the scope of abstype clearly is ”a * ”a ->

bool. However, outside the scope this type is not principal because ”a cannot be

instantiated by t. Neither would t * t -> bool be principal, of course. Al-

though not strictly a bug (there is nothing which enforces the presence of principal

typings in the revised Definition), this semantics is very hard to implement faithfully,

since type inference would have to deal with unresolved type schemes and to cascad-

ingly defer decisions about instantiation and generalisation until the correct choice is

determined.

Like all other SML implementations, HaMLet assigns eq the type ”a * ”a ->

bool.

• A related problem is the fact that the rules for abstype may infer type structures

that do not respect equality [K96]:

abstype t = T with

datatype u = U of t

end

Outside the scope of this abstype declaration type u will still be an equality type.

Values of type t can thus be compared through the backdoor:

fun eqT(x, y) = U x = U y

HaMLet conforms to the behaviour implied by the Definition.

Section 4.10 (Inference Rules):

• * Rule 18 concerning datatype replication does not actually require the type to be a

datatype. For example, the following is legal:

datatype t = datatype unit

The same applies to datatype replication in signatures (see A.4).

Arguably, this is a design mistake, but we have no reason to change it for HaMLet.

• * The comment to rule 26 states that a declaration like

datatype t = T

val rec T = fn x => x

41

is legal since C+VE overwrites identifier status. However, this comment overlooks

an important point: in the corresponding rule 126 of the dynamic semantics recursion

is handled differently, so that the identifier status is not overwritten. Consequently,

the second declaration will raise a Bind exception. It clearly is an ill-design to infer

inconsistent identifier status in the static and dynamic semantics, but fortunately it

does not violate soundness in this case. Most implementations do not implement the

‘correct’ dynamic semantics, though.

HaMLet takes the specification litererally.

• * There is an unmatched left parenthesis in the consequent of rule 28.

Section 4.11 (Further Restrictions):

• (*) Under item 1 the Definition states that “the program context” must determine

the exact type of flexible records, but it does not specify any bounds on the size

of this context. Unlimited context is clearly infeasible since it is incompatible with

let polymorphism: at the point of generalisation the structure of a type must be

determined precisely enough to know what we have to quantify over.13

In HaMLet, we thus restrict the context for resolving flexible records to the innermost

surrounding value declaration, as most other SML systems seem to do as well. This

is in par with our treatment of overloading (see 5.8).

Note that some SML systems implement a slightly more restrictive variant, in which

the following program does not type-check:

fun f(r as {...}) =

[let fun g() = r in r end, r : {a : int}]

while a minor variation of it does:

fun f(r as {...}) =

[r : {a : int}, let fun g() = r in r end]

The reason is that these implementations simply check for existence of unresolved

record types in value environments to be closed, without taking into account that

these types might stem from the context (in which case we know that we cannot

quantify over the unknown bits anyway). As the above example shows, such an im-

plementation compromises the compositionality of type inference. The Definition

should rule it out somehow. A similar clarification is probably in order for overload-

ing resolution (see A.11).

• Under item 2 the Definition demands that a compiler must give warnings whenever

a pattern is redundant or a match is non-exhaustive. However, this requirement is

inconsistent for two reasons:

1. * There is no requirement for datatype constructors in sharing specifications or

type realisations to be consistent. For example,

datatype t = A | B

datatype u = C

sharing type t = u

is a legal specification. Likewise,

sig datatype t = A | B end where type t = bool

13Alternatively, there are extensions to Hindley/Milner typing that allow quantification over the structure of

records, but polymorphic records are clearly not supported by the Definition.

42

is valid. Actually, this may be considered a serious bug on its own, although

the Definition argues that inconsistent signatures are “not very significant in

practice” [Section G.9]. If such an inconsistent signature is used to specify a

functor argument, it allows a mix of constructors to appear in matches in the

functor’s body, rendering the terms of irredundancy and exhaustiveness com-

pletely meaningless.

There is no simple fix for this. HaMLet makes no attempt to detect this situa-

tion, so generation of warnings is arbitrary in this case.

2. (*) It is difficult in general to check equality of exception constructors – they

may or may not be aliased. Inside a functor, constructor equality might de-

pend on the actual argument structure the functor is applied to. It is possible to

check all this by performing a certain amount of partial evaluation (such that

redundant matches are detected at functor application), but this is clearly in-

feasible weighed against the benefits, in particular in conjunction with separate

compilation.

In HaMLet we only flag exception constructors as redundant when they are

denoted by the same syntactic longvid . We do not try to derive additional

aliasing information.

A.4 Issues in Chapter 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

• * As a pedantic note, the rules 64 and 78 use the notation {t1 7→ θ1, · · · , tn 7→ θn} to

specify realisations. However, this notation is not defined anywhere in the Definition

for infinite maps like realisations – [4.2] only introduces it for finite maps.

• * More seriously, both rules lack side conditions to ensure consistent arities for do-

main and range of the constructed realisation. Because ϕ can hence fail to be well-

formed [5.2], the applicationϕ(E) is not well-defined. The necessary side conditions

are:

t ∈ TyName(k) (64)

ti ∈ TyName(k), i = 1..n (78)

HaMLet adds the respective checks.

• * The presence of functors provides a form of explicit polymorphism which interferes

with principal typing in the core language. Consider the following example [DB07]:

functor F(type t) =

struct val id = (fn x => x) (fn x => x) end

structure A = F(type t = int)

structure B = F(type t = bool)

val a = A.id 3

val b = B.id true

The declaration of id cannot be polymorphic, due to the value restriction. On the

other hand, assigning it type t -> t would make the program valid. However,

finding this type would require the type inference algorithm to skolemize all unde-

termined types in a functor body’s result signature over the types appearing in its

43

argument signature, and then perform a form of higher-order unification. Conse-

quently, almost all existing implementations reject the program.14

HaMLet ignores this problem, rejecting the program due to a failure unifying types

int and bool.

• * Just like in the core language (see A.3), rule 72 concerning datatype replication

does not actually require the type to be a datatype.

• * The side conditions on free type variables in rules 87 and 89 do not have the effect

that obviously was intended, see A.12 for details.

HaMLet not only tests for free type variables, but also for undetermined types (see

5.6). This behaviour is not strictly conforming to the formal rules of the Definition

(which define a more liberal regime), but meets the actual intention explicitly stated

in [G.8]. It also is consistent with HaMLet’s goal to always implement the most

restrictive reading.

A.5 Issues in Chapter 6 (Dynamic Semantics for the Core)

Section 6.4 (Basic Values):

• The APPLY function has no access to program state. This suggests that library prim-

itives may not be stateful, implying that a lot of interesting primitives could not be

added to the language without extending the Definition itself [K93].

On the other hand, any non-trivial library type (e.g. arrays or I/O streams) requires

extension of the definition of values or state anyway (and equality types – consider

array). The Definition should probably contain a comment in this regard.

HaMLet implements stateful library types by either mapping them to references in

the target language (e.g. arrays) or by maintaining the necessary state outside the

semantic objects (see 8.4).

A.6 Issues in Chapter 7 (Dynamic Semantics for Modules)

Section 7.2 (Compound Objects):

• * In the definition of the operator ↓ : Env × Int → Env, the triple “(SI ,TE ,VI)”
should read “(SI ,TI ,VI)”.

Section 7.3 (Inference Rules):

• * Rule 182 contains a typo: both occurrences of IB have to be replaced by B. The

rule should actually read:

InterB ⊢ sigexp ⇒ I 〈B ⊢ funbind ⇒ F 〉

B ⊢ funid (strid : sigexp) = strexp 〈and funbind〉 ⇒
{funid 7→ (strid : I, strexp, B)}〈+F 〉

(182)

14Interestingly, MLton [CFJW05] accepts the program, thanks to its defunctorization approach. However, it

likewise accepts similar programs that are not valid Standard ML, e.g.:

functor F() = struct val id = (fn x => x) (fn x => x) end

structure A = F()

structure B = F()

val a = A.id 3

val b = B.id true

44

• * The rules for toplevel declarations are wrong: in the conclusions, the result right of

the arrow must be B′〈+B′′〉 instead of B′〈′〉 in all three rules:

B ⊢ strdec ⇒ E B′ = E in Basis 〈B +B′ ⊢ topdec ⇒ B′′〉

B ⊢ strdec 〈topdec〉 ⇒ B′〈+B′′〉
(184)

InterB ⊢ sigdec ⇒ G B′ = G in Basis 〈B +B′ ⊢ topdec ⇒ B′′〉

B ⊢ sigdec 〈topdec〉 ⇒ B′〈+B′′〉
(185)

B ⊢ fundec ⇒ F B′ = F in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ fundec 〈topdec〉 ⇒ B′〈+B′′〉
(186)

A.7 Issues in Chapter 8 (Programs)

• (*) The comment to rule 187 states that a failing elaboration has no effect. However,

it is not clear what infix status is in scope after a failing elaboration of a program that

contains top-level infix directives.

HaMLet keeps the updated infix status.

• * There is another syntactic ambiguity for programs. A note in [3.4, Figure 8] re-

stricts the parsing of topdecs:

“No topdec may contain, as an initial segment, a strdec followed by a

semicolon.”

The intention obviously is to make parsing of toplevel semicolons unambiguous so

that they always terminate a program. As a consequence of the parsing ambiguities

for declaration sequences (see A.2) the rule is not sufficient, however: a sequence

dec1; dec2; of core level declarations with a terminating semicolon can be first

reduced to dec;, then to strdec;, and finally program . This derivation does not

exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid

parse, which results in quite different behaviour with respect to program execution.

Since HaMLet reduces to strdec as early as possible (see A.2), it works in the spirit

of the Definition’s intention.

• (*) The negative premise in rule 187 has unfortunate implications: interpreted strictly

it precludes any conforming implementation from providing any sort of conservative

semantic extension to the language. Any extension that allows declarations to elab-

orate that would be illegal according to the Definition (e.g. consider polymorphic

records) can be observed through this rule and change the behaviour of consecutive

declarations. Consider for example:

val s = "no";

strdec

val s = "yes";

print s;

where the strdec only elaborates if some extension is supported. In that case the

program will print yes, otherwise no.

This probably indicates that formalising an interactive toplevel is not worth the trou-

ble.

45

A.8 Issues in Appendix A (Derived Forms)

Text:

• (*) The paragraph explaining rewriting of the fvalbind form rules out mixtures of

fvalbinds and ordinary valbinds. However, the way it is formulated it does not

rule out all combinations. It should rather say that all value bindings of the form

pat = exp and fvalbind or rec fvalbind are disallowed.

HaMLet assumes this meaning.

Figure 15 (Derived forms of Expressions):

• The Definition is somewhat inaccurate about several of the derived forms of ex-

pressions and patterns. It does not make a proper distinction between atomic and

non-atomic phrases. Some of the equivalent forms are not in the same syntactic class

[MT91, K93].

We assume the necessary parentheses in the desugared forms.

Figure 17 (Derived forms of Function-value Bindings and Declarations):

• The syntax of fvalbind s as given in the Definition enforces that all type annotations

are syntactically equal, if given. This is unnecessarily restrictive and almost impos-

sible to implement [K93], and probably not what was intended.

HaMLet implements a more permissive syntax, as given by:

〈op〉vid atpat11 · · · atpat1n 〈:ty1〉 = exp1

| 〈op〉vid atpat21 · · · atpat2n 〈:ty2〉 = exp2

| · · · · · ·
| 〈op〉vid atpat

m1 · · · atpat
mn

〈:ty
m
〉 = exp

m

〈and fvalbind 〉

See also A.9 for a definition of the full syntax including infix notation.

Figure 19 (Derived forms of Specifications and Signature Expressions):

• * The derived form that allows several definitional type specifications to be connected

via and is defined in a way that makes its scoping rules inconsistent with all other

occurrences of and in the language. In the example

type t = int

signature S =

sig

type t = bool

and u = t

end

type u will be equal to bool, not int like in equivalent declarations. It would have

been more consistent to rewrite the derived form to

include

sig type tyvarseq1 tycon1

and · · ·
· · ·
and tyvarseqn tyconn

end where type tyvarseq1 tycon1 = ty1

· · ·
where type tyvarseq

n
tycon

n
= ty

n

46

and delete the separate derived form for single definitional specifications.

This is a design error, but HaMLet implements it.

• * The Definition defines the phrase

spec sharing longstrid1 = · · · = longstrid
n

as a derived form. However, this form technically is not a derived form, since it

cannot be rewritten in a purely syntactic manner – its expansion depends on the

static environment.

HaMLet thus treats this form as part of the bare grammar. Unfortunately, it is sur-

prisingly difficult to formulate a proper inference rule describing the intended static

semantics of structure sharing constraints – probably one of the reasons why it has

been laxly defined as a derived form in the first place. The implementation simply

collects all expanded type equations and calculates a suitable realisation incremen-

tally. (At least there is no need for a corresponding rule for the dynamic semantics,

since sharing qualifications are omitted at that point.)

• * The derived form for type realisations connected by and is not only redundant

and alien to the rest of the language (and is nowhere else followed by a second

reserved word), it also is extremely tedious to parse, since this part of the grammar is

LALR(2) as it stands. It can be turned into LALR(1) only by a bunch of really heavy

transformations. Consequently, almost no SML system seems to be implementing it

correctly. Even worse, several systems implement it in a way that leads to rejection

of programs not using the derived form. For example,

signature A = S where type t = u where type v = w

or

signature A = S where type t = u

and B = T

HaMLet goes to some length to do it correctly.

• * For complex type declarations the withtype derived form is important. With the

introduction of equational type specifications in SML’97 it would have been natural

to introduce an equivalent derived form for signatures. This is an oversight that most

SML systems ‘correct’.

HaMLet stays with the language definition as is.

A.9 Issues in Appendix B (Full Grammar)

Text:

• (*) To be pedantic, the first sentence is not quite true since there is a derived form for

programs [Appendix A, Figure 18]. Moreover, it is not obvious why the appendix

refrains from also providing a full version of the module and program grammar. It

contains quite a lot of derived forms as well, and the section title leads the reader to

expect it.

• The Definition gives precedence rules for disambiguating expressions, stating that

“the use of precedence does not increase the class of admissible phrases”. However,

the rules are not sufficient to disambiguate all possible phrases. Moreover, for some

phrases they actually rule out any possible parse, e.g.

47

a andalso if b then c else d orelse e

has no valid parse according to these rules. So the above statement is rather incon-

sistent [K93].

The HaMLet parser just uses Yacc precedence declarations for expression keywords

that correspond to the precedence hierarchy given in the Definition. This seems to

be the best way to approximate the intention of the Definition’s rules.

• There is no comment on how to deal with the most annoying problem in the full

grammar, the infinite look-ahead required to parse combinations of function clauses

and case expressions, like in:

fun f x = case e1 of z => e2

| f y = e3

According to the grammar this ought to be legal. However, parsing this would ei-

ther require horrendous grammar transformations, backtracking, or some nasty and

expensive lexer hack [K93]. Consequently, there is no SML implementation being

able to parse the above fragment.

HaMLet is no better in this regard.

Figure 21 (Grammar: Declarations and Bindings):

• The syntax given for fvalbind is incomplete, as is pointed out by the corresponding

note. This is not really a bug but sloppy enough to cause some divergence among

implementations.

To make the grammar more precise we introduce the additional phrase classes fmatch ,

fmrule, and fpat and define them in analogy to match , mrule, and pat :

fvalbind ::= fmatch 〈and fvalbind 〉
fmatch ::= fmrule 〈| fmatch〉
fmrule ::= fpat 〈: ty〉 = exp

fpat ::= 〈op〉vid atpat1 · · · atpatn (n ≥ 1)
(atpat1 vid atpat2) atpat3 · · · atpat

n
(n ≥ 3)

atpat1 vid atpat2

This grammar is in accordance with our relaxation of type annotations in the fvalbind

derived form (see A.8).

Figure 22 (Grammar: Patterns):

• While there are additional non-terminals infexp and appexp to disambiguate parsing

of infix expressions, there is no such disambiguation for patterns. This implies that

a pattern like x:t ++ y could be parsed if ++ was an appropriate infix constructor

[K96]. Of course, this would result in heavy grammar conflicts.

Since this appears to be an oversight, HaMLet does not allow such parsing. Con-

structor application always has higher precedence than type annotation. The full

grammar of patterns thus is

atpat ::= ...like before...

patrow ::= ...like before...

apppat ::= atpat

〈op〉longvid atpat

infpat ::= apppat

infpat1 vid infpat2
pat ::= infpat

pat : ty

〈op〉vid 〈: ty〉 as pat

48

with new phrase classes AppPat and InfPat. Similar to expressions, we get the fol-

lowing inclusion relation:

AtPat ⊂ AppPat ⊂ InfPat ⊂ Pat

Note that we actually do not need to distinguish between AppPat and InfPat, since

there is no curried application in patterns. We do it nevertheless, for consistency.

A.10 Issues in Appendix D (The Initial Dynamic Basis)

• (*) The Definition does specify the minimal initial basis but it does not specify what

the initial state has to contain. Of course, it should at least contain the exception

names Match and Bind.

We define

s0 = ({}, {Match, Bind})

• The Definition does nowhere demand that the basis a library provides has to be con-

sistent in any way. Nor does it require consistency between initial basis and initial

state.

The HaMLet library is consistent, of course.

A.11 Issues in Appendix E (Overloading)

Overloading is the most hand-waving part of the otherwise pleasantly accurate Definition.

Due to the lack of formalism and specific rules, overloading resolution does not work con-

sistently among SML systems. For example, type-checking of the following declaration

does not succeed on all systems:

fun f(x, y) = (x + y)/y

The existence of overloading destroys an important property of the language, namely the

independence of static and dynamic semantics, as is assumed in the main body of the

Definition. For example, the expressions

2 * 100 and 2 * 100 : Int8.int

will have very different dynamic behaviour, although they only differ in an added type

annotation.

The Definition defines the overloading mechanism by enumerating all overloaded entities

the library provides. This is rather unfortunate. It would be desirable if the rules were

more generic, avoiding hard-coding overloading classes and the set of overloaded library

identifiers on one hand, and allowing libraries to extend it in systematic ways on the other.

More generic rules could also serve as a better guidance for implementing overloading (see

5.8 for a suitable approach).

The canonical way to deal with overloaded constants and value identifiers is to uniform-

ingly assign an extended notion of type scheme that allows quantification to be constrained

by an overloading class. Constraints would have to be verified at instantiation. This is more

or less what has been implemented in HaMLet (see 5.8).

There are some more specific issues as well:

49

• * The Definition forgets to demand that any extension of a basic overloading class is

consistent with respect to equality.

Our formalisation includes such a restriction (see 5.8).

• * The Definition specifies an upper bound on the context a compiler may consider

to resolve overloading, which is quite odd – of course, implementations cannot be

prohibited to conservatively extend the language by making more programs elabo-

rate. On the other hand, much more important would have been to specify a lower

bound on what implementations have to support – it is clearly not feasible to force

the programmer to annotate every individual occurence of an overloaded identifier

or special constant.

A natural and sensible lower bound seems to be the smallest enclosing core declara-

tion that an overloaded identifier or constant appears in. We use that in HaMLet as

the common denominator, consistent with the treatment of flexible records (see A.3).

Figure 27 (Overloaded Identifiers):

• * The types for the comparison operators<, >, <=, and >=must correctly be numtxt×
numtxt→ bool.

A.12 Issues in Appendix G (What’s New?)

Section G.8 (Principal Environments):

* At the end of the section the authors explain that the intent of the restrictions on free type

variables at the toplevel (side-conditions in rules 87 and 89 [5.7]) is to avoid reporting free

type variables to the user. However, judging from the rest of the paragraph, this reasoning

confuses two notions of type variable: type variables as semantic objects, as appearing in

the formal rules of the Definition, and the yet undetermined types during Hindley/Milner

type inference, which are also typically represented by type variables. However, both kinds

are variables on completely different levels: the former are part of the formal framework of

the Definition, while the latter are an ‘implementation aspect’ that lies outside the scope of

the Definition’s formalism. Let us distinguish both by referring to the former as semantic

type variables and to the latter as undetermined types (the HaMLet implementation makes

the same distinction, in order to avoid exactly this confusion, see 5.2).

The primary purpose of the aforementioned restrictions obviously is to avoid reporting un-

determined types to the user. However, they fail to achieve that. In fact, it is impossible to

enforce such behaviour within the formal framework of the Definition, since it essentially

would require formalising type inference (the current formalism has no notion of undeter-

mined type). Consequently, the comment in Section [G.8] about the possibility of relaxing

the restrictions by substituting arbitrary monotypes misses the point as well.

In fact, the formal rules of the Definition actually imply the exact opposite, namely that

an implementation may never reject a program that results in undetermined types at the

toplevel, and is thus compelled to report them. The reason is explicitly given in the same

section: “implementations should not reject programs for which successful elaboration is

possible”. Consider the following program:

val r = ref nil;

r := [true];

Rule 2 has to non-deterministically choose some type τ list for the occurrence of nil.

The choice of τ is not determined by the declaration itself: it is not used, nor can it be

50

generalised, due to the value restriction. However, bool is a perfectly valid choice for

τ , and this choice will allow the entire program to elaborate. So according to the quote

above, an implementation has to make exactly that choice. Now, if both declarations are

entered separately into an interactive toplevel the implementation obviously has to defer

commitment to that choice until it has actually seen the second declaration. Consequently,

it can do nothing else but reporting an undetermined type for the first declaration. The only

effect the side conditions in rules 87 and 89 have on this is that the types committed to later

may not contain free semantic type variables – but considering the way such variables are

introduced during type inference (mainly by generalisation), the only possibility for this is

through a toplevel exception declaration containing a type variable (and such a declaration

is indeed ruled out by those side conditions).15

There are two possibilities of dealing with this matter: (1) take the formal rules as they are

and ignore the comment in the appendix, or (2) view the comment as an informal “further

restriction” and fix its actual formulation to match the obvious intent. Since version 1.1.1

of HaMLet, we implement the intended meaning and disallow undetermined types on the

toplevel, although this technically is a violation of the formal rules.

15(*) Note that this observation gives rise to the question whether the claim about the existence of principal

environments in Section 4.12 of the SML’90 Definition [MTH90] was valid in the first place. It most likely

was not: a declaration like the one for r has no principal environment that would be expressible within the

formalism of the Definition, despite allowing different choices of free imperative type variables. The reasoning

that this relaxation was sufficient to regain principality is based on the same mix-up of semantic type variables

and undetermined types as above. The relaxation does not solve the problem with expansive declarations, since

semantic type variables are rather unrelated to it – choosing a semantic type variable for an undetermined type is

no more principal than choosing any particular monotype.

51

B History

Version 1.0 (2001/10/04)

Public release. No history for prior versions.

Version 1.0.1 (2001/10/11)

Basis:

• Fixed ASCII and Unicode escapes in Char.scan and Char.scanC (and thus in

Char.fromString, Char.fromCString, String.fromString).

• Fixed octal escapes in Char.toCString (and thus String.toCString).

• Fixed possible NaN’s in Real.scan for mantissa 0 and large exponents.

Documentation:

• Added issue of obligatory formatting characters to Appendix.

• Some minor additions/clarifications in Appendix.

Test cases:

• Added test case redundant.

• Removed accidental carriage returns fromasterisk, semicolon and typespec.

• Small additions to semicolon and valrec.

Version 1.1 (2002/07/26)

Basis:

• Adapted signatures to latest version of the Basis specification [GR04].

• Implemented new library functions and adapted functions with changed semantics.

• Implemented all signatures and structures dealing with array and vector slices.

• Implemented new Text structure, along with missing CharVector and CharArray

structures.

• Implemented missing Byte structure.

• Removed SML90 structure and signature.

• Use opaque signature constraints where the specification uses them (with some nec-

essary exceptions).

• Implemented missing Bool.scan and Bool.fromString.

• Implemented missing Real.posInf and Real.negInf.

• Handle exceptions from Char.chr correctly.

• Fixed generation of \ˆX-escapes in Char.toString.

• Fixed treatment of gap escapes in Char.scan.

Test cases:

• Added test case replication.

• Updated conformance table.

Version 1.1.1 (2004/04/17)

Interpreter:

52

• Disallow undetermined types (a.k.a. “free type variables”) on toplevel.

• Implement accurate scope checking for type names.

• Fixed soundness bug w.r.t. undetermined types in type scheme generalisation test.

• Reject out-of-range real constants.

• Accept multiple line input.

• Output file name and line/columns with error messages.

• Improved pretty printing.

Basis:

• Sync’ed with updates to the specification [GR04]: overloaded ∼ on words, added

Word.fromLarge,Word.toLarge, Word.toLargeX; removedSubstring.all;

changedTextIO.inputLine; changedByte.unpackString and Byte.unpackStringVec.

• Fixed String.isSubstring, String.fields, and Vector.foldri.

Test cases:

• Added test cases abstype2, dec-strdec,flexrecord2, tyname, undetermined2,

undetermined3.

• Split conformance table into different classes of deviation and updated it.

Version 1.1.2 (2005/01/14)

Interpreter:

• Fix parsing of sequential and sharing specifications.

• Add arity checks missing in rules 64 and 78 of the Definition.

• Implement type name equality attribute as bool.

Basis:

• Fixed StringCvt.padLeft and StringCvt.padRight.

Documentation:

• Add parsing ambiguity for sharing specifications to issue list.

• Add missing side conditions in rules 64 and 78 to issue list.

• Added version history to appendix.

Test cases:

• Added test cases poly-exception, tyvar-shadowing, and where2 and ex-

tended id and valrec.

• Updated conformance table.

Version 1.2 (2005/02/04)

Interpreter:

• Refactored code: semantic objects are now collected in one structure for each part of

the semantics; type variable scoping and closure computation (expansiveness check)

are separated from elaboration module.

• Made checking of syntactic restrictions a separate inference pass.

• Added missing check for bound variables in signature realisation.

• Fixed precedence of environments for open declarations.

• Fixed implementation of Abs operator for abstype.

• Print type name set T of inferred basis in elaboration mode.

53

• Fixed parenthesisation in pretty printing type applications.

Basis:

• More correct path resolution for use function.

• Added checkFloat to REAL signature so that bootstrapping actually works again.

• Fixed ArraySlice.copy for overlapping ranges.

• Fixed ArraySlice.foldr and ArraySlice.foldri.

• Fixed Char.isSpace.

• Fixed octal escapes in Char.fromCString.

• Updated treatment of trailing gap escapes in Char.scan.

• Updated scanning of hex prefix in Word.scan.

• Fixed traversal order in Vector.map.

Documentation:

• Added typo in rule 28 to issue list.

Test files:

• Added generalise.

• Extended poly-exception.

Version 1.2.1 (2005/07/27)

Interpreter:

• Fixed bug in implementation of rule 35.

• Fixed bug in check for redundant match rules.

Basis:

• Fixed Substring.splitr.

• Fixed border cases in OS.Path.toString, OS.Path.joinBaseExt,

OS.Path.mkAbsolute, and OS.Path.mkRelative.

Version 1.2.2 (2005/12/09)

Interpreter:

• Simplified implementation of pattern checker.

Test files:

• Added fun-infix.

Version 1.2.3 (2006/07/18)

Interpreter:

• Fixed check for duplicate variables in records and layered patterns.

• Added missing check for undetermined types in functor declarations.

• Overhaul of line/column computation and management of source file names.

Documentation:

• Added principal typing problem with functors to issue list.

54

Test files:

• Added fun-partial, functor-poly and functor-poly2.

• Updated conformance table.

Version 1.2.4 (2006/08/14)

Documentation:

• Clarified license.

Version 1.3.0 (2007/03/22)

Interpreter:

• Output abstract syntax tree in parsing mode.

• Output type and signature environments in evaluation mode.

• Fixed computation of tynames on a static basis.

• Reorganised directory structure.

• Some clean-ups.

Documentation:

• Updated a few out-of-sync sections.

• Added typo in definition of ↓ operator (Section 7.2) to issues list.

Test files:

• Extended sharing and where.

• Updated conformance table.

Platforms:

• Support for Poly/ML, Alice ML, and the ML Kit.

• Support for incremental batch compilation with Moscow ML and Alice ML.

• Target to build a generic monolithic source file.

Version 1.3.1 (2008/04/28)

Platforms:

• Preliminary support for SML#.

• Avoid name clash with library of SML/NJ 110.67.

• Avoid shell-specific code in Makefile.

Version 2.0.0 (2013/10/10)

Interpreter functionality:

• Print source location for uncaught exceptions.

• Abort on errors in batch modes.

• New command line option -b to switch standard basis path (or omit it).

• Fixed bug in lexing of negative hex constants (thanks to Matthew Fluet).

• Fixed missing identifier status check for variable in ‘as’ patterns.

55

• Fixed missing type arity check for structure sharing derived form.

• Slightly more faithful checking of syntactic restrictions (ignore duplicate variables

in matches).

• Slightly more faithful handling of equality maximisation (don’t substitute).

• Slightly more faithful handling of sharing specifications (don’t generate new type

names).

Interpreter implementation:

• Restructured AST to include annotations in the form of typed property list (breaks

all code based on HaMLet 1, sorry :().

• Elaboration stores result of each rule as annotation in respective AST node.

• Derived forms make sure to clone nodes where necessary.

• Removed ad-hoc type annotation on SCons.

• Split Library into StaticLibrary and DynamicLibrary, to support compilers.

• Provide separate Elab/EvalProgram modules, to support compilers/interpreter.

• Renamed *Grammar* structures to *Syntax*.

• Tons of code clean-up and beautification.

JavaScript compiler:

• New HaMLet mode -j, “compile to JavaScript”.

• Simple type-aware source-to-source translation into JavaScript.

• JavaScript implementation of Standard Basis Library primitives.

Basis:

• Implemented CommandLine.

• Skeletal implementation of OS.Process.

• Implemented Substring.position,tokens,fields.

Platforms:

• Assume Moscow ML 2.10 by default.

• Added workarounds for String.concatWith and CharVector.all for (old versions of)

Moscow ML.

• Renamed hamlet-monolith.sml to hamlet-bundle.sml.

Documentation:

• Updated manual and man page.

• Added lax datatype replication rules to issue list (suggested by Karl Crary).

• Updated links.

Version 2.0.1 (2025/07/27)

Interpreter:

• Fixed bug in evaluation order of ‘open‘ with multiple structures (reported by Arata

Mizuki).

• Fixed bug in treatment of equality attribute for ref type (thanks to El Pin Al).

Building:

• Use ‘polyc‘ command for more reliable build with Poly/ML (thanks to Brian Camp-

bell).

• Avoid backslashes in echo command, problematic on MacOS (thanks to Arata Mizuki).

56

References

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, David MacQueen

The Definition of Standard ML (Revised)

The MIT Press, 1997

[MTH90] Robin Milner, Mads Tofte, Robert Harper

The Definition of Standard ML

The MIT Press, 1990

[MT91] Robin Milner, Mads Tofte

Commentary on Standard ML

The MIT Press, 1991

[K93] Stefan Kahrs

Mistakes and Ambiguities in the Definition of Standard ML

University of Edinburgh, 1993

http://www.cs.ukc.ac.uk/pubs/1993/569/

[K96] Stefan Kahrs

Mistakes and Ambiguities in the Definition of Standard ML – Addenda

University of Edinburgh, 1996

ftp://ftp.dcs.ed.ac.uk/pub/smk/SML/errors-new.ps.Z

[DB07] Derek Dreyer, Matthias Blume

Principal Type Schemes for Modular Programs

in: Proc. of the 2007 European Symposium on Programming

Springer-Verlag, 2007

[GR96] Emden Gansner, John Reppy

The Standard ML Basis Library (preliminary version 1996)

AT&T and Lucent Technologies, 2004

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/basis/

[GR04] Emden Gansner, John Reppy

The Standard ML Basis Library

Cambridge University Press, 2004

http://www.standardml.org/Basis/

[DM82] Luis Damas, Robin Milner

Principal type schemes for functional programs

in: Proc. of 9th Annual Symposium on Principles of Programming Languages

ACM Press, 1982

[C87] Luca Cardelli

Basic Polymorphic Typechecking

in: Science of Computer Programming 8(2)

Elsevier Science Publisher, 1987

[S96] Peter Sestoft

ML pattern match compilation and partial evaluation

in: Dagstuhl Seminar on Partial Evaluation, LNCS 1110

Springer-Verlag 1996

ftp://ftp.dina.kvl.dk/pub/Staff/Peter.Sestoft/papers/match.ps.gz

[W98] Philip Wadler

A prettier printer

57

in: The Fun of Programming

Palgrave Macmillan, 2003

http://cm.bell-labs.com/cm/cs/who/wadler/

[BRTT93] Lars Birkedal, Nick Rothwell, Mads Tofte, David Turner

The ML Kit (Version 1)

http://www.diku.dk/research-groups/topps/activities/kit2/mlkit1.html

[K06] The ML Kit

http://www.it-c.dk/research/mlkit/

[NJ07] Standard ML of New Jersey

http://www.smlnj.org/

[NJ98] The SML/NJ Library

http://www.smlnj.org/doc/smlnj-lib/

[CFJW05] Henry Cejtin, Matthew Fluet, Suresh Jagannathan, Stephen Weeks

MLton User Guide

http://www.mlton.org/

[M07] David Matthews

Poly/ML

http://www.polyml.org/

[RRS00] Sergei Romanenko, Claudio Russo, Peter Sestoft

Moscow ML Owner’s Manual (Version 2.10)

http://mosml.org

[AT06] The Alice Programming System

http://www.ps.uni-sb.de/alice/

[ST07] SML# Project

http://www.pllab.riec.tohoku.ac.jp/smlsharp/

[TA00] David Tarditi, Andrew Appel

ML-Yacc User Manual (Version 2.4)

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-Yacc/manual.html

[AMT94] Andrew Appel, James Mattson, David Tarditi

A lexical analyzer generator for Standard ML (Version 1.6.0)

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-Lex/manual.html

[ES12] Ecma International

ECMAScript Language Specification (Edition 5.1)

http://www.ecmascript.org

[E08] Martin Elsman

SMLtoJs

http://www.smlserver.org/smltojs/

58

	Introduction
	Goals
	Bugs in the Definition
	Related Work
	Copyright

	Usage
	Download
	Systems Supported
	Prerequisites
	Installation
	Using the HaMLet Stand-Alone
	Using HaMLet from within an SML System
	Bootstrapping
	Limitations

	Overview of the Implementation
	Structure of the Definition
	Modularisation
	Mapping Syntactic and Semantic Objects
	Mapping Inference Rules
	Naming Conventions
	Side Effects

	Abstract Syntax and Parsing
	Files
	Abstract Syntax Tree and Annotations
	Parsing and Lexing
	Grammar Ambiguities and Parsing Problems
	Infix Resolution
	Derived Forms
	Syntactic Restrictions

	Elaboration
	Files
	Types and Unification
	Type Names
	Environment Representation
	Elaboration Rules
	Type Inference
	Type Schemes
	Overloading and Flexible Records
	Recursive Bindings and Datatype Declarations
	Module Elaboration
	Signature Matching
	Checking Patterns

	Evaluation
	Files
	Value Representation
	Evaluation Rules

	Toplevel
	Files
	Program Execution
	Plugging

	Library
	Files
	Language/Library Interaction
	Primitives
	Primitive Library Types
	The use Function
	Library Implementation

	Compilation to JavaScript
	Usage
	Files
	Translation
	Runtime

	Conclusion
	Mistakes and Ambiguities in the Definition
	Issues in Chapter 2 (Syntax of the Core)
	Issues in Chapter 3 (Syntax of Modules)
	Issues in Chapter 4 (Static Semantics for the Core)
	Issues in Chapter 5 (Static Semantics for Modules)
	Issues in Chapter 6 (Dynamic Semantics for the Core)
	Issues in Chapter 7 (Dynamic Semantics for Modules)
	Issues in Chapter 8 (Programs)
	Issues in Appendix A (Derived Forms)
	Issues in Appendix B (Full Grammar)
	Issues in Appendix D (The Initial Dynamic Basis)
	Issues in Appendix E (Overloading)
	Issues in Appendix G (What's New?)

	History

