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1 Introduction

HaMLet is an implementation of Standard ML (SML’97), as defined in The Definition
of Standard ML[MTHM97] – simply referred to as theDefinition in the following text.
HaMLet mainly is an interactive interpreter but also provides several alternative ways of
operation. Moreover, HaMLet can perform different phases of execution – like parsing,
type checking, and evaluation – selectively. In particular, it is possible to execute programs
in an untyped manner, thus exploring the space where “programs can go wrong”.

1.1 Goals

The primary purpose of HaMLet is not to provide yet another SML system. Its goal is to
provide a faithful model implementation and a test bed for experimentation with the SML
language semantics as specified in the Definition. It also might serve educational purposes.
The main feature of HaMLet therefore is the design of its source code: it follows the for-
malisation of the Definition as closely as possible, only deviating where it is unavoidable.
The idea has been to try to translate the Definition into an “executable specification”. Much
care has been taken to resemble names, operations, and rule structure used in the Defini-
tion and theCommentary[MT91]. Moreover, the source code contains references to the
corresponding sections in the Definition wherever available.

On the other hand, HaMLet tries hard to get even the obscure details of the Definition right.
There are some “features” of SML that are artefacts of its formal specification and are not
straight-forward to implement. See the conclusion in section 9 for an overview.

Efficiency was not a goal. Execution speed of HaMLet is not competitive in any way, since
it naively implements the interpretative evaluation rulesfrom the Definition. Comfort was
no priority either. The error messages given by HaMLet are usually taciturn as we tried to
avoid complicating the implementation.

HaMLet has of course been written entirely in SML’97 and is able to bootstrap itself (see
2.7).

1.2 Bugs in the Definition

The Definition is a complex formal piece of work, and so it is unavoidable that it contains
several mistakes, ambiguities, and omissions. Many of these are inherited from the previous
language version SML’90 [MTH90] and have been documented accurately by Kahrs [K93,
K96]. Those, which still seem to be present or are new to SML’97, are listed in appendix
A.

The general approach we take for resolving ambiguities and fixing bugs is doing it in the
‘most natural’ way. Mostly, this is obvious, sometimes it isnot. Moreover, in cases where
the Definition allows implementations some freedom (e.g. the choice of context taken into
account to resolve overloading) we choose the most restrictive view, so that HaMLet only
accepts those programs that ought to be portable across all possible implementations. The
appendix discusses the solutions we chose.

1.3 Related Work

HaMLet owes much of its existence to the first version of the MLKit [BRTT93]. While the
original Kit shared a similar motivation and a lot of inspiration came from that work, more
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recent versions moved the Kit into another direction. We hope that HaMLet is suitable to
fill the resulting gap.

We also believe that HaMLet is considerably simpler and closer to the Definition. More-
over, unlike the ML Kit, it also implements the dynamic semantics of SML directly. On
the other hand, HaMLet is probably less suited to serve as a library for real world projects,
since no part of it has been tuned for efficiency in any way.

1.4 Copyright

Copyright of the HaMLet sources 1999-2007 by Andreas Rossberg.

The HaMLet source package includes portions of the SML/NJ library, which is copyright
1989-1998 by Lucent Technologies.

SeeLICENSE.txt files for detailed copyright notices, licenses and disclaimers.

HaMLet is free, and we would be happy if others experiment with it. Feel free to modify
the sources in whatever way you want.

Please post any questions, bug reports, critiques, and other comments to

rossberg@ps.uni-sb.de

2 Usage

2.1 Download

HaMLet is available from the following web page:

http://www.ps.uni-sb.de/hamlet/

The distribution contains a tar ball of the SML sources and this documentation.

2.2 Systems Supported

HaMLet can be readily built with the following SML systems:

• SML of New Jersey (110 or higher) [NJ07]

• Poly/ML (5.0 or higher) [M07]

• Moscow ML (2.0 or higher) [RRS00]

• Alice ML (1.4 or higher) [AT06]

• MLton (20010706 or higher) [CFJW05]

• ML Kit (4.3.0 or higher) [K06]

• SML# (0.20 or higher)1 [ST07]

1Hamlet on SML# currently works with some glitches only, e.g.the interactive prompt does appear out of
sync.
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You can produce an executable HaMLet standalone with all systems. The first four also
allow you to use HaMLet from within their interactive toplevel. This gives access to a
slightly richer interface (see section 2.6).

Other SML systems have not been tested, but should of course work fine provided they
support the full language and a reasonable subset of the Standard Basis Library [GR04].

2.3 Libraries and Tools Used

HaMLet makes use of the Standard ML Basis Library [GR04]2. In addition it uses two
functors from the SML/NJ library [NJ98], namelyBinarySetFn andBinaryMapFn ,
to implement finite sets and maps.

To generate lexer and parser, ML-Lex [AMT94] and ML-Yacc [TA00] have been used. The
distribution contains all generated files, though, so you only have to install those tools if
you plan to modify the grammar.

The SML/NJ library as well as ML-Lex and ML-Yacc are freely available as part of the
SML of New Jersey distribution. However, the HaMLet distribution contains all necessary
files from the SML/NJ library and the ML-Yacc runtime library. They can be found in the
smlnj-lib subdirectory, respectively.3

2.4 Installation

To build a stand-alone HaMLet program, go to the HaMLet source directory and invoke
one of the following commands:4

make with-smlnj
make with-mlton
make with-poly
make with-alice
make with-mosml
make with-mlkit
make with-smlsharp

depending on what SML system you want to compile with. This will produce an executable
namedhamlet in the same directory, which can be used as described in section 2.5.

The abovemake targets use the fastest method to build HaMLet from scratch.Most SML
systems allow for incremental compilation that, after changes, only rebuilds those parts of
the system that are affected. To perform an incremental built, use the following commands,
respectively:5

make with-smlnj+
make with-alice+

2Despite some incompatible changes between the two, HaMLet sources work with the latest specification of
the Basis [GR04] as well as the previously available version[GR96].

3The sources of the SML/NJ library are copyrightedc©1989-1998 by Lucent Technologies. See
http://cm.bell-labs.com/cm/cs/what/smlnj/license.ht ml for copyright notice, license and
disclaimer.

4Under DOS-based systems, Cygwin is required.
5Currently, this only matters for Moscow ML and Alice ML, which employ batch compilers. The other systems

either always build incrementally (SML/NJ, ML Kit), or do not support separate compilation at all (MLton,
Poly/ML).
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make with-mosml+
make with-mlkit+

For other SML systems that are not directly supported, the makefile offers a way to build a
single file containing all of the HaMLet modules:

make hamlet-monolith.sml

In principle, the resulting file should compile on all SML systems. In practice however,
some might require additional tweaks to work around omissions or bugs in the provided
implementation of the Standard Basis Library [GR04].6

After HaMLet has been built, you should be able to execute it as described in 2.5. Under
Unixes, you have the option of installing HaMLet first:

make INSTALLDIR=mypath install

The default formypath is /usr/local/hamlet . You should include your path in the
PATHenvironment variable, of course.

2.5 Using the HaMLet Stand-Alone

After building HaMLet successfully with one of the SML systems, you should be able to
start a HaMLet session by simply executing the command

hamlet [- mode] [ file ...]

Themodeoption you can provide, controls how HaMLet processes its input. It is one of

• -p : parsing mode (only parse input)

• -l : elaboration mode (parse and elaborate input)

• -v : evaluation mode (parse and evaluate input)

• -x : execution mode (parse, elaborate, and evaluate input)

Execution mode is the default behaviour. Parsing mode will output the abstract syntax
tree of the program in an intuitive S-expression format thatshould be suitable for further
processing by external tools. Elaboration mode only type-checks the program, without
running it.

Evaluation mode does not perform static analysis, so it can actually generate runtime type
errors. They will be properly handled and result in corresponding error messages. Evalua-
tion mode also has an unavoidable minor glitch with regard tooverloaded constants: since
no type information is available in evaluation mode, all constants will be assigned the de-
fault type. This can cause different results for some calculations. To see this, consider the
following example:

0w1 div (0w2 * 0w128) and
0w1 div (0w2 * 0w128) : Word8.word

6Of the systems supported, SML/NJ, Moscow ML and the ML Kit required such work-arounds, which appear
as wrapper files for Standard Basis modules in thefix directory of the HaMLet source.

7



Although both variants only differ in an added type annotation, the latter will have a com-
pletely different result – namely cause a division by zero and thus aDiv exception (see
also appendix A.11). You can still force calculation to be performed in 8 bit words by
performing explicit conversions:

val word8 = Word8.fromLarge;
word8 0w1 div (word8 0w2 * word8 0w128);

Note thatLargeWord.word = word in HaMLet.

If no file argument has been given you will enter an interactive session in the requested
mode, just like in other SML systems. Input may spread multiple lines and is terminated
by either an empty line, or a line whose last character is a semicolon. Aborting the session
via Ctrl-D will exit HaMLet (end of file, Ctrl-Z on DOS-based systems).

Otherwise, all files are processed in order of appearance. HaMLet interprets the Definition
very strictly and thus requires every source file to be terminated by a semicolon. A file
name may be prefixed by@in which case it is taken to be an indirection file containing a
white space separated list of other file names and expands to that list. Expansion is done
recursively, i.e. the file may contain@-prefixed indirections on its own.

HaMLet currently provides a considerable part, but not yet the complete obligatory subset
of the Standard Basis Library [GR04]. In particular, support for OS functionality still is
weak. Most basic types and corresponding operations are fully implemented, though.

There are several things to note about HaMLet’s output:

• Types and signatures are always fully expanded, in order to closely resemble the
underlying semantic objects.

• Similarly, structure values are shown in full expansion.

• Signatures are annotated with the set of type names bound (asa comment).

• Similarly, the type name set of an inferred static basis is printed, though only elabo-
ration mode.

2.6 Using HaMLet from within an SML System

You can also use HaMLet from within the interactive toplevelof a given SML system.
This allows you to access the various modules described in the following sections of this
document directly and experiment with them.

In most interactive SML systems – particularly HaMLet itself, see 2.7 – you should be able
to load the HaMLet modules by evaluating

use "hamlet.sml";

As this requires recompiling everything, there are more comfortable ways for some partic-
ular systems:

• Under SML of New Jersey, it suffices to start SML/NJ in the HaMLet directory and
evaluate

CM.make();
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However, under newer versions of SML/NJ (110.20 and later),you need to invoke
the function as follows:

CM.make "sources.cm";

• Under Moscow ML, first go to the HaMLet directory and invoke

make interactive-mosml

Then start Moscow ML and type

load "Sml";

Loading HaMLet into an SML session will create (besides others) a structure namedSml,
providing the following signature:

signature SML =
sig

val parseString : string -> unit
val elabString : string -> unit
val evalString : string -> unit
val execString : string -> unit

val parseFile : string -> unit
val elabFile : string -> unit
val evalFile : string -> unit
val execFile : string -> unit

val parseFiles : string list -> unit
val elabFiles : string list -> unit
val evalFiles : string list -> unit
val execFiles : string list -> unit

val parseSession : unit -> unit
val elabSession : unit -> unit
val evalSession : unit -> unit
val execSession : unit -> unit

end

The functions here come in four obvious groups:

• xString processes a program contained in the string given.

• xFile processes a program contained in a file whose name is given.

• xFiles processes a whole set of files in an incremental manner.

• xSession starts an interactive session, that can be exited by pressing Ctrl-D (end
of file, Ctrl-Z on DOS-based systems).

Each call processes the program in the initial basis. For incremental processing, functions
from thexFiles or xSession group have to be used.

In each group there are four functions providing selective phases of execution:

• parse X just parses a program.
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• elab X parses and elaborates a program.

• eval X parses and evaluates a program.

• exec X parses, elaborates, and evaluates a program.

These functions correspond to the different execution modes of the stand-alone HaMLet
(see section 2.5). They all print the resulting environments on stdOut , or a suitable
error message onstdErr if processing does not succeed (parse functions just printOKon
success). During processing of a file list or an interactive session, errors cause the current
input to be skipped, but not abortion of the session.

2.7 Bootstrapping

Since HaMLet has been written purely in strict SML’97, it is able to bootstrap itself. The
file hamlet.sml provided in the source directory allows bootstrapping an interactive
HaMLet session by starting the HaMLet stand-alone via

hamlet hamlet.sml wrap-hamlet.sml

Alternatively, the file can beuse ’d from within a HaMLet session. It will load all necessary
modules enabling interactive use as described in 2.6.

Beware that loading the full Basis Library in the bootstrapped version will require a huge
amount of virtual memory. If you are brave and havelots of memory and patience you
can even try a second bootstrapping iteration from within a session on the bootstrapped
HaMLet. Then, HaMLet not only type-checks itself but does also execute the type checker
and evaluator itself. You should expect at least two orders of magnitude slowdown for each
bootstrapping iteration, due to the naive interpretative evaluation7 (see section 6).

2.8 Limitations

In its current version, HaMLet is not completely accurate with respect to some aspects of
the SML language. The following list gives an overview:

• Parsing: The grammar in the Definition together with its informal disambiguation
rules is rather over-ambitious. It is not possible to parse it with finite look-ahead,
as required by conventional parsing technology – at least not without performing a
major nightmare of grammar transformations first. Consequently, all existing SML
implementations disallow some phrases that ought to be legal according to the Defi-
nition. The most obvious examples are mixtures offvalbinds andcase expressions
like in

fun f p1 = case e1 of p2 => e2
| f p3 = e3

No effort has been made to get this working in HaMLet. However, HaMLet is still
more accurate than other SML implementations. For example,it parses the dreaded
where type ... and type derived form for signature expressions correctly (see
section 4.4).

7For example, on a 2 GHz processor with 512 MB memory the seconditeration may take about 4 hours.

10



• Exhaustiveness of Patterns: checking of patterns is not fully accurate in the presence
of overloaded special constants. Sometimes a match is flagged as non-exhaustive,
although it is in the limited range of its actual type.

• Library: HaMLet does provide a significant portion of the Standard Basis Library,
but it is not complete.

3 Overview of the Implementation

The implementation of HaMLet follows the Definition as closely as possible. The idea was
to come as close as possible to the ideal of an executable version of the Definition. Where
the sources deviate, they usually do so for one of the following reasons:

• the non-deterministic nature of some of the rules (e.g. guessing the right types in the
static semantics of the core),

• the informal style of some parts (e.g. the restrictions in [4.11])

• bugs or omissions in the Definition (see appendix A)

We will explain non-trivial deviations from the Definition where appropriate.

The remainder of this document does not try to explain details of the Definition – the
Commentary [MT91] is much better suited for this purpose, despite being based on the
SML’90 Definition [MTH90]. Neither is this document a tutorial to type inference. The
explanations given here merely describe the relation between the HaMLet source code and
the formalism of the Definition. The text assumes that you have both at hand side by
side. We use section numbers in brackets as above to refer to individual sections of the
Definition. Unbracketed section numbers are cross references within this document.

Note that most explanations given here a kept rather terse and cover only general ideas
without going into too much detail. The intention is that thesource code speaks for itself
for most part.

3.1 Structure of the Definition

The Definition specifies four main aspects of the SML language:

1. Syntax

2. Static semantics

3. Dynamic semantics

4. Program Execution

Syntax is the most conventional part of a language definition. The process of recognizing
and checking program syntax is usually referred to asparsing. The static semantics is
mainly concerned with the typing rules. The process of checking validity of a program
with respect to the static semantics is calledelaborationby the Definition. The dynamic
semantics specifies how the actualevaluationof program phrases has to be performed.
The last aspect essentially describes how the interactive toplevel of an SML system should
work, i.e. how parsing, elaboration, and evaluation are connected. The complete processing
of a program, performing all three aforementioned phases, is known asexecution.
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The four aspects are covered in separate chapters of the Definition. Further destructuring
is done by distinguishing between core language and module language. This factorisation
of the language specification is described in more detail in the preface and the first chapter
of the Definition.

3.2 Modularisation

HaMLet resembles the structure of the Definition quite directly. For most chapters of
the Definition there is a corresponding module implementingthat aspect of the language,
namely these are:

Chapter 2 and 3 Lexer , Parser , SyntacticRestrictions
Chapter 4 ElabCore
Chapter 5 ElabModule
Chapter 6 EvalCore
Chapter 7 EvalModule
Chapter 8 Program
Appendix A DerivedForms
Appendix B Parser
Appendix C InitialStaticBasis
Appendix D InitialDynamicBasis
Appendix E OverloadingClass (roughly)

Most other modules implement objects and operations definedat the beginning of each of
the different chapters, which are used by the main modules. The source of every module
cross-references the specific subsections of the Definitionrelevant for the types, operations,
or rule implementations contained in it.

Altogether, it should be quite simple to map particular HaMLet modules to parts or en-
tities of the Definition and vice versa. To make the mapping asobvious as possible, we
followed quite strict naming conventions (see 3.5). Each ofthe following sections of this
document will cover implementation of one of the language aspects mentioned in 3.1. At
the beginning of each of those sections we will list all modules relevant to that part of the
implementation.

As a rule, each source file contains exactly one signature, structure, or functor. The only
exceptions are the filesIds X, GrammarsX, each containing a collection of simple functor
applications, and the files containing the modulesAddr , ExName, Lab , Stamp , TyName,
TyVar , which also provide implementations of sets and maps of the corresponding objects.

We tried to keep things simple, so the architecture of HaMLetis quite flat: it does not make
heavy use of functors. Functors only appear where the need togenerate several instances
of an abstract type (e.g.IdFn ) or parameterised types arises. Enthusiasts of the closed
functor style may feel free to dislike this approach;-) .

3.3 Mapping Syntactic and Semantic Objects

The sets representing the different phrase classes of the SML syntax are defined inductively
through the BNF grammars in the Definition. These sets are mapped to appropriate SML
datatypes in obvious ways, using fields of typeoption for optional phrases.

All sets defining semantic objects in the Definition have beenmapped to SML types as
directly as possible:
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primitive objects (without structure) abstract types
products (A × B) tuple types (A * B)
disjoint unions (A ∪ B) datatypes (A of A | B of B )
k-ary products (∪k≥0A

k) list types (A list )
finite sets (Fin(A)) instances of theFinSet functor

finite maps (A
fin
→ B) instances of theFinMap functor

In some places, we had to relax these conventions somewhat and turn some additional types
into datatypes to cope with mutual recursion between definitions. For example, environ-
ments are always rendered as datatypes.

Except for the primitive simple objects, no type definitionsare abstract. To allow the most
direct implementation of rules operating on semantic objects, type definitions representing
structured sets are always kept transparent. Be warned: regarding this aspect, the HaMLet
sources should not serve as an example for good modularisation practice...

3.4 Mapping Inference Rules

Usually, each group of inference rules in the Definition is implemented by one function.
For rules of the form

A ⊢ phrase ⇒ A′

the corresponding function has type

A * phrase -> A’

Each individual rule corresponds to one function clause. More specifically, an inference
rule of the form:

A1 ⊢ phrase1 ⇒ A′
1 · · · An ⊢ phrasen ⇒ A′

n
side condition

A ⊢ phrase ⇒ A′
(k)

maps to a function clause of the form:

elabPhraseClass args (A, phrase) =
( * [Rule k] * )
let

val A1’ = elabPhraseClass1(A1, phrase1)
( * ... * )
val An’ = elabPhraseClassN(An, phraseN)

in
if side condition then

A’
else

error("message")
end

Here,args denotes possible additional arguments that we sometimes need to pass around.
There are exceptions to this scheme for rules that are not purely structural, e.g. rules 34
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and 35 of the static semantics [4.10] are represented by one case only. Moreover, we deal
slightly differently with the state and exception conventions in the dynamic semantics (see
6.3).

If one of a rule’s premise is not met, an appropriate message is usually generated and an
exception is raised through theError module.

3.5 Naming Conventions

Structures and functors are named after the main type they define, the objects they generate,
or the aspects of the Definition they implement (with one exception: the structure contain-
ing type Int is namedInter to avoid conflicts with the structureInt of the Standard
Basis Library). The corresponding signatures are named accordingly.

Several structures come in groups, representing the separation of core and module language
(and even the program layer). Orthogonal grouping happens for aspects similar in the
static and dynamic semantics. The structure names reflect those connections in an obvious
way, by including the words-Core- , -Module- , or -Program- , and-Static- or
-Dynamic- .

Types representing sets defined in the Definition are always named after that set even if
this conflicts with the usual SML conventions with respect tocapitalisation. Functions
are also named after the corresponding operation if it is defined in the Definition or the
Commentary [MT91]. Variables are named as in the Definition,with Greek letters spelled
out. Moreover, type definitions usually include a comment indicating how variables of that
type will be named.

On all other occasions obvious names have been chosen, following conventions established
by the Standard Basis Library [GR04] or the SML/NJ library [NJ98] where possible.

3.6 Side Effects

SML is not purely functional, and neither is the HaMLet implementation. It uses state
whenever that is the most natural thing to do, or if it considerably simplifies code. At the
following places state comes into play:

• inside the lexer, to handle nested comments,

• inside the parser, to maintain the infix environment,

• to generate time stamps, e.g. for type and exception names,

• in the representation of type terms, to allow destructive unification,

• during elaboration, to collect unresolved overloaded and flexible types,

• during evaluation, to maintain the program’s state.

And of course, the code generated by Lex and Yacc uses state internally.

Other side effects are the output of error and warning messages in the Error structure.
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4 Abstract Syntax and Parsing

4.1 Files

The following modules are related to parsing and representation of the abstract syntax tree:

Source representation of source regions

IdFn generic identifier representation
LongIdFn
IdsCore instantiated identifier classes
IdsModule
TyVar type variable representation
Lab label representation
SCon special constants

GrammarCoreFn abstract syntax tree definition
GrammarModuleFn
GrammarProgramFn
Grammars AST instantiations

Lexer lexical analysis (via ML-Lex)
LineAwareLexer wrapper computing line/column information
Parser syntactical analysis (via ML-Yacc)
Infix infix parser
Parse parser plugging

DerivedFormsCore derived forms transformation
DerivedFormsModule
DerivedFormsProgram

IdStatus identifier status
BindingObjectsCore objects for binding analysis
BindingObjectsModule
GenericEnvFn generic environment operations
BindingEnv operations on binding environment
BindingContext operations on binding context
BindingBasis operations on binding basis

ScopeTyVars scoping analysis for type variables

SyntacticRestrictionsCore verifying syntactic restrictions
SyntacticRestrictionsModule
SyntacticRestrictionsProgram

PPGrammar auxiliary functions for printing ASTs
PPCore printing of core AST
PPModule printing of module AST
PPProgram printing of program AST
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4.2 Abstract Syntax Tree

The abstract syntax tree (AST) is split into three layers, corresponding to the SML core and
module language and the thin program toplevel, respectively (modulesGrammarXFn).
It represents the bare grammar, without derived forms. One notable exception has been
made for structure sharing constraints, which are includedsince they cannot be handled
as a purely syntactic derived form (see A.8). Infix stuff has been removed from the core
grammar, as it does not appear in the semantic rules of the Definition [2.6]. However, we
have to keep occurrences of theop keyword in order to do infix resolution (see 4.5).

Each node carries a generic info field, and the grammar modules are functorised to allow
different instantiations of this field. However, they are currently only instantiated once,
with the info field carrying position information mapping each node to a region of the
source text and an optional file name (fileGrammars).

Each identifier class is represented by its own abstract type. Most of them – exceptTyVar
andLab which require special operations – are generated from theIdFn andLongIdFn
functors.

Special constants are represented as strings containing the essential part of their lexical
appearance – their actual values cannot be calculated before overloading resolution.

4.3 Parsing and Lexing

Parser and lexer have been generated using ML-Yacc [TA00] and ML-Lex [AMT94] which
are part of the SML/NJ distribution [NJ07]. The parser builds an abstract syntax tree using
the grammar types described in Section 4.2.

Most parts of the parser and lexer specifications (filesParser.grm andLexer.lex ) are
straightforward. In particular, we use a rather dumb and direct way to recognize keywords
in the lexer. We have to take some care to handle all those overlapping lexical classes
correctly, which requires the introduction of some additional token classes (see comments
in Lexer.lex ). Nested comments are treated through a side-effecting counter for nesting
depth.

A substantial number of grammar transformations is unavoidable to deal with LALR con-
flicts in the original SML grammar (see 4.4 and comments inParser.grm ). Some hack-
ing is necessary to do infix resolution directly during parsing (see 4.5).

Semantic actions of the parser apply the appropriate constructors of the grammar types or
a transformation function provided by the modules handlingderived forms (see 4.6).

4.4 Grammar Ambiguities and Parsing Problems

ML-Yacc is a conventional LALR(1) parser generator. However, the grammar given in
the Definition together with its disambiguation rules defines a language that cannot be
parsed by such standard parsing technology, as it requires infinite look-ahead. The HaMLet
parser is therefore incapable of handling all language constructs that are legal according to
a strict reading of the Definition. The most annoying exampleof a problematic phrase is a
case expression as right hand side of a function binding (see A.9). Most people consider
this a bug on the side of the Definition. Consequently, no attempt is currently made to
fix it in HaMLet. It could only be dealt with correctly either by horrendous grammar
transformations or by some really nasty and expensive lexerhack [K93].

Disambiguation of expressions is left to ML-Yacc, we simplyspecify suitable keyword
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precedences. This seems to be the most appropriate thing to do, as the disambiguation
rules in the Definition are ambiguous by themselves (see A.9).

The SML grammar contains several other ambiguities on the declaration level (see A.1,
A.2 and A.7). We resolve them in the ‘most natural’ ways:

• Semicolons are simply parsed as declarations or specifications, not as separators (cf.
A.1).

• Sequential declarations and specifications are parsed leftassociative.

• Sharing specifications are also left associative, at effectively the same precedence
level like sequential ones.

• Core level declarations are reduced to structure declarations as soon as possible. This
includes ambiguouslocal declarations (cf. A.2).

Several auxiliary phrase classes have been introduced to implement these disambiguations.

Some heavy transformations of the grammar are necessary to deal with the dreaded derived
form for signature expressions [Appendix A, Figure 19]: forevery nonterminalx that can
end in asigexp and may be followed by another subphrasey separated by the keyword
‘and ’ we had to introduce auxiliary nonterminals of the form

x ANDy

whose semantic actions build two parts of the abstract syntax tree: the subtree forx and the
subtree fory.

Further grammar transformations are needed to cope withas patterns and datatype decla-
ration vs. datatype replication.

4.5 Infix Resolution

Since ML-Yacc does not support attributes, and we did not want to introduce a separate
infix resolution pass, the parser maintains an infix environmentJ which is initialised and
updated via side effects in the semantic actions of several pseudo productions. Applications
– infix or not – are first parsed as lists of atomic symbols and then transformed by the
moduleInfix which is invoked at the appropriate places in the semantic actions. The
infix parser in that module is essentially a simple hand-coded LR Parser.

The parser is parameterised over its initial infix environment. After successful parsing it
returns the modified infix environment along with the AST.

4.6 Derived Forms

To translate derived forms, three modules corresponding tothe three grammar layers pro-
vide transformation functions that rewrite the grammatical forms to their equivalent forms,
as specified in Appendix A of the Definition (modulesDerivedForms X). These func-
tions are named similar to the constructors in the AST types so that the parser itself does
not have to distinguish between constructors of bare syntaxforms and pseudo constructors
for derived forms.

The Definition describes thefvalbind derived form in a very inaccurate way. We made it
a bit more precise by introducing several additional phraseclasses (see A.9). Most of the
parsing happens in theInfix module in this case, though.
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Note that the structure sharing syntax is not a proper derived form since it requires context
information about the involved structures (see A.8). It therefore has been moved to the bare
grammar.

4.7 Syntactic Restrictions

The BNF grammar given in the Definition actually specifies a superset of all legal programs,
which is further restricted by a set of syntactic constraints [Section 2.9, 3.5]. The parser
accepts this precise superset, and the syntactic restrictions are verified in a separate pass.

Unfortunately, not all of the restrictions given in the Definition are purely syntactic (see
A.1). In general, it requires full binding analysis to inferidentifier status and type variable
scoping.

Checking of syntactic restrictions has hence been implemented as a separate inference pass
over the whole program. The pass closely mirrors the static semantics. It computes respec-
tive binding environments that record the identifier statusof value identifiers. For modules,
it has to include structures, functors and signatures as well, because the effect ofopen
relies on the environments they produce. Likewise, type environments are needed to reflect
the effect of datatype replication. In essence, binding environments are isomorphic to in-
terfaces in the dynamic semantics [Section 7.2]. As an extension, a binding basis includes
signatures and functors. For the latter, we only need to maintain the result environment.
Last, a binding context includes a set of bound type variables.

5 Elaboration

5.1 Files

The following modules represent objects of the static semantics and implement elaboration:

StaticObjectsCore definition of semantic objects
StaticObjectsModule
TyVar type variables
TyName type names

Type operations on types
TypeFcn operations on type functions
TypeScheme operations on type schemes
OverloadingClass overloading classes

GenericEnvFn generic environment operations
StaticEnv environment instantiation
Sig operations on signatures
FunSig operations on functor signatures
StaticBasis operations on basis

ElabCore implementation of elaboration rules
ElabModule
Clos expansiveness check and closure
CheckPattern pattern redundancy and exhaustiveness checking
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5.2 Types and Unification

Types are represented according to the mapping explained in3.3 (moduleType ). However,
since type inference has to do unification (see 5.6), which weprefer to do destructively for
simplicity, each type node actually is wrapped into a reference. A simple graph algorithm is
required to retain sharing when cloning types. All other type operations besides unification
have functional semantics.

In order to avoid confusion (cf. A.12) our type representation distinguishes undetermined
types (introduced during type inference, see 5.6) from explicit type variables. This requires
an additional kind of node in our type representation. Moreover, we have another kind of
undetermined type node to deal with overloaded types (see 5.8). Finally, we need a third
additional node that replaces undetermined types once theybecome determined, in order
to retain sharing.

All operations on types have been implemented in a very straightforward way. To keep
the sources simple and faithful to the Definition we chose notto use any optimisations like
variable levels or similar techniques often used in real compilers.

5.3 Type Names

Type names (moduleTyName) are generated by a global stamp generator (moduleStamp ).
As described in the Definition, they carry attributes for arity and equality.

To simplify the task of checking exhaustiveness of patternstype names have been equipped
with an additional attribute denoting thespanof the type, i.e. the number of constructors
(see 5.12). For pretty printing purposes, we also remember the original type constructor of
each type name.

5.4 Environment Representation

In order to share as much code as possible between the rather similar environments of the
static and the dynamic semantics, as well as the interfaces Int in the dynamic semantics
of modules, we introduce a functorGenericEnvFn that defines the representation and
implements the common operations on environments.

Unfortunately, there exists a mutual recursion between environments and their range sets,
in the static semantics (via TyStr) as well as in the dynamic semantics (via Val and FcnClo-
sure). This precludes passing the environment range types as functor arguments. Instead,
we make all environment types polymorphic over the corresponding range types. The in-
stantiating modules (StaticEnv , DynamicEnv , andInter ) tie the knot appropriately.

5.5 Elaboration Rules

Elaboration implements the inference rules of sections [4.10] and [5.7] (modulesElabCore
andElabModule ). It also checks the further restrictions in [4.11].

The inference rules have been mapped to SML functions as described in 3.4. We only
need simple kinds of additional arguments: a flag indicatingwhether we are currently
elaborating a toplevel declaration (in order to implement restriction 3 in [4.11] properly), a
list of unresolved types (for overloading resolution and flexible records, see 5.8), and a list
of fn matches (to defer checking of exhaustiveness until after overloading resolution, see
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5.12 and 5.8). For modules, we pass down the equality attribute of type descriptions (see
5.10).

Note that most of the side conditions on type names could be ignored since they are mostly
ensured by construction using stamps. We included them anyway, to be consistent and to
have an additional sanity check. At some places these checksare not accurate, though,
since the types examined can still contain type inference holes which may be filled with
type names later. To be faithful, we hence employ time stampson type names and type
holes, such that violations of prior side conditions can be discovered during type inference,
as we explain in the next section.

5.6 Type Inference

The inference rules for core elaboration are non-deterministic. For example, when enter-
ing a new identifier representing a pattern variable into theenvironment, rule 34 [4.10]
essentially guesses its correct type. A deterministic implementation of type inference is
the standard algorithm W by Damas/Milner [DM82]. Informally, when it has to guess a
type non-deterministically it introduces a fresh type variable as a placeholder. We pre-
fer to speak of undetermined types instead, since type variables already exist in a slightly
different sense in the semantics of SML (cf. A.12).

Wherever an inference rule imposes an equality constraint on two types because the same
meta-variable appears in different premises, the algorithm tries to unify the two types de-
rived. After a value declaration has been checked, one can safely turn remaining unde-
termined types into type variables and universally quantify the inferred type over them, if
they do not appear in the context. SML’s value restriction does restrict this closure to non-
expansive declarations, however [4.7, 4.8]. Note that (explicit) type variables can only be
unified with themselves.

We use an imperative variant of the algorithm where unification happens destructively
[C87], so that we do not have to deal with substitutions, and the form of the elabora-
tion functions is kept more in line with the inference rules in the Definition (module
ElabCore ).

Undetermined types are identified by stamps. They carry two additional attributes: an
equality constraint, telling whether the type has to admit equality, and a time stamp, which
records the relative order in which undetermined types and type names have been intro-
duced. During unification with undetermined types we have totake care to properly enforce
and propagate these attributes.

When instantiating type variables to undetermined types [4.10, rule 2], the undetermined
type inherits the equality attribute from the variable. An undetermined equality type in-
duces equality on any type it is unified with. In particular, if an undetermined equality
type is unified with an undetermined non-equality type, equality is induced on the latter
(functionType.unify ).

Likewise, when a type is unified with an undetermined type, the latter’s time stamp is
propagated to all subterms of the former. That is, nested undetermined types inherit the
time stamp if their own is not older already. Type names must always be older than the time
stamp – unification fails, when a type name is encountered that is newer. This mechanism is
used to prevent unification with types which contain type names that have been introduced
after the undetermined type. For example, the snippet

let
val r = ref NONE
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datatype t = C
in

r := SOME C
end

must not type-check – the type ofr may not mentiont (otherwise the freshness side condi-
tion on names for datatypes [4.10, rule 17] would be violated). However, type inference can
only find out about this violation at the point of the assignment expression. By comparing
the time stamp of the undetermined type introduced when elaborating the declaration ofr ,
and the stamp of the type namet , our unification algorithm will discover the violation.

More importantly, the mechanism is sufficient to preclude unification of undetermined
types withlocal type names, as in the following example:

val r = ref NONE
functor F(type t; val x : t) =
struct

val _ = r := SOME C
end

Obviously, allowing this example would be unsound.

Similarly, the time stamp mechanism is used to prevent invalid unification of monomorphic
undetermined types remaining due to the value restriction,with type variables, see Section
5.7.

To cope with type inference for records, we have to representpartially determined rows.
The yet undetermined part of a row is represented by a specialkind of type variable, a
row variable. This variable has to carry the same attributes as an undetermined type, i.e. an
equality flag and a time stamp, both of which have to be properly propagated on unification.
See also Section 5.8.

5.7 Type Schemes

Type schemes represent polymorphic types, i.e. a type prefixed by a list of quantified type
variables. The only non-trivial operation on type schemes is generalisation [4.5].

We implement the generalisation test via unification: in order to test for∀α(k).τ ≻ τ ′, we
instantiateα(k) with undetermined typesτ (k) and test whetherτ [τ (k)/α(k)] can be unified
with τ ′.

To test generalisation between type schemes,∀α(k).τ ≻ ∀α(k′).τ ′, we first skolemise the
variablesα(k′) on the right-hand side by substituting them with fresh type namest(k

′).
Then we proceed by testing for∀α(k).τ ≻ τ ′[t(k

′)/α(k′)] as described before.

Note thatτ may contain undetermined types, stemming from expansive declarations. These
have to be kept monomorphic, but naive unification might identify them with one of the
skolem typest(k

′) (or a type containing one) – and hence effectively turn them into poly-
morphic types! For example, when checking the signature ascription in the following ex-
ample,

signature S = sig val f : ’a -> ’a option end
structure X : S =
struct

val r = ref NONE
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fun f x = !r before r := SOME x
end

the type inferred for the functionf contains an undetermined type, the content type ofr .
It must be monomorphic, hence the type off does not generalise the polymorphic type
specified in the signature.8 Comparison of the time stamps of the undetermined type and
the newer type name generated during skolemisation of’a makes unification between the
two properly fail with our algorithm.

5.8 Overloading and Flexible Records

Overloading is the least formal part of the Definition (see A.11). It is just described in an
appendix, as special case treatment for a handful of given operators and constants. We try
to generalise the mechanism indicated in the Definition in order to have something a bit
less ad hoc that smoothly integrates with type inference.

To represent type schemes of overloaded identifiers we allowtype variables to be con-
strained with overloading classes in a type scheme, i.e. type variables can carry an over-
loading class as an additional optional attribute. When instantiated, such variables are
substituted by overloaded type nodes, constrained by the same overloading class (construc-
tor Type.Overloaded ). When we unify an overloaded type with another, determined
type we have to check whether that other type is a type name contained in the given over-
loading class. If yes, overloading has been resolved, if no there is a type error (function
Type.unify ).

When unifying two overloaded types, we have to calculate theintersection of the two over-
loading classes. So far, everything is pretty obvious. The shaky part is how to propagate
the default types associated with the classes when we perform intersection.

We formalise an overloading class as a pair of its type name set and the type name being
the designated default:

(T, t) ∈ OverloadingClass= TyNameSet× TyName

Now when we have to intersect two overloading classes(T1, t1) and(T2, t2), there may be
several cases. LetT = T1 ∩ T2:

1. T = ∅. In this case, the constraints on the types are inconsistentand the program in
question is ill-typed.

2. T 6= ∅ andt1 = t2 ∈ T . The overloading has (possibly) been narrowed down and
the default types are consistent.

3. T 6= ∅ andt1 6= t2 and|{t1, t2}∩T | = 1. The overloading has been narrowed down.
The default types differ but only one of them still applies.

4. T 6= ∅ and|{t1, t2} ∩ T | 6= 1. The overloading could be narrowed down, but there
is no unambiguous default type.

Case (3) is a bit subtle. It occurs when checking the following declaration:

fun f(x,y) = (x + y)/y

8Several SML implementations currently get this wrong, opening a soundness hole in their type checkers.
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Both, + and/ are overloaded and default to different types, but in this combination only
real remains as a valid default so that the type off should default toreal × real →
real.9

There are two ways to deal with case (4): either rule it out by enforcing suitable well-
formedness requirements on the overloading classes in the initial basis, or handle it by gen-
eralising overloading classes to containsetsof default values (an error would be flagged if
defaulting actually had to be applied for a non-singular set). We settled for the former alter-
native as it seems to be more in spirit with the Definition and it turns out that the overloading
classes specified in the Definition satisfy the required well-formedness constraints.10

Consequently, we demand the following properties for all pairs of overloading classes
(T, t), (T ′, t′) appearing in a basis:

1. t ∈ T

2. Eq(T ) = ∅ ∨ t admits equality

3. T ∩ T ′ = ∅ ∨ |{t, t′} ∩ T ∩ T ′| = 1

where Eq(T ) = {t ∈ T | t admits equality}.

The reason for (1) is obvious. (2) guarantees that we do not loose the default by inducing
equality. (3) ensures a unique default whenever we have to unify two overloaded types. (2)
and (3) also allow the resulting set to become empty which represents a type error.

Defaulting is implemented by collecting a list of all unresolved types – this includes flexible
records – during elaboration of value declarations (additional argumetnutaus ). Before
closing an environment, we iterate over this list to defaultremaining overloaded types or
discover unresolved flexible records. This implies that thecontext determining an over-
loaded type or flexible record type is the smallest enclosingcore-level declaration of the
corresponding overloaded identifier, special constant, orflexible record, respectively (cf.
A.3 and A.11).

Special constants have to be annotated with corresponding type names by overloading res-
olution, in order to get the correct dynamic semantics (see 6.3) and enable proper checking
of match exhaustiveness (see 5.12). For this purpose, the list of unresolved types can carry
optional associated special constants. During defaultingwe annotate each constant, and do
range checking of the constant’s value with respect to the resolved type at the same time.

5.9 Recursive Bindings and Datatype Declarations

Value bindings withrec and datatype declarations are recursive. The inference rules (26,
17 and 19) use the same environmentVE or TE on the left hand side of the turnstile that
is to be inferred on its right hand side.

To implement this we build a tentative environment in a first iteration that is not complete
but already contains enough information to perform the actual inference in the second it-
eration. For recursive value bindings we insert undetermined types as placeholders for the
actual types (and unify later), for datatype bindings we leave the constructor environments
empty.

9Some SML implementations do not handle this case properly.
10A previous version of HaMLet used the latter alternative. Itallows more liberal overloading but may lead to

typing errors due to ambiguous overloading, despite the default mechanism. Moreover, in full generality it raises
additional issues regarding monotonicity of overloading resolution when extending the library.
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Datatype declarations bring an additional complication because of the side condition that
requiresTE to maximise equality. This is being dealt with by first assuming equality for all
type names introduced and later adjusting all invalid equality attributes in a fixpoint itera-
tion until all type structures respect equality (functionStaticEnv.maximiseEquality ).

5.10 Module Elaboration

Like for the core language, the inference rules for modules are non-deterministic. In partic-
ular, several rules have to guess type names that have to be consistent with side conditions
enforced further down the inference tree. However, most of these side conditions just en-
sure that type names are unique, i.e. fresh type names are chosen where new types are
introduced. Since we create type names through a stamp mechanism, most of these side
conditions are trivially met. The remaining cases are dealtwith by performing suitable
renaming of bound type names with fresh ones, as the Definition already suggests in the
corresponding comments (moduleElabModule ).

The other remaining bits of non-determinism are guessing the right equality attribute for
type descriptions, which is dealt with by simply passing therequired attribute down as an
additional assumption (functionElabModule.elabTypDesc ), and for datatype speci-
fications, which require the same fixpoint iteration as datatype declarations in the core (see
5.9).

5.11 Signature Matching

Signature matching is the most complex operation in the SML semantics. As the Definition
describes, it is a combination of realisation and enrichment.

To match an environmentE′ against a signatureΣ = (T, E) we first calculate an appro-
priate realisationϕ by traversingE: for all flexible type specifications inE (i.e. those
whose type functions are equal to type names bound inT ) we look up the correspond-
ing type inE′ and extendϕ accordingly. Then we apply the resulting realisation toE
which gives us the potentialE−. For this we just have to check whether it is enriched
by E′ which can be done by another simple traversal ofE− (functionsSig.match and
StaticEnv.enriches ).

The realisation calculated during matching is also used to propagate type information to the
result environment of functor applications (rule 54, moduleElabModule ). A functor sig-
nature has form(T1)(E1, (T

′
1)E

′
1). To obtain a suitable functor instantiation(E′′, (T ′)E′)

for rule 54 we simply match the environmentE of the argument structure to the signature
(T1)E1 which givesE′′ and a realisationϕ. We can applyϕ to the functor’s result signa-
ture(T ′

1)E
′
1 to get – after renaming allt ∈ T ′

1 to fresh namest′ ∈ T ′ – the actual(T ′)E′

appearing in the rule.

5.12 Checking Patterns

Section [4.11], items 2 and 3 require checking exhaustiveness and irredundancy of patterns.
The algorithm for performing this check is based on [S96] (module CheckPattern ).
The basic idea of the algorithm is to performstatic matching, i.e. to traverse the decision
tree corresponding to a match and propagate information about the value to be matched
from the context of the current subtree. The knowledge available on a particular subterm is
described by thedescription type. Moreover, acontext specifies the path from the
root to the current subtree.
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The algorithm is loosely based on [S96], where more details can be found. To enable this
algorithm, type names carry an additional attribute denoting their span, i.e. the number
of constructors the type possesses (see 5.3). We extend the ideas in the paper to cover
records (behave as non-positional tuples), exception constructors (have infinite span), and
constants (treated like constructors with appropriate, possibly infinite span). Note that we
have to defer checking of patterns until overloading resolution for contained constants has
been performed – otherwise we will not know their span.

A context description is not simply a list of constructor applications to term descriptions
as in the paper, but separates constructor application fromrecord aggregation and uses a
nested definition. Instead of lists of negative constructors (and constants) we use sets for
descriptions. Record descriptions are maps from labels to descriptions.

During traversal we construct two sets that remembers the region of every match we en-
countered, and every match we reached. In the end we can discover redundant matches by
taking the difference of the sets. Non-exhaustiveness is detected by remembering whether
we reached a failure leaf in the decision tree.

In the case of exception constructors, equality can only be checked on a syntactic level.
Since there may be aliasing this is merely an approximation (see A.3).

There is a problem with the semantics of sharing andwhere constraints, which allow
inconsistent datatypes to be equalised (see A.3). In this case, no meaningful analysis is
possible, resulting warnings may not make sense. There is nothing we can do but ignore
this problem.

6 Evaluation

6.1 Files

Objects of the dynamic semantics and evaluation rules are implemented by the following
modules:

DynamicObjectsCore definition of semantic objects
DynamicObjectsModule
Addr addresses
ExName exception names
BasVal basic values
SVal special values

Val operations on values
State operations on state

GenericEnvFn generic environment operations
DynamicEnv operations on environments
Inter operations on interfaces
DynamicBasis operations on basis
IntBasis operations on interface basis

EvalCore implementation of evaluation rules
EvalModule
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6.2 Value Representation

Values are represented as defined in Section 6.3 of the Definition (moduleVal ). Special
values are simply represented by the corresponding SML types (moduleSVal ). Currently,
only the default types andWord8.word are implemented, which represents the minimum
requirement of the Standard Basis.

Basic values are simply represented by strings (moduleBasVal ). However, the only basic
value defined in the Definition is the polymorphic equality=, everything else is left to the
library. Consequently, the implementation of the APPLY function only handles=. For
all other basic values it dispatches to theLibrary module, which provides an extended,
library-specific version of the APPLY function (see Section8).

The special value FAIL, which denotes pattern match failure, is not represented directly but
has rather been defined as an exception (see 6.3).

6.3 Evaluation Rules

The rules of the dynamic semantics have been translated to SML following similar conven-
tions as for the static semantics (see 3.4). However, to avoid painfully expanding out all
occurrences of the state and exception conventions, we dealwith state and exceptions in an
imperative way. State is not passed around as a functional value but rather as a reference
to the actual state map (moduleState ) that gets updated on assignments. This avoids
threading the state back with the result values. Exception packages (modulePack ) are not
passed back either, but are rather transferred by raising aPack exception. Similarly, FAIL
has been implemented as an exception.

So state is implemented by state and exceptions by exceptions – not really surprising. Con-
sequently, rules of the form

s, A ⊢ phrase ⇒ A′/p, s′

become functions of type

State ref * A * phrase -> A’

which may raise aPack exception – likewise for rules including FAIL results. We omit
passing in the state where it is not needed. This way the code follows the form of rules
using the state and exception conventions as close as possible (modulesEvalCore and
EvalModule ).

Failure with respect to a rule’s premise corresponds to a runtime type error. This may
actually occur in evaluation mode and is flagged accordingly.

Evaluation of special constant behaves differently in execution and elaboration mode. In
the former, constants will have been annotated with a propertype name by overloading res-
olution (see 5.8). In evaluation mode this annotation is missing and the functionvalSCon
will assume the default type of the corresponding overloading class, respectively. This
implies that the semantics may change (see 2.5).

Note that the rules 182 and 184–186 of the dynamic semantics for modules contain several
errors (see A.6).
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7 Toplevel

7.1 Files

The remaining modules implement program execution and interactive toplevel:

Basis the combined basis
Program implementation of rules for programs

InitialInfixEnv initial environments
InitialStaticEnv
InitialStaticBasis
InitialDynamicEnv
InitialDynamicBasis

PrettyPrint pretty printing engine
PPMisc auxiliary pretty printing functions
PPType pretty printing of types
PPVal ... values
PPStaticEnv ... static environment
PPStaticBasis ... static basis
PPDynamicEnv ... dynamic environment
PPDynamicBasis ... dynamic basis
PPBasis ... combined basis

Use theuse queue
Sml main HaMLet interface
Main wrapper for stand-alone version

7.2 Program Execution

The moduleProgram implements the rules in Chapter 8 of the Definition. It follows the
same conventions as used for the evaluation rules (see 3.4 and 6.3).

In addition to the ‘proper’ implementation of the rules as given in the Definition (func-
tion execProgram ) the module also features two straightforward variations that suppress
evaluation and elaboration, respectively (elabProgram andevalProgram ).

Note that a failing elaboration as appearing in rule 187 corresponds to anError exception.
However, in evaluation mode, anError exception will originate from a runtime type error.

The remaining task after execution is pretty printing the results. We use an extended version
of a generic pretty printer proposed by Wadler [W98] which features more sophisticated
grouping viaboxes(modulesPrettyPrint andPPxxx).

7.3 Plugging

TheSml module sets up the standard library (see Section 8), does allnecessary I/O inter-
action and invokes the parser and the appropriate function in moduleProgram , passing
the necessary environments.
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After processing the input itself the functions in theSml module process all files that have
been entered into theuse queue during evaluation (see 8.5). That may add additional
entries to the queue.

The Main module is only needed for the stand-alone version of HaMLet.It parses the
command line and either starts an appropriate session or reads in the given files.

8 Library

8.1 Files

The library only consists of a hook module and the library implementation files written in
the target language:

Library primitive part of the library
Use use queue
basis/ the actual library modules

8.2 Language/Library Interaction

The Definition contains several hooks where it explicitly delegates fleshing out stuff to the
library:

• the set BasVal of basic values and the APPLY function [6.4]

• the initial static basisB0 and infix status [Appendix C]

• the initial dynamic basisB0 [Appendix D]

• the basic overloading classes Int, Real, Word, String, Char[E.1]

Realistically, it also would have to allow extending the sets SVal [6.2] and Val [6.3], and
enable the APPLY function to modify the program state (cf. A.5). HaMLet currently only
extends SVal, while other library types are mapped to what isthere already (see 8.4).

We encapsulate all library extensions into one single module Library that defines the
parts of these objects that are left open by the Definition. However, we split up implemen-
tation of the library into two layers:

• theprimitive layer that contains everything that cannot be defined withinthe target
language,

• thesurfacelayer which defines the actual library.

By target languagewe mean the language to be implemented. Many library entities are
definable within the target language itself, e.g. the standard ! function. There are basically
three reasons that can force us to make an entity primitive:

• its behaviour cannot be implemented out of nowhere (e.g. I/Ooperations),

• it is dependent on system properties (e.g. numeric limits),or

28



• it possesses a special type (e.g. overloaded identifiers).

TheLibrary module defines everything that has to be primitive (see 8.3),while the rest
is implemented within the target language in the modules inside thebasis directory (see
8.6). These modules have to make assumptions about what is defined by theLibrary
module, so that both actually should be seen in conjunction.

8.3 Primitives

Primitive operations are implemented by means of the APPLY function. Most of them just
fall back to the corresponding operations of the host system.11 We only have to unpack
and repack the value representation and remap possible exceptions. Overloaded primitives
have to perform a trivial type dispatch.

Despite implementing a large number of primitives, the static and dynamic basis exported
does only contain a few things:

• thevector type,

• all overloaded functions,

• the exceptions used by primitives,

• the functionuse .

Everything else can be obtained from these in the target language. Primitive exceptions not
available on the toplevel are wrapped into their residuent structures.

To enable the target language to bind the basic values definedby the library, we piggy-back
theuse function. Its dynamic semantics is overloaded and in the static basis exported by
theLibrary module it is given typeα → β. Applying it to a record of type{b : string}
will return the basic value denoted by the stringb – of course, the library source code should
annotate the result type properly to be type-safe. Primitive constants of typeτ are available
as functionsunit → τ .

Theuse function has been chosen for this purpose since its existence cannot be encapsu-
lated in the library anyway – the interpreter has to know about it (see 8.5). Once all neces-
sary basic values have been bound, the library source code should hide the additional, un-
safe functionality ofuse by rebinding it with its properly restricted typestring → unit.

8.4 Primitive Library Types

The dynamic semantics of the Definition do not really allow the addition of arbitrary library
types – in general this would require extending the set Val [6.3]. Moreover, the APPLY
function might require access to the state (see A.5).

But we can at least encode vectors by abusing the record representation. Arrays can then
be implemented on top of vectors and references within the target language. However, this
has to make their implementation type transparent in order to get the special equality for
arrays.

I/O stream types can only be implemented magically as indices into a stateful table that is
not captured by the program state defined in [6.3].

11Unfortunately, most SML implementations lack a lot of the obligatory functionality of the Standard Basis
Library. To stay portable among systems we currently restrict ourselves to the common subset.
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8.5 Theuse Function

The ‘real’ behaviour ofuse is implemented by putting all argument strings for which it has
been called into a queue managed by moduleUse. TheSml module looks at this queue
after processing its main input (see 7.3).

The argument strings are interpreted as file paths, relativepaths being resolved with respect
to the current working directory before putting them into the queue. The function reading
source code from a file (Sml.fromFile ) always sets the working directory to the base
path of the corresponding file before processing it. This way, use automatically interprets
its argument relative to the location of the current file.

8.6 Library Implementation

The surface library is loaded on startup. The functionSml.loadLib just silently executes
the file basis/all.sml . This file is the hook for reading the rest of the library, it
contains a bunch of calls touse that execute all library modules in a suitable order. Note
that the library files always have to beexecuted, even if HaMLet is just running in parsing
or elaboration mode – otherwise the containeduse applications would not take effect.

The library modules themselves mostly contain straightforward implementations of the
structures specified in the Standard Basis Manual [GR04]. Like the implementation of the
language, the library implementation is mostly an executable specification with no care
for efficiency. All operations not directly implementable and thus represented as primitive
basic values are bound via the secret functionality of theuse function (see 8.3).

9 Conclusion

HaMLet has been implemented with the idea of transforming the formalism of the Defini-
tion into SML source code as directly as possible. Not everything can be translated 1-to-1,
though, because of the non-deterministic nature of some aspects of the rules and due to the
set of additional informal rules that describe parts of the language.

Still, much care has been taken to get even the obscure details of these parts of the semantics
right. For example, HaMLet goes to some length to treat the following correctly:

• not accepting additional syntactic phrases (e.g.as andfun ),

• parsing of thewhere type ... and derived form,

• checking syntactic restrictions separately,

• derived forms (e.g.withtype , definitional type specifications),

• val rec (binding rules, dynamic semantics),

• distinction of type variables from undetermined types,

• overloading resolution,

• flexible records,

• dynamic semantics.

Thetest directory in the HaMLet distribution contains some contrived examples of these
and other code that is rejected by several SML systems despite being correct according to
the Definition. HaMLet accepts all but two of them. Consequently, we are positive that
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HaMLet is more accurate in implementing the SML language specification than most other
systems. There still are some deviations, though:

• inability to parse some legal SML programs (4.4),

• non-principal types for equality polymorphic functions inanabstype declaration
(see A.3),

• non-principal types for non-generalized declarations in functors (see A.4).

We consider all of these minor, since no existing SML implementations is able to deal with
them. They are arguably mistakes on the side of the Definition, see A.8, A.1 and A.3.
Still, we hope to fix these issues in future releases. Moreover, we plan to provide a more
complete implementation of the Standard Basis Library.
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A Mistakes and Ambiguities in the Definition

This appendix lists all bugs, ambiguities and ‘grey areas’ in the Definition that are known
to the author. Many of them were already present in the previous SML’90 version of the
Definition [MTH90] (besides quite a lot that have been corrected in the revision) and are
covered by Kahrs [K93, K96] in detail. Bugs new to SML’97 or not covered by Kahrs are
marked with * and (*), respectively.

Where appropriate we give a short explanation and rationaleof how we fixed or resolved it
in HaMLet.

A.1 Issues in Chapter 2 (Syntax of the Core)

Section 2.4 (Identifiers):

• The treatment of= as an identifier is extremely ad-hoc. The wording suggests that
there are in fact two variants of the identifier class VId, oneincluding and the other
excluding= . The former is used in expressions, the latter everywhere else.

Section 2.5 (Lexical analysis):

• In [2.2] the Definition includes only space, tab, newline, and formfeed into the set
of obligatory formatting characters that are allowed in source code. However, some
major platforms require use of the carriage return character in text files. In order to
achieve portability of sources across platforms it should be included as well.

For consistency, HaMLet allows all formatting characters,for which there is explicit
escape syntax, i.e. it includes vertical tab and carriage return.

Section 2.6 (Infixed Operators):

• The Definition says that “the only required use ofop is in prefixing a non-infixed
occurrence of an identifier which has infix status”. This is rather vague, since it is
not clear whether occurrences in constructor and exceptionbindings count as non-
infixed [K93].

We assume thatop is only necessary in expressions and patterns and completely
optional in constructor and exception bindings. This is consistent with the fact that
op is not even allowed in the corresponding descriptions in signatures.

Section 2.8 (Grammar), Figure 4 (Expressions, Matches, Declarations and Bindings):

• (*) The syntax rules fordec are highly ambiguous. The productions for empty dec-
larations and sequencing allow the derivation of arbitrarysequences of empty decla-
rations for any input.

HaMLet does not allow empty declarations as part of sequences without a separating
semicolon. On the other hand, every single semicolon is parsed as a sequence of two
empty declarations. This makes parsing of empty declarations unambiguous.

• Another ambiguity is that a sequence of the formdec1 dec2 dec3 can be reduced in
two ways todec: either viadec12 dec3 or viadec1 dec23 [K93]. See also A.2.

We choose left associative sequencing, i.e. the former parse.
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Section 2.9 (Syntactic Restrictions):

• * The restriction thatvalbinds may not bind the same identifier twice (2nd bullet) is
not a syntactic restriction as it depends on the identifier status of thevids in the pat-
terns of avalbind . Identifier status can be derived by inference rules only. Similarly,
the restriction on type variable shadowing (last bullet) isdependent on context and
computation of unguarded type variables [Section 4.6].

We implement checks for syntactic restrictions as a separate inference pass over the
complete program that closely mirrors the static semantics. Ideally, all syntactic
restrictions rather should have been defined as appropriateside conditions in the
rules of the staticanddynamic semantics by the Definition.

• * An important syntactic restriction is missing:

“Any tyvar occurring on the right side of atypbind or datbind of the
form tyvarseq tycon = · · · must occur intyvarseq .”

This restriction is analogous to the one given fortyvars in type specifications [3.5,
item 4]. Without it the type system would be unsound.12

We added a corresponding check.

A.2 Issues in Chapter 3 (Syntax of Modules)

Section 3.4 (Grammar for Modules), Figure 6 (Structure and Signature Expressions):

• The syntax rules forstrdec contain the same ambiguities with respect to sequencing
and empty declarations as those fordec (see A.1).

Consequently, we use equivalent disambiguation rules.

• Moreover, there are two different ways to reduce a sequencedec1 dec2 of core dec-
larations into astrdec: via strdec1 strdec2 and viadec [K93]. Both parses are not
equivalent since they provide different contexts for overloading resolution [Appendix
E]. For example, appearing on structure level, the two declarations

fun f x = x + x
val a = f 1.0

may be valid if parsed asdec, but do not type check if parsed asstrdec1 strdec2

because overloading of+ gets defaulted toint .

We choose to always reduce tostrdec as soon as possible, because that variant is
simpler to implement and solves other problems as well (see A.7). Note that we use
smaller contexts for overloading resolution (see 5.8) so that the way of parsing here
actually would have no effect on the admissibility of programs.

• Similarly, it is possible to parse a structure-levellocal declaration containing only
core declarations in two ways: as adec or as astrdec [K93]. This produces the same
semantic ambiguity.

As above, we reduce tostrdec as early as possible.

Section 3.4 (Grammar for Modules), Figure 7 (Specifications):

12Interestingly enough, in the SML’90 Definition the restriction was present, but the corresponding one for
specifications was missing [MT91, K93].
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• Similar as fordec andstrdec, there exist ambiguities in parsing empty and sequenced
specs.

We resolve them consistently.

• The ambiguity extends to sharing specifications. Consider:

type t
type u
sharing type t = u

This snippet can be parsed in at least three ways, with the sharing constraint taking
scope over either both, or only one, or neither type specification. Since only the first
alternative can be elaborated successfully, the validity of the program depends on
how ambiguity is resolved.

We always extend the scope of a sharing constraint as far to the left as possible. That
is a conservative choice, since all shared types must be specified in the respective
scope and specifications may not contain duplicate type constructors.

Section 3.4 (Grammar for Modules), Figure 8 (Functors and Top-level Declarations):

• * Finally, another ambiguity exists for reducing a sequencestrdec1 strdec2 to a
topdec: it can be done either by first reducing tostrdec, or to strdec1 topdec2. The
latter is more restrictive with respect to free type variables (but see A.12 with regard
to this).

We stick to our established disambiguation method.

Altogether, ignoring the infinite number of derivations involving empty declarations, the
grammar in the Definition allows three ambiguous ways to reduce a sequence of twodecs
to a topdec, as shown by the following diagram. All imply different semantics. The cor-
responding diagram for a sequence of three declarations would merely fit on a page. A
further ambiguity arises at the program level (see A.7).

dec1 dec2

dec strdec1 strdec2

strdec strdec1 topdec2

topdec

A.3 Issues in Chapter 4 (Static Semantics for the Core)

Section 4.8 (Non-expansive Expressions):

• * The definition of non-expansiveness is purely syntactic and does only consider
the right hand side of a binding. However, an exception may result from matching
against a non-exhaustive pattern on the left hand side. It israther inconsistent to dis-
allow raise expressions in non-expansive bindings but allow implicit exceptions
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in the disguise of pattern match failure. More seriously, the possibility of exceptions
stemming from polymorphic bindings is incompatible with type passing implemen-
tations.

This is no real bug but rather a design error. HaMLet implements the Defintion as is.

Section 4.9 (Type Structures and Type Environments):

• The definition of the Abs operator demands introduction of “new distinct” type
names. However, type names can only be new relative to a context. To be precise,
Abs would thus need an additional argumentC [K96].

This is no issue operationally, though, since fresh type names can simply be gener-
ated through stamping.

• Values inabstype declarations that are potentially polymorphic but requireequal-
ity types have no principal type [K96]. For example, in the declaration

abstype t = T with
fun eq(x,y) = x = y

end

the principal type ofeq insidethe scope ofabstype clearly is ’’a * ’’a ->
bool . However, outside the scope this type is not principal because ’’a cannot
be instantiated byt . Neither wouldt * t -> bool be principal, of course. Al-
though not strictly a bug (there is nothing which enforces the presence of principal
typings in the revised Definition), this semantics is very hard to implement faithfully,
since type inference would have to deal with unresolved typeschemes and to cascad-
ingly defer decisions about instantiation and generalisation until the correct choice is
determined.

Like all other SML implementations, Hamlet thus assignseq the type’’a * ’’a
-> bool .

• A related problem is the fact that the rules forabstype may infer type structures
that do not respect equality [K96]:

abstype t = T with
datatype u = U of t

end

Outside the scope of thisabstype declaration typeu will still be an equality type.
Values of typet can thus be compared through the backdoor:

fun eqT(x,y) = U x = U y

HaMLet conforms to the strange behaviour implied by the Definition.

Section 4.10 (Inference Rules):

• * The comment to rule 26 states that a declaration like

datatype t = T
val rec T = fn x => x
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is legal sinceC + VE overwrites identifier status. However, this comment omits an
important point: in the corresponding rule 126 of the dynamic semantics recursion is
handled differently so that the identifier status isnot overwritten. Consequently, the
second declaration will raise aBind exception. It arguably is a serious ill-design to
infer inconsistent identifier status in the static and dynamic semantics, but fortunately
it does not violate soundness in this case. Most implementations do not implement
the ‘correct’ dynamic semantics, though.

HaMLet implements it the way it is.

• * There is an unmatched left parenthesis in the consequent ofrule 28.

Section 4.11 (Further Restrictions):

• (*) Under item 1 the Definition states that “the program context” must determine
the exact type of flexible records, but it does not specify anybounds on the size
of this context. Unlimited context is clearly infeasible since it is incompatible with
let polymorphism: at the point of generalisation the structureof a type must be
determined precisely enough to know what we have to quantifyover.13

We thus restrict the context for resolving flexible records to the innermost surround-
ing value declaration, as most other SML systems seem to do aswell. This is in par
with our treatment of overloading (see 5.8).

Note that some SML systems implement a slightly more restrictive variant, in which
the following program does not type-check:

fun f(r as {... }) =
[let fun g() = r in r end, r : {a:int }]

while a minor variation of it does:

fun f(r as {... }) =
[r : {a:int }, let fun g() = r in r end]

The reason is that they simply check for existence of unresolved record types in value
environments to be closed, without taking into account thatthese types might stem
from the context (in which case we know that we cannot quantify over the unknown
bits anyway). As the above example shows, such an implementation compromises
the compositionality of type inference. The Definition should rule it out somehow.
A similar clarification is probably in order for overloadingresolution (see A.11).

• Under item 2 the Definition demands that a compiler must give warnings whenever
a pattern is redundant or a match is non-exhaustive. However, this requirement is
inconsistent for two reasons:

1. * There is no requirement for consistency of datatype constructors in sharing
specifications or type realisations. For example,

datatype t = A | B
datatype u = C
sharing type t = u

is a legal specification. Likewise,

sig datatype t = A | B end where type t = bool

13Alternatively, there are extensions to Hindley/Milner typing that allow quantification over the structure of
records, but polymorphic records are clearly not supportedby the Definition.

36



is valid. Actually, this may be considered a serious bug on its own, although
the Definition argues that inconsistent signatures are “notvery significant in
practice” [Section G.9]. If such an inconsistent signatureis used to specify a
functor argument it allows a mix of constructors to appear inmatches in the
functor’s body, rendering the terms of irredundancy and exhaustiveness com-
pletely meaningless.

There is no simple fix for this. HaMLet makes no attempt to detect this situa-
tion, so generation of warnings is completely arbitrary in this case.

2. (*) It is difficult in general to check equality of exception constructors – they
may or may not be aliased. Inside a functor, constructor equality might depend
on the actual argument structure the functor is applied to. It is possible to check
all this by performing abstract interpretation (such that redundant matches are
detected at functor application), but this is clearly infeasible weighed against
the benefits, in particular in conjunction with separate compilation.

In HaMLet we only flag exception constructors as redundant when they are
denoted by the same syntacticlongvid . We do not try to derive additional
aliasing information.

A.4 Issues in Chapter 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

• * The rules 64 and 78 use the notation{t1 7→ θ1, · · · , tn 7→ θn} to specify realisa-
tions. However, this notation is not defined anywhere in the Definition for infinite
maps like realisations – [4.2] only introduces it for finite maps.

This is just a minor oversight, the intended meaning is obvious.

• * More seriously, both rules lack side conditions to ensure consistent arities for do-
main and range of the constructed realisation. Becauseϕ can hence fail to be well-
formed [5.2], the applicationϕ(E) is not well-defined. The necessary side conditions
are:

t ∈ TyName(k) (64)

ti ∈ TyName(k), i = 1..n (78)

HaMLet adds the respective checks.

• * The presence of functors provides a form of explicit polymorphism which interferes
with principal typing in the core language. Consider the following example [DB07]:

functor F(type t) =
struct val id = (fn x => x) (fn x => x) end

structure A = F(type t = int)
structure B = F(type t = bool)
val a = A.id 3
val b = B.id true

The declaration ofid cannot be polymorphic, due to the value restriction. Neverthe-
less, assigning it typet -> t would make the program valid. However, finding this
type would require the type inference algorithm to skolemize all undetermined types
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in a functor body’s result signature over the types appearing in its argument signa-
ture, and then perform a form of higher-order unification. Consequently, almost all
existing implementations reject the program.14

HaMLet ignores this problem, rejecting the program due to a failure unifying types
int andbool .

• * The side conditions on free type variables in rules 87 and 89do not have the effect
that obviously was intended, see A.12.

HaMLet not only tests for free type variables, but also for undetermined types (see
5.6). This behaviour is not strictly conforming to theformal rules of the Defini-
tion (which define a more liberal regime), but meets the actual intention explicitly
stated in [G.8] and is consistent with HaMLet’s goal to always implement the most
restrictive reading.

A.5 Issues in Chapter 6 (Dynamic Semantics for the Core)

Section 6.4 (Basic Values):

• The APPLY function has no access to program state. This suggests that library prim-
itives may not be stateful, implying that a lot of interesting primitives could not be
added to the language without extending the Definition itself [K93].

On the other hand, any non-trivial library type (e.g. arraysor I/O streams) requires
extension of the definition of values or state anyway (and equality types – consider
array ). The Definition should probably contain a comment in this regard.

HaMLet implements stateful library types by either mappingthem to references in
the target language (e.g. arrays) or by maintaining the necessary state outside the
semantic objects (see 8.4).

A.6 Issues in Chapter 7 (Dynamic Semantics for Modules)

Section 7.2 (Compound Objects):

• * In the definition of the operator↓: Env× Int → Env, the triple “(SI ,TE ,VI )”
should read “(SI ,TI ,VI )”.

Section 7.3 (Inference Rules):

• * Rule 182 contains a typo: both occurrences ofIB have to be replaced byB. The
rule should actually read:

InterB ⊢ sigexp ⇒ I 〈B ⊢ funbind ⇒ F 〉

B ⊢ funid ( strid : sigexp ) = strexp 〈and funbind〉 ⇒
{funid 7→ (strid : I, strexp, B)}〈+F 〉

(182)

14Interestingly, MLton [CFJW05] accepts the program, thanksto its defunctorization approach. However, it
likewise accepts similar programs that arenot valid Standard ML, e.g.:

functor F() = struct val id = (fn x => x) (fn x => x) end
structure A = F()
structure B = F()
val a = A.id 3
val b = B.id true
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• * The rules for toplevel declarations are wrong: in the conclusions, the result right of
the arrow must beB′〈+B′′〉 instead ofB′〈′〉 in all three rules:

B ⊢ strdec ⇒ E B′ = E in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ strdec 〈topdec〉 ⇒ B′〈+B′′〉
(184)

InterB ⊢ sigdec ⇒ G B′ = G in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ sigdec 〈topdec〉 ⇒ B′〈+B′′〉
(185)

B ⊢ fundec ⇒ F B′ = F in Basis 〈B + B′ ⊢ topdec ⇒ B′′〉

B ⊢ fundec 〈topdec〉 ⇒ B′〈+B′′〉
(186)

A.7 Issues in Chapter 8 (Programs)

• (*) The comment to rule 187 states that a failing elaborationhas no effect. However,
it is not clear what infix status is in scope after a failing elaboration of a program that
contains top-level infix directives.

HaMLet keeps the updated infix status.

• * There is another syntactic ambiguity for programs. A note in [3.4, Figure 8] re-
stricts the parsing oftopdecs:

“No topdec may contain, as an initial segment, astrdec followed by a
semicolon.”

The intention obviously is to make parsing of toplevel semicolons unambiguous so
that they always terminate a program. As a consequence of theparsing ambiguities
for declaration sequences (see A.2) the rule is not sufficient, however: a sequence
dec1; dec2; of core level declarations with a terminating semicolon canbe first
reduced todec; , then tostrdec; , and finallyprogram . This derivation does not
exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid
parse, which results in quite different behaviour with respect to program execution.

Since HaMLet reduces tostrdec as early as possible (see A.2), it works in the spirit
of the Definition’s intention.

• (*) The negative premise in rule 187 has unfortunate implications: interpreted strictly
it precludes any conforming implementation from providingany sort of conservative
semantic extension to the language. Any extension that allows declarations to elab-
orate that would be illegal according to the Definition (e.g.consider polymorphic
records) can be observed through this rule and change the behaviour of consecutive
declarations. Consider for example:

val s = "no";
strdec

val s = "yes";
print s;

where thestrdec only elaborates if some extension is supported. In that casethe
program will printyes , otherwiseno .

This probably indicates that formalising an interactive toplevel is not worth the trou-
ble.
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A.8 Issues in Appendix A (Derived Forms)

Text:

• (*) The paragraph explaining rewriting of thefvalbind form rules out mixtures of
fvalbinds and ordinaryvalbinds. However, the way it is formulated it does not
rule out all combinations. It should rather say that all value bindings of the form
pat = exp and fvalbind or rec fvalbind are disallowed.

HaMLet assumes this meaning.

Figure 15 (Derived forms of Expressions):

• The Definition is somewhat inaccurate about several of the derived forms of ex-
pressions and patterns. It does not make a proper distinction between atomic and
non-atomic phrases. Some of the equivalent forms are not in the same syntactic class
[MT91, K93].

We assume the necessary parentheses in the equivalent forms.

Figure 17 (Derived forms of Function-value Bindings and Declarations):

• The syntax offvalbinds as given in the Definition enforces that all type annotations
are syntactically equal, if given. This is unnecessarily restrictive and almost impos-
sible to implement [K93].

HaMLet implements a more permissive syntax, as given by:

〈op〉vid atpat11 · · · atpat1n 〈: ty1〉 = exp1

| 〈op〉vid atpat21 · · · atpat2n 〈: ty2〉 = exp2

| · · · · · ·
| 〈op〉vid atpatm1 · · · atpatmn 〈: tym〉 = expm

〈and fvalbind 〉

This probably was the original intention of the authors anyway.

See also A.9 for a definition of the full syntax including infixnotation.

Figure 19 (Derived forms of Specifications and Signature Expressions):

• * The derived form that allows several definitional type specifications to be connected
via and is defined in a way that makes its scoping rules inconsistent with all other
occurences ofand in the language. In the example

type t = int
signature S =
sig

type t = bool
and u = t

end

typeu will be equal tobool , not int like in equivalent declarations. It would have
been more consistent to rewrite the derived form to
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include
sig type tyvarseq1 tycon1

and · · ·
· · ·
and tyvarseqn tyconn

end where type tyvarseq1 tycon1 = ty1

· · ·
where type tyvarseqn tyconn = tyn

and delete the separate derived form for single definitionalspecifications.

This is a design error. HaMLet implements it.

• * The Definition defines the phrase

spec sharing longstrid1 = · · · = longstridn

as a derived form. However, this form technically is not a derived form, since it
cannot be rewritten in a purely syntactic manner – its expansion depends on the
static environment.

HaMLet thus treats this form as part of the bare grammar. Unfortunately, it is sur-
prisingly difficult to formulate a proper inference rule describing the intended static
semantics of structure sharing constraints – probably one of the reasons why it has
been laxly defined as a derived form in the first place. The implementation simply
collects all expanded type equations and calculates a suitable realisation incremen-
tally. At least there is no need for a corresponding rule for the dynamic semantics,
since sharing qualifications are omitted at that point.

• * The derived form for type realisations connected byand is not only completely
redundant and alien to the rest of the language (and is nowhere else followed by
a second reserved word), it also is extremely tedious to parse, since this part of the
grammar is LALR(2) as it stands. It can be turned into LALR(1)only by a bunch
of really heavy transformations. Consequently, almost no SML system seems to be
implementing it correctly. Even worse, several systems implement it in a way that
leads to rejection of programsnotusing the derived form. For example,

signature A = S where type t = u where type v = w

or

signature A = S where type t = u
and B = T

HaMLet does it correctly, though.

• * For complex type declarations thewithtype derived form is important. With the
introduction of equational type specifications in SML’97 itwould have been natural
to introduce an equivalent derived form for signatures. This is an oversight that most
SML systems ‘correct’.

HaMLet stays with the language definition as is.
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A.9 Issues in Appendix B (Full Grammar)

Text:

• (*) The first sentence is not true since there is a derived formfor programs [Appendix
A, Figure 18]. Moreover, it is not obvious why the appendix refrains from also
providing a full version of the module and program grammar. It contains quite a lot
of derived forms as well, and the section title leads the reader to expect it.

• The Definition gives precedence rules for disambiguating expressions, stating that
“the use of precedence does not increase the class of admissible phrases”. However,
the rules are not sufficient to disambiguate all possible phrases. Moreover, for some
phrases they actually rule outanypossible parse, e.g.

a andalso if b then c else d orelse e

has no valid parse according to these rules. So the above statement is rather incon-
sistent [K93].

The HaMLet parser just uses Yacc precedence declarations for expression keywords
that correspond to the precedence hierarchy given in the Definition. This seems to
be the best way to approximate the intention of the Definition’s rules.

• There is no comment on how to deal with the most annoying problem in the full
grammar, the infinite look-ahead required to parse combinations of function clauses
andcase expressions, like in:

fun f x = case e1 of z => e2
| f y = e3

According to the grammar this ought to be legal. However, parsing this would ei-
ther require horrendous grammar transformations, backtracking, or some nasty and
expensive lexer hack [K93]. Consequently, there is no SML implementation being
able to parse the above fragment.

HaMLet is no better with regard to this.

Figure 21 (Grammar: Declarations and Bindings):

• The syntax given forfvalbind is incomplete as pointed out by the corresponding
note. This is not really a bug but annoyingly sloppy enough tocause some divergence
among implementations.

To make the grammar more precise we introduce the additionalphrase classesfmatch ,
fmrule, andfpat and define them in analogy tomatch, mrule, andpat :

fvalbind ::= fmatch 〈and fvalbind 〉
fmatch ::= fmrule 〈| fmatch〉
fmrule ::= fpat 〈: ty〉 = exp

fpat ::= 〈op〉vid atpat1 · · · atpatn (n ≥ 1)
( atpat1 vid atpat2) atpat3 · · · atpat

n
(n ≥ 3)

atpat1 vid atpat2

This grammar is in accordance with our relaxation of type annotations in thefvalbind

derived form (see A.8).
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Figure 22 (Grammar: Patterns):

• While there are additional non-terminalsinfexp andappexp to disambiguate parsing
of infix expressions, there is no such disambiguation for patterns. This implies that a
pattern likex:t ++ y can be parsed if++ is an appropriate infix constructor [K96].
Of course, this would result in heavy grammar conflicts.

Since this appears to be an oversight, HaMLet does not allow such parsing. Con-
structor application always has higher precedence than type annotation. The full
grammar of patterns thus is

atpat ::= ...like before...
patrow ::= ...like before...
apppat ::= atpat

〈op〉longvid atpat

infpat ::= apppat

infpat1 vid infpat2

pat ::= infpat

pat : ty

〈op〉vid 〈: ty〉 as pat

with new phrase classes AppPat and InfPat. Similar to expressions, we get the fol-
lowing inclusion relation:

AtPat⊂ AppPat⊂ InfPat⊂ Pat

Note that we actually do not need to distinguish between AppPat and InfPat, since
there is no curried application in patterns. We do it nevertheless, for consistency.

A.10 Issues in Appendix D (The Initial Dynamic Basis)

• (*) The Definition does specify the minimal initial basis butit does not specify what
the initial state has to contain. Of course, it should at least contain the exception
namesMatch andBind .

We define

s0 = ({}, {Match, Bind})

• The Definition does nowhere demand that the basis a library provides has to be con-
sistent in any way. Nor does it require consistency between initial basis and initial
state.

The HaMLet library is consistent, of course.

A.11 Issues in Appendix E (Overloading)

Overloading is the most hand-waving part of the otherwise pleasantly accurate Definition.
Due to the lack of formalism and specific rules, overloading resolution does not work con-
sistently among SML systems. For example, type-checking ofthe following declaration
does not succeed on all systems:

fun f(x,y) = (x + y)/y
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The existence of overloading destroys an important property of the language, namely the
independence of static and dynamic semantics, as is assumedin the main body of the
Definition. For example, the expressions

2 * 100 and 2 * 100 : Int8.int

will have very different dynamic behaviour, although they only differ in an added type
annotation.

The Definition defines the overloading mechanism by enumerating all overloaded entities
the library provides. This is rather unfortunate. It would be desirable if the rules would be a
bit more generic, avoiding hardcoding overloading classesand the set of overloaded library
identifiers on one hand, and allowing libraries to extend it in systematic ways on the other.
More generic rules could also serve as a better guidance for implementing overloading (see
5.8 for a suitable approach).

The canonical way to deal with overloaded constants and value identifiers is to uniform-
ingly assign an extended notion of type scheme that allows quantification to be constrained
by an overloading class. Constraints would have to be verified at instantiation. This is more
or less what has been implemented in HaMLet (see 5.8 for a suitable approach).

There are some more specific issues as well:

• * The Definition forgets to demand that any extension of a basic overloading class is
consistent with respect to equality.

Our formalisation includes such a restriction (see 5.8).

• * That the Definition specifies anupperbound on the context a compiler may con-
sider to resolve overloading is quite odd – of course, implementations cannot be
prohibited to conservatively extend the language by makingmore programs elabo-
rate. On the other hand, much more important would have been to specify alower
bound on what implementationshave tosupport – it is clearly not feasible to force
the programmer to annotate every individual occurence of anoverloaded identifier
or special constant.

A natural and sensible lower bound seems to be the smallest enclosing core declara-
tion the overloaded identifier or constant appears in. We usethat in HaMLet as the
common denominator, consistent with the treatment of flexible records (see A.3).

Figure 27 (Overloaded Identifiers):

• * The types for the comparison operators<, >, <=, and>= must correctly benumtxt×
numtxt→ bool.

A.12 Issues in Appendix G (What’s New?)

Section G.8 (Principal Environments):

* At the end of the section the authors explain that the intentof the restrictions on free type
variables at the toplevel (side-conditions in rules 87 and 89 [5.7]) is to avoid reporting free
type variables to the user. However, judging from the rest ofthe paragraph, this reasoning
confuses two notions of type variable: type variables as semantic objects, as appearing in
the formal rules of the Definition, and the yet undetermined types during Hindley/Milner
type inference, which are also represented by type variables. However, both kinds are
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variables on completely different levels: the former are part of the formal framework of the
Definition, while the latter are an ‘implementation aspect’that lies outside the scope of the
Definition’s formalism. Let us distinguish both by referring to the former assemantic type
variablesand to the latter asundetermined types(the HaMLet implementation makes the
same distinction, in order to avoid exactly this confusion,see 5.2).

The primary purpose of the aforementioned restrictions obviously is to avoid reportingun-
determined typesto the user. However, they fail to achieve that. In fact, it isimpossible to
enforce such behaviour within the formal framework of the Definition, since it essentially
would require formalising type inference (the current formalism has no notion of undeter-
mined type). Consequently, the comment in Section G.8 aboutthe possibility of relaxing
the restrictions by substituting arbitrary monotypes misses the point as well.

In fact, the formal rules of the Definition actually imply theexact opposite, namely that
an implementation mayneverreject a program that results in undetermined types at the
toplevel, and is thus compelled to report them. The reason isexplicitly given in the same
section: “implementations should not reject programs for which successful elaboration is
possible”. Consider the following program:

val r = ref nil;
r := [true];

Rule 2 has to non-deterministically choose some typeτ list for the occurrence ofnil .
The choice ofτ is not determined by the declaration itself: it is not used, nor can it be
generalised, due to the value restriction. However,bool is a perfectly valid choice for
τ , and this choice will allow the entire program to elaborate.So according to the quote
above, an implementation has to make exactly that choice. Now, if both declarations are
entered separately into an interactive toplevel the implementation obviously has to defer
commitment to that choice until it has actually seen the second declaration. Consequently,
it can do nothing else but reporting an undetermined type forthe first declaration. The only
effect the side conditions in rules 87 and 89 have on this is that the types committed to later
may not contain free semantic type variables – but considering the way such variables are
introduced during type inference (mainly by generalisation), the only possibility for this is
through a toplevel exception declaration containing a typevariable.15

There are two possibilities of dealing with this matter: (1)take the formal rules as they are
and ignore the comment in the appendix, or (2) view the comment as an informal “further
restriction” and fix its actual formulation to match the obvious intent. Since version 1.1.1
of HaMLet, we implement the intended meaning and disallow undetermined types on the
toplevel, although this technically is a violation of the formal rules.

15(*) Note that this observation gives rise to the question whether the claim about the existence of principal
environments in Section 4.12 of the SML’90 Definition [MTH90] was valid in the first place. It most likely was
not: a declaration like the one ofr has no principal environment that would be expressible within the formalism
of the Definition, despite allowing different choices of free imperative type variables. The reasoning that this
relaxation was sufficient to regain principality is based onthe same mix-up of semantic type variables and unde-
termined types as above. The relaxation does not solve the problem with expansive declarations, since semantic
type variables are rather unrelated to it – choosing a semantic type variable for an undetermined type is no more
principal than choosing any particular monotype.
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B History

Version 1.0 (2001/10/04)

Public release. No history for prior versions.

Version 1.0.1 (2001/10/11)

Basis:

• Fixed ASCII and Unicode escapes inChar.scan andChar.scanC (and thus in
Char.fromString , Char.fromCString , String.fromString ).

• Fixed octal escapes inChar.toCString (and thusString.toCString ).

• Fixed possible NaN’s inReal.scan for mantissa 0 and large exponents.

Documentation:

• Added issue of obligatory formatting characters to Appendix.

• Some minor additions/clarifications in Appendix.

Test cases:

• Added test caseredundant .

• Removed accidental carriage returns fromasterisk , semicolon andtypespec .

• Small additions tosemicolon andvalrec .

Version 1.1 (2002/07/26)

Basis:

• Adapted signatures to latest version of the Basis specification [GR04].

• Implemented new library functions and adapted functions with changed semantics.

• Implemented all signatures and structures dealing with array and vector slices.

• Implemented newText structure, along with missingCharVector andCharArray
structures.

• Implemented missingByte structure.

• RemovedSML90structure and signature.

• Use opaque signature constraints where the specification uses them (with some nec-
essary exceptions).

• Implemented missingBool.scan andBool.fromString .

• Implemented missingReal.posInf andReal.negInf .

• Handle exceptions fromChar.chr correctly.

• Fixed generation of\ˆX -escapes inChar.toString .

• Fixed treatment of gap escapes inChar.scan .
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Test cases:

• Added test casereplication .

• Updated conformance table.

Version 1.1.1 (2004/04/17)

Interpreter:

• Disallow undetermined types (a.k.a. “free type variables”) on toplevel.

• Implement accurate scope checking for type names.

• Fixed soundness bug w.r.t. undetermined types in type scheme generalisation test.

• Reject out-of-range real constants.

• Accept multiple line input.

• Output file name and line/columns with error messages.

• Improved pretty printing.

Basis:

• Sync’ed with updates to the specification [GR04]: overloaded ∼ on words, added
Word.fromLarge ,Word.toLarge , Word.toLargeX ; removedSubstring.all ;
changedTextIO.inputLine ; changedByte.unpackString andByte.unpackStringVec .

• FixedString.isSubstring , String.fields , andVector.foldri .

Test cases:

• Added test casesabstype2 , dec-strdec , flexrecord2 , tyname , undetermined2 ,
undetermined3 .

• Split conformance table into different classes of deviation and updated it.

Version 1.1.2 (2005/01/14)

Interpreter:

• Fix parsing of sequential and sharing specifications.

• Add arity checks missing in rules 64 and 78 of the Definition.

• Implement type name equality attribute asbool .

Basis:

• FixedStringCvt.padLeft andStringCvt.padRight .

Documentation:

• Add parsing ambiguity for sharing specifications to issue list.

• Add missing side conditions in rules 64 and 78 to issue list.
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• Added version history to appendix.

Test cases:

• Added test casespoly-exception , tyvar-shadowing , andwhere2 and ex-
tendedid andvalrec .

• Updated conformance table.

Version 1.2 (2005/02/04)

Interpreter:

• Refactored code: semantic objects are now collected in one structure for each part of
the semantics; type variable scoping and closure computation (expansiveness check)
are separated from elaboration module.

• Made checking of syntactic restrictions a separate inference pass.

• Added missing check for bound variables in signature realisation.

• Fixed precedence of environments foropen declarations.

• Fixed implementation of Abs operator forabstype .

• Print type name setT of inferred basis in elaboration mode.

• Fixed parenthesisation in pretty printing type applications.

Basis:

• More correct path resolution foruse function.

• AddedcheckFloat to REALsignature so that bootstrapping actually works again.

• FixedArraySlice.copy for overlapping ranges.

• FixedArraySlice.foldr andArraySlice.foldri .

• FixedChar.isSpace .

• Fixed octal escapes inChar.fromCString .

• Updated treatment of trailing gap escapes inChar.scan .

• Updated scanning of hex prefix inWord.scan .

• Fixed traversal order inVector.map .

Documentation:

• Added typo in rule 28 to issue list.

Test files:

• Addedgeneralise .

• Extendedpoly-exception .
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Version 1.2.1 (2005/07/27)

Interpreter:

• Fixed bug in implementation of rule 35.

• Fixed bug in check for redundant match rules.

Basis:

• FixedSubstring.splitr .

• Fixed border cases inOS.Path.toString , OS.Path.joinBaseExt ,OS.Path.mkAbsolute ,
andOS.Path.mkRelative .

Version 1.2.2 (2005/12/09)

Interpreter:

• Simplified implementation of pattern checker.

Test files:

• Addedfun-infix .

Version 1.2.3 (2006/07/18)

Interpreter:

• Fixed check for duplicate variables in records and layered patterns.

• Added missing check for undetermined types in functor declarations.

• Overhaul of line/column computation and management of source file names.

Documentation:

• Added principal typing problem with functors to issue list.

Test files:

• Addedfun-partial , functor-poly andfunctor-poly2 .

• Updated conformance table.

Version 1.2.4 (2006/08/14)

Documentation:

• Clarified license.
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Version 1.3.0 (2007/03/22)

Interpreter:

• Output abstract syntax tree in parsing mode.

• Output type and signature environments in evaluation mode.

• Fixed computation of tynames on a static basis.

• Reorganised directory structure.

• Some clean-ups.

Documentation:

• Updated a few out-of-sync sections.

• Added typo in definition of↓ operator (Section 7.2) to issues list.

Test files:

• Extendedsharing andwhere .

• Updated conformance table.

Platforms:

• Support for Poly/ML, Alice ML, and the ML Kit.

• Support for incremental batch compilation with Moscow ML and Alice ML.

• Target to build a generic monolithic source file.

Version 1.3.1 (2008/04/28)

Platforms:

• Preliminary support for SML#.

• Avoid name clash with library of SML/NJ 110.67.

• Avoid shell-specific code inMakefile .
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