HaMLet

To Be Or Not To Be Standard ML

Version 1.3.1
2008/04/28

Andreas Rossberg
Universitat des Saarlandes
rossberg@ps.uni-sbh.de

rossberg@ps.uni-sb.de

Contents

1 Introduction 4
1.1 Goals 4
1.2 BugsintheDefinition. 4
1.3 RelatedWork 4
1.4 Copyright e 5

2 Usage 5
2.1 Download 5
2.2 SystemsSupported 5
2.3 Librariesand ToolsUsed 6
2.4 Installation 6
2.5 Using the HaMLet Stand-Alone 7
2.6 Using HaMLet from within an SML System 8
2.7 Bootstrapping 10
2.8 Limitations 10

3 Overview of the Implementation 11
3.1 Structure of the Definition 11
3.2 Modularisation 12
3.3 Mapping Syntactic and Semantic Objects 12
3.4 Mapping InferenceRules o oo 13
3.5 NamingConventions 14
3.6 SideEffects 14

4 Abstract Syntax and Parsing 15
4.1 Files . . . 15
4.2 Abstract SyntaxTree 6 1
4.3 Parsingandlexing 16
4.4 Grammar Ambiguities and Parsing Problems 16
45 InfixResolution 17
4.6 DerivedForms 17
4.7 Syntactic Restrictions Lo e 18

5 Elaboration 18
5.1 Files 18
5.2 TypesandUnification 91
53 TypeNames e 19
5.4 EnvironmentRepresentation 19
5.5 ElaborationRules 91
5.6 Typelnference 20
5.7 TypeSchemes 21
5.8 Overloading and Flexible Records 22
5.9 Recursive Bindings and Datatype Declarations 23
5.10 Module Elaboration 24
5.11 Signature Matching 24

5.12 CheckingPatterns

Evaluation
6.1 Files e
6.2 Value Representation

6.3 EvaluationRules

Toplevel

7.1 Files . . . o
7.2 ProgramExecution
7.3 Plugging

Library

8.1 Files e
8.2 Language/LibraryInteraction
8.3 Primitives
8.4 Primitive Library Types
8.5 Theuse Function.
8.6 LibraryImplementation. L.

Conclusion

Mistakes and Ambiguities in the Definition

A.1 Issuesin Chapter 2 (SyntaxoftheCore)
A.2 Issuesin Chapter 3 (Syntax of Modules)
A.3 Issues in Chapter 4 (Static Semantics forthe Core)
A.4 lIssues in Chapter 5 (Static Semantics for Modules)

A.5 Issues in Chapter 6 (Dynamic Semantics for the Core)
A.6 Issues in Chapter 7 (Dynamic Semantics for Modules)

A.7 Issuesin Chapter 8 (Programs)
A.8 Issuesin Appendix A (Derived Forms)
A.9 Issuesin Appendix B (FullGrammar)
A.10 Issues in Appendix D (The Initial Dynamic Basis)
A.11 Issues in Appendix E (Overloading)
A.12 Issuesin Appendix G (What's New?)

History

32
32
33
34
37
38
38
39
40
42
43
43
44

46

1 Introduction

HaMLet is an implementation of Standard ML (SML'97), as definn The Definition
of Standard MUMTHM97] — simply referred to as th®efinitionin the following text.
HaMLet mainly is an interactive interpreter but also pr@sdeveral alternative ways of
operation. Moreover, HaMLet can perform different phasesxecution — like parsing,
type checking, and evaluation — selectively. In particlitas possible to execute programs
in an untyped manner, thus exploring the space where “pnogjcan go wrong”.

1.1 Goals

The primary purpose of HaMLet is not to provide yet anotherl Syistem. Its goal is to
provide a faithful model implementation and a test bed fgrezimentation with the SML
language semantics as specified in the Definition. It alsdtsigrve educational purposes.
The main feature of HaMLet therefore is the design of its sewode: it follows the for-
malisation of the Definition as closely as possible, onlyialévg where it is unavoidable.
The idea has been to try to translate the Definition into artatable specification”. Much
care has been taken to resemble names, operations, andrugke® used in the Defini-
tion and theCommentanfMT91]. Moreover, the source code contains referencesdo th
corresponding sections in the Definition wherever avadabl

On the other hand, HaMLet tries hard to get even the obsctadslef the Definition right.
There are some “features” of SML that are artefacts of iteyédrspecification and are not
straight-forward to implement. See the conclusion in s&cdi for an overview.

Efficiency was not a goal. Execution speed of HaMLet is notetitive in any way, since
it naively implements the interpretative evaluation ruftesn the Definition. Comfort was
no priority either. The error messages given by HaMLet atalhgtaciturn as we tried to
avoid complicating the implementation.

HaMLet has of course been written entirely in SML'97 and iteab bootstrap itself (see
2.7).

1.2 Bugs in the Definition

The Definition is a complex formal piece of work, and so it isuoidable that it contains
several mistakes, ambiguities, and omissions. Many oétassinherited from the previous
language version SML'90 [MTH90] and have been documentedrately by Kahrs [K93,
K96]. Those, which still seem to be present or are new to SMfe listed in appendix
A.

The general approach we take for resolving ambiguities aqmayfibugs is doing it in the
‘most natural’ way. Mostly, this is obvious, sometimes ihis. Moreover, in cases where
the Definition allows implementations some freedom (e.g.dfoice of context taken into
account to resolve overloading) we choose the most raggietew, so that HaMLet only
accepts those programs that ought to be portable acrossszibe implementations. The
appendix discusses the solutions we chose.

1.3 Related Work

HaMLet owes much of its existence to the first version of the KIL[BRTT93]. While the
original Kit shared a similar motivation and a lot of inspicen came from that work, more

recent versions moved the Kit into another direction. Weehthyat HaMLet is suitable to
fill the resulting gap.

We also believe that HaMLet is considerably simpler anderiés the Definition. More-
over, unlike the ML Kit, it also implements the dynamic setti@nof SML directly. On
the other hand, HaMLet is probably less suited to serve dsarli for real world projects,
since no part of it has been tuned for efficiency in any way.

1.4 Copyright

Copyright of the HaMLet sources 1999-2007 by Andreas Ragsbe

The HaMLet source package includes portions of the SML/blatly, which is copyright
1989-1998 by Lucent Technologies.

SeeLICENSE.txt files for detailed copyright notices, licenses and discéasn

HaMLet is free, and we would be happy if others experimeniitit Feel free to modify
the sources in whatever way you want.

Please post any questions, bug reports, critiques, and@henents to

rossberg@ps.uni-sb.de

2 Usage

2.1 Download

HaMLet is available from the following web page:
http://www.ps.uni-sb.de/hamlet/

The distribution contains a tar ball of the SML sources amgldocumentation.

2.2 Systems Supported

HaMLet can be readily built with the following SML systems:

e SML of New Jersey (110 or higher) [NJO7]
Poly/ML (5.0 or higher) [MO7]

Moscow ML (2.0 or higher) [RRS00]

Alice ML (1.4 or higher) [AT06]

MLton (20010706 or higher) [CFIJWO05]

e ML Kit (4.3.0 or higher) [KO6]

e SML# (0.20 or highef)[ST07]

IHamlet on SML# currently works with some glitches only, el interactive prompt does appear out of
sync.

rossberg@ps.uni-sb.de
http://www.ps.uni-sb.de/hamlet/

You can produce an executable HaMLet standalone with alesys The first four also
allow you to use HaMLet from within their interactive toptdy This gives access to a
slightly richer interface (see section 2.6).

Other SML systems have not been tested, but should of courde fime provided they
support the full language and a reasonable subset of thd&thBasis Library [GR04].

2.3 Libraries and Tools Used

HaMLet makes use of the Standard ML Basis Library [GR04h addition it uses two
functors from the SML/NJ library [NJ98], nameBinarySetFn andBinaryMapFn
to implement finite sets and maps.

To generate lexer and parser, ML-Lex [AMT94] and ML-Yacc D} have been used. The
distribution contains all generated files, though, so yoly bave to install those tools if
you plan to modify the grammar.

The SML/NJ library as well as ML-Lex and ML-Yacc are freelyadlable as part of the

SML of New Jersey distribution. However, the HaMLet distibon contains all necessary
files from the SML/NJ library and the ML-Yacc runtime librarjfhey can be found in the
sminj-lib subdirectory, respectivefy.

2.4 Installation

To build a stand-alone HaMLet program, go to the HaMLet seuticectory and invoke
one of the following commands:

make with-sminj
make with-miton
make with-poly
make with-alice
make with-mosml
make with-mlkit
make with-smisharp

depending on what SML system you want to compile with. Thisproduce an executable
namedhamlet inthe same directory, which can be used as described iroaetb.

The abovenake targets use the fastest method to build HaMLet from scratdst SML
systems allow for incremental compilation that, after afes) only rebuilds those parts of
the system that are affected. To perform an incrementdl lisié the following commands,
respectively?

make with-sminj+
make with-alice+

2Despite some incompatible changes between the two, HaMiLgtss work with the latest specification of
the Basis [GR04] as well as the previously available ver§i&R96].

3The sources of the SML/NJ library are copyrighte®1989-1998 by Lucent Technologies. See
http://cm.bell-labs.com/cm/cs/what/sminj/license.ht ml for copyright notice, license and
disclaimer.

4Under DOS-based systems, Cygwin is required.

5Currently, this only matters for Moscow ML and Alice ML, whiemploy batch compilers. The other systems
either always build incrementally (SML/NJ, ML Kit), or do heupport separate compilation at all (MLton,
Poly/ML).

http://cm.bell-labs.com/cm/cs/what/smlnj/license.html

make with-mosml+
make with-mlkit+

For other SML systems that are not directly supported, thieeffila offers a way to build a
single file containing all of the HaMLet modules:

make hamlet-monolith.sml

In principle, the resulting file should compile on all SML sy®1s. In practice however,
some might require additional tweaks to work around omissiar bugs in the provided
implementation of the Standard Basis Library [GR04].

After HaMLet has been built, you should be able to executs dl@scribed in 2.5. Under
Unixes, you have the option of installing HaMLet first:

make INSTALLDIR=mypath install

The default fomypath is /usr/local/hamlet . You should include your path in the
PATHenvironment variable, of course.

2.5 Using the HaMLet Stand-Alone

After building HaMLet successfully with one of the SML systg, you should be able to
start a HaMLet session by simply executing the command

hamlet [- modg [file ..]]
Themodeoption you can provide, controls how HaMLet processes jisitinlt is one of

e -p : parsing mode (only parse input)

e -| : elaboration mode (parse and elaborate input)

e -v : evaluation mode (parse and evaluate input)

e -X : execution mode (parse, elaborate, and evaluate input)

Execution mode is the default behaviour. Parsing mode wilpot the abstract syntax
tree of the program in an intuitive S-expression format #tetuld be suitable for further
processing by external tools. Elaboration mode only tyipecks the program, without
running it.

Evaluation mode does not perform static analysis, so it cauelly generate runtime type
errors. They will be properly handled and result in corregtiog error messages. Evalua-
tion mode also has an unavoidable minor glitch with regamierioaded constants: since
no type information is available in evaluation mode, all stamts will be assigned the de-
fault type. This can cause different results for some catowis. To see this, consider the
following example:

Owl div (Ow2 +* 0w128) and
Owl div (Ow2 = 0w128) : Word8.word

80f the systems supported, SML/NJ, Moscow ML and the ML Kituieed such work-arounds, which appear
as wrapper files for Standard Basis modules infithe directory of the HaMLet source.

Although both variants only differ in an added type annotatthe latter will have a com-
pletely different result — namely cause a division by zerd #rus aDiv exception (see
also appendix A.11). You can still force calculation to befpened in 8 bit words by
performing explicit conversions:

val word8 = Word8.fromLarge;
word8 Owl div (word8 Ow2 * word8 0w128);

Note that_argeWord.word =word in HaMLet.

If no file argument has been given you will enter an inter&ctession in the requested
mode, just like in other SML systems. Input may spread milgltipes and is terminated
by either an empty line, or a line whose last character is acggam. Aborting the session
via Ctrl-D will exit HaMLet (end of file, Ctrl-Z on DOS-basegstems).

Otherwise, all files are processed in order of appearanddLigainterprets the Definition
very strictly and thus requires every source file to be teateid by a semicolon. A file
name may be prefixed b@in which case it is taken to be an indirection file containing a
white space separated list of other file names and expantiatdist. Expansion is done
recursively, i.e. the file may conta@prefixed indirections on its own.

HaMLet currently provides a considerable part, but not getdomplete obligatory subset
of the Standard Basis Library [GR04]. In particular, supgor OS functionality still is
weak. Most basic types and corresponding operations dyerfyblemented, though.

There are several things to note about HaMLet’s output:

Types and signatures are always fully expanded, in ordefosely resemble the
underlying semantic objects.

Similarly, structure values are shown in full expansion.

Signatures are annotated with the set of type names bouladc@ament).

e Similarly, the type name set of an inferred static basisiisted, though only elabo-
ration mode.

2.6 Using HaMLet from within an SML System

You can also use HaMLet from within the interactive toplegél given SML system.
This allows you to access the various modules describeckifiafowing sections of this
document directly and experiment with them.

In most interactive SML systems — particularly HaMLet itseke 2.7 — you should be able
to load the HaMLet modules by evaluating

use "hamlet.sml";

As this requires recompiling everything, there are morefootable ways for some partic-
ular systems:

e Under SML of New Jersey, it suffices to start SML/NJ in the Had#itlirectory and
evaluate

CM.make();

However, under newer versions of SML/NJ (110.20 and lagen), need to invoke
the function as follows:

CM.make "sources.cm";
e Under Moscow ML, first go to the HaMLet directory and invoke
make interactive-mosml
Then start Moscow ML and type

load "Sml";

Loading HaMLet into an SML session will create (besides mtha structure nameaml,
providing the following signature:

signature SML =

sig
val parseString : string -> unit
val elabString : string -> unit
val evalString : string -> unit
val execString : string -> unit
val parseFile : string -> unit
val elabFile : string -> unit
val evalFile : string -> unit
val execFile : string -> unit
val parseFiles : string list -> unit
val elabFiles : string list -> unit
val evalFiles : string list -> unit
val execFiles : string list -> unit

val parseSession : unit -> unit

val elabSession : unit -> unit

val evalSession : unit -> unit

val execSession : unit -> unit
end

The functions here come in four obvious groups:

e XString processes a program contained in the string given.
e xFile processes a program contained in a file whose name is given.
e xFiles processes a whole set of files in an incremental manner.

e xSession starts an interactive session, that can be exited by pge&tih-D (end
of file, Ctrl-Z on DOS-based systems).

Each call processes the program in the initial basis. Foemental processing, functions
from thexFiles or xSession group have to be used.

In each group there are four functions providing selectivages of execution:

e parse Xjust parses a program.

e elab X parses and elaborates a program.
e eval X parses and evaluates a program.

e exec X parses, elaborates, and evaluates a program.

These functions correspond to the different execution madd¢he stand-alone HaMLet
(see section 2.5). They all print the resulting environmeeni stdOut , or a suitable
error message ostdErr if processing does not succeed (parse functions just Pian
success). During processing of a file list or an interactass®n, errors cause the current
input to be skipped, but not abortion of the session.

2.7 Bootstrapping

Since HaMLet has been written purely in strict SML'97, it Id@to bootstrap itself. The
file hamlet.sml provided in the source directory allows bootstrapping aeractive
HaMLet session by starting the HaMLet stand-alone via

hamlet hamlet.sml wrap-hamlet.sml

Alternatively, the file can base 'd from within a HaMLet session. It will load all necessary
modules enabling interactive use as described in 2.6.

Beware that loading the full Basis Library in the bootstragpersion will require a huge
amount of virtual memory. If you are brave and haots of memory and patience you
can even try a second bootstrapping iteration from withiess®n on the bootstrapped
HaMLet. Then, HaMLet not only type-checks itself but doesbadxecute the type checker
and evaluator itself. You should expect at least two ordensagnitude slowdown for each
bootstrapping iteration, due to the naive interpretatixsugatiorf (see section 6).

2.8 Limitations

In its current version, HaMLet is not completely accuratéhwespect to some aspects of
the SML language. The following list gives an overview:

e Parsing: The grammar in the Definition together with its infal disambiguation
rules is rather over-ambitious. It is not possible to patseith finite look-ahead,
as required by conventional parsing technology — at leaswitbout performing a
major nightmare of grammar transformations first. Consetiyeall existing SML
implementations disallow some phrases that ought to bé é&egarding to the Defi-
nition. The most obvious examples are mixturegwaibinds andcase expressions
like in

fun f pl
| f p3

case el of p2 => e2
e3

No effort has been made to get this working in HaMLet. Howgel#zaMLet is still
more accurate than other SML implementations. For exarntgasses the dreaded
where type ...and type derived form for signature expressions correctly (see
section 4.4).

“For example, on a 2 GHz processor with 512 MB memory the seiteradion may take about 4 hours.

10

e Exhaustiveness of Patterns: checking of patterns is nigtdaturate in the presence
of overloaded special constants. Sometimes a match is flagg@on-exhaustive,
although it is in the limited range of its actual type.

e Library: HaMLet does provide a significant portion of thei@tard Basis Library,
but it is not complete.

3 Overview of the Implementation

The implementation of HaMLet follows the Definition as clysgs possible. The idea was
to come as close as possible to the ideal of an executablena&fthe Definition. Where
the sources deviate, they usually do so for one of the foligwéasons:

¢ the non-deterministic nature of some of the rules (e.g.gingghe right types in the
static semantics of the core),

¢ the informal style of some parts (e.g. the restrictions i1 14)
e bugs or omissions in the Definition (see appendix A)

We will explain non-trivial deviations from the Definitionhere appropriate.

The remainder of this document does not try to explain detfilthe Definition — the
Commentary [MT91] is much better suited for this purposespite being based on the
SML'90 Definition [MTH90]. Neither is this document a tutatito type inference. The
explanations given here merely describe the relation beivlee HaMLet source code and
the formalism of the Definition. The text assumes that youehlath at hand side by
side. We use section numbers in brackets as above to refeditddual sections of the
Definition. Unbracketed section numbers are cross refesewithin this document.

Note that most explanations given here a kept rather terdecaver only general ideas
without going into too much detail. The intention is that #wirce code speaks for itself
for most part.

3.1 Structure of the Definition

The Definition specifies four main aspects of the SML language

1. Syntax

2. Static semantics

3. Dynamic semantics
4. Program Execution

Syntax is the most conventional part of a language definitidre process of recognizing
and checking program syntax is usually referred tgassing The static semantics is
mainly concerned with the typing rules. The process of cimeckalidity of a program
with respect to the static semantics is calldaborationby the Definition. The dynamic
semantics specifies how the acteaibluationof program phrases has to be performed.
The last aspect essentially describes how the interadplevtel of an SML system should
work, i.e. how parsing, elaboration, and evaluation areected. The complete processing
of a program, performing all three aforementioned phasdgiéwn asexecution

11

The four aspects are covered in separate chapters of that@efirFurther destructuring
is done by distinguishing between core language and modaotgubage. This factorisation
of the language specification is described in more detalléptreface and the first chapter
of the Definition.

3.2 Modularisation

HaMLet resembles the structure of the Definition quite dlyecFor most chapters of
the Definition there is a corresponding module implementtireg aspect of the language,
namely these are:

Chapter2and 3 Lexer , Parser , SyntacticRestrictions

Chapter 4 ElabCore

Chapter 5 ElabModule

Chapter 6 EvalCore

Chapter 7 EvalModule

Chapter 8 Program

Appendix A DerivedForms

Appendix B Parser

Appendix C InitialStaticBasis

Appendix D InitialDynamicBasis

Appendix E OverloadingClass (roughly)

Most other modules implement objects and operations deéihdte beginning of each of
the different chapters, which are used by the main modulbs. sburce of every module
cross-references the specific subsections of the Definitlemant for the types, operations,
or rule implementations contained in it.

Altogether, it should be quite simple to map particular Ha¥limodules to parts or en-
tities of the Definition and vice versa. To make the mappinglasous as possible, we
followed quite strict naming conventions (see 3.5). Eactheffollowing sections of this
document will cover implementation of one of the languageeats mentioned in 3.1. At
the beginning of each of those sections we will list all medulelevant to that part of the
implementation.

As a rule, each source file contains exactly one signatung;tste, or functor. The only
exceptions are the fildds X, Grammars X, each containing a collection of simple functor
applications, and the files containing the modélddr , ExXName Lab, Stamp, TyName
TyVar , which also provide implementations of sets and maps ofdhesponding objects.

We tried to keep things simple, so the architecture of HaMg qtiite flat: it does not make
heavy use of functors. Functors only appear where the negerterate several instances
of an abstract type (e.¢gdFn) or parameterised types arises. Enthusiasts of the closed
functor style may feel free to dislike this approgeh .

3.3 Mapping Syntactic and Semantic Objects

The sets representing the different phrase classes of thesgMax are defined inductively
through the BNF grammars in the Definition. These sets aregethm appropriate SML
datatypes in obvious ways, using fields of tygion for optional phrases.

All sets defining semantic objects in the Definition have beapped to SML types as
directly as possible:

12

primitive objects (without structure) abstract types

products @ x B) tuple typesfA * B)
disjoint unions A U B) datatypeshA of A | B of B)
k-ary products(x>oA*) list types @A list)
finite sets (FifA)) instances of th&inSet functor
finite maps @ fin B) instances of th&inMap functor

In some places, we had to relax these conventions somewthatrsrsome additional types
into datatypes to cope with mutual recursion between difirdt For example, environ-
ments are always rendered as datatypes.

Except for the primitive simple objects, no type definiti@me abstract. To allow the most
direct implementation of rules operating on semantic dbjegpe definitions representing
structured sets are always kept transparent. Be warnealdieg this aspect, the HaMLet
sources should not serve as an example for good modularigatactice...

3.4 Mapping Inference Rules

Usually, each group of inference rules in the Definition ipiemented by one function.
For rules of the form

A+ phrase = A’
the corresponding function has type
A *» phrase -> A’

Each individual rule corresponds to one function clause révipecifically, an inference
rule of the form:

Ay &+ phrase; = A} e Ay & phrase,, = Al side condition (k)
A& phrase = A’

maps to a function clause of the form:

elabPhraseClass args (A, phrase) =
(* [Rule k] =)

let
val A1’ = elabPhraseClass1(Al, phrasel)
(* ... %)
val An’ = elabPhraseClassN(An, phraseN)
in
if side condition then
Ai
else
error("message")
end

Here,args denotes possible additional arguments that we sometinegstogoass around.
There are exceptions to this scheme for rules that are netypstructural, e.g. rules 34

13

and 35 of the static semantics [4.10] are represented byaseeanly. Moreover, we deal
slightly differently with the state and exception convens in the dynamic semantics (see
6.3).

If one of a rule’s premise is not met, an appropriate messagsually generated and an
exception is raised through tlgror module.

3.5 Naming Conventions

Structures and functors are named after the main type tHaedthe objects they generate,
or the aspects of the Definition they implement (with one pkoa: the structure contain-
ing typelInt is namednter to avoid conflicts with the structurat of the Standard
Basis Library). The corresponding signatures are nameardicgly.

Several structures come in groups, representing the sepaodcore and module language
(and even the program layer). Orthogonal grouping happensadpects similar in the
static and dynamic semantics. The structure names refiese tonnections in an obvious
way, by including the wordsCore- , -Module- , or-Program- , and-Static- or
-Dynamic-

Types representing sets defined in the Definition are alwaysed after that set even if
this conflicts with the usual SML conventions with respectapitalisation. Functions
are also named after the corresponding operation if it imddfin the Definition or the
Commentary [MT91]. Variables are named as in the Definitwith Greek letters spelled
out. Moreover, type definitions usually include a commedtidating how variables of that
type will be named.

On all other occasions obvious names have been chosenyifajjaonventions established
by the Standard Basis Library [GR04] or the SML/NJ library)@8] where possible.

3.6 Side Effects

SML is not purely functional, and neither is the HaMLet implentation. It uses state
whenever that is the most natural thing to do, or if it consitdy simplifies code. At the
following places state comes into play:

¢ inside the lexer, to handle nested comments,

¢ inside the parser, to maintain the infix environment,

e to generate time stamps, e.g. for type and exception names,

e in the representation of type terms, to allow destructivieation,

e during elaboration, to collect unresolved overloaded agdtile types,

e during evaluation, to maintain the program’s state.

And of course, the code generated by Lex and Yacc uses stetraiiy.

Other side effects are the output of error and warning messiagthe Error structure.

14

4 Abstract Syntax and Parsing

4.1 Files

The following modules are related to parsing and represientaf the abstract syntax tree:

Source

IdFn
LongldFn
IdsCore
IdsModule
TyVar

Lab

SCon

GrammarCoreFn
GrammarModuleFn
GrammarProgramFn
Grammars

Lexer
LineAwarelLexer
Parser

Infix

Parse

DerivedFormsCore
DerivedFormsModule
DerivedFormsProgram

IdStatus
BindingObjectsCore
BindingObjectsModule
GenericEnvFn
BindingEnv
BindingContext
BindingBasis

ScopeTyVars

SyntacticRestrictionsCore
SyntacticRestrictionsModule
SyntacticRestrictionsProgram

PPGrammar
PPCore
PPModule
PPProgram

15

representation of source regions
generic identifier representation
instantiated identifier classes

type variable representation
label representation
special constants

abstract syntax tree definition

AST instantiations

lexical analysis (via ML-Lex)

wrapper computing line/column information
syntactical analysis (via ML-Yacc)

infix parser

parser plugging

derived forms transformation

identifier status
objects for binding analysis

generic environment operations
operations on binding environment
operations on binding context
operations on binding basis

scoping analysis for type variables

verifying syntactic restrictions

auxiliary functions for printing ASTs
printing of core AST

printing of module AST

printing of program AST

4.2 Abstract Syntax Tree

The abstract syntax tree (AST) is split into three layers;ggponding to the SML core and
module language and the thin program toplevel, respegtiyebdulesGrammarXFn).

It represents the bare grammar, without derived forms. Qrahte exception has been
made for structure sharing constraints, which are incluglede they cannot be handled
as a purely syntactic derived form (see A.8). Infix stuff hasbremoved from the core
grammar, as it does not appear in the semantic rules of theibaii[2.6]. However, we
have to keep occurrences of the keyword in order to do infix resolution (see 4.5).

Each node carries a generic info field, and the grammar mesduefunctorised to allow
different instantiations of this field. However, they araremtly only instantiated once,
with the info field carrying position information mappingatanode to a region of the
source text and an optional file name (fdeammars).

Each identifier class is represented by its own abstract tfpst of them — exceplyVar
andLab which require special operations — are generated frondfie andLongldFn
functors.

Special constants are represented as strings contairengstential part of their lexical
appearance — their actual values cannot be calculatedeb@ferloading resolution.

4.3 Parsing and Lexing

Parser and lexer have been generated using ML-Yacc [TA@DMArLex [AMT94] which
are part of the SML/NJ distribution [NJO7]. The parser bsidoh abstract syntax tree using
the grammar types described in Section 4.2.

Most parts of the parser and lexer specifications (Rlasser.grm andLexer.lex)are
straightforward. In particular, we use a rather dumb aneladiway to recognize keywords
in the lexer. We have to take some care to handle all thosdameng lexical classes
correctly, which requires the introduction of some additibtoken classes (see comments
in Lexer.lex). Nested comments are treated through a side-effectingtepfor nesting
depth.

A substantial number of grammar transformations is unahdi<o deal with LALR con-
flicts in the original SML grammar (see 4.4 and commen®anser.grm). Some hack-
ing is necessary to do infix resolution directly during pagsisee 4.5).

Semantic actions of the parser apply the appropriate agtsts of the grammar types or
a transformation function provided by the modules handiiegved forms (see 4.6).

4.4 Grammar Ambiguities and Parsing Problems

ML-Yacc is a conventional LALR(1) parser generator. Howevwke grammar given in
the Definition together with its disambiguation rules defirelanguage that cannot be
parsed by such standard parsing technology, as it requiiegé look-ahead. The HaMLet
parser is therefore incapable of handling all languageteoocts that are legal according to
a strict reading of the Definition. The most annoying exangble problematic phrase is a
case expression as right hand side of a function binding (see. A®)st people consider
this a bug on the side of the Definition. Consequently, nongttes currently made to
fix it in HaMLet. It could only be dealt with correctly eitherythorrendous grammar
transformations or by some really nasty and expensive lexek [K93].

Disambiguation of expressions is left to ML-Yacc, we simppecify suitable keyword

16

precedences. This seems to be the most appropriate thing, tasdhe disambiguation
rules in the Definition are ambiguous by themselves (see A.9)

The SML grammar contains several other ambiguities on tidadsion level (see A.1,
A.2 and A.7). We resolve them in the ‘most natural’ ways:

e Semicolons are simply parsed as declarations or spedificatinot as separators (cf.
A.l).

e Sequential declarations and specifications are parsealefciative.

e Sharing specifications are also left associative, at efiedgtthe same precedence
level like sequential ones.

e Core level declarations are reduced to structure deaterstis soon as possible. This
includes ambiguouscal declarations (cf. A.2).

Several auxiliary phrase classes have been introducedierinent these disambiguations.

Some heavy transformations of the grammar are necessaeatwvith the dreaded derived
form for signature expressions [Appendix A, Figure 19]: éoery nonterminat that can
end in asigezp and may be followed by another subphrgsseparated by the keyword
‘and’ we had to introduce auxiliary nonterminals of the form

X_-ANDy

whose semantic actions build two parts of the abstract syrda: the subtree far and the
subtree fouy.

Further grammar transformations are needed to copeasithatterns and datatype decla-
ration vs. datatype replication.

4.5 Infix Resolution

Since ML-Yacc does not support attributes, and we did nottwaintroduce a separate
infix resolution pass, the parser maintains an infix envirentd which is initialised and
updated via side effects in the semantic actions of seveealgo productions. Applications
— infix or not — are first parsed as lists of atomic symbols amah tlhansformed by the
modulelnfix which is invoked at the appropriate places in the semantiors The
infix parser in that module is essentially a simple hand-ddd® Parser.

The parser is parameterised over its initial infix environmeAfter successful parsing it
returns the modified infix environment along with the AST.

4.6 Derived Forms

To translate derived forms, three modules corresponditiggdhree grammar layers pro-
vide transformation functions that rewrite the grammafiocans to their equivalent forms,
as specified in Appendix A of the Definition (modulBsrivedForms X). These func-
tions are named similar to the constructors in the AST typethat the parser itself does
not have to distinguish between constructors of bare syfotaxs and pseudo constructors
for derived forms.

The Definition describes th&albind derived form in a very inaccurate way. We made it
a bit more precise by introducing several additional phcdasses (see A.9). Most of the
parsing happens in tHafix module in this case, though.

17

Note that the structure sharing syntax is not a proper defiven since it requires context
information about the involved structures (see A.8). Itéfiere has been moved to the bare
grammar.

4.7 Syntactic Restrictions

The BNF grammar given in the Definition actually specifiesgzesaet of all legal programs,
which is further restricted by a set of syntactic constm[Section 2.9, 3.5]. The parser
accepts this precise superset, and the syntactic restrictire verified in a separate pass.

Unfortunately, not all of the restrictions given in the Défam are purely syntactic (see
A.1). In general, it requires full binding analysis to infdentifier status and type variable
scoping.

Checking of syntactic restrictions has hence been implésdeas a separate inference pass
over the whole program. The pass closely mirrors the statigasitics. It computes respec-
tive binding environments that record the identifier statialue identifiers. For modules,

it has to include structures, functors and signatures ak etause the effect afpen
relies on the environments they produce. Likewise, typéenments are needed to reflect
the effect of datatype replication. In essence, bindingrenments are isomorphic to in-
terfaces in the dynamic semantics [Section 7.2]. As an sktena binding basis includes
signatures and functors. For the latter, we only need to taiaitthe result environment.
Last, a binding context includes a set of bound type vargble

5 Elaboration

5.1 Files

The following modules represent objects of the static seit@and implement elaboration:

StaticObjectsCore definition of semantic objects
StaticObjectsModule

TyVar type variables

TyName type names

Type operations on types

TypeFcn operations on type functions
TypeScheme operations on type schemes
OverloadingClass overloading classes

GenericEnvFn generic environment operations
StaticEnv environment instantiation

Sig operations on signatures

FunSig operations on functor signatures
StaticBasis operations on basis

ElabCore implementation of elaboration rules
ElabModule

Clos expansiveness check and closure
CheckPattern pattern redundancy and exhaustiveness checking

18

5.2 Types and Unification

Types are represented according to the mapping explairged@ {moduleType). However,
since type inference has to do unification (see 5.6), whicpngéer to do destructively for
simplicity, each type node actually is wrapped into a refeee A simple graph algorithmis
required to retain sharing when cloning types. All otheetgperations besides unification
have functional semantics.

In order to avoid confusion (cf. A.12) our type represeptatiistinguishes undetermined
types (introduced during type inference, see 5.6) fromiepype variables. This requires
an additional kind of node in our type representation. Meegowe have another kind of
undetermined type node to deal with overloaded types (®)e Binally, we need a third
additional node that replaces undetermined types onceltbeyme determined, in order
to retain sharing.

All operations on types have been implemented in a verygditiirward way. To keep
the sources simple and faithful to the Definition we chosamoise any optimisations like
variable levels or similar technigues often used in real piters.

5.3 Type Names

Type names (modulByName) are generated by a global stamp generator (mdshaep).
As described in the Definition, they carry attributes fotyasind equality.

To simplify the task of checking exhaustiveness of patterps names have been equipped
with an additional attribute denoting tispanof the type, i.e. the number of constructors
(see 5.12). For pretty printing purposes, we also remenhigestiginal type constructor of
each type name.

5.4 Environment Representation

In order to share as much code as possible between the rathikar €nvironments of the
static and the dynamic semantics, as well as the interfaitéa the dynamic semantics
of modules, we introduce a funct@enericEnvFn that defines the representation and
implements the common operations on environments.

Unfortunately, there exists a mutual recursion betweelremments and their range sets,
in the static semantics (via TyStr) as well as in the dynamantics (via Val and FcnClo-
sure). This precludes passing the environment range typksmator arguments. Instead,
we make all environment types polymorphic over the corredpag range types. The in-
stantiating modulesStaticEnv , DynamicEnv , andinter) tie the knot appropriately.

5.5 Elaboration Rules

Elaborationimplements the inference rules of sectioriand [5.7] (moduleElabCore
andElabModule). It also checks the further restrictions in [4.11].

The inference rules have been mapped to SML functions agidedan 3.4. We only
need simple kinds of additional arguments: a flag indicatifgether we are currently
elaborating a toplevel declaration (in order to implemestriction 3 in [4.11] properly), a
list of unresolved types (for overloading resolution andifite records, see 5.8), and a list
of fn matches (to defer checking of exhaustiveness until after ovditgaresolution, see

19

5.12 and 5.8). For modules, we pass down the equality attribiutype descriptions (see
5.10).

Note that most of the side conditions on type names couldro@égl since they are mostly
ensured by construction using stamps. We included them ayytey be consistent and to
have an additional sanity check. At some places these clareksot accurate, though,
since the types examined can still contain type inferendéeshwhich may be filled with
type names later. To be faithful, we hence employ time staomptype names and type
holes, such that violations of prior side conditions caniseaVered during type inference,
as we explain in the next section.

5.6 Type Inference

The inference rules for core elaboration are non-detestiiniFor example, when enter-
ing a new identifier representing a pattern variable intoghe@ronment, rule 34 [4.10]
essentially guesses its correct type. A deterministic @mantation of type inference is
the standard algorithm W by Damas/Milner [DM82]. Infornyalvhen it has to guess a
type non-deterministically it introduces a fresh type &hle as a placeholder. We pre-
fer to speak of undetermined types instead, since typehlasgalready exist in a slightly
different sense in the semantics of SML (cf. A.12).

Wherever an inference rule imposes an equality constraitvo types because the same
meta-variable appears in different premises, the algorities to unify the two types de-
rived. After a value declaration has been checked, one datygarn remaining unde-
termined types into type variables and universally qugntié inferred type over them, if
they do not appear in the context. SML's value restrictioagl@strict this closure to non-
expansive declarations, however [4.7, 4.8]. Note thatl{€X)ptype variables can only be
unified with themselves.

We use an imperative variant of the algorithm where unificathappens destructively
[C87], so that we do not have to deal with substitutions, dvedform of the elabora-
tion functions is kept more in line with the inference rulesthe Definition (module
ElabCore).

Undetermined types are identified by stamps. They carry wditianal attributes: an
equality constraint, telling whether the type has to adgitadity, and a time stamp, which
records the relative order in which undetermined types gpd hames have been intro-
duced. During unification with undetermined types we haveke care to properly enforce
and propagate these attributes.

When instantiating type variables to undetermined typeR)j4rule 2], the undetermined
type inherits the equality attribute from the variable. Ametermined equality type in-
duces equality on any type it is unified with. In particuldran undetermined equality
type is unified with an undetermined non-equality type, diguss induced on the latter
(functionType.unify).

Likewise, when a type is unified with an undetermined type, lttter’s time stamp is
propagated to all subterms of the former. That is, neste@t@nchined types inherit the
time stamp if their own is not older already. Type hames miusiys be older than the time
stamp — unification fails, when a type name is encountergdthawer. This mechanism is
used to prevent unification with types which contain type eathat have been introduced
afterthe undetermined type. For example, the snippet

let
val r = ref NONE

20

datatype t = C
in

r .= SOME C
end

must not type-check — the typeoimay not mention (otherwise the freshness side condi-
tion on names for datatypes [4.10, rule 17] would be violpteldwever, type inference can
only find out about this violation at the point of the assigmtrexpression. By comparing
the time stamp of the undetermined type introduced wheroedding the declaration af,
and the stamp of the type nameour unification algorithm will discover the violation.

More importantly, the mechanism is sufficient to precludéication of undetermined
types withlocal type names, as in the following example:

val r = ref NONE
functor F(type t; val x : t) =
struct

val _ =r := SOME C
end

Obviously, allowing this example would be unsound.

Similarly, the time stamp mechanism is used to preventidvalification of monomorphic
undetermined types remaining due to the value restrictidth, type variables, see Section
5.7.

To cope with type inference for records, we have to repregariially determined rows.
The yet undetermined part of a row is represented by a spkicidlof type variable, a
row variable This variable has to carry the same attributes as an umdieted type, i.e. an
equality flag and a time stamp, both of which have to be prgmedpagated on unification.
See also Section 5.8.

5.7 Type Schemes

Type schemes represent polymorphic types, i.e. a type ptefiy a list of quantified type
variables. The only non-trivial operation on type schemeageineralisation [4.5].

We implement the generalisation test via unification: ineott test forva*) .7 = 7/, we
instantiaten*) with undetermined types*) and test whether[r(*) /a(¥)] can be unified
with 7/,

To test generalisation between type scherwes$?) .7 = Va(¥) 7/, we first skolemise the
variablesa*") on the right-hand side by substituting them with fresh typenast(*").
Then we proceed by testing fon () .7 7/[t(*) /o(¥)] as described before.

Note thatr may contain undetermined types, stemming from expansidladdions. These
have to be kept monomorphic, but naive unification might ifethem with one of the
skolem types(*") (or a type containing one) — and hence effectively turn thetm poly-
morphic types! For example, when checking the signaturggim in the following ex-
ample,

signature S = sig val f : 'a -> 'a option end
structure X : S =
struct

val r = ref NONE

21

fun f x = Ir before r := SOME x
end

the type inferred for the functioh contains an undetermined type, the content type.of

It must be monomorphic, hence the typefofloes not generalise the polymorphic type
specified in the signatufe Comparison of the time stamps of the undetermined type and
the newer type name generated during skolemisatioa ahakes unification between the
two properly fail with our algorithm.

5.8 Overloading and Flexible Records

Overloading is the least formal part of the Definition (se&j. It is just described in an

appendix, as special case treatment for a handful of giveradgrs and constants. We try
to generalise the mechanism indicated in the Definition @reoto have something a bit
less ad hoc that smoothly integrates with type inference.

To represent type schemes of overloaded identifiers we allpe variables to be con-
strained with overloading classes in a type scheme, i.@ wgpiables can carry an over-
loading class as an additional optional attribute. Whetain$ated, such variables are
substituted by overloaded type nodes, constrained by the saerloading class (construc-
tor Type.Overloaded). When we unify an overloaded type with another, determined
type we have to check whether that other type is a type nantaiced in the given over-
loading class. If yes, overloading has been resolved, itheoetis a type error (function

Type.unify).

When unifying two overloaded types, we have to calculaterttezsection of the two over-
loading classes. So far, everything is pretty obvious. Thakyg part is how to propagate
the default types associated with the classes when we peifidersection.

We formalise an overloading class as a pair of its type narmargkthe type name being
the designated default:

(T,t) € OverloadingClass- TyNameSetx TyName

Now when we have to intersect two overloading clagdgst;) and (7%, t2), there may be
several cases. L&t = T, N Ts:

1. T = (. In this case, the constraints on the types are inconsiatehthe program in
question is ill-typed.

2. T # P andt; =ty € T. The overloading has (possibly) been narrowed down and
the default types are consistent.

3. T # D andt; # t and|{t1,t2} NT| = 1. The overloading has been narrowed down.
The default types differ but only one of them still applies.

4. T # (@ and|{t1,t2} N T| # 1. The overloading could be narrowed down, but there
is no unambiguous default type.

Case (3) is a bit subtle. It occurs when checking the foll@ndaclaration:

fun f(x,y) = (x + y)ly

8Several SML implementations currently get this wrong, épgm soundness hole in their type checkers.

22

Both, + and/ are overloaded and default to different types, but in thislgimation only
real remains as a valid default so that the typd aghould default tareal x real —
real.”

There are two ways to deal with case (4): either rule it out bfpesing suitable well-
formedness requirements on the overloading classes initie basis, or handle it by gen-
eralising overloading classes to contaetsof default values (an error would be flagged if
defaulting actually had to be applied for a non-singulax. 8&F settled for the former alter-
native as it seems to be more in spirit with the Definition dmarins out that the overloading
classes specified in the Definition satisfy the required-fegthedness constraint8.

Consequently, we demand the following properties for altgaf overloading classes
(T,t), (T',t") appearing in a basis:

1.teT
2. EqT)=0 v tadmits equality

3.7TNT'=0 v H{u,t'}InTnT'| =1

where EQT') = {t € T' | t admits equality.

The reason for (1) is obvious. (2) guarantees that we do 1oselthe default by inducing
equality. (3) ensures a unique default whenever we haveitp two overloaded types. (2)
and (3) also allow the resulting set to become empty whichessmts a type error.

Defaulting is implemented by collecting a list of all unresaml types —this includes flexible
records — during elaboration of value declarations (aolditi argumetmutaus). Before
closing an environment, we iterate over this list to defagithaining overloaded types or
discover unresolved flexible records. This implies thatebetext determining an over-
loaded type or flexible record type is the smallest enclosimg-level declaration of the
corresponding overloaded identifier, special constantiegible record, respectively (cf.
A.3and A.11).

Special constants have to be annotated with correspongiegiames by overloading res-
olution, in order to get the correct dynamic semantics (s8eahd enable proper checking
of match exhaustiveness (see 5.12). For this purpose stiaf linresolved types can carry
optional associated special constants. During defaultim@nnotate each constant, and do
range checking of the constant’s value with respect to thelved type at the same time.

5.9 Recursive Bindings and Datatype Declarations

Value bindings witlrec and datatype declarations are recursive. The inferenes (@b,
17 and 19) use the same environmé&fi or TE on the left hand side of the turnstile that
is to be inferred on its right hand side.

To implement this we build a tentative environment in a fitstation that is not complete
but already contains enough information to perform thealdnference in the second it-
eration. For recursive value bindings we insert undeteehigpes as placeholders for the
actual types (and unify later), for datatype bindings weéethe constructor environments
empty.

9Some SML implementations do not handle this case properly.

10A previous version of HaMLet used the latter alternativeallbws more liberal overloading but may lead to
typing errors due to ambiguous overloading, despite thaultefnechanism. Moreover, in full generality it raises
additional issues regarding monotonicity of overloadiegoiution when extending the library.

23

Datatype declarations bring an additional complicatiocause of the side condition that
requiresTE to maximise equality. This is being dealt with by first assogréquality for all
type names introduced and later adjusting all invalid etattributes in a fixpoint itera-
tion until all type structures respect equality (functiaticEnv.maximiseEquality).

5.10 Module Elaboration

Like for the core language, the inference rules for modulesian-deterministic. In partic-
ular, several rules have to guess type names that have tobistamt with side conditions
enforced further down the inference tree. However, moshe$e side conditions just en-
sure that type names are unique, i.e. fresh type names aserchighere new types are
introduced. Since we create type names through a stamp msohanost of these side
conditions are trivially met. The remaining cases are dedh by performing suitable

renaming of bound type names with fresh ones, as the Defirdgiceady suggests in the
corresponding comments (modi&abModule).

The other remaining bits of non-determinism are guessiagitiht equality attribute for
type descriptions, which is dealt with by simply passingrisguired attribute down as an
additional assumption (functidelabModule.elabTypDesc), and for datatype speci-
fications, which require the same fixpoint iteration as g@@tleclarations in the core (see
5.9).

5.11 Signature Matching

Signature matching is the most complex operation in the Séfhantics. As the Definition
describes, it is a combination of realisation and enrichimen

To match an environmerft’ against a signature = (7', E') we first calculate an appro-
priate realisationp by traversingE: for all flexible type specifications it (i.e. those
whose type functions are equal to type names bourifl)ivve look up the correspond-
ing type in E’ and extendy accordingly. Then we apply the resulting realisation/to
which gives us the potentidl—. For this we just have to check whether it is enriched
by E’ which can be done by another simple traversakbof (functionsSig.match and
StaticEnv.enriches).

The realisation calculated during matching is also useddpamate type information to the
result environment of functor applications (rule 54, madtiabModule). A functor sig-
nature has forniTy)(E1, (T])E"). To obtain a suitable functor instantiatio”, (T")E")

for rule 54 we simply match the environmelfitof the argument structure to the signature
(T1)E1 which givesE” and a realisatiorp. We can applyp to the functor’s result signa-
ture (T]) E; to get — after renaming atl € T} to fresh name¢’ € T’ — the actual7”)E’
appearing in the rule.

5.12 Checking Patterns

Section [4.11], items 2 and 3 require checking exhausts®ard irredundancy of patterns.
The algorithm for performing this check is based on [S96] dmle CheckPattern).
The basic idea of the algorithm is to perfoatatic matchingi.e. to traverse the decision
tree corresponding to a match and propagate informationtehe value to be matched
from the context of the current subtree. The knowledge alsklon a particular subterm is
described by théescription type. Moreover, &ontext specifies the path from the
root to the current subtree.

24

The algorithm is loosely based 0896], where more details can be found. To enable this
algorithm, type names carry an additional attribute dergptheirspan i.e. the number

of constructors the type possesses (see 5.3). We extenddhs in the paper to cover
records (behave as non-positional tuples), exceptiontearers (have infinite span), and
constants (treated like constructors with appropriatesitdy infinite span). Note that we
have to defer checking of patterns until overloading resmiufor contained constants has
been performed — otherwise we will not know their span.

A context description is not simply a list of constructor Apgtions to term descriptions
as in the paper, but separates constructor application femard aggregation and uses a
nested definition. Instead of lists of negative constriec{and constants) we use sets for
descriptions. Record descriptions are maps from labelegorgbtions.

During traversal we construct two sets that remembers tfienmeof every match we en-
countered, and every match we reached. In the end we carvdisemlundant matches by
taking the difference of the sets. Non-exhaustivenesstectisd by remembering whether
we reached a failure leaf in the decision tree.

In the case of exception constructors, equality can onlyHeeked on a syntactic level.
Since there may be aliasing this is merely an approximasea @A.3).

There is a problem with the semantics of sharing afére constraints, which allow
inconsistent datatypes to be equalised (see A.3). In this, azo meaningful analysis is
possible, resulting warnings may not make sense. Theretléngowe can do but ignore
this problem.

6 Evaluation

6.1 Files

Objects of the dynamic semantics and evaluation rules gokeimented by the following
modules:

DynamicObjectsCore
DynamicObjectsModule

definition of semantic objects

Addr addresses

ExName exception names
BasVal basic values

Sval special values

Val operations on values
State operations on state

GenericEnvFn
DynamicEnv
Inter
DynamicBasis
IntBasis

EvalCore
EvalModule

generic environment operations
operations on environments
operations on interfaces
operations on basis

operations on interface basis

implementation of evaluation rules

25

6.2 Value Representation

Values are represented as defined in Section 6.3 of the DefirfihoduleVal). Special
values are simply represented by the corresponding SMistgmpeduleSVal). Currently,
only the default types arM/ord8.word are implemented, which represents the minimum
requirement of the Standard Basis.

Basic values are simply represented by strings (mod8a/al). However, the only basic
value defined in the Definition is the polymorphic equatityeverything else is left to the
library. Consequently, the implementation of the APPLY dtion only handles=. For
all other basic values it dispatches to thibrary module, which provides an extended,
library-specific version of the APPLY function (see Sect#)n

The special value FAIL, which denotes pattern match fajlisreot represented directly but
has rather been defined as an exception (see 6.3).

6.3 Evaluation Rules

The rules of the dynamic semantics have been translated tof@Mwing similar conven-
tions as for the static semantics (see 3.4). However, tagvainfully expanding out all
occurrences of the state and exception conventions, wendtbedtate and exceptions in an
imperative way. State is not passed around as a functiohs vt rather as a reference
to the actual state map (modutgate) that gets updated on assignments. This avoids
threading the state back with the result values. Exceptmkages (modulBack) are not
passed back either, but are rather transferred by raidiark exception. Similarly, FAIL
has been implemented as an exception.

So state is implemented by state and exceptions by exceptinat really surprising. Con-
sequently, rules of the form

s, At phrase = A'/p, s
become functions of type
State ref * A * phrase -> A’

which may raise &ack exception — likewise for rules including FAIL results. We ibm
passing in the state where it is not needed. This way the aultbevé the form of rules
using the state and exception conventions as close as [@gsibdulesEvalCore and
EvalModule).

Failure with respect to a rule’s premise corresponds to &imentype error. This may
actually occur in evaluation mode and is flagged accordingly

Evaluation of special constant behaves differently in akea and elaboration mode. In
the former, constants will have been annotated with a prigpername by overloading res-
olution (see 5.8). In evaluation mode this annotation isingand the functiomalSCon
will assume the default type of the corresponding overlogdilass, respectively. This
implies that the semantics may change (see 2.5).

Note that the rules 182 and 184—186 of the dynamic semantiecaddules contain several
errors (see A.6).

26

7 Toplevel

7.1 Files

The remaining modules implement program execution andanotize toplevel:

Basis the combined basis
Program implementation of rules for programs
InitialinfixEnv initial environments

InitialStaticEnv
InitialStaticBasis
InitialDynamicEnv
InitialDynamicBasis

PrettyPrint pretty printing engine

PPMisc auxiliary pretty printing functions
PPType pretty printing of types

PPVal ... values

PPStaticEnv ... Static environment
PPStaticBasis ... Static basis

PPDynamicEnv ... dynamic environment
PPDynamicBasis ... dynamic basis

PPBasis ... combined basis

Use theuse queue

Sml main HaMLet interface

Main wrapper for stand-alone version

7.2 Program Execution

The moduleProgram implements the rules in Chapter 8 of the Definition. It folbothe
same conventions as used for the evaluation rules (see 88.3n

In addition to the ‘proper’ implementation of the rules asegi in the Definition (func-
tion execProgram) the module also features two straightforward variatitias suppress
evaluation and elaboration, respectivajapProgram andevalProgram).

Note that a failing elaboration as appearing in rule 187esponds to a&rror exception.
However, in evaluation mode, &ror exception will originate from a runtime type error.

The remaining task after execution is pretty printing treates. We use an extended version
of a generic pretty printer proposed by Wadler [W98] whichtéees more sophisticated
grouping viaboxegmodulesPrettyPrint andPPxxx).

7.3 Plugging

The Sml module sets up the standard library (see Section 8), doesedissary I/O inter-
action and invokes the parser and the appropriate funationdaduleProgram , passing
the necessary environments.

27

After processing the input itself the functions in Bl module process all files that have
been entered into these queue during evaluation (see 8.5). That may add additional
entries to the queue.

The Main module is only needed for the stand-alone version of HaMlEeparses the
command line and either starts an appropriate sessionas nedéhe given files.

8 Library

8.1 Files

The library only consists of a hook module and the library lenpentation files written in
the target language:

Library primitive part of the library
Use use queue
basis/ the actual library modules

8.2 Language/Library Interaction

The Definition contains several hooks where it explicitlyedmtes fleshing out stuff to the
library:

¢ the set BasVal of basic values and the APPLY function [6.4]

¢ the initial static basi$3, and infix status [Appendix C]

e the initial dynamic basi®3, [Appendix D]

¢ the basic overloading classes Int, Real, Word, String, (Fhai
Realistically, it also would have to allow extending thessgVal [6.2] and Val [6.3], and

enable the APPLY function to modify the program state (c6)AHaMLet currently only
extends SVal, while other library types are mapped to whittdee already (see 8.4).

We encapsulate all library extensions into one single metildrary that defines the
parts of these objects that are left open by the Definitionvél@r, we split up implemen-
tation of the library into two layers:

o theprimitive layer that contains everything that cannot be defined witténtarget
language,
o thesurfacelayer which defines the actual library.
By target languageve mean the language to be implemented. Many library estitie

definable within the target language itself, e.g. the steshddunction. There are basically
three reasons that can force us to make an entity primitive:

e its behaviour cannot be implemented out of nowhere (e.gop/€rations),
e itis dependent on system properties (e.g. numeric linots),

28

e it possesses a special type (e.g. overloaded identifiers).

ThelLibrary module defines everything that has to be primitive (see &Bile the rest
is implemented within the target language in the modulegé@thebasis directory (see
8.6). These modules have to make assumptions about whafinediéy theLibrary
module, so that both actually should be seen in conjunction.

8.3 Primitives

Primitive operations are implemented by means of the APRif¢fion. Most of them just
fall back to the corresponding operations of the host sydteiwe only have to unpack
and repack the value representation and remap possiblptexte Overloaded primitives
have to perform a trivial type dispatch.

Despite implementing a large number of primitives, theict@and dynamic basis exported
does only contain a few things:

thevector type,

all overloaded functions,

the exceptions used by primitives,
the functionuse .

Everything else can be obtained from these in the targetkzge. Primitive exceptions not
available on the toplevel are wrapped into their residugatsires.

To enable the target language to bind the basic values dedinte library, we piggy-back
theuse function. Its dynamic semantics is overloaded and in thiicdbasis exported by
theLibrary moduleitis giventyper — (3. Applyingitto a record of typéb : string}
will return the basic value denoted by the string of course, the library source code should
annotate the result type properly to be type-safe. Primianstants of type are available
as functionsinit — 7.

Theuse function has been chosen for this purpose since its existeaenot be encapsu-
lated in the library anyway — the interpreter has to know altqsee 8.5). Once all neces-
sary basic values have been bound, the library source cadédshide the additional, un-
safe functionality ofise by rebinding it with its properly restricted typgring — unit.

8.4 Primitive Library Types

The dynamic semantics of the Definition do not really alloevaldldition of arbitrary library
types — in general this would require extending the set Val][6Moreover, the APPLY
function might require access to the state (see A.5).

But we can at least encode vectors by abusing the recordseamisgion. Arrays can then
be implemented on top of vectors and references within tigetéanguage. However, this
has to make their implementation type transparent in oaeet the special equality for
arrays.

I/O stream types can only be implemented magically as isdit® a stateful table that is
not captured by the program state defined in [6.3].

Hynfortunately, most SML implementations lack a lot of thdigdtory functionality of the Standard Basis
Library. To stay portable among systems we currently reisttirselves to the common subset.

29

8.5 Theuse Function

The ‘real’ behaviour ofise is implemented by putting all argument strings for whichesh
been called into a queue managed by modide. The Sml module looks at this queue
after processing its main input (see 7.3).

The argument strings are interpreted as file paths, relpéithes being resolved with respect
to the current working directory before putting them inte tfueue. The function reading
source code from a fileSiml.fromFile) always sets the working directory to the base
path of the corresponding file before processing it. This,wag automatically interprets
its argument relative to the location of the current file.

8.6 Library Implementation

The surface library is loaded on startup. The funconl.loadLib just silently executes
the file basis/all.sml . This file is the hook for reading the rest of the library, it
contains a bunch of calls wse that execute all library modules in a suitable order. Note
that the library files always have to bgecutedeven if HaMLet is just running in parsing
or elaboration mode — otherwise the contained applications would not take effect.

The library modules themselves mostly contain straightéod implementations of the
structures specified in the Standard Basis Manual [GRO4E thie implementation of the
language, the library implementation is mostly an exedatapecification with no care
for efficiency. All operations not directly implementablecithus represented as primitive
basic values are bound via the secret functionality ofige function (see 8.3).

9 Conclusion

HaMLet has been implemented with the idea of transformiegdhmalism of the Defini-
tion into SML source code as directly as possible. Not evéngtcan be translated 1-to-1,
though, because of the non-deterministic nature of somecsspf the rules and due to the
set of additional informal rules that describe parts of #regguage.

Still, much care has been taken to get even the obscuredet#ilese parts of the semantics
right. For example, HaMLet goes to some length to treat tHeviing correctly:

e not accepting additional syntactic phrases (asggandfun),

e parsing of thavhere type ...and derived form,

e checking syntactic restrictions separately,

o derived forms (e.gwithtype , definitional type specifications),
e valrec (binding rules, dynamic semantics),

e distinction of type variables from undetermined types,

e overloading resolution,

¢ flexible records,

e dynamic semantics.

Thetest directory in the HaMLet distribution contains some corgdwexamples of these
and other code that is rejected by several SML systems @dsgiihg correct according to
the Definition. HaMLet accepts all but two of them. Consedlyemwe are positive that

30

HaMLet is more accurate in implementing the SML languagei§ipation than most other
systems. There still are some deviations, though:

¢ inability to parse some legal SML programs (4.4),
e non-principal types for equality polymorphic functionsanabstype declaration
(see A.3),

e non-principal types for non-generalized declarationsiimctors (see A.4).

We consider all of these minor, since no existing SML implatadons is able to deal with
them. They are arguably mistakes on the side of the Definiser A.8, A.1 and A.3.
Still, we hope to fix these issues in future releases. Moneeowe plan to provide a more
complete implementation of the Standard Basis Library.

Acknowledgements

Thanks go to the following people who knowingly or unknowingelped in putting to-
gether HaMLet and its documentation:

e Stefan Kahrs, Claudio Russo, Matthias Blume, Derek Dreyephen Weeks, Bob
Harper, Greg Morrisett, John Reppy, John Dias, David Matthend other people
on the sml-implementers list for discussions about aspmuisrough edges of the
SML semantics,

¢ all people participating in the discussions on the smlgtoh list, the Successor
ML wiki, and the SML evolution meeting,

e the authors of the original ML Kit [BRTT93], for their greatork that initially in-
spired the work on HaMLet,

e of course, the designers of ML and authors of the Definitiam,tfie magnificent
language.

31

A Mistakes and Ambiguities in the Definition

This appendix lists all bugs, ambiguities and ‘grey areashie Definition that are known
to the author. Many of them were already present in the posvBML' 90 version of the
Definition [MTH90] (besides quite a lot that have been carddn the revision) and are
covered by Kahrs [K93, K96] in detail. Bugs new to SML'97 otticovered by Kahrs are
marked with * and (*), respectively.

Where appropriate we give a short explanation and raticfdlew we fixed or resolved it
in HaMLet.

A.1 Issues in Chapter 2 (Syntax of the Core)

Section 2.4 (Identifiers):

e The treatment of as an identifier is extremely ad-hoc. The wording suggesits th
there are in fact two variants of the identifier class VId, areuding and the other
excluding=. The former is used in expressions, the latter everywheee el

Section 2.5 (Lexical analysis):

¢ In [2.2] the Definition includes only space, tab, newlined dormfeed into the set
of obligatory formatting characters that are allowed inrsewcode. However, some
major platforms require use of the carriage return charactext files. In order to
achieve portability of sources across platforms it shoglihigluded as well.

For consistency, HaMLet allows all formatting charactéswhich there is explicit
escape syntax, i.e. it includes vertical tab and carriaygne

Section 2.6 (Infixed Operators):

e The Definition says that “the only required useagf is in prefixing a non-infixed
occurrence of an identifier which has infix status”. This ithea vague, since it is
not clear whether occurrences in constructor and excepiiwfings count as non-
infixed [K93].

We assume thabp is only necessary in expressions and patterns and completel
optional in constructor and exception bindings. This issistent with the fact that
op is not even allowed in the corresponding descriptions inaigres.

Section 2.8 (Grammar), Figure 4 (Expressions, Matchesabst®ns and Bindings):

e (*) The syntax rules fodec are highly ambiguous. The productions for empty dec-
larations and sequencing allow the derivation of arbitssguences of empty decla-
rations for any input.

HaMLet does not allow empty declarations as part of sequenitbout a separating
semicolon. On the other hand, every single semicolon issplaas a sequence of two
empty declarations. This makes parsing of empty declarstimambiguous.

e Another ambiguity is that a sequence of the fafea; dec, decs can be reduced in
two ways todec: either viadecio decs or viadec; decas [K93]. See also A.2.

We choose left associative sequencing, i.e. the formeepars

32

Section 2.9 (Syntactic Restrictions):

e * The restriction thabalbinds may not bind the same identifier twice (2nd bullet) is

A.2

not a syntactic restriction as it depends on the identifegustof thevids in the pat-
terns of avalbind. ldentifier status can be derived by inference rules oniyil&ily,
the restriction on type variable shadowing (last bulletiépendent on context and
computation of unguarded type variables [Section 4.6].

We implement checks for syntactic restrictions as a sepamégrence pass over the
complete program that closely mirrors the static semantldgally, all syntactic
restrictions rather should have been defined as appromid¢econditions in the
rules of the stati@and dynamic semantics by the Definition.

* An important syntactic restriction is missing:

“Any tyvar occurring on the right side of &pbind or datbind of the
form tyvarseq tycon = - - - must occur infyvarseq.”

This restriction is analogous to the one given fgvars in type specifications [3.5,
item 4]. Without it the type system would be unsoutd.

We added a corresponding check.

Issues in Chapter 3 (Syntax of Modules)

Section 3.4 (Grammar for Modules), Figure 6 (Structure aigd&ure Expressions):

e The syntax rules fostrdec contain the same ambiguities with respect to sequencing

and empty declarations as those fler (see A.1).
Consequently, we use equivalent disambiguation rules.

Moreover, there are two different ways to reduce a sequéagedecs of core dec-
larations into astrdec: via strdec, strdecs and viadec [K93]. Both parses are not
equivalent since they provide different contexts for owading resolution [Appendix
E]. For example, appearing on structure level, the two datitans

fun

f X
val a

X = X +
=f1.0
may be valid if parsed adec, but do not type check if parsed agdec, strdecs
because overloading afgets defaulted tont

We choose to always reduce tardec as soon as possible, because that variant is
simpler to implement and solves other problems as well (s&g Alote that we use
smaller contexts for overloading resolution (see 5.8) st tte way of parsing here
actually would have no effect on the admissibility of pragsa

Similarly, it is possible to parse a structure-lelaglal declaration containing only
core declarations in two ways: aslec or as astrdec [K93]. This produces the same
semantic ambiguity.

As above, we reduce tgrdec as early as possible.

Section 3.4 (Grammar for Modules), Figure 7 (Specificafions

2|nterestingly enough, in the SML'90 Definition the restioct was present, but the corresponding one for
specifications was missing [MT91, K93].

33

e Similar as fordec andstrdec, there exist ambiguities in parsing empty and sequenced
specS.

We resolve them consistently.

e The ambiguity extends to sharing specifications. Consider:

type t
type u
sharing type t = u

This snippet can be parsed in at least three ways, with théngheonstraint taking
scope over either both, or only one, or neither type spetificaSince only the first
alternative can be elaborated successfully, the validitthe program depends on
how ambiguity is resolved.

We always extend the scope of a sharing constraint as faetiefitas possible. That
is a conservative choice, since all shared types must béfiggein the respective
scope and specifications may not contain duplicate typetaarsrs.

Section 3.4 (Grammar for Modules), Figure 8 (Functors arti&vel Declarations):

¢ * Finally, another ambiguity exists for reducing a sequesb@ec, strdecy 10 a
topdec: it can be done either by first reducingdtr-dec, or to strdec; topdec,. The
latter is more restrictive with respect to free type varmahfbut see A.12 with regard
to this).

We stick to our established disambiguation method.

Altogether, ignoring the infinite number of derivations dhwing empty declarations, the
grammar in the Definition allows three ambiguous ways to cedusequence of twidecs
to atopdec, as shown by the following diagram. All imply different semtias. The cor-
responding diagram for a sequence of three declarationtdwoerely fit on a page. A
further ambiguity arises at the program level (see A.7).

deq d602

strdecl strdeco

strdec strdecl topdecy

topdec

A.3 Issues in Chapter 4 (Static Semantics for the Core)

Section 4.8 (Non-expansive Expressions):

e * The definition of non-expansiveness is purely syntactid does only consider
the right hand side of a binding. However, an exception maultdrom matching
against a non-exhaustive pattern on the left hand sideratli®r inconsistent to dis-
allow raise expressions in non-expansive bindings but allow impligiteptions

34

in the disguise of pattern match failure. More seriouslg, ssibility of exceptions
stemming from polymorphic bindings is incompatible witpé&ypassing implemen-
tations.

This is no real bug but rather a design error. HaMLet impleim#re Defintion as is.
Section 4.9 (Type Structures and Type Environments):

e The definition of the Abs operator demands introduction ofwndistinct” type
names. However, type names can only be new relative to axtorite be precise,
Abs would thus need an additional argumeéeniK96].

This is no issue operationally, though, since fresh typeesocan simply be gener-
ated through stamping.

e Values inabstype declarations that are potentially polymorphic but reqegeal-
ity types have no principal type [K96]. For example, in theldeation

abstype t = T with

fun eq(xyy) = x =y
end

the principal type okq insidethe scope ofbstype clearlyis”a +* "a ->

bool . However, outside the scope this type is not principal beeda cannot
be instantiated by . Neither wouldt * t -> bool be principal, of course. Al-
though not strictly a bug (there is nothing which enforcesphesence of principal
typings in the revised Definition), this semantics is vergdhta implement faithfully,
since type inference would have to deal with unresolved sgemes and to cascad-
ingly defer decisions about instantiation and generatisatntil the correct choice is
determined.

Like all other SML implementations, Hamlet thus assignsthe type’a * "a
-> bool

e A related problem is the fact that the rules #lystype may infer type structures
that do not respect equality [K96]:

abstype t = T with
datatype u = U of t
end

Outside the scope of thabstype declaration types will still be an equality type.
Values of typd can thus be compared through the backdoor:

fun eqT(x,y) = U x =Uy

HaMLet conforms to the strange behaviour implied by the Ddim.
Section 4.10 (Inference Rules):

e * The comment to rule 26 states that a declaration like

datatype t = T
val rec T = fn x => X

35

is legal sinceC + VE overwrites identifier status. However, this comment omits a
important point: in the corresponding rule 126 of the dyraseimantics recursion is
handled differently so that the identifier statusitg overwritten. Consequently, the
second declaration will raiseBind exception. It arguably is a serious ill-design to
infer inconsistent identifier status in the static and dyitaaamantics, but fortunately
it does not violate soundness in this case. Most implemienttio not implement
the ‘correct’ dynamic semantics, though.

HaMLet implements it the way it is.

e *There is an unmatched left parenthesis in the consequeni®8.
Section 4.11 (Further Restrictions):

e (*) Under item 1 the Definition states that “the program catitenust determine
the exact type of flexible records, but it does not specify boynds on the size
of this context. Unlimited context is clearly infeasiblece it is incompatible with
let polymorphism: at the point of generalisation the structfra type must be
determined precisely enough to know what we have to quaonigy!®

We thus restrict the context for resolving flexible recothie innermost surround-
ing value declaration, as most other SML systems seem to delasThis is in par
with our treatment of overloading (see 5.8).

Note that some SML systems implement a slightly more reésteiwariant, in which
the following program does not type-check:

fun f(r as {.. D=
[let fun g) = rinr end, r : {aiint }]

while a minor variation of it does:

fun f(r as {.. D=
[r: A{aint 1}, let fun g() = r in r end]

The reason is that they simply check for existence of unvesialecord types in value
environments to be closed, without taking into account thase types might stem
from the context (in which case we know that we cannot quaotier the unknown

bits anyway). As the above example shows, such an impleti@mzompromises

the compositionality of type inference. The Definition shibrule it out somehow.

A similar clarification is probably in order for overloadingsolution (see A.11).

e Under item 2 the Definition demands that a compiler must gigenmimgs whenever
a pattern is redundant or a match is non-exhaustive. Howgvisrrequirement is
inconsistent for two reasons:

1. * There is no requirement for consistency of datatype tan®rs in sharing
specifications or type realisations. For example,

datatype t = A | B
datatype u = C
sharing type t = u

is a legal specification. Likewise,
sig datatype t = A | B end where type t = bool

Blternatively, there are extensions to Hindley/Milner ityp that allow quantification over the structure of
records, but polymorphic records are clearly not suppdstethe Definition.

36

is valid. Actually, this may be considered a serious bug smvtn, although
the Definition argues that inconsistent signatures are Veoy significant in

practice” [Section G.9]. If such an inconsistent signatgrased to specify a
functor argument it allows a mix of constructors to appeamiiches in the
functor’s body, rendering the terms of irredundancy andaeskiveness com-
pletely meaningless.

There is no simple fix for this. HaMLet makes no attempt to cietieis situa-
tion, so generation of warnings is completely arbitranyhiis tase.

2. (*) ltis difficult in general to check equality of excepti@onstructors — they
may or may not be aliased. Inside a functor, constructorlégumaight depend
on the actual argument structure the functor is applied is.possible to check
all this by performing abstract interpretation (such tremtundant matches are
detected at functor application), but this is clearly isibée weighed against
the benefits, in particular in conjunction with separate pitation.

In HaMLet we only flag exception constructors as redundargmitiney are
denoted by the same syntacliewgvid. We do not try to derive additional
aliasing information.

A.4 Issues in Chapter 5 (Static Semantics for Modules)

Section 5.7 (Inference Rules):

e * The rules 64 and 78 use the notation — 64, --,t, — 6,} to specify realisa-
tions. However, this notation is not defined anywhere in tlediriition for infinite
maps like realisations — [4.2] only introduces it for finit@ps.

This is just a minor oversight, the intended meaning is olwio

e * More seriously, both rules lack side conditions to ensunesistent arities for do-
main and range of the constructed realisation. Becauszn hence fail to be well-
formed [5.2], the application(E) is not well-defined. The necessary side conditions
are:

t € TyNamé® (64)

t; € TyNamé® i =1..n (78)
HaMLet adds the respective checks.

e *The presence of functors provides a form of explicit polyptdasm which interferes
with principal typing in the core language. Consider théofelng example [DBO7]:

functor F(type t) =
struct val id = (fn x => x) (fn x => x) end
structure A = F(type t = int)
structure B = F(type t = bool)
val a = Aid 3
val b = B.id true

The declaration oid cannot be polymorphic, due to the value restriction. Néagert

less, assigning ittype -> t would make the program valid. However, finding this
type would require the type inference algorithm to skolexailt undetermined types

37

A5

in a functor body’s result signature over the types appearirits argument signa-
ture, and then perform a form of higher-order unificationn&emuently, almost all
existing implementations reject the progra.

HaMLet ignores this problem, rejecting the program due tailaife unifying types
int andbool .

* The side conditions on free type variables in rules 87 and@fot have the effect
that obviously was intended, see A.12.

HaMLet not only tests for free type variables, but also fodetermined types (see
5.6). This behaviour is not strictly conforming to tf@mal rules of the Defini-
tion (which define a more liberal regime), but meets the adhtantion explicitly
stated in [G.8] and is consistent with HaMLet's goal to ale@ayplement the most
restrictive reading.

Issues in Chapter 6 (Dynamic Semantics for the Core)

Section 6.4 (Basic Values):

e The APPLY function has no access to program state. This stgjtfet library prim-

A.6

itives may not be stateful, implying that a lot of interegtiorimitives could not be
added to the language without extending the Definitionfi{e&3].

On the other hand, any non-trivial library type (e.g. array$/O streams) requires
extension of the definition of values or state anyway (andabityutypes — consider
array). The Definition should probably contain a comment in thigarel.

HaMLet implements stateful library types by either mapptimgm to references in
the target language (e.g. arrays) or by maintaining thessacg state outside the
semantic objects (see 8.4).

Issues in Chapter 7 (Dynamic Semantics for Modules)

Section 7.2 (Compound Objects):

* In the definition of the operato}: Env x Int — Env, the triple {SI, TE, VI)”
should read (ST, TI, VI)".

Section 7.3 (Inference Rules):

e * Rule 182 contains a typo: both occurrenced Bfhave to be replaced . The

rule should actually read:

InterB + sigexp = I (B F funbind = F)
Bt funid (strid : sigexp) = strexp (and funbind) =
{funid — (strid : I, strexp, B) }{+F)

(182)

L4nterestingly, MLton [CFJWO5] accepts the program, thattkéts defunctorization approach. However, it
likewise accepts similar programs that aat valid Standard ML, e.g.:

functor F() = struct val id = (fn x => x) (fn x => x) end
structure A F()

structure B F(O

val a = Aid 3

val b = B.id true

38

e *The rules for toplevel declarations are wrong: in the casimns, the result right of
the arrow must bé’ (+B"') instead ofB’(’) in all three rules:

B+ strdec = E B'=FinBasis (B+ B'F topdec = B")

184

Bt strdec (topdec) = B'(+B") (184)

InterB3 i sigdec = G B'=GinBasis _(B+B'} topdec = B") ac
B F sigdec (topdec) = B'{+B")

B\ fundec = F B'=FinBasis (B+ Bt topdec = B") (186)

B F fundec (topdec) = B'(+B")

A.7 Issues in Chapter 8 (Programs)

e (*) The comment to rule 187 states that a failing elaboratias no effect. However,
it is not clear what infix status is in scope after a failingogleation of a program that
contains top-level infix directives.

HaMLet keeps the updated infix status.

e * There is another syntactic ambiguity for programs. A nat¢3.4, Figure 8] re-
stricts the parsing ofopdecs:

“No topdec may contain, as an initial segmentsadec followed by a
semicolon.”

The intention obviously is to make parsing of toplevel sesftins unambiguous so
that they always terminate a program. As a consequence @iitseng ambiguities
for declaration sequences (see A.2) the rule is not suffickowever: a sequence
decy; deco; of core level declarations with a terminating semicolon barfirst
reduced todec; , then tostrdec; , and finally program. This derivation does not
exhibit an “initial strdec followed by a semicolon.” Consequently, this is a valid
parse, which results in quite different behaviour with exgpio program execution.

Since HaMLet reduces t@rdec as early as possible (see A.2), it works in the spirit
of the Definition’s intention.

e (*) The negative premise in rule 187 has unfortunate imfgilices: interpreted strictly
it precludes any conforming implementation from providary sort of conservative
semantic extension to the language. Any extension thavaltteclarations to elab-
orate that would be illegal according to the Definition (ezgnsider polymorphic
records) can be observed through this rule and change ttzeibei of consecutive
declarations. Consider for example:

val s = "no";
strdec

val s = "yes";
print s;

where thestrdec only elaborates if some extension is supported. In that tase
program will printyes , otherwiseno.

This probably indicates that formalising an interactiveléwel is not worth the trou-
ble.

39

A.8 Issues in Appendix A (Derived Forms)

Text:

e (*) The paragraph explaining rewriting of thfealbind form rules out mixtures of
fvalbinds and ordinaryvalbinds. However, the way it is formulated it does not
rule out all combinations. It should rather say that all eahindings of the form
pat = exp and fvalbind or rec fvalbind are disallowed.

HaMLet assumes this meaning.
Figure 15 (Derived forms of Expressions):

e The Definition is somewhat inaccurate about several of thevetk forms of ex-
pressions and patterns. It does not make a proper distinbgbwveen atomic and
non-atomic phrases. Some of the equivalent forms are nbeisdame syntactic class
[MT91, K93].

We assume the necessary parentheses in the equivalent forms
Figure 17 (Derived forms of Function-value Bindings and eations):

e The syntax offvalbinds as given in the Definition enforces that all type annotation
are syntactically equal, if given. This is unnecessaristrietive and almost impos-
sible to implement [K93].

HaMLet implements a more permissive syntax, as given by:

<°P>W:d atpatyy --- atpaty, (i ty;) = exp,

| {op)uvid atpaty, --- atpaty, (:tys) = expy

| (op)vid atpat,,, --- atpat,,, (: ty,,) = exp,
(and fvalbind)

This probably was the original intention of the authors aayw

See also A.9 for a definition of the full syntax including infigtation.
Figure 19 (Derived forms of Specifications and SignaturerEsgions):

e *The derived form that allows several definitional type sfieations to be connected
via and is defined in a way that makes its scoping rules inconsistéhtail other
occurences oénd in the language. In the example

type t = int
signature S =
sig
type t = bool
and u =t
end

typeu will be equal tobool , notint like in equivalent declarations. It would have
been more consistent to rewrite the derived form to

40

include
sig type tyvarseq, tycon,
and ---

and tyvarseq,, tycon,,
end where type tyvarseq; tycon,; = ty,

where type tyvarseq, tycom, = ty,

and delete the separate derived form for single definitispatifications.

This is a design error. HaMLet implements it.

* The Definition defines the phrase
spec sharing longstrid, = -- - = longstrid,,

as a derived form. However, this form technically is not aivaé&t form, since it
cannot be rewritten in a purely syntactic manner — its exppandepends on the
static environment.

HaMLet thus treats this form as part of the bare grammar. timbately, it is sur-

prisingly difficult to formulate a proper inference rule debing the intended static
semantics of structure sharing constraints — probably étieeareasons why it has
been laxly defined as a derived form in the first place. The émgintation simply

collects all expanded type equations and calculates abgitaalisation incremen-
tally. At least there is no need for a corresponding rule lier dynamic semantics,
since sharing qualifications are omitted at that point.

* The derived form for type realisations connecteddnd is not only completely

redundant and alien to the rest of the languagyel(is nowhere else followed by
a second reserved word), it also is extremely tedious taepaisce this part of the
grammar is LALR(2) as it stands. It can be turned into LALR¢h)y by a bunch

of really heavy transformations. Consequently, almost ki System seems to be
implementing it correctly. Even worse, several systemdemgnt it in a way that

leads to rejection of progranm®t using the derived form. For example,

signature A = S where type t = u where type v = w

or

1
c

signature A = S where type t
and B=T

HaMLet does it correctly, though.

* For complex type declarations thdthtype derived form is important. With the
introduction of equational type specifications in SML'9%buld have been natural
to introduce an equivalent derived form for signaturessTéian oversight that most
SML systems ‘correct’.

HaMLet stays with the language definition as is.

41

A.9 Issues in Appendix B (Full Grammar)

Text:

e (*) Thefirst sentence is not true since there is a derived forprograms [Appendix
A, Figure 18]. Moreover, it is not obvious why the appendifrags from also
providing a full version of the module and program grammacohtains quite a lot
of derived forms as well, and the section title leads theeetwexpect it.

e The Definition gives precedence rules for disambiguatingressions, stating that
“the use of precedence does not increase the class of adlaiphrases”. However,
the rules are not sufficient to disambiguate all possiblagés. Moreover, for some
phrases they actually rule oahypossible parse, e.g.

a andalso if b then c else d orelse e

has no valid parse according to these rules. So the aboesrsat is rather incon-
sistent [K93].

The HaMLet parser just uses Yacc precedence declaratioegoession keywords
that correspond to the precedence hierarchy given in theniblefi. This seems to
be the best way to approximate the intention of the Definioules.

e There is no comment on how to deal with the most annoying prabih the full
grammar, the infinite look-ahead required to parse comioinabf function clauses
andcase expressions, like in:

case el of z => e2
e3

fun f x
| fy

According to the grammar this ought to be legal. Howeversiparthis would ei-

ther require horrendous grammar transformations, balitrg, or some nasty and
expensive lexer hack [K93]. Consequently, there is no SMplémentation being
able to parse the above fragment.

HaMLet is no better with regard to this.

Figure 21 (Grammar: Declarations and Bindings):

e The syntax given foifvalbind is incomplete as pointed out by the corresponding
note. This is not really a bug but annoyingly sloppy enougtatgse some divergence
among implementations.

To make the grammar more precise we introduce the additdmake classe®atch,
fmrule, andfpat and define them in analogy taatch, mrule, andpat:

foalbind = fmatch (and fvalbind)

fmatch = fmrule {| fmatch)

fmrule == fpat {: ty) = exp

fpat = (op)vid atpat, --- atpat, n>1

o ~—

(n=>
(atpat, vid atpaty) atpats --- atpat, (n >3
atpat; vid atpats

This grammar is in accordance with our relaxation of typecaations in thegfvalbind
derived form (see A.8).

42

Figure 22 (Grammar: Patterns):

e While there are additional non-terminaigfexp andappezp to disambiguate parsing
of infix expressions, there is no such disambiguation folgpas. This implies that a
pattern likex:t ++ y can be parsed #+ is an appropriate infix constructor [K96].
Of course, this would result in heavy grammar conflicts.

Since this appears to be an oversight, HaMLet does not allmh parsing. Con-
structor application always has higher precedence tha@ &aymotation. The full
grammar of patterns thus is

atpat == ..like before...
patrow = ..like before...
apppat = atpat

(op)longuvid atpat
infpat = apppat

infpat, vid infpat,
pat n= infpat

pat . ty

(op)vid (: ty) as pat

with new phrase classes AppPat and InfPat. Similar to ezfes, we get the fol-
lowing inclusion relation:

AtPat C AppPatcC InfPatC Pat

Note that we actually do not need to distinguish between AppRd InfPat, since
there is no curried application in patterns. We do it nevaess, for consistency.

A.10 Issues in Appendix D (The Initial Dynamic Basis)

¢ (*) The Definition does specify the minimal initial basis udloes not specify what
the initial state has to contain. Of course, it should attleastain the exception
namedVatch andBind .

We define
so = ({}, {Match,Bind})
e The Definition does nowhere demand that the basis a libraiges has to be con-

sistent in any way. Nor does it require consistency betweiiali basis and initial
state.

The HaMLet library is consistent, of course.
A.11 Issues in Appendix E (Overloading)

Overloading is the most hand-waving part of the otherwisaghntly accurate Definition.
Due to the lack of formalism and specific rules, overloadespiution does not work con-
sistently among SML systems. For example, type-checkinth@following declaration
does not succeed on all systems:

fun f(x,y) = (x + y)ly

43

The existence of overloading destroys an important prgpsrthe language, namely the
independence of static and dynamic semantics, as is assinbd main body of the
Definition. For example, the expressions

2 = 100 and 2 = 100 : Int8.int

will have very different dynamic behaviour, although theyyodiffer in an added type
annotation.

The Definition defines the overloading mechanism by enunmeratl overloaded entities
the library provides. This is rather unfortunate. It wouiddesirable if the rules would be a
bit more generic, avoiding hardcoding overloading classekthe set of overloaded library
identifiers on one hand, and allowing libraries to extend &yistematic ways on the other.
More generic rules could also serve as a better guidancenfudementing overloading (see
5.8 for a suitable approach).

The canonical way to deal with overloaded constants ancevidentifiers is to uniform-
ingly assign an extended notion of type scheme that allowsiification to be constrained
by an overloading class. Constraints would have to be vdifiénstantiation. This is more
or less what has been implemented in HaMLet (see 5.8 for aldaiapproach).

There are some more specific issues as well:

e * The Definition forgets to demand that any extension of adasgerloading class is
consistent with respect to equality.

Our formalisation includes such a restriction (see 5.8).

e * That the Definition specifies anpperbound on the context a compiler may con-
sider to resolve overloading is quite odd — of course, imgletations cannot be
prohibited to conservatively extend the language by makiioge programs elabo-
rate. On the other hand, much more important would have leepecify alower
bound on what implementatiofgve tosupport — it is clearly not feasible to force
the programmer to annotate every individual occurence ahvamnloaded identifier
or special constant.

A natural and sensible lower bound seems to be the smallelstsimg core declara-
tion the overloaded identifier or constant appears in. Wethesein HaMLet as the
common denominator, consistent with the treatment of flexibcords (see A.3).

Figure 27 (Overloaded Identifiers):

e *Thetypes for the comparison operaters, <=, and>= must correctly baumtxt x
numtxt — bool.

A.12 Issues in Appendix G (What's New?)

Section G.8 (Principal Environments):

* At the end of the section the authors explain that the inbétite restrictions on free type
variables at the toplevel (side-conditions in rules 87 a&{b37]) is to avoid reporting free
type variables to the user. However, judging from the reshefparagraph, this reasoning
confuses two notions of type variable: type variables asasgimobjects, as appearing in
the formal rules of the Definition, and the yet undetermingxzes during Hindley/Milner
type inference, which are also represented by type vasgabléowever, both kinds are

44

variables on completely different levels: the former arg phthe formal framework of the
Definition, while the latter are an ‘implementation aspéia#it lies outside the scope of the
Definition’s formalism. Let us distinguish both by refeigito the former asemantic type
variablesand to the latter asndetermined type@he HaMLet implementation makes the
same distinction, in order to avoid exactly this confuskeg 5.2).

The primary purpose of the aforementioned restrictionsalsly is to avoid reportingn-
determined typew the user. However, they fail to achieve that. In fact, impossible to
enforce such behaviour within the formal framework of thdifidon, since it essentially
would require formalising type inference (the current fatism has no notion of undeter-
mined type). Consequently, the comment in Section G.8 atheupossibility of relaxing
the restrictions by substituting arbitrary monotypes eésthe point as well.

In fact, the formal rules of the Definition actually imply tlegact opposite, namely that
an implementation mageverreject a program that results in undetermined types at the
toplevel, and is thus compelled to report them. The reaserpficitly given in the same
section: “implementations should not reject programs foiclv successful elaboration is
possible”. Consider the following program:

val r = ref nil;
r := [true];

Rule 2 has to non-deterministically choose some type st for the occurrence afil

The choice ofr is not determined by the declaration itself: it is not useat, can it be
generalised, due to the value restriction. Howebegl is a perfectly valid choice for
7, and this choice will allow the entire program to elabora®® according to the quote
above, an implementation has to make exactly that choicev, Ndoth declarations are
entered separately into an interactive toplevel the impletation obviously has to defer
commitment to that choice until it has actually seen the sdateclaration. Consequently,
it can do nothing else but reporting an undetermined typ#hifirst declaration. The only
effect the side conditions in rules 87 and 89 have on thisattie types committed to later
may not contain free semantic type variables — but consigehie way such variables are
introduced during type inference (mainly by generaliggtithe only possibility for this is
through a toplevel exception declaration containing a tgréable!®

There are two possibilities of dealing with this matter: tdke the formal rules as they are
and ignore the comment in the appendix, or (2) view the contimean informal “further
restriction” and fix its actual formulation to match the afws intent. Since version 1.1.1
of HaMLet, we implement the intended meaning and disallodatermined types on the
toplevel, although this technically is a violation of therfal rules.

15(*) Note that this observation gives rise to the question tiviethe claim about the existence of principal
environments in Section 4.12 of the SML'90 Definition [MTH@as valid in the first place. It most likely was
not: a declaration like the one ofhas no principal environment that would be expressibleiwithe formalism
of the Definition, despite allowing different choices ofdrenperative type variables. The reasoning that this
relaxation was sufficient to regain principality is basedtom same mix-up of semantic type variables and unde-
termined types as above. The relaxation does not solve ti¥epn with expansive declarations, since semantic
type variables are rather unrelated to it — choosing a secngpe variable for an undetermined type is no more
principal than choosing any particular monotype.

45

B History

Version 1.0 (2001/10/04)

Public release. No history for prior versions.

Version 1.0.1 (2001/10/11)

Basis:

e Fixed ASCII and Unicode escapes@nar.scan andChar.scanC (and thus in
Char.fromString , Char.fromCString , String.fromString).

e Fixed octal escapes @har.toCString (and thusString.toCString).
e Fixed possible NaN's ifReal.scan for mantissa 0 and large exponents.

Documentation:

e Added issue of obligatory formatting characters to Apprndi
e Some minor additions/clarifications in Appendix.

Test cases:

e Added test caseedundant
e Removed accidental carriage returns frasterisk ~, semicolon andtypespec
e Small additions tsemicolon andvalrec

Version 1.1 (2002/07/26)
Basis:

e Adapted signatures to latest version of the Basis spedditfER04].
¢ Implemented new library functions and adapted functiorik wihanged semantics.
e Implemented all signatures and structures dealing withyeaind vector slices.

e Implemented newext structure, along with missingharVector andCharArray
structures.

e Implemented missin@yte structure.
o RemovedSML90structure and signature.

e Use opaque signature constraints where the specificatesitbem (with some nec-
essary exceptions).

e Implemented missingool.scan andBool.fromString
¢ Implemented missin®eal.posinf andReal.negInf
e Handle exceptions frol@har.chr correctly.

e Fixed generation of"X -escapes iChar.toString

e Fixed treatment of gap escape<dhar.scan

46

Test cases:

e Added test caseeplication
e Updated conformance table.

Version 1.1.1 (2004/04/17)
Interpreter:

¢ Disallow undetermined types (a.k.a. “free type variablesi'toplevel.
e Implement accurate scope checking for type names.

Fixed soundness bug w.r.t. undetermined types in type selgemeralisation test.

Reject out-of-range real constants.

Accept multiple line input.

Output file name and line/columns with error messages.

Improved pretty printing.
Basis:

e Sync’ed with updates to the specification [GR04]: overlahdeon words, added
Word.fromLarge ,Word.toLarge ,Word.toLargeX ;removedSubstring.all ;

changedextlO.inputLine ; changedyte.unpackString andByte.unpackStringVec
e FixedString.isSubstring , String.fields , andVector.foldri
Test cases:

e Addedtest caseabstype2 ,dec-strdec ,flexrecord2 ,tyname ,undetermined2 ,
undetermined3

e Split conformance table into different classes of deviatod updated it.

Version 1.1.2 (2005/01/14)
Interpreter:

e Fix parsing of sequential and sharing specifications.
e Add arity checks missing in rules 64 and 78 of the Definition.
¢ Implement type name equality attributetasol .

Basis:
e FixedStringCvt.padLeft andStringCvt.padRight
Documentation:

e Add parsing ambiguity for sharing specifications to issat li
¢ Add missing side conditions in rules 64 and 78 to issue list.

47

e Added version history to appendix.
Test cases:

e Added test casgmly-exception ,tyvar-shadowing , andwhere2 and ex-
tendedd andvalrec

e Updated conformance table.

Version 1.2 (2005/02/04)

Interpreter:

o Refactored code: semantic objects are now collected intonetsre for each part of
the semantics; type variable scoping and closure computégkpansiveness check)
are separated from elaboration module.

e Made checking of syntactic restrictions a separate infar@ass.
e Added missing check for bound variables in signature retdia.
¢ Fixed precedence of environments égren declarations.

e Fixed implementation of Abs operator fabstype .

e Print type name séf of inferred basis in elaboration mode.

e Fixed parenthesisation in pretty printing type applicasio
Basis:

e More correct path resolution farse function.

e AddedcheckFloat toREALsignature so that bootstrapping actually works again.
e FixedArraySlice.copy for overlapping ranges.

e FixedArraySlice.foldr andArraySlice.foldri

e FixedChar.isSpace

e Fixed octal escapes Bhar.fromCString

e Updated treatment of trailing gap escape€har.scan

e Updated scanning of hex prefix Word.scan .

e Fixed traversal order iWector.map
Documentation:

e Added typoin rule 28 to issue list.
Test files:

e Addedgeneralise

o Extendecdpoly-exception

48

Version 1.2.1 (2005/07/27)

Interpreter:

e Fixed bug in implementation of rule 35.

e Fixed bug in check for redundant match rules.
Basis:
e FixedSubstring.splitr

e Fixed border cases i@S.Path.toString ,OS.Path.joinBaseExt
andOS.Path.mkRelative

Version 1.2.2 (2005/12/09)

Interpreter:
e Simplified implementation of pattern checker.
Test files:

e Addedfun-infix

Version 1.2.3 (2006/07/18)

Interpreter:

e Fixed check for duplicate variables in records and layesgtems.

¢ Added missing check for undetermined types in functor dadlans.

,0S.Path.mkAbsolute

e Overhaul of line/column computation and management ofcsofile names.

Documentation:
e Added principal typing problem with functors to issue list.
Test files:

e Addedfun-partial , functor-poly andfunctor-poly2

e Updated conformance table.

Version 1.2.4 (2006/08/14)

Documentation:

e Clarified license.

49

Version 1.3.0 (2007/03/22)

Interpreter:

Output abstract syntax tree in parsing mode.

Output type and signature environments in evaluation mode.

Fixed computation of tynames on a static basis.

Reorganised directory structure.

Some clean-ups.
Documentation:

e Updated a few out-of-sync sections.
e Added typo in definition of, operator (Section 7.2) to issues list.

Test files:

e Extendedsharing andwhere .
e Updated conformance table.

Platforms:

e Support for Poly/ML, Alice ML, and the ML Kit.
e Support for incremental batch compilation with Moscow Mldaklice ML.
e Target to build a generic monolithic source file.

Version 1.3.1 (2008/04/28)

Platforms:

e Preliminary support for SML#.
e Avoid name clash with library of SML/NJ 110.67.
¢ Avoid shell-specific code iMakefile

50

References

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, David M@aeen
The Definition of Standard M{Revised)
The MIT Press, 1997

[MTH90] Robin Milner, Mads Tofte, Robert Harper
The Definition of Standard ML
The MIT Press, 1990

[MT91] Robin Milner, Mads Tofte
Commentary on Standard ML
The MIT Press, 1991

[K93] Stefan Kahrs
Mistakes and Ambiguities in the Definition of Standard ML
University of Edinburgh, 1993
http://www.cs.ukc.ac.uk/pubs/1993/569/

[K96] Stefan Kahrs
Mistakes and Ambiguities in the Definition of Standard ML -déatia
University of Edinburgh, 1996
ftp://ftp.dcs.ed.ac.uk/pub/smk/SML/errors-new.ps.Z

[DBO7] Derek Dreyer, Matthias Blume
Principal Type Schemes for Modular Programs
in: Proc. of the 2007 European Symposium on Programming
Springer-Verlag, 2007

[GR96] Emden Gansner, John Reppy
The Standard ML Basis Librarfpreliminary version 1996)
AT&T and Lucent Technologies, 2004
http://cm.bell-labs.com/cm/cs/what/sminj/doc/basis/

[GRO4] Emden Gansner, John Reppy
The Standard ML Basis Library
Cambridge University Press, 2004
http://www.standardml.org/Basis/

[DM82] Luis Damas, Robin Milner
Principal type schemes for functional programs
in: Proc. of 9th Annual Symposium on Principles of Programgriianguages
ACM Press, 1982

[C87] Luca Cardelli
Basic Polymorphic Typechecking
in: Science of Computer ProgrammiB{)
Elsevier Science Publisher, 1987

[S96] Peter Sestoft
ML pattern match compilation and partial evaluation
in: Dagstuhl Seminar on Partial Evaluation, LNCS 1110
Springer-Verlag 1996
ftp://ftp.dina.kvl.dk/pub/Staff/Peter.Sestoft/paper s/match.ps.gz

[W98] Philip Wadler
A prettier printer

51

[BRTTO3]

[K06]

[NJO7]

[NJ98]

[CFIWO05]

[MO7]

[RRS00]

[ATO6]

[STO7]

[TAOO]

[AMT94]

in: The Fun of Programming
Palgrave Macmillan, 2003
http://cm.bell-labs.com/cm/cs/who/wadler/

Lars Birkedal, Nick Rothwell, Mads Tofte, David fner
The ML Kit(Version 1)
http://www.diku.dk/research-groups/topps/activities

The ML Kit
http://www.it-c.dk/research/mikit/

Standard ML of New Jersey
http://cm.bell-labs.com/cm/cs/what/sminj/

The SML/NJ Library
http://cm.bell-labs.com/cm/cs/what/sminj/doc/sminj-

Henry Ceijtin, Matthew Fluet, Suresh JagannatBtephen Weeks

MLton User Guide
http://www.mlton.org/

David Matthews
Poly/ML
http://www.polyml.org/

Sergei Romanenko, Claudio Russo, Peter Sestoft
Moscow ML Owner’s ManugMersion 2.01)
http://www.dina.kvl.dk/ sestoft/mosml.htmi

The Alice Programming System
http://www.ps.uni-sb.de/alice/

SML# Project
http://www.pllab.riec.tohoku.ac.jp/smisharp/

David Tarditi, Andrew Appel
ML-Yacc User Manua(Version 2.4)
http://cm.bell-labs.com/cm/cs/what/sminj/doc/ML-Yac

Andrew Appel, James Mattson, David Tarditi
A lexical analyzer generator for Standard Miersion 1.6.0)
http://cm.bell-labs.com/cm/cs/what/sminj/doc/ML-Lex

52

/kit2/mlkit1.html

lib/index.html

c¢/manual.html

/manual.html

	Introduction
	Goals
	Bugs in the Definition
	Related Work
	Copyright

	Usage
	Download
	Systems Supported
	Libraries and Tools Used
	Installation
	Using the HaMLet Stand-Alone
	Using HaMLet from within an SML System
	Bootstrapping
	Limitations

	Overview of the Implementation
	Structure of the Definition
	Modularisation
	Mapping Syntactic and Semantic Objects
	Mapping Inference Rules
	Naming Conventions
	Side Effects

	Abstract Syntax and Parsing
	Files
	Abstract Syntax Tree
	Parsing and Lexing
	Grammar Ambiguities and Parsing Problems
	Infix Resolution
	Derived Forms
	Syntactic Restrictions

	Elaboration
	Files
	Types and Unification
	Type Names
	Environment Representation
	Elaboration Rules
	Type Inference
	Type Schemes
	Overloading and Flexible Records
	Recursive Bindings and Datatype Declarations
	Module Elaboration
	Signature Matching
	Checking Patterns

	Evaluation
	Files
	Value Representation
	Evaluation Rules

	Toplevel
	Files
	Program Execution
	Plugging

	Library
	Files
	Language/Library Interaction
	Primitives
	Primitive Library Types
	The use Function
	Library Implementation

	Conclusion
	Mistakes and Ambiguities in the Definition
	Issues in Chapter 2 (Syntax of the Core)
	Issues in Chapter 3 (Syntax of Modules)
	Issues in Chapter 4 (Static Semantics for the Core)
	Issues in Chapter 5 (Static Semantics for Modules)
	Issues in Chapter 6 (Dynamic Semantics for the Core)
	Issues in Chapter 7 (Dynamic Semantics for Modules)
	Issues in Chapter 8 (Programs)
	Issues in Appendix A (Derived Forms)
	Issues in Appendix B (Full Grammar)
	Issues in Appendix D (The Initial Dynamic Basis)
	Issues in Appendix E (Overloading)
	Issues in Appendix G (What's New?)

	History

