
ZU064-05-FPR main 12 December 2012 19:6

Under consideration for publication in J. Functional Programming 1

F-ing modules

ANDREAS ROSSBERG
Google

rossberg@mpi-sws.org

and
CLAUDIO RUSSO
Microsoft Research

crusso@microsoft.com

and
DEREK DREYER

Max Planck Institute for Software Systems (MPI-SWS)
dreyer@mpi-sws.org

Abstract

ML modules are a powerful language mechanism for decomposing programs into reusable compo-
nents. Unfortunately, they also have a reputation for being “complex” and requiring fancy type theory
that is mostly opaque to non-experts. While this reputation is certainly understandable, given the
many non-standard methodologies that have been developed in the process of studying modules, we
aim here to demonstrate that it is undeserved. To do so, we give a very simple elaboration semantics
for a full-featured, higher-order ML-like module language. Our elaboration defines the meaning
of module expressions by a straightforward, compositional translation into vanilla System Fω (the
higher-order polymorphic λ -calculus), under plain Fω typing environments. We thereby show that
ML modules are merely a particular mode of use of System Fω .

We start out with a module language that supports the usual second-class modules with Standard
ML-style generative functors, and includes local module definitions. To demonstrate the versatility
of our approach, we further extend the language with the ability to package modules as first-class
values—a very simple extension, as it turns out—and a novel treatment of OCaml-style applicative
functors. Unlike previous work combining both generative and applicative functors, we do not require
two distinct forms of functor or sealing expressions. Instead, whether a functor is applicative or not
depends only on the computational purity of its body—in fact, we argue that applicative/generative is
rather incidental terminology for what is best understood as pure vs. impure functors. This approach
results in a semantics that we feel is simpler and more natural, and moreover prohibits breaches of
data abstraction that are possible under earlier semantics for applicative functors.

We also revive (in refined form) the long-lost notion of structure sharing from SML’90. Although
previous work on module type systems has disparaged structure sharing as type-theoretically ques-
tionable, we observe that (1) some variant of it is in fact necessary in order to provide a proper
treatment of abstraction in the presence of applicative functors, and (2) it is straightforward to account
for using “phantom types”. Based on this, we can even justify the (previously poorly understood)
“where module” operator for signatures and the related notion of manifest module specifications.

Altogether, we describe a comprehensive, unified, and yet simple semantics of a full-blown mod-
ule language that—with the main exception of cross-module recursion—covers almost all interesting
features that can be found in either the literature or in practical implementations of ML modules. We
prove the language sound and its type checking decidable.

ZU064-05-FPR main 12 December 2012 19:6

2 Andreas Rossberg, Claudio Russo and Derek Dreyer

1 Introduction

Modularity is essential to the development and maintenance of large programs. Although
most modern languages support modular programming and code reuse in one form or
another, the languages in the ML family employ a particularly expressive style of mod-
ule system. The key features shared by all the dialects of the ML module system are
their support for hierarchical namespace management (via structures), a fine-grained va-
riety of interfaces (via translucent signatures), client-side data abstraction (via functors),
implementor-side data abstraction (via sealing), and a flexible form of signature matching
(via structural subtyping).

Unfortunately, while the utility of ML modules is not in dispute, they have nonetheless
acquired a reputation for being “complex”. Simon Peyton Jones (2003), in an oft-cited
POPL keynote address, likened ML modules to a Porsche, due to their “high power, but
poor power/cost ratio”. (In contrast, he likened Haskell—extended with various “sexy”
type system extensions—to a Ford Cortina with alloy wheels.) Although we disagree with
Peyton Jones’ amusing analogy, it seems, based on conversations with many others in the
field, that the view that ML modules are too complex for mere mortals to understand is
sadly predominant.

Why is this so? Are ML modules really more difficult to program/implement/understand
than other ambitious modularity mechanisms, such as GHC’s type classes with type equal-
ity coercions (Sulzmann et al., 2007) or Java’s classes with generics and wildcards (Torg-
ersen et al., 2005)? We think not—although this is obviously a fundamentally subjective
question. One can certainly engage in a constructive debate about whether the mechanisms
that comprise the ML module system are put together in the ideal way, and in fact the
first and third authors have recently done precisely that (Rossberg & Dreyer, 2013). But
we do not believe that the design of the ML module system is the primary source of the
“complexity” complaint.

Rather, we believe the problem is that the literature on the semantics of ML-style module
systems is so vast and fragmented that, to an outsider, it must surely be bewildering.
Many non-standard type-theoretic (Harper et al., 1990; Harper & Lillibridge, 1994; Leroy,
1996; Leroy, 1995; Russo, 1998; Shao, 1999; Dreyer et al., 2003), as well as several ad
hoc, non-type-theoretic (MacQueen & Tofte, 1994; Milner et al., 1997; Biswas, 1995)
methodologies have been developed for explaining, defining, studying, and evolving the
ML module systems, most with subtle semantic differences that are not spelled out clearly
and are known only to experts. As a rich type theory has developed around a number of
these methodologies—e.g., the beautiful meta-theory of singleton kinds (Stone & Harper,
2006)—it is perfectly understandable for someone encountering a paper on module sys-
tems for the first time to feel intimidated by the apparent depth and breadth of knowledge
required to understand module typechecking, let alone module compilation.

In response to this problem, Dreyer, Crary and Harper (2003) developed a unifying
type theory, in which previous systems can be understood as sublanguages that selec-
tively include different features. Although formally and conceptually elegant, their unify-
ing account—which relies on singleton kinds, dependent types, and a subtle effect system—
still gives one the impression that ML module typechecking requires sophisticated type
theory.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 3

In this article, we take a different approach. Our goal is to show once and for all that,
contrary to popular belief (even among experts in the field!), the semantics of ML modules
is immediately accessible to anyone familiar with System Fω , the higher-order polymor-
phic λ -calculus.

How do we achieve this goal? First, instead of defining the semantics of modules via
a “direct” static and dynamic semantics, we employ an elaboration semantics in which
the meaning of module expressions is defined by a simple, compositional translation into
vanilla Fω , under plain Fω typing environments. Our approach thus synthesizes elements
of the two alternative definitions of Standard ML modules given by Harper & Stone (2000)
and Russo (1998). Like the former, we define our semantics by elaboration; but whereas
Harper & Stone elaborate ML modules into yet another module type system—a variant of
Harper & Lillibridge (1994)—we elaborate them into Fω , which is a significantly simpler
system. Like the latter, we classify ML modules using Fω types; our elaboration effectively
provides an evidence translation for a simplified variant of Russo’s definition, which lacked
a dynamic semantics and type soundness proof.

Second, we present our semantics in stages. We begin in Sections 2–4, by showing how
to typecheck and implement a representative ML-style module language—essentially a
higher-order variant of Standard ML’s—and do not attempt to treat all possible variants
of ML module semantics immediately. In particular, this language supports only second-
class modules, not first-class modules (Harper & Lillibridge, 1994; Russo, 2000), and only
SML-style generative functors, not OCaml-style applicative functors (Leroy, 1995). Later,
in Sections 6–7, we demonstrate the versatility of our elaboration approach by extending
the language with both modules-as-first-class-values and applicative functors.

The main task of the elaboration translation is to insert introduction and elimination
forms for existential types and universal types in the appropriate places, as well as to infer
coercions between various Fω types. Thus, our approach substantiates the slogan that ML
modules are just a particular mode of use of System Fω . While other researchers have given
translations from various dialects of ML modules into System Fω before, we are (to our
knowledge) the first to define the semantics of ML modules directly in terms of System Fω .

As an aside, we note that, even for a higher-order SML-like module language, the
generality of Fω ’s higher kinds is only required when the core language supports type
constructors—as is the case in ML. Viewed separately, our module elaboration does not
rely on higher-kinded type abstraction. Indeed, for a simpler core language with just type
(but not type constructor) definitions, modules can be elaborated to plain System F. (By
contrast, the extension to applicative functors, mentioned below, does require higher kinds.)

Our main reason for focusing on an SML-like module system first is that its semantics is
very simple. As evidence of this simplicity, the inference rules comprising our elaboration
translation are (with only one mild exception) short and sweet. For purposes of comparison,
the semantics of Featherweight GJ (Igarashi et al., 2001) has roughly the same number of
inference rules as our elaboration translation.1 However, Featherweight GJ only defines

1 Of course, the complete semantics of our language would additionally include the static and
dynamic semantics of Fω , but concerning the “effort required to grok”, we think it makes more
sense to compare the sizes of the non-standard components of the semantics.

ZU064-05-FPR main 12 December 2012 19:6

4 Andreas Rossberg, Claudio Russo and Derek Dreyer

a toy version of GJ, whereas our elaboration defines the semantics of a full-featured pro-
grammable module language, omitting no defining feature of Standard ML modules.

We show in Section 6 how to extend our language (and its semantics) with the ability to
package modules as first-class values. This turns out to be a very easy extension.

In Sections 7–9 we then show how to handle OCaml-style applicative functor semantics,
following ideas from Russo (1998). This latter extension is significantly more involved,
which makes sense given that many of the subtle differences between the various accounts
of ML modules in the literature (Russo, 1998; Leroy, 1995; Shao, 1999; Dreyer et al.,
2003) revolve around the semantics of applicative functors.

While the semantics we give for applicative functors is not as simple as our basic
elaboration, we have nonetheless taken the opportunity to address some overly complex
and/or semantically problematic aspects of previous approaches. Unlike earlier unifying
accounts of ML modules (Dreyer et al., 2003; Romanenko et al., 2000; Russo, 2003), we
do not require two distinct forms of functor (or two different forms of module sealing).
Instead, our type system deems a functor to be applicative iff the body of the functor is
known to be computationally pure, and generative otherwise. This approach renders the
semantics of the language much simpler and more intuitive than in prior work.

In addition, we revive the long-lost notion of structure sharing from Standard ML
’90 (Milner et al., 1990), in the form of more fine-grained value sharing. Although previous
work on module type systems has disparaged this form of sharing as type-theoretically
questionable, we observe that it is in fact necessary in order to provide a proper treatment
of data abstraction in the presence of applicative functors. Moreover, it is easy to account
for in a type-theoretic manner using “phantom types” as “stamps”.

In general, we have tried to give this article the flavor of a brisk tutorial, assuming
of the reader no prior knowledge concerning the typechecking and implementation of
ML modules. However, this is not (intended to be) a tutorial on programming with ML
modules, nor is it a tutorial on the design considerations that influenced the development of
ML modules. For the former, there are numerous sources to choose from, such as Harper’s
draft book on SML (Harper, 2012) and Paulson’s book (1996). For the latter, we refer the
reader to Harper and Pierce (2005), as well as the early chapters of the second and third
authors’ PhD theses (Russo, 1998; Dreyer, 2005).

For those familiar with an earlier version of this article that was published in the TLDI
workshop (Rossberg et al., 2010), we note that the major difference in the present ver-
sion is the novel account of applicative functors in Sections 7–9 (the workshop version
only treated generative functors). We now also offer expanded discussions of first-class
modules, our Coq mechanization, and related work, as well as many more details of the
meta-theory.

2 The module language

Figure 1 presents the syntax of our module language. We assume a core language con-
sisting of syntax for kinds, types, and expressions, whose details do not matter for our
development. The module language is very similar to that of Standard ML, except that
functors are higher-order, and signature declarations may be nested inside structures. The
syntax contains all the features one would expect to find: value/type/module/signature

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 5

(identifiers) X
(kinds) K ::= . . .
(types) T ::= . . . | P
(expressions) E ::= . . . | P
(paths) P ::= M

(modules) M ::= X
| {B} | M.X
| fun X :S⇒M | X X
| X :>S

(bindings) B ::= val X=E
| type X=T
| module X=M
| signature X=S
| include M
| ε

| B;B

(signatures) S ::= P
| {D}
| (X :S)→S
| S where type X=T

(declarations) D ::= val X :T
| type X=T | type X :K
| module X :S
| signature X=S
| include S
| ε

| D;D

Fig. 1. Syntax of the module language

(types) let B in T := {B; type X=T}.X
(expressions) let B in E := {B; val X=E}.X
(signatures) let B in S := {B; signature X=S}.X

P M := (P M).It
(modules) let B in M := {B; module X=M}.X

M1 M2 := let module X1=M1; module X2=M2 in X1 X2
M:>S := let module X=M in X :>S
M:S := (fun X :S⇒X)M

(declarations) local B in D := include (let B in {D})
signature X(X ′:S′)=S := module X : (X ′:S′)→{signature It=S}

(bindings) local B in B′ := include (let B in {B′})
signature X(X ′:S′)=S := module X = fun X ′:S′⇒{signature It=S}

Fig. 2. Derived forms

bindings/declarations (where, like SML, we implicitly allow omitting the separating “;”);
hierarchical structures with projection via the dot notation; structure/signature inheritance
with include; functors and functor signatures; and sealing (a.k.a. opaque signature as-
cription). In some cases, the syntax restricts module expressions in certain positions (e.g.,
the components of a functor application) to be identifiers X . This is merely to make the
semantics of the language that we define in Section 4 as simple as possible.

More general variants of these constructs, as well as other constructs such as “let”-
expressions, “local” bindings/declarations, and parameterized signatures, are definable as
derived forms on a variety of syntactic levels (Figure 2). Using these derived forms, Fig-
ure 3 shows the implementation of a standard Set functor.

One point of note is the notion of paths. A path P is the mechanism by which types,
values, and signatures may be projected out of modules. In SML and OCaml, paths are
syntactically restricted module expressions, such as an identifier X followed by a series
of projections. The reason for the syntactic restriction is essentially that not all projections

ZU064-05-FPR main 12 December 2012 19:6

6 Andreas Rossberg, Claudio Russo and Derek Dreyer

from modules are sensible. For example, consider a module M = (M′ :> {type t; val x:t})
that defines both an abstract type t and a value x of type t. Then M.t is not a valid path,
because it denotes a fresh abstract type that is not well defined outside of the module. Put
another way, M.t does not make sense because the sealing in the definition of M should
prevent one from tying the identity of its t component back to the module expression M
itself. Likewise, M.x is not valid because it cannot be given a type that makes sense outside
of the module.

Here, instead of restricting the syntax of paths P, we instead restrict their semantics. That
is, paths are syntactically just arbitrary module expressions, but the typing rule for paths P
will impose additional restrictions on P’s signature.

In a similar manner, our module-level projection construct M.X is also more permissive
than in actual SML, in that M is allowed to be an arbitrary module expression. It is worth
noting that this, together with our more permissive notion of path, allows us to define very
general forms of local module bindings simply as derived syntax (Figure 2).

3 System Fω

Our goal in this article is to define the semantics of the module language by translation
into System Fω . To differentiate external (module) and internal (Fω) language, we use
lowercase letters to range over phrases of the latter. Figure 4 gives the syntax of the variant
of System Fω that we use as the target of our elaboration. It includes record types (where
we assume that labels are always disjoint), but is otherwise completely standard. In the
grammar, and elsewhere, we liberally use the meta-notation A to stand for zero or more
iterations of an object or formula A. (We will also sometimes abuse the notation A to
actually denote the unordered set {A}.)

We write fv(τ) for the free variables of τ .

Semantics The full static semantics is given in Figure 5. The only point of note is that,
unlike in most presentations, our typing environments Γ permit shadowing of bindings for
value variables x (but not for type variables α). Thus, we take the notation Γ(x) to denote
the rightmost binding of x in Γ. Allowing shadowing turns out to be convenient for our
purposes.

We assume a standard left-to-right call-by-value dynamic semantics, which is defined in
Figure 6. However, other choices of evaluation order are possible as well, and would not
affect our development.

Properties The calculus as defined here enjoys the standard soundness properties:

Theorem 3.1 (Preservation)
If · ` e : τ and e ↪→ e′, then · ` e′ : τ .

Theorem 3.2 (Progress)
If · ` e : τ and e 6= v for any v, then e ↪→ e′ for some e′.

The proofs are entirely standard, and thus omitted.
The calculus also has the usual technical properties, the most relevant for our purposes

being the following:

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 7

signature EQ =
{

type t
val eq : t × t → bool

}

signature ORD =
{

include EQ
val less : t × t → bool

}

signature SET =
{

type set
type elem
val empty : set
val add : elem × set → set
val mem : elem × set → bool

}

module Set = fun Elem : ORD ⇒
{

type elem = Elem.t
type set = list elem
val empty = []
val add (x, s) = case s of
| [] ⇒ [x]
| y :: s’ ⇒ if Elem.eq (x, y) then s else if Elem.less (x, y) then x :: s else y :: add (x, s’)

val mem (x, s) = case s of
| [] ⇒ false
| y :: s’ ⇒ Elem.eq (y, x) or (Elem.less (y, x) and mem (x, s’))

} :> SET where type elem = Elem.t

module IntSet = Set {type t = int; val eq = Int.eq; val less = Int.less}

Fig. 3. Example: a functor for sets

(kinds) κ ::= Ω | κ → κ

(types) τ ::= α | τ → τ | {l:τ} | ∀α:κ.τ | ∃α:κ.τ | λα:κ.τ | τ τ

(terms) e ::= x | λx:τ.e | e e | {l=e} | e.l | λα:κ.e | e τ | pack 〈τ,e〉τ | unpack 〈α,x〉=e in e
(values) v ::= λx:τ.e | {l=v} | λα:κ.e | pack 〈τ,v〉τ
(environ’s) Γ ::= · | Γ,α:κ | Γ,x:τ

Fig. 4. Syntax of Fω

Lemma 3.3 (Validity)
1. If Γ ` τ : Ω, then Γ `�.
2. If Γ ` e : τ , then Γ ` τ : Ω.

Lemma 3.4 (Weakening)
Let Γ′ ⊇ Γ with Γ′ `�.

1. If Γ ` τ : κ , then Γ′ ` τ : κ .

ZU064-05-FPR main 12 December 2012 19:6

8 Andreas Rossberg, Claudio Russo and Derek Dreyer

Environments Γ `�

· `�
Γ `� α /∈ dom(Γ)

Γ,α:κ `�
Γ ` τ : Ω

Γ,x:τ `�

Types Γ ` τ : κ

Γ ` τ1 : Ω Γ ` τ2 : Ω

Γ ` τ1→ τ2 : Ω

Γ ` τ : Ω Γ `�
Γ ` {l:τ} : Ω

Γ `�
Γ ` α : Γ(α)

Γ,α:κ ` τ : Ω

Γ ` ∀α:κ.τ : Ω

Γ,α:κ ` τ : Ω

Γ ` ∃α:κ.τ : Ω

Γ,α:κ ` τ : κ ′

Γ ` λα:κ.τ : κ → κ ′
Γ ` τ1 : κ ′→ κ Γ ` τ2 : κ ′

Γ ` τ1 τ2 : κ

Terms Γ ` e : τ

Γ `�
Γ ` x : Γ(x)

Γ ` e : τ ′ τ ′ ≡ τ Γ ` τ : Ω

Γ ` e : τ

Γ,x:τ ` e : τ ′

Γ ` λx:τ.e : τ → τ ′
Γ ` e1 : τ ′→ τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e : τ Γ `�
Γ ` {l=e} : {l:τ}

Γ ` e : {l:τ, l′:τ ′}
Γ ` e.l : τ

Γ,α:κ ` e : τ

Γ ` λα:κ.e : ∀α:κ.τ

Γ ` e : ∀α:κ.τ ′ Γ ` τ : κ

Γ ` e τ : τ ′[τ/α]

Γ ` τ : κ Γ ` e : τ ′[τ/α] Γ ` ∃α:κ.τ ′ : Ω

Γ ` pack 〈τ,e〉∃α:κ.τ ′ : ∃α:κ.τ ′

Γ ` e1 : ∃α:κ.τ ′ Γ,α:κ,x:τ ′ ` e2 : τ Γ ` τ : Ω

Γ ` unpack 〈α,x〉=e1 in e2 : τ

Type equivalence τ ≡ τ ′

τ ≡ τ

τ ′ ≡ τ

τ ≡ τ ′
τ ≡ τ ′ τ ′ ≡ τ ′′

τ ≡ τ ′′

τ1 ≡ τ ′1 τ2 ≡ τ ′2
τ1→ τ2 ≡ τ ′1→ τ ′2

τ ≡ τ ′

{l:τ} ≡ {l:τ ′}

τ ≡ τ ′

∀α:κ.τ ≡ ∀α:κ.τ ′
τ ≡ τ ′

∃α:κ.τ ≡ ∃α:κ.τ ′

τ ≡ τ ′

λα:κ.τ ≡ λα:κ.τ ′
τ1 ≡ τ ′1 τ2 ≡ τ ′2

τ1 τ2 ≡ τ ′1 τ ′2

(λα:κ.τ1) τ2 ≡ τ1[τ2/α]
α /∈ fv(τ)

(λα:κ.τ α)≡ τ

Fig. 5. Fω typing

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 9

Reduction e ↪→ e′

(λx:τ.e) v ↪→ e[v/x]
{l1=v1, l=v, l2=v2}.l ↪→ v

(λα:κ.e) τ ↪→ e[τ/α]
unpack 〈α,x〉= pack 〈τ,v〉τ ′ in e ↪→ e[τ/α][v/x]

C[e] ↪→ C[e′] if e ↪→ e′

C ::= [] |C e | v C | {l1=v, l=C, l2=e} |C.l |C τ | pack 〈τ,C〉τ | unpack 〈α,x〉=C in e

Fig. 6. Fω reduction

2. If Γ ` e : τ , then Γ′ ` e : τ .

Lemma 3.5 (Strengthening)
Let Γ′ ⊆ Γ with Γ′ `� and D = dom(Γ)\dom(Γ′).

1. If Γ ` τ : κ and fv(τ)∩D = /0, then Γ′ ` τ : κ .
2. If Γ ` e : τ and fv(e)∩D = /0, then Γ′ ` e : τ .

Theorem 3.6 (Uniqueness of types and kinds)
Assume Γ `�.

1. If Γ ` τ : κ1 and Γ ` τ : κ2, then κ1 = κ2.
2. If Γ ` e : τ1 and Γ ` e : τ2, then τ1 ≡ τ2.

Finally, all judgments of the Fω type system are decidable:

Theorem 3.7 (Decidability)
1. It is decidable whether Γ `�.
2. It is decidable whether Γ ` τ : κ .
3. It is decidable whether Γ ` e : τ .
4. If Γ ` τ1 : κ and Γ ` τ2 : κ , it is decidable whether τ1 ≡ τ2.

Note that τ1 ≡ τ2 is defined over raw (i.e., not necessarily well-kinded) types; in particular,
even if τ1 and τ2 are well-kinded, their equivalence may be established by transitively
connecting them through some intermediate types that are ill-kinded. However, as long as
τ1 and τ2 are well-kinded, and they have the same kind, one can test for their equality
by βη-reducing them to normal forms (a process which must terminate due to strong
normalization of βη-reduction) and then comparing the normal forms for α-equivalence.
The proof that this algorithm is complete requires only a straightforward extension of the
corresponding proof for the simply-typed λ -calculus (Geuvers, 1992), of which Fω ’s type
language is but a minor generalization.

From here on, we will usually silently assume all these standard properties as given and
omit any explicit reference to the above lemmas and theorems.

Parallel substitution We will also make use of parallel type substitutions on Fω types
and terms. We write them as [τ/α] and implicitly assume that τ and α are vectors with
the same arity. Furthermore, the following definitions and lemmas will come in handy in
dealing with parallel type substitutions in proofs.

ZU064-05-FPR main 12 December 2012 19:6

10 Andreas Rossberg, Claudio Russo and Derek Dreyer

∃ε.τ := τ

∃α.τ := ∃α1.∃α ′.τ
pack 〈ε,e〉∃ε.τ0 := e
pack 〈τ,e〉∃α.τ0 := pack 〈τ1,pack 〈τ ′,e〉∃α ′.τ0[τ1/α1]〉∃α.τ0

unpack 〈ε,x:τ〉= e1 in e2 := let x:τ = e1 in e2
unpack 〈α,x:τ〉= e1 in e2 := unpack 〈α1,x1〉= e1 in unpack 〈α ′,x:τ〉= x1 in e2
let x:τ = e1 in e2 := (λx:τ.e2)e1

(where τ = τ1τ
′ and α = α1α

′)

Fig. 7. Notational abbreviations for Fω

Definition 3.8 (Typing of type substitutions)
We write Γ′ ` [τ/α] : Γ if and only if

1. Γ′ `�,
2. α ⊆ dom(Γ),
3. for all α ∈ dom(Γ), Γ′ ` α[τ/α] : Γ(α),
4. for all x ∈ dom(Γ), Γ′ ` x : Γ(x)[τ/α].

Lemma 3.9 (Type substitution)
Let Γ′ ` [τ/α] : Γ. Then:

1. If Γ ` τ ′ : κ , then Γ′ ` τ ′[τ/α] : κ .
2. If Γ ` e : τ ′, then Γ′ ` e[τ/α] : τ ′[τ/α].

Abbreviations Figure 7 defines some syntactic sugar for n-ary pack’s and unpack’s that
introduce/eliminate existential types ∃α.τ quantifying over several type variables at once.
We will use n-ary forms of other constructs (e.g., application of a type λ), defined in all
instances in the obvious way.

To ease notation in the elaboration rules that follow, we will typically omit kind anno-
tations on type variables in the environment and on binders. Where needed, we use the
notation κα to refer to the kind implicitly associated with α . For brevity, we will also
usually drop the type annotations from let, pack, and unpack when they are clear from
context.

4 Elaboration

We will now define the semantics of the module language by elaboration into System
Fω . That is, we will give (syntax-directed) translation rules that interpret signatures as Fω

types, and modules as Fω terms. Our elaboration translation builds on a number of ideas
for representing modules that originate in previous work (see Section 11 for a detailed
discussion), but we do not assume that the reader is familiar with any of these ideas and
thus explain them all from first principles.

Identifiers In order to treat identifier bindings in as simple a manner as possible, we make
several assumptions. First, we assume that identifiers X of the module language can be
injectively mapped to variables x of Fω . To streamline the presentation, we assume that

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 11

Γ ` K κ (kind elaboration)
Γ ` T : κ τ (type elaboration)
Γ ` E : τ e (expression elaboration)

Γ ` P : Σ e (path elaboration)
Γ `M : Ξ e (module elaboration)
Γ ` B : Ξ e (binding elaboration)

Γ ` S Ξ (signature elaboration)
Γ ` D Ξ (declaration elaboration)

Γ ` Σ≤ Ξ ↑ τ f (signature matching)
Γ ` Ξ≤ Ξ′ f (signature subtyping)

Fig. 8. Elaboration judgments

this mapping is applied implicitly, and thus we use module-language identifiers as if they
were Fω variables.

Second, we assume that there is an injective embedding of Fω variables into Fω labels.
That is, for every (free) variable x there is a unique label lx from which x can be recon-
structed. Together with the first assumption this means that, wherever we write lX (with X
being a module language identifier), we take this to mean that X has been embedded into
the set of Fω variables, which in turn has been embedded into the set of labels. Since both
embeddings are injective, X uniquely determines lX and vice versa.

Finally, we deal with shadowing of module-language identifiers simply via shadowing in
the Fω environment (see Section 3). Consequently, we need not make any specific provision
for variable shadowing in our rules. Only when identifiers are turned into labels (e.g., as
structure fields) do we need to explicitly avoid duplicates.

Judgments The judgments comprising our elaboration semantics are listed in Figure 8.
Most of these are translation judgments, which translate module-language entities into Fω

entities of the corresponding variety. The last two are auxiliary judgments for signature
matching and subtyping, which we will explain a bit later.

In places where we do not care about evidence terms, we will often write judgments
without the “ e” or “ f ” part. In addition, we use Γ ` Ξ ≤≥ Ξ′ as a shorthand for
mutual subtyping Γ ` Ξ≤ Ξ′ ∧ Γ ` Ξ′ ≤ Ξ.

A number of the elaboration judgments concern semantic signatures Ξ or Σ. Semantic
signatures are just a subclass of Fω types that serve as the semantic interpretations of
syntactic (i.e., module-language) signatures S, as well as the classifiers of modules M.
Since semantic signatures are so central to elaboration, we’ll start by explaining how they
work.

Semantic signatures The syntax of semantic signatures is given in Figure 9. (And no,
this is not an oxymoron, for in our setting the “semantic objects” we are using to model
modules are merely pieces of Fω syntax.)

Following Mitchell and Plotkin (1988), the basic idea behind semantic signatures is to
view a signature as an existential type, with the existential serving as a binder for all the
abstract types declared in the signature. In particular, an abstract semantic signature Ξ has

ZU064-05-FPR main 12 December 2012 19:6

12 Andreas Rossberg, Claudio Russo and Derek Dreyer

(abstract signatures) Ξ ::= ∃α.Σ

(concrete signatures) Σ ::= [τ] | [= τ : κ] | [= Ξ] | {lX : Σ} | ∀α.Σ→ Ξ

(types) [τ] := {val : τ}
[= τ : κ] := {typ : ∀α : (κ →Ω).α τ → α τ}
[= Ξ] := {sig : Ξ→ Ξ}

(terms) [e] := {val = e}
[τ : κ] := {typ = λα : (κ →Ω).λx : α τ.x}
[Ξ] := {sig = λx : Ξ.x}

(meta-projection) Σ.ε := Σ

{l : Σ, l′ : Σ′}.l.l := Σ.l

Fig. 9. Semantic signatures and their Fω encodings

the form ∃α.Σ, where α names all the abstract types declared in the signature, and where
Σ is a concrete version of the signature. Σ is concrete in the sense that each (formerly)
abstract type declaration is made transparently equal to the corresponding existentially-
bound variable among the α . (We will see an example of this shortly.)

A concrete signature Σ, in turn, can be either an atomic signature ([τ], [= τ : κ], or
[= Ξ], each denoting a single anonymous value, type, or signature declaration, respec-
tively), a structure signature (represented as a record type {lX : Σ}), or a functor signature
(represented by the polymorphic function type ∀α.Σ→ Ξ).

The atomic signature forms are just syntactic sugar for Fω types of a certain form. Their
encodings (also shown in Figure 9) refer to special labels val, typ, and sig, which we
assume are disjoint from the set of labels lX corresponding to module-language identifiers.
Of particular note are the encodings for type and signature declarations, which may seem
slightly odd because they both appear to declare a value of the same type as the identity
function. This is merely a coding trick: type and signature declarations are only relevant at
compile time, and thus the actual values that inhabit these atomic signatures are irrelevant.
The important point is that (1) they are inhabited, and (2) the signatures [= τ : κ] and [= Ξ]
uniquely (up to Fω type equivalence) determine τ and Ξ, respectively. The encoding for
[= τ : κ] is chosen such that it supports arbitrary κ .

In the remainder of this article, we will assume implicitly that all semantic types and sig-
natures are reduced to βη-normal form. Likewise, we assume that all uses of substitution
are followed by an implicit normalization step. This is convenient as a way of determinizing
elaboration, as well as ensuring that types produced by elaboration mention the minimal
set of free type variables relevant to their identity (cf. “path elaboration” below).

Signature elaboration The elaboration of signatures (Figure 10) is really very straight-
forward. The only significant difference between a syntactic module-language signature
and its semantic interpretation is that, in the latter, all the abstract types declared in the
signature are collected together, hoisted out, and bound existentially at the outermost level
of the signature.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 13

Signatures Γ ` S Ξ

Γ ` P : [= Ξ] e
Γ ` P Ξ

S-PATH

Γ ` D Ξ

Γ ` {D} Ξ
S-STRUCT

Γ ` S1 ∃α.Σ Γ,α,X :Σ ` S2 Ξ

Γ ` (X :S1)→S2 ∀α.Σ→ Ξ
S-FUNCT

Γ ` S ∃α1αα2.Σ Σ.lX = [= α : κ] Γ ` T : κ τ

Γ ` S where type X=T ∃α1α2.Σ[τ/α]
S-WHERE-TYP

Declarations Γ ` D Ξ

Γ ` T : Ω τ

Γ ` val X :T {lX : [τ]}
D-VAL

Γ ` T : κ τ

Γ ` type X=T {lX : [= τ : κ]}
D-TYP-EQ

Γ ` K κα

Γ ` type X :K ∃α.{lX : [= α : κα]}
D-TYP

Γ ` S ∃α.Σ

Γ `module X :S ∃α.{lX : Σ}
D-MOD

Γ ` S Ξ

Γ ` signature X=S {lX : [= Ξ]}
D-SIG-EQ

Γ ` S ∃α.{lX : Σ}
Γ ` include S ∃α.{lX : Σ}

D-INCL

Γ ` ε {}
D-EMT

Γ ` D1 ∃α1.{lX1 : Σ1}
Γ,α1,X1:Σ1 ` D2 ∃α2.{lX2 : Σ2} lX1 ∩ lX2 = /0

Γ ` D1;D2 ∃α1α2.{lX1 : Σ1, lX2 : Σ2}
D-SEQ

Fig. 10. Signature elaboration

For example, consider the following syntactic signature:

{module A : {type t; val v : t};
signature S = {val f : A.t → int}}

This signature declares one abstract type (A.t), so the semantic Fω interpretation of the
signature will bind one abstract type α:

∃α.{ lA : {lt : [= α : Ω], lv : [α]}, lS : [= {lf : [α → int]}] }

ZU064-05-FPR main 12 December 2012 19:6

14 Andreas Rossberg, Claudio Russo and Derek Dreyer

SET ∃α1α2.{set : [= α1 : Ω],
elem : [= α2 : Ω],
empty : [α1],
add : [α2×α1→ α1],
mem : [α2×α1→ bool]}

(Elem : ORD) → (SET where type elem = Elem.t)
 ∀α.{t : [= α : Ω],

eq : [α×α → bool],
less : [α×α → bool]}
→ ∃β .{set : [= β : Ω],

elem : [= α : Ω],
empty : [β],
add : [α×β → β],
mem : [α×β → bool]}

Fig. 11. Example: signature elaboration

For legibility, in the sequel we’ll finesse the injections (lX) from source identifiers into
labels, instead writing this signature as:

∃α.{ A : {t : [= α : Ω], v : [α]}, S : [= {f : [α → int]}] }

The signature is modeled as a record type with two fields, A and S. The A field has two
subfields—t and v—the first of which has an atomic signature denoting that t is a type
component equal to α , the second of which has an atomic signature denoting that v is a
value component of type α (i.e., t). The S field has an atomic signature denoting that S is
a signature component whose definition is the semantic signature {f : [α → int]}.

Note that, by hoisting the binding for the abstract type α to the outermost scope of the
signature, we have made the apparent dependency between the declaration of signature S

and the declaration of module A—i.e., the reference in S’s declaration to the type A.t—
disappear! Moreover, whereas in the original syntactic signature the abstract type was
referred to as t in one place and as A.t in another, in the semantic signature all references
to the same abstract type component use the same name (here, α). These simplifications
(1) make clear that you do not need dependent types in order to model ML signatures, and
(2) allow us to avoid any “signature strengthening” (aka “selfification”) machinery, of the
sort one finds in all the “syntactic” type systems for modules (Harper & Lillibridge, 1994;
Leroy, 1996; Leroy, 1995; Shao, 1999; Dreyer et al., 2003).

The only semantic signature form not exhibited in the above example is the functor
signature ∀α.Σ→ Ξ. The important point about this signature is that the α are universally
quantified, which enables them to be mentioned in both the argument signature Σ and the
result signature Ξ. If functor signatures were instead represented as Ξ→ Ξ′, then the result
signature Ξ′ would not be able to depend on any abstract types declared in the argument.

An example of a functor signature can be seen in Figure 11. It gives the translation of
the signature SET from the example in Figure 3, along with the translation of the signature

(Elem : ORD) → (SET where type elem = Elem.t)

which classifies the Set functor itself.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 15

Given our informal explanation, the formal rules in Figure 10 should now be very easy
to follow. A few points of note, though.

The rule S-WHERE-TYP for where type employs a convenient bit of shorthand notation
defined in Figure 9, namely: Σ.lX denotes the signature of the lX component of Σ. This is
used to check that the type component being refined is in fact an abstract type component
(i.e., equivalent to one of the α bound existentially by the signature).

In the rule D-SEQ, for sequences of declarations D1;D2, the side condition that the label
sets lX1 and lX2 are disjoint is imposed because signatures may not declare two components
with the same name. Also, note that the identifiers X1, implicitly embedded as Fω variables,
may shadow other bindings in Γ. This is one place where it is convenient to rely on
shadowing being permissible in the Fω environments.

Finally, the rule S-PATH for signature paths P refers in its premise to the path elaboration
judgment (which we will discuss later) solely in order to look up the semantic signature Ξ

that P should expand to. As noted above in the discussion of atomic signatures, the actual
term e inhabiting the atomic signature [= Ξ] is irrelevant.

Signature matching and subtyping Signature matching (Figure 12) is a key element of
the ML module system. For sealed module expressions, we must check that the signature
of the module being sealed matches the sealing signature. At functor applications, we must
check that the signature of the actual argument matches the formal argument signature of
the functor.

What happens during signature matching is really quite simple. First of all, in all places
where signature matching occurs, the source signature—i.e., the signature of the module
being matched—is expressible as a concrete semantic signature Σ. (To see why, skip ahead
to module elaboration.) The target signature—i.e., the signature being matched against—
on the other hand is abstract. To match against an abstract signature ∃α.Σ′, we must solve
for the α . That is, we must find some τ such that the source signature matches Σ′[τ/α].
(Fortunately, if such a τ exists, it is unique, and there is an easy way of finding it by
inspecting Σ—the details are in Section 5.2.) Then, the problem of signature matching
reduces to the question of whether Σ is a subtype of Σ′[τ/α], which can be determined by
a straightforward structural analysis of the two concrete signatures.

As a simple example, consider matching

{A : {t : [= int :Ω], u : [int], v : [int]}, S : [={f : [int→ int]}]}

against the abstract signature

∃α.{A : {t : [= α : Ω], v : [α]}, S : [= {f : [α → int]}]}

from our signature elaboration example (above). The τ returned by the matching judgment
would here be simply int, and the subtyping check would determine that the first signature
is a width/depth subtype of the second after substituting int for α .

The signature matching judgment has the form Γ ` Σ≤ Ξ ↑ τ f . It matches a concrete
Σ against an abstract Ξ of the form ∃α.Σ′ as described above, synthesizing the solution τ

for α , as well as the coercion f from Σ to Σ′[τ/α] (rule U-MATCH).
While the purpose of signature matching is to relate concrete to abstract signatures,

signature subtyping, Γ ` Ξ ≤ Ξ′ f , only relates signatures within the same class and

ZU064-05-FPR main 12 December 2012 19:6

16 Andreas Rossberg, Claudio Russo and Derek Dreyer

Matching Γ ` Σ≤ Ξ ↑ τ f

Γ ` τ : κα Γ ` Σ≤ Σ′[τ/α] f
Γ ` Σ≤ ∃α.Σ′ ↑ τ f

U-MATCH

Subtyping Γ ` Ξ≤ Ξ′ f

Γ ` τ ≤ τ ′ f
Γ ` [τ]≤ [τ ′] λx:[τ].[f (x.val)]

U-VAL

τ = τ ′

Γ ` [= τ : κ]≤ [= τ ′ : κ] λx:[= τ : κ].x
U-TYP

Γ ` Ξ≤ Ξ′ f Γ ` Ξ′ ≤ Ξ f ′

Γ ` [= Ξ]≤ [= Ξ′] λx:[= Ξ]. [Ξ′]
U-SIG

Γ ` Σ1 ≤ Σ′1 f

Γ ` {l1 : Σ1, l2 : Σ2} ≤ {l1 : Σ′1} λx:{l1 : Σ1, l2 : Σ2}.{l1 = f (x.l1)}
U-STRUCT

Γ,α ′ ` Σ′ ≤ ∃α.Σ ↑ τ f1 Γ,α ′ ` Ξ[τ/α]≤ Ξ′ f2
Γ ` (∀α.Σ→ Ξ)≤ (∀α ′.Σ′→ Ξ′) λ f :(∀α.Σ→ Ξ).λα

′.λx:Σ′. f2 (f τ (f1 x))
U-FUNCT

Γ,α ` Σ≤ ∃α ′.Σ′ ↑ τ f
Γ ` ∃α.Σ≤ ∃α ′.Σ′ λx:(∃α.Σ).unpack 〈α,y〉= x in pack 〈τ, f y〉

U-ABS

Fig. 12. Signature matching and subtyping

synthesizes a respective coercion. Consequently, subtyping is defined by cases on Ξ and
Ξ′.

For value declarations (rule U-VAL), signature subtyping appeals to the subtyping judg-
ment for the core language, Γ ` τ ≤ τ ′ f . For an ML-like core language, subtyping
serves to specialize a more general polymorphic type scheme to a less general one. To take
a concrete example, the empty field of the Set functor in Figure 3 would, in ML, receive
polymorphic scheme ∀β .listβ , but when the functor body is matched against the sealing
signature (SET where type . . .), the type of empty would be coerced to the monomorphic
type list α (where α represents Elem.t).

For type declarations (rule U-TYP), we require type equivalence, so subtyping just
produces an identity coercion.

For signature declarations (rule U-SIG), we do not require that they are equal (as types),
but merely mutual subtypes, because type equivalence would be too fine-grained. In partic-
ular, signatures that differ syntactically only in the order of their declarations will elaborate
to semantic signatures that differ only in the order in which their existential type variables
are bound. Such differences should be inconsequential in the source program, and thus
signature equivalence has to be coarse enough to ignore such semantically irrelevant dif-
ferences.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 17

For structure signatures, we allow both width and depth subtyping (rule U-STRUCT). For
functor signatures, ∀α.Σ→Ξ and ∀α ′.Σ′→Ξ′, subtyping proceeds in the usual contra- and
co-variant manner (rule U-FUNCT): after introducing α

′, we match the domains contravari-
antly to determine an instantiation τ for α such that Σ′ ≤ Σ[τ/α]; then, we (covariantly)
check that the (instantiated) co-domain Ξ[τ/α] subtypes Ξ′. This allows for polymorphic
specialization, i.e., a more polymorphic functor signature may subtype a less polymorphic
one.

Dually, for abstract semantic signatures ∃α.Σ and ∃α ′.Σ′, subtyping recursively reduces
to eliminating ∃α.Σ, then matching Σ against Σ′ to determine witness types τ for α

′; thus,
a less abstract signature may subtype a more abstract one (rule U-ABS).

The coercion terms f synthesized by the subtyping rules are straightforward—given the
required invariant, Γ ` f : Ξ→ Ξ′, they practically write themselves. This invariant also
determines the elided type annotation on the pack expression in the U-ABS rule.

Module elaboration The module elaboration judgment (Figure 13), which has the form
Γ `M : Ξ e, assigns module M the semantic signature Ξ and additionally translates M
to an Fω term e of type Ξ. (The invariant, Γ ` e : Ξ, determines elided pack annotations.)
As in signature elaboration, the basic idea in module elaboration is to assign M an abstract
signature ∃α.Σ such that α represent all the abstract types that M defines. The difference
here is that we must also construct the term e that has this signature—i.e., the evidence.

One way to understand the evidence construction is to think of the existential type ∃α.Σ

as a monad that encapsulates the “effect” of defining abstract types. When we want to use
a module of this signature, we must first unpack it (think: monadic bind), obtaining some
fresh abstract types α and a variable x of type Σ. We can then do whatever we want with
x, ultimately producing another module of signature ∃α ′.Σ′. Of course, Σ′ may have free
references to the α , so at the end we must repack the result with the α to form a module
of signature ∃α α

′.Σ′. Thus, the abstract types α defined by M propagate monadically into
the set of abstract types defined by any module that uses M. As many researchers have
pointed out (MacQueen, 1986; Cardelli & Leroy, 1990), this monadic unpack/repack style
of existential programming would be annoying to program manually, but fortunately it is
easy for module elaboration to perform it automatically.

Figure 13 shows the rules for elaborating modules and bindings. The rules for pro-
jections (M-DOT), module bindings (B-MOD), and binding sequences (B-SEQ) show the
unpack/repack idiom in action. The last of these is somewhat involved, but only because
ML modules allow bindings to be shadowed—a practical complication, incidentally, that
is glossed over in most module type systems in the literature (with the exception of Harper
& Stone (2000), who account for full Standard ML).2

The rule M-FUNCT for functors is completely analogous to rule S-FUNCT for functor
signatures (cf. Figure 10). Note that this rule and the sequence rule B-SEQ are the only two
that extend the environment Γ, and that in both cases the new variable X is bound with a

2 Of course, a realistic implementation of modules would want to optimize the construction of
structure representations and avoid the repeated record concatenation. Such an optimization is
fairly easy; it essentially boils down to partially evaluating the expressions generated by our
sequencing rule.

ZU064-05-FPR main 12 December 2012 19:6

18 Andreas Rossberg, Claudio Russo and Derek Dreyer

Modules Γ `M : Ξ e

Γ(X) = Σ

Γ ` X : Σ X
M-VAR

Γ ` B : Ξ e
Γ ` {B} : Ξ e

M-STRUCT

Γ `M : ∃α.{lX : Σ, lX ′ : Σ′} e
Γ `M.X : ∃α.Σ unpack 〈α,y〉= e in pack 〈α,y.lX 〉

M-DOT

Γ ` S ∃α.Σ Γ,α,X :Σ `M : Ξ e
Γ ` fun X :S⇒M : ∀α.Σ→ Ξ λα.λX :Σ.e

M-FUNCT

Γ(X1) = ∀α.Σ′→ Ξ Γ(X2) = Σ Γ ` Σ≤ ∃α.Σ′ ↑ τ f
Γ ` X1 X2 : Ξ[τ/α] X1 τ (f X2)

M-APP

Γ(X) = Σ Γ ` S Ξ Γ ` Σ≤ Ξ ↑ τ f
Γ ` X :>S : Ξ pack 〈τ, f X〉

M-SEAL

Bindings Γ ` B : Ξ e
Γ ` E : τ e

Γ ` val X=E : {lX : [τ]} {lX = [e]}
B-VAL

Γ ` T : κ τ

Γ ` type X=T : {lX : [= τ : κ]} {lX = [τ : κ]}
B-TYP

Γ `M : ∃α.Σ e Σ not atomic
Γ `module X=M : ∃α.{lX : Σ} unpack 〈α,x〉= e in pack 〈α,{lX = x}〉

B-MOD

Γ ` S Ξ

Γ ` signature X=S : {lX : [= Ξ]} {lX = [Ξ]}
B-SIG

Γ `M : ∃α.{lX : Σ} e
Γ ` include M : ∃α.{lX : Σ} e

B-INCL

Γ ` ε : {} {}
B-EMT

Γ ` B1 : ∃α1.{lX1 : Σ1} e1 l′X1
= lX1 − lX2

Γ,α1,X1 : Σ1 ` B2 : ∃α2.{lX2 : Σ2} e2 l′X1
:Σ′1 ⊆ lX1:Σ1

Γ ` B1;B2 : ∃α1α2.{l′X1
: Σ′1, lX2 : Σ2} unpack 〈α1,y1〉= e1 in

unpack 〈α2,y2〉= (let X1 = y1.lX1 in e2) in

pack 〈α1α2,{l′X1
= y1.l′X1

, lX2 = y2.lX2}〉

B-SEQ

Fig. 13. Module elaboration

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 19

Set
λα.λElem : {t : [= α : Ω],

eq : [α×α → bool],
less : [α×α → bool]}.

pack 〈listα,
f (let y1 = {elem = [α : Ω]} in

let y2 =
let elem = y1.elem in
let y21 = {set = [listα : Ω]} in
let y22 =

let set = y21.set in
. . .

in {elem = y1.elem,
set = y2.set,
empty = y2.empty,
add = y2.add,
mem = y2.mem})

〉∃β .{set:[=β :Ω], elem:[=α:Ω], empty:[β], add:[α×β→β], mem:[α×β→bool]}

{module IS = Set Int; val s = IS.add (7, IS.empty)}
unpack 〈β ,y1〉= {IS = Set int (f ′ Int)} in
let y2 = (let IS = y1.IS in {s = [IS.add〈7, IS.empty〉]}) in
pack 〈β ,{IS = y1.IS,s = y2.s}〉∃β .{IS:{...},s:[β]}

Fig. 14. Example: module elaboration

concrete signature Σ. As a result, when we look up an identifier X in the environment (rule
M-VAR), we may assume it has a concrete signature.

The rules for functor applications (M-APP) and sealed modules (M-SEAL) both appeal
to the signature matching judgment. In the former, the τ represent the type components
of the actual functor argument corresponding to the abstract types α declared in the for-
mal argument signature. For instance, in the functor application in Figure 3, τ would be
simply int, since that is how the argument module defines the abstract type t declared
in the argument signature ORD. This information is then propagated to the result of the
functor application by substituting τ for α in the result signature Ξ. The sealing rule works
similarly, except that τ is not used to eliminate a universal type, but dually, to introduce an
existential type. Hence, τ is not propagated to the signature of the sealed module, but rather
hidden within the existential. This makes sense because, of course, the point of sealing is
to hide the identity of the abstract types α .

As an example of the translation, Figure 14 sketches the result of elaborating the Set

functor from Figure 3. It also shows the Fω representation of a simple program involving
the application of this functor. We assume that there is a suitable library module Int that
matches signature ORD, whose t component is transparently equal to int, and whose Fω

representation is Int. In order to avoid too much clutter, we do not spell out the respective
coercions f and f ′ occurring in both examples.

To make the essence of the translation a bit more apparent, Figure 15 shows simplified
versions of the same translations with all intermediate redexes (in particular, intermediate

ZU064-05-FPR main 12 December 2012 19:6

20 Andreas Rossberg, Claudio Russo and Derek Dreyer

Set
λα.λElem : {t : [= α : Ω],

eq : [α×α → bool],
less : [α×α → bool]}.

pack 〈listα,
f (let elem = [α : Ω] in

let set = [listα : Ω] in
let empty = [nil] in
let add = [. . .Elem.eq . . .Elem.less . . .] in
let mem = [. . .Elem.eq . . .Elem.less . . .] in
{elem = elem, set = set, empty = empty, add = add, mem = mem})

〉∃β .{set:[=β :Ω], elem:[=α:Ω], empty:[β], add:[α×β→β], mem:[α×β→bool]}

{module IS = Set Int; val s = IS.add (7, IS.empty)}
unpack 〈β , IS〉= Set int (f ′ Int) in
let s = [IS.add〈7, IS.empty〉] in
pack 〈β ,{IS = IS,s = s}〉∃β .{IS:{...},s:[β]}

Fig. 15. Example: module elaboration, simplified

structures) removed, via straightforward βη-transformations of let-bindings and records.
In particular, once we eliminate the administrative overhead of rule B-SEQ, a structure
simply becomes a sequence of let-bindings for the declarations in its body, feeding into a
record that collects all bound variables as fields.

Generativity Functors in Standard ML are said to behave generatively, meaning that
every application of a functor F will have the effect of generating fresh abstract types
corresponding to whichever types are declared abstractly in F’s result signature. With the
existential interpretation of type abstraction that we employ here, this generativity comes
for free. Applying a functor produces a module with an existential type of the form ∃α.Σ.
Thus, if a functor is applied twice (say, to the same argument) and the results are bound
to two different identifiers X1 and X2, then the binding sequence rule will ensure that two
separate copies of the α will be added to the environment Γ—call them α1 and α2—along
with the bindings X1 : Σ[α1/α] and X2 : Σ[α2/α]. In this way, the abstract type components
of X1 and X2 will be made distinct.

In Section 7 we will explore an alternative semantics, where functors can be applicative,
i.e., applying such a functor twice (to the same argument) will only produce one copy of
the abstract types it defines.

Path elaboration Figure 16 displays the last three rules of elaboration, concerning the
elaboration of paths. (The elaboration rule for signature paths appeared in Figure 10.)

Paths are the means by which value, type, and signature components are projected out of
modules. As explained in Section 2, in order for paths to make sense, the values, types, or
signatures that they project out must be well-formed in the ambient environment. To ensure
this, the path elaboration judgment, Γ ` P : Σ e, uses the ordinary module elaboration
judgment to synthesize P’s semantic signature ∃α.Σ, and then checks that Σ does not

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 21

Paths Γ ` P : Σ e

Γ ` P : ∃α.Σ e Γ ` Σ : Ω

Γ ` P : Σ unpack 〈α,x〉= e in x
P-MOD

Types Γ ` T : κ τ
Γ ` P : [= τ : κ] e

Γ ` P : κ τ
T-PATH

Expressions Γ ` E : τ e
Γ ` P : [τ] e

Γ ` P : τ e.val
E-PATH

Fig. 16. Path elaboration

actually depend on any of the “local” abstract types α that P may have defined (note that
we assume all types normalized, so any spurious dependencies are implicitly eliminated).
The rules for type, expression, and signature paths use the path elaboration judgment to
check the well-formedness of the path, and then project the component out accordingly.

For instance, consider the example from Section 2 of an ill-formed path. Let M be the
module expression

{type t = int; val v = 3} :> {type t; val v : t}

The semantic signature that module elaboration assigns to M is:

∃α.{t : [= α : Ω],v : [α]}

Thus, if we try to project either t or v from M directly, the resulting type or expression
would not be well-formed, since both [= α : Ω] and [α] refer to the local abstract type α . If,
on the other hand, we were to first bind M to an identifier X , and then subsequently project
out X .t or X .v, the paths would be well-formed. The reason is that the binding sequence rule
would extend the ambient environment with a fresh α , as well as X : {t : [= α : Ω],v : [α]}.
Under such an extended environment, X .t would simply elaborate to α , and X .v would
elaborate to X .v.val of type α , both of which are well-formed since α is now bound in
the environment. In general, since identifiers have concrete signatures, any well-formed
module of the form X .lY will also be a well-formed path.

If one views existential types as a monad, then the path elaboration rule may seem
superficially odd because it allows one to “escape” the monad by going from ∃α.Σ to
Σ. However, the point is that one can only do this if the “effects” encapsulated by the
monad—i.e., the abstract types α defined by the path—are strictly local. This is similar
conceptually to the hiding of “benign” (or “encapsulated”) effects by Haskell’s runST

mechanism (Launchbury & Peyton Jones, 1995).

5 Meta-theoretic properties

Having defined the semantics of ML modules by elaboration into System Fω , it is time to
prove it (a) sound, and (b) decidable.

ZU064-05-FPR main 12 December 2012 19:6

22 Andreas Rossberg, Claudio Russo and Derek Dreyer

5.1 Soundness

Proving soundness of a language specified by an elaboration semantics consists of two
steps:

1. Showing that elaboration only produces well-typed terms of the target language.
2. Showing that the type system of the target language is sound.

Fortunately, in our case, since the target language is the very well-studied System Fω , we
can simply borrow the second part from the literature. It thus remains to be shown that the
elaboration rules produce well-formed Fω expressions. Of course, since our development
is parametric in the concrete choice of a core language, the result only holds relative to
suitable assumptions about the soundness of the elaboration rules for the core language.

Theorem 5.1 (Soundness of elaboration)
Provided Γ `� we have:

1. If Γ ` T : κ τ , then Γ ` τ : κ .
2. If Γ ` E : τ e, then Γ ` e : τ .
3. If Γ ` τ ≤ τ ′ f and Γ ` τ : Ω and Γ ` τ ′ : Ω, then Γ ` f : τ → τ ′.
4. If Γ ` S/D Ξ, then Γ ` Ξ : Ω.
5. If Γ ` P/M/B : Ξ e, then Γ ` e : Ξ.
6. If Γ ` Ξ≤ Ξ′ f and Γ ` Ξ : Ω and Γ ` Ξ′ : Ω, then Γ ` f : Ξ→ Ξ′.
7. If Γ ` Σ≤ ∃α.Σ′ ↑ τ f and Γ ` Σ : Ω and Γ,α ` Σ′ : Ω,

then Γ ` τ : κα and Γ ` f : Σ→ Σ′[τ/α].

Proof
The proof is by relatively straightforward simultaneous induction on derivations. The argu-
ments for properties 1-3 clearly depend on the core language, and we assume that it can be
proved for all additional cases not specified in our grammar. We have performed the entire
proof in Coq (Section 10), and transliterate only two interesting cases here:

• Case M-APP: By induction we know that (1) Γ ` τ : κα and (2) Γ ` f : Σ→ Σ′[τ/α].
From (1) we can derive that Γ ` X1 τ : (Σ′ → Ξ)[τ/α]. From (2) it follows that
Γ ` f X2 : Σ′[τ/α]. Thus, we can conclude Γ ` X1 τ (f X2) : Ξ[τ/α] by the typing
rule for application.
• Case B-SEQ: By induction on the first premise we know (1) Γ ` e1 : ∃α1.{lX1 : Σ1}.

Let Γ1 = Γ,α1,X1:Σ1. By validity and inversion, from (1) we derive Γ,α1 ` Σ1 : Ω,
so Γ1 ` �. By induction on the second premise, (2) Γ1 ` e2 : ∃α1.{lX2 : Σ2}. It is
easy to show Γ,α1,y1:{lX1 : Σ1} ` y1.lX1 : Σ1. By convention, y1 and y2 are fresh, and
so it follows that Γ,α1,y1:{lX1 : Σ1},α2,y2:{lX2 : Σ2} ` {l′X1

= y1.l′X1
, lX2 = y2.lX2} :

{l′X1
: Σ′1, lX2 : Σ2} from the typing rules. From (1) and weakening (2), the overall

goal follows by inner induction on the lengths of α1, α2, and lX1 , and expanding the
n-ary versions of pack, unpack and let.

5.2 Decidability

All our elaboration rules are syntax-directed, so they can be interpreted directly as an
algorithm. Provided core elaboration is terminating, this algorithm clearly terminates as
well.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 23

α rooted in Σ :⇔ α rooted in Σ

α rooted in [= τ : κ] (at ε) :⇔ α = τ

α rooted in {l : Σ} (at l.l′) :⇔ α rooted in {l : Σ}.l (at l′)

[τ] explicit (always)
[= τ : κ] explicit (always)

[= Ξ] explicit :⇔ Ξ explicit
{l : Σ} explicit :⇔ Σ explicit

∀α.Σ→ Ξ explicit :⇔ ∃α.Σ explicit∧Ξ explicit
∃α.Σ explicit :⇔ α rooted in Σ∧Σ explicit

Γ ` Ξ : Ω explicit :⇔ Γ ` Ξ : Ω ∧ Ξ explicit

[τ] valid (always)
[= τ : κ] valid (always)

[= Ξ] valid :⇔ Ξ explicit
{l : Σ} valid :⇔ Σ valid

∀α.Σ→ Ξ valid :⇔ ∃α.Σ explicit∧Ξ valid
∃α.Σ valid :⇔ Σ valid

Γ ` Ξ : Ω valid :⇔ Γ ` Ξ : Ω ∧ Ξ valid

Γ valid :⇔ ∀(X :Σ) ∈ Γ, Σ valid
Fig. 17. Signature explicitness and validity

There is one niggle, though: the signature matching rule requires a non-deterministic
guess of suitable instantiating types τ . To prove elaboration decidable, we must provide a
sound and complete algorithm for finding these types. It’s not obvious that such an algo-
rithm should exist at all. For example, consider the following matching problem (Dreyer
et al., 2003):

∀α.[= α : κ]→ [= τ1 : κ
′] ≤ ∃β .([= β : κ]→ [= τ2 : κ

′])

The matching rule must find an instantiation type τ : κ for β such that the left signature is a
subtype of [= τ : κ]→ [= τ2[τ/β] : κ ′], which in turn will only hold if τ1[τ/α] = τ2[τ/β].
Since κ may be a higher kind, this amounts to a higher-order unification problem, which
is undecidable in general (Goldfarb, 1981).

Validity Fortunately, under minimal assumptions about the initial environment, we can
show that such problematic cases never arise during elaboration. More precisely, we can
show that, whenever we invoke Σ≤∃α.Σ′, the target signature Σ′ has the property that each
abstract type variable α ∈α actually occurs explicitly in Σ′ in the form of an embedded type
field [= α : κα]. We say that α is rooted in Σ′ in this case. An abstract signature in which all
quantified variables are rooted is called explicit. Intuitively, the reason we can expect the
target signature ∃α.Σ′ to be explicit is that (1) the only signatures we ever match against
during elaboration are themselves the result of elaborating some ML signature S, and (2)
all of such a signature’s abstract types α must originate in some opaque type specification
appearing in S.

Figure 17 gives an inductive definition of these properties. (We typically drop the explicit
path description “(at l)” from the rootedness judgment—the only place where we actually
need it will be the definition of signature normalization in Section 6.)

However, this is not all. Subtyping is contra-variant for functor arguments, so we also
need to ensure that, whenever we invoke subtyping to determine whether Σ ≤ Σ′ and Σ is
a functor signature, its argument signature is explicit as well. Intuitively, this property is
to be expected because ML modules require explicit signature annotations on all functor
arguments. The figure hence defines the second notion of a valid signature that captures

ZU064-05-FPR main 12 December 2012 19:6

24 Andreas Rossberg, Claudio Russo and Derek Dreyer

lookupα (Σ,Σ′) ↑ τ if lookupα (Σ,Σ′) ↑ τ

lookupα ([= τ : κ], [= τ ′ : κ]) ↑ τ if τ ′ = α

lookupα ({l : Σ},{l′ : Σ′}) ↑ τ if ∃l ∈ l∩ l′. lookupα ({l : Σ}.l,{l′ : Σ′}.l) ↑ τ

Fig. 18. Algorithmic type lookup

this property and extends it to environments. We require all signatures and environments
used in elaboration to be valid.3

With a little auxiliary lemma, we can show that validity and explicitness of signatures
are established and maintained by our elaboration:

Lemma 5.2 (Simple properties of validity)
1. If Ξ explicit, then Ξ valid.
2. If Ξ explicit/valid, then Ξ[τ/α] explicit/valid.

Lemma 5.3 (Signature validity)
Assume Γ valid.

1. If Γ ` S/D Ξ, then Ξ explicit.
2. If Γ ` P/M/B : Ξ e, then Ξ valid.

Type lookup If the ∃α.Σ′ in the matching rule U-MATCH is explicit, then the instantiation
of each α can be found by a simple pre-pass on Σ and Σ′, thanks to the following obser-
vation: if the subsequent subtyping check is ever going to succeed, then Σ must feature an
atomic type signature [= τ : κα] at the same location where α is rooted in Σ′. Moreover, α

must be instantiated with a type equivalent to τ .
Consequently, the definition of lookup in Figure 18 implements a suitable algorithm for

finding the types τ in rule U-MATCH, through a straightforward parallel traversal of the two
signatures involved. There is a twist, though: an abstract type variable may actually have
multiple roots in a signature. For example, the external signature {type t; type u = t}
elaborates to ∃α.{t : [= α : Ω],u : [= α : Ω]}. The lookup algorithm, as given in the figure,
is non-deterministic in that it can pick any suitable root. This formulation simplifies the
proof of completeness below. Intuitively, it does not matter which one we pick, they all
have to be equivalent. The soundness theorem proves that, but first we need a little technical
lemma:

Lemma 5.4 (Simple properties of type lookup)
1. If lookupα(Σ,Σ′) ↑ τ , then fv(τ)⊆ fv(Σ).
2. If lookupα(Σ,Σ′) ↑ τ and α ∩α

′ = /0, then lookupα(Σ,Σ′[τ ′/α
′]) ↑ τ

(and both derivations have the same size).
3. If lookupα(Σ,Σ′) ↑ τ and Γ ` Σ : Ω, then Γ ` τ : κ .

Theorem 5.5 (Soundness of type lookup)

3 The notions of explicit and valid signatures are also called analysis and synthesis signatures in the
literature (Dreyer et al., 2003; Rossberg & Dreyer, 2013); (Russo, 1998) used the terms solvable
and ground.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 25

1. Let Γ ` Σ : Ω and Γ,α ` Σ′ : Ω. If lookupα(Σ,Σ′) ↑ τ1, then Γ ` τ1 : κα .
Furthermore, if Γ ` Σ≤ Σ′[τ2/α] for Γ ` τ2 : κα , then τ1 = τ2.

2. Let Γ ` Σ : Ω and Γ,α ` Σ′ : Ω. If lookupα(Σ,Σ′) ↑ τ1, then Γ ` τ1 : κα .
Furthermore, if Γ ` Σ≤ ∃α.Σ′ ↑ τ2, then τ1 = τ2.

Proof
Part 1 is by easy induction on the size of the derivation of the lookup. Part 2 follows by
induction on the length of α . When α is empty, then there is nothing to show. Otherwise,
α = α,α ′ and τ1 = τ1,τ

′
1, such that lookupα(Σ,Σ′) ↑ τ1 and lookupα(Σ,Σ′) ↑ τ

′
1. Let Γ′ =

Γ,α ′. With weakening, respectively reordering, Γ′ ` Σ : Ω and Γ′,α ` Σ′ : Ω. By part 1,
we then know Γ′ ` τ1 : κα . Lemma 5.4 implies fv(τ1) ⊆ fv(Σ), and because Σ is well-
formed under Γ, it follows that fv(τ1)⊆ dom(Γ), so that we can strengthen to Γ ` τ1 : κα .
Substitution yields Γ′ ` Σ′[τ1/α] : Ω, and from Lemma 5.4 we get lookupα

′(Σ,Σ′[τ1/α]) ↑
τ
′
1, such that we can apply the induction hypothesis to conclude Γ ` τ ′1 : κα ′ .
Furthermore, in order to prove the type equivalence, we first invert U-MATCH to reveal

Γ ` Σ ≤ Σ′[τ2/α] and Γ ` τ2 : κα . Consequently, τ2 = τ2,τ
′
2 and fv(τ2) ⊆ dom(Γ), i.e.,

α ∩ fv(τ2) = /0 by the usual conventions. The latter implies Σ′[τ2/α] = Σ′[τ2/α][τ ′2/α
′] =

Σ′[τ ′2/α
′][τ2/α]. Similar to before, Lemma 5.4 gets us lookupα(Σ,Σ′[τ ′2/α

′]) ↑ τ1, and
substitution Γ,α ` Σ′[τ ′2/α

′] : Ω. By part 1, τ1 = τ2 then. To invoke the induction hypoth-
esis for concluding τ

′
1 = τ

′
2 as well, we first note that by substitution, Γ′ ` Σ′[τ2/α] : Ω,

and second, by Lemma 5.4 again, lookupα
′(Σ,Σ′[τ2/α]) ↑ τ

′
1. Third, since Σ′[τ2/α] =

Σ′[τ ′2/α
′][τ2/α], we can construct a derivation for Γ ` Σ ≤ ∃α ′.Σ′[τ2/α] ↑ τ

′
2 with rule

U-MATCH.

According to soundness, if there is any type at all that makes a match succeed, then
lookup can only deliver a well-formed, equivalent type. Despite being non-deterministic,
the result of lookup hence is unique:

Corollary 5.6 (Uniqueness of type lookup)
Let Γ ` Σ : Ω and Γ ` ∃α.Σ′ : Ω and Γ ` Σ ≤ ∃α.Σ′ ↑ τ . If lookupα(Σ,Σ′) ↑ τ1 and
lookupα(Σ,Σ′) ↑ τ2, then τ1 = τ2.

Because of this result, we can implement lookup as a deterministic algorithm by simply
choosing the “first” root we encounter for each type variable, in any signature traversal
order of our liking.

For explicit signatures, our definition of type lookup is also a complete algorithm for
finding instantiations in the matching judgment:

Theorem 5.7 (Completeness of type lookup)
Assume ∃α.Σ′ explicit.

1. If Γ ` Σ≤ Σ′[τ/α] and α ∈ α , then lookupα(Σ,Σ′) ↑ α[τ/α].
2. If Γ ` Σ≤ ∃α.Σ′ ↑ τ , then lookupα(Σ,Σ′) ↑ τ .

Proof
Explicitness of ∃α.Σ′ implies α rooted in Σ′, which in turn implies α rooted in Σ′. Part 1
is then proved by simple induction on the derivation of α rooted in Σ′. Part 2 follows as a
straightforward corollary.

ZU064-05-FPR main 12 December 2012 19:6

26 Andreas Rossberg, Claudio Russo and Derek Dreyer

Note that this proof relies on the ability of the lookup algorithm to non-deterministically
pick the root at the same path that was used in the respective derivation of α rooted in
Σ′. Combined with Uniqueness we know that any other path—and thus a deterministic
choice—would work as well. Which gives us:

Corollary 5.8 (Decidability of matching)
Assume that Γ is valid and well-formed, and Γ ` τ ≤ τ ′ f is decidable for types well-
formed under Γ. If Σ valid and Ξ explicit, and both are well-formed under Γ, then Γ ` Σ≤
Ξ ↑ τ f is decidable (and does not actually require checking well-formedness of types).

This result follows directly, because subtyping and matching is defined by induction on
the structure of the semantic signatures, and this structure remains fixed under type sub-
stitution, as performed in rules U-MATCH and U-FUNCT. (We don’t need to check the
well-formedness of τ in U-MATCH because via Lemma 5.4, it is a consequence of looking
up the types in the well-formed signature Σ.)

From there, decidability of elaboration follows because, up to matching, elaboration is
syntax-directed:

Corollary 5.9 (Decidability of elaboration)
Under valid and well-formed Γ, provided we can (simultaneously) show that core elabora-
tion is decidable, all judgments of module elaboration are decidable as well.

5.3 Declarative properties of signature matching

Finally, we want to show that signature matching has the declarative properties that you
would expect from a subtype relation, namely that it is a preorder. These properties are not
actually relevant for soundness or decidability of the basic language, but they provide a
sanity check that the language we are defining actually makes sense. They are also relevant
to our translation of modules as first-class values (Section 6), and for the meta-theory of
applicative functors (Section 9).

One complication in stating the following properties is that subtyping is defined in terms
of the core language subtyping judgment Γ ` τ ≤ τ ′ e. Most of the properties only hold
if we assume that the analogous property can be shown for that judgment. To avoid clumsy
repetition, we leave this assumption implicit in the theorem statements.

First, we need a couple of technical lemmas stating that subtyping is stable under weak-
ening and substitution:

Lemma 5.10 (Subtyping under Weakening)
Let Γ′ ⊇ Γ and Γ′ `�.

1. If Γ ` Ξ≤ Ξ′ f , then Γ′ ` Ξ≤ Ξ′ f .
2. If Γ ` Σ≤ Ξ ↑ τ f , then Γ′ ` Σ≤ Ξ ↑ τ f .

(Moreover, the derivations have the same size, up to core language judgments.)

Lemma 5.11 (Subtyping under substitution)
Let Γ ` τ : κα .

1. If Γ,α ` Ξ≤ Ξ′ f , then Γ ` Ξ[τ/α]≤ Ξ′[τ/α] f [τ/α].

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 27

2. If Γ,α ` Σ≤ Ξ ↑ τ
′ f , then Γ ` Σ[τ/α]≤ Ξ[τ/α] ↑ τ

′[τ/α] f [τ/α].

(Moreover, the derivations have the same size, up to core language judgments.)

Now for the actual theorems:

Theorem 5.12 (Reflexivity of subtyping and matching)
1. If Γ ` Ξ : Ω, then Γ ` Ξ≤ Ξ f .
2. If Γ,α ` Σ : Ω, then Γ,α ` Σ≤ ∃α.Σ ↑ α f .

Proof
By simultaneous induction on the structure of Ξ and Σ, respectively.

Theorem 5.13 (Transitivity of subtyping and matching)
1. If Γ`Ξ : Ω and Γ`Ξ′ : Ω and Γ`Ξ′′ : Ω and Γ`Ξ≤Ξ′ f ′ and Γ`Ξ′≤Ξ′′ f ′′,

then Γ ` Ξ≤ Ξ′′ f .
2. If Γ ` Σ : Ω and Γ ` ∃α ′.Σ′ : Ω and Γ ` ∃α ′′.Σ′′ : Ω, and Γ ` Σ ≤ ∃α ′.Σ′ ↑ τ

′ f ′

and Γ,α ′ ` Σ′ ≤ ∃α ′′.Σ′′ ↑ τ
′′ f ′′, then Γ ` Σ≤ ∃α ′′.Σ′′ ↑ τ f .

Proof
Since matching is syntax-directed, the proofs are a relatively straightforward simultane-
ous induction on the cumulative size of the subtyping/matching derivations (up to core
language rules). In part (2), we need to apply the above substitution lemma.

A further property one might expect from a subtyping relation is antisymmetry, i.e., if
Ξ≤ Ξ′ and Ξ′ ≤ Ξ (which we will abbreviate as Ξ≤≥ Ξ′), then Ξ = Ξ′. This does not hold
directly in our system, because the ordering of quantified variables might differ. We defer
discussion of antisymmetry to the next section, where we will prove it in a slight variation.

6 Modules as first-class values

ML modules exhibit a strict stratification between module and core language, turning mod-
ules into second-class entities. Consequently, the kinds of computations that are possible on
the module level are quite restricted. Extending the module system to make modules first-
class leads to undecidable typechecking (Lillibridge, 1997). However, it is straightforward
to allow modules to be used as first-class core values after explicit injection into a core
type of packaged modules (Russo, 2000). In fact, in our setting, the extension is almost
trivial.

Syntax Figure 19 summarizes the syntax added to the external language. We add package
types of the form pack S to the core language. These are inhabited by packaged modules
of signature S. Correspondingly, there is a core language expression form pack M:S that
produces values of this type. To unpack such a module, the inverse form unpack E:S is
introduced as an additional module expression. It expects E to be a package of type pack S
and extracts the constituent module of signature S. (This is more liberal than the closed-
scope open expression of Russo (2000).)

Why all the signature annotations? To avoid running into the same problems as caused by
first-class modules, we do not assume any form of subtyping on package types (even if the

ZU064-05-FPR main 12 December 2012 19:6

28 Andreas Rossberg, Claudio Russo and Derek Dreyer

(types) T ::= . . . | pack S
(expressions) E ::= . . . | pack M:S
(modules) M ::= . . . | unpack E:S

Fig. 19. Extension with modules as first-class values

core language had subtyping). That is, package types are only compatible if they consist
of equivalent signatures. The type annotation for pack ensures that packaged modules
still have principal types under these circumstances, so that core type checking is not
compromised. For unpack, the annotation determines the type of E — which is necessary
if we want to support ML-style type inference in the core language (but could be omitted
otherwise).

Elaboration Figure 20 gives the corresponding elaboration rules. Let us ignore the use
of signature normalization norm(Ξ) in these rules for a minute and think of it as the
identity function (which, morally, it is). Then a module M and its packaged version have
essentially the same Fω representation, as a term of existential type. Consequently, elab-
oration becomes almost trivial. A package type simply elaborates to the very existential
type that represents the constituent signature. Packing has to check that the module’s
signature actually matches the annotation and coerce it accordingly. Unpacking is a real
no-op: there is no subtyping on package types, so the type of E has to coincide exactly
with the annotated signature. No coercion is necessary.

Signature normalization So what is the business with normalization? Unfortunately, were
we to just use an unadulterated signature to directly represent its corresponding package
type, the typing of packaged modules would become overly restrictive. Consider the fol-
lowing example:

signature A = {type t; type u}
signature B = {type u; type t}
val f = fun p : (pack A) ⇒ . . .
val g = fun p : (pack B) ⇒ f p

Intuitively, the signatures A and B are equivalent, and in fact, their semantic representations
are mutual subtypes. But these representations will not actually be equivalent System Fω

types—A elaborates to ∃α1α2.{t : [= α1 : Ω],u : [= α2 : Ω]} and B to ∃α2α1.{t : [= α1 :
Ω],u : [= α2 : Ω]} according to our rules (cf. Figure 10). In the module language this is
no problem: whenever we have to check a signature against another, we are using coercive
matching, which is oblivious to the internal ordering of quantifiers. But in the core language
no signature matching is performed; package types really have to be equivalent Fω types in
order to be compatible. In that case, the order matters. So the definition of g above would
not type check.

To compensate, our elaboration must ensure that two package types pack S1 and pack S2

translate to equivalent Fω types whenever S1 and S2 are mutual subtypes. Toward this end,
we employ the normalization function defined in Figure 21. All this function does is put
the quantifiers of a semantic signature into a canonical order. For example, for a signature
∃α.Σ, normalization will sort the variables α according to their (first) appearance as a root
in a left-to-right depth-first traversal of Σ. In order to make this well-defined, we impose a

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 29

Types Γ ` T : κ τ

Γ ` S Ξ

Γ ` pack S : Ω norm(Ξ)
T-PACK

Expressions Γ ` E : τ e

Γ `M : Ξ′ e Γ ` S Ξ Γ ` Ξ′ ≤ norm(Ξ) f
Γ ` pack M:S : norm(Ξ) f e

E-PACK

Modules Γ `M : Ξ e

Γ ` S Ξ Γ ` E : norm(Ξ) e
Γ ` unpack E:S : norm(Ξ) e

M-UNPACK

Fig. 20. Elaboration of modules as first-class values

fixed but arbitrary total ordering on the set of labels l, which we extend to a lexicographical
order on lists l of labels. Further, we assume a meta-function sort≤ which sorts its argument
vector according to the given (total) order ≤. We instantiate it with an ordering α1 ≤Σ α2

on type variables (also defined in Figure 21) according to their “first” occurrence as a root
in Σ—expressed by reference to the “(at l)” part of the rootedness judgment.

Note that normalization is defined only for explicit signatures (Section 5.2), where
every variable is rooted. However, that is fine because we only need to normalize the
representations of signatures appearing as annotations on pack or unpack. In the base case
of atomic value signatures [τ], we assume that a similar normalization function normcore(τ)
exists for normalizing core-level types according to core-level subtyping Γ ` τ ≤ τ ′. (For
instance, for ML this core type normalization would canonicalize the order of quantified
type variables in polymorphic types.)

It is not difficult to show the following properties:

Lemma 6.1 (Signature normalization)
Assume fv(normcore(τ)) = fv(τ) and normcore(τ ′[τ/α]) = normcore(τ ′)[τ/α]. Then:

1. fv(norm(Ξ)) = fv(Ξ)
2. norm(Ξ[τ/α]) = norm(Ξ)[τ/α].
3. If Ξ explicit, then norm(Ξ) explicit.
4. If Γ ` Ξ : Ω, then Γ ` norm(Ξ) : Ω.
5. If Ξ explicit, then Γ ` Ξ≤≥ norm(Ξ).

The main result regarding normalization, then, is a form of anti-symmetry for subtyping.
But first, a technical lemma:

Lemma 6.2 (Mutual matching)
Suppose α rooted in Σ and α

′ rooted in Σ′. Moreover, α ∩ fv(τ) = α
′ ∩ fv(τ ′) = /0. If

Γ,α ` Σ≤ Σ′[τ ′/α
′] and inversely, Γ,α ′ ` Σ′ ≤ Σ[τ/α], then [τ/α] = [τ ′/α

′]−1, i.e., |α|=
|α ′|, and there is a reordering α

′′ of α
′, and a corresponding reordering τ

′′ of τ
′, such that

τ = α
′′ and τ

′′ = α .

ZU064-05-FPR main 12 December 2012 19:6

30 Andreas Rossberg, Claudio Russo and Derek Dreyer

norm([τ]) = [normcore(τ)]
norm([= τ : κ]) = [= τ : κ]
norm([= Ξ]) = [= norm(Ξ)]
norm({l : Σ}) = {l : norm(Σ)}
norm(∀α.Σ→ Ξ) = ∀α ′.norm(Σ)→ norm(Ξ) where α

′ = sort≤norm(Σ)(α)
norm(∃α.Σ) = ∃α ′.norm(Σ) where α

′ = sort≤norm(Σ)(α)

α1 ≤Σ α2 ⇔ min{l | α1 rooted in Σ (at l)} ≤min{l | α2 rooted in Σ (at l)}

Fig. 21. Signature normalization

Proof
For every α ′ ∈ α

′, we can show by induction on its rootedness derivation that there are
atomic type signatures with Γ,α ` [= τ0 : κ] ≤ [= α ′[τ ′/α

′] : κ], and conversely, Γ,α ′ `
[= α ′ : κ]≤ [= τ0[τ/α] : κ]. By inverting those subtypings, τ0 = α ′[τ ′/α

′], and at the same
time α ′ = τ0[τ/α]. That is, α ′ = α ′[τ ′/α

′][τ/α]. Since α ′ ∈ α
′, there is a corresponding

τ ′ ∈ τ
′, such that α ′ = τ ′[τ/α]. Because τ ′ 6= α ′ according to the assumptions about fv(τ ′),

there has to be an α ∈ α , such that τ ′ = α and α[τ/α] = α ′. We can prove the same for
every other α ′ ∈ α

′. Consequently, because all α
′ are distinct, all τ

′ have to be distinct,
too, and thus |α| ≥ |α ′|. By symmetry, i.e., exchanging roles and repeating the argument,
we obtain that both substitutions have the same cardinality and are mutual inverses.

Theorem 6.3 (Anti-symmetry of subtyping up to normalization)
Let Γ ` Ξ : Ω explicit and Γ ` Ξ′ : Ω explicit. Furthermore, assume that if Γ ` τ : Ω and
Γ ` τ ′ : Ω and Γ ` τ ≤≥ τ ′, then normcore(τ) = normcore(τ ′). Then, if both Γ ` Ξ≤ Ξ′ and
Γ ` Ξ′ ≤ Ξ, it holds that norm(Ξ) = norm(Ξ′).

Proof
By induction on the (size of the) derivations. In the cases of rules U-ABS and U-FUNCT,
invert the matching premise and apply the previous lemma to reveal that the quantified
variables are equivalent up to reordering (and α-renaming). Hence, we can assume (after
α-renaming) that both inner signatures are well-formed under the same extension of Γ, and
apply the induction hypothesis to know that their normalizations are equal. Since sorting
of the variables is independent of the original quantifier order as well, it also produces the
same result for both sides.

By normalizing semantic signatures in all places where they are used as package types,
we hence establish the desired property that the intuitive notion of signature equivalence
coincides with type equivalence. By applying the coercion f in the rule for pack, we also
ensure that the representation of the module itself is normalized accordingly.

Soundness The package semantics is so simple that soundness is an entirely straightfor-
ward property.

Theorem 6.4 (Soundness of elaboration with packages)
Theorem 5.1 still holds with the additional rules from Figure 20.

Proof
By simultaneous induction on derivations. The existing cases are all proved as before; the
new ones are straightforward given Lemma 6.1.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 31

Our decidability result (Corollary 5.9) is not affected by the addition of modules as first-
class values, because it only hinged on the decidability of signature matching.

6.1 A note on first-class modules

Given that our elaboration of modules as first-class values does not actually do much, the
reader may be puzzled why it is allegedly so much harder to go the whole way and make
modules truly first-class. Can’t we just merge the module and core levels into one unified
language? For some constructs, such as conditionals, this would probably require type
annotations to maintain principal types, and ML-style type inference certainly would not
work anymore. But those are limitations that other languages with subtyping (especially
object-oriented ones) have always been comfortable with. In the ML module literature,
however, it has been frequently claimed that first-class modules result in undecidable type
checking (Lillibridge, 1997), so surely there must be more fundamental problems. What,
specifically, would break in the F-ing approach?

A move to first-class modules means collapsing module and term language, as well as
signature and type language. Because types can be denoted by type variables, the latter
would imply that signatures can then also be denoted by type variables. Our elaboration,
on the other hand, is dependent on one fundamental property: for any signature occurring
in the rules, the number of abstract types it declares—i.e., the number of quantifiers—is
known statically and stable under substitution. If this were not the case, then we could not
perform the implicit lifting (or “monadic” binding) of existentials that is so central to our
approach. Clearly, if we allowed for type variables as signatures, it would no longer work.

Moreover, as Lillibridge (1997) showed, we would lose decidability of subtyping. Look-
ing at our subtyping rules, they substitute type variables along the way. With type variables
possibly representing signatures, substitution could change the structure of the signatures
we are looking at. Consequently, the subtyping rules would no longer describe an algorithm
that is inductive on the structure of signatures, and (backwards) application of the rules
might indeed diverge (see Lillibridge (1997) for an example). That is, the argument we
made regarding Corollary 5.8 (Decidability of matching) would no longer hold.

The sort of “predicativity” restriction that results from separating types and signatures
(i.e., signatures can only abstract over types, not other signatures) is thus crucial to main-
taining decidability of typechecking. It is the real essence of the core/module language
stratification in ML. Without it, the F-ing approach would not work—nor are we aware of
any other decidable type system for ML-style modules without a similar limitation.

The same problems would arise if we were to add abstract signature declarations of the
form signature X to the language. Indeed, it is the presence of this additional feature that
tips the scales and renders OCaml’s module type checking undecidable (Rossberg, 1999).

7 Applicative functors and static purity

The semantics for functors that we have presented so far follows Standard ML, in that
functors are generative: if a functor body defines any abstract types, then those types
are effectively “generated” anew each time the functor is applied. OCaml employs an
alternative, so-called applicative semantics for functors, by which a functor will return

ZU064-05-FPR main 12 December 2012 19:6

32 Andreas Rossberg, Claudio Russo and Derek Dreyer

val p1 = pack {type t = int; val v = 6} : {type t; val v : t}
val p2 = pack {type t = bool; val v = true} : {type t; val v : t}
module Flip = fun X : {}⇒ unpack (if random() then p1 else p2) : {type t; val v : t}

Fig. 22. Example: a statically impure functor

equivalent types whenever it is applied to the same argument. For example, consider the
following use of the Set functor (cf. Figure 3):

module IntOrd = {type t = int; val eq = Int.eq; val less = Int.less}
module Set1 = Set IntOrd
module Set2 = Set IntOrd
val s = Set1.add (7, Set2.empty)

The last line in this example does not typecheck under generative semantics, because each
application of Set yields a “fresh” set type, such that Set1.set and Set2.set differ. Under
applicative semantics, however, the example would typecheck, because the two structures
are created by equivalent module applications.

The applicative functor semantics enables the typechecker to recognize that abstract data
types generated in different parts of a program are in fact the same type. This is particularly
useful when working with functors that implement generic data structures (e.g., sets), but
it also supports a more flexible treatment of higher-order functors. For more details about
these motivating applications, see Leroy (1995).

Unfortunately, applicative functor semantics is also significantly subtler than generative
semantics, and much harder to get right. In particular, there are two major problems:

Type safety: For a functor to be safely given an applicative semantics, it must at a min-
imum satisfy the property that the type components in its body are guaranteed to be
implemented in the same way every time the functor is applied to the same argument. In
the presence of modules as first-class values (Section 6), this property is not universally
satisfied. For example, consider the functor Flip in Figure 22. The first time this functor
is applied, it may return a module whose type component t is implemented internally as
int, whereas the second time t may be implemented as bool. It is thus utterly unsound
(i.e., breaks type safety) to give a functor like Flip an applicative semantics.

Abstraction safety: Even if the type components of a functor are implemented in the
same way every time it is applied, treating the functor as applicative may nevertheless
constitute a violation of data abstraction. We will see examples of this in Section 8.

Concerning the first of these two problems, both Moscow ML and (more recently)
OCaml provide packaged modules and applicative functors, and circumvent the soundness
problem only by imposing severe (and rather unsatisfactory) restrictions on the unpacking
construct, namely prohibiting its use within functor bodies. In this section, we focus on the
first problem and show how to address it properly within the F-ing modules framework.
The second problem will be explored in Section 8.

7.1 Understanding applicativity vs. generativity in terms of purity

For the purpose of ensuring type safety, the key thing is to ensure that we only project
type components out of module expressions whose type components are statically well-
determined. Following Dreyer (2005), we refer to such expressions as statically pure,

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 33

(signatures) S ::= . . . | (X :S)⇒ S

Fig. 23. Extending the syntax of the module language with applicative functor signatures

which for the remainder of this section we will just refer to as pure. (We will consider
the role of dynamic purity in Section 8.)

In our module language, the expression that introduces static impurity is the unpack E:S
construct: the type components of the unpacked module depend essentially on the term E,
a term which may have computational effects that lead it to produce values with different
type components every time it is evaluated. If an unpacked module appears in the body of
a functor, the functor will encapsulate the impurity.

Thus, we need to distinguish between pure functors and impure functors. And it is
precisely the pure ones that may behave applicatively, while the impure ones have to behave
generatively. Hence, from here on, when talking about functors, we will use “applicative”
interchangeably with “pure”, and “generative” interchangeably with “impure”. (In fact, the
correspondence is so natural and intuitive that we are tempted to retire the “applicative”
vs. “generative” terminology altogether. For historic reasons, however, we will continue to
use the traditional terms in the remainder of this article.)

One important point of note: in the case where E is a value (or more generally, free of
effects), it would seem that there is nothing unsafe about projecting type components from
unpack E:S, since each unpacking will produce modules with the same underlying type
components. The trouble with permitting unpack E:S to be treated as statically pure—even
in this case—is that, while its type components are well-determined, they are not statically
well-determined. In the parlance of Harper, Mitchell & Moggi (1990), unpack E:S does
not obey phase separation because the identity of its type components may depend on the
dynamic instantiation of the free (term) variables of E. As a result, supporting projection
from unpack E:S would require full-blown value-dependent types, which we would like
to avoid for a variety of pragmatic reasons. The F-ing modules approach, by virtue of its
interpretation into the non-dependently-typed Fω , has the benefit of providing automatic
enforcement of phase separation, and thus prohibits projection from unpack E:S.

7.2 Extending the language

In order to distinguish between pure (a.k.a. applicative) and impure (a.k.a. generative)
when specifying a functor—e.g., in a higher-order setting—we extend the syntax of the
external language of signatures with a new form of functor signature, shown in Figure 23.
While the original form retains its meaning for specifying impure functors, the new one
specifies pure ones. For example, the (pure) Set functor matches the pure functor signature
(X : ORD) ⇒ SET, while the (impure) Flip functor will only match the impure signature
(X : {}) → {type t; val v : t}. That said, Set will also continue to match the impure
signature (X : ORD) → SET, because pure (applicative) functor signatures are treated as
subtypes of impure (generative) ones.

One defining feature of applicative functors is the ability to project types from module
paths containing functor applications. For example, given the familiar pure Set functor,
(Set IntOrd).set should be a valid type expression, because every application of Set returns

ZU064-05-FPR main 12 December 2012 19:6

34 Andreas Rossberg, Claudio Russo and Derek Dreyer

the same type. Since our syntax of paths P has been maximally general from the outset, it
readily allows such types to be written. In fact, we will see shortly that the existing seman-
tics for paths does not need to change much in order to encompass functor applications.

7.3 Elaboration

The addition of applicative functors, along with the attendant tracking of purity, requires
some significant changes to elaboration. We will walk through those changes starting with
the simple parts.

Semantic signatures The main difference between a generative and an applicative functor
is the point at which the abstract type components in their bodies get created, and this
difference is reflected quite clearly in the placement of existential quantifiers in their
semantic signatures. A generative functor has an Fω type of the form ∀α1.Σ1 → ∃α2.Σ2.
Applying such a functor produces an existential package, which must be explicitly un-
packed in order to get access to the type components of the package; however, due to
the closed-scope nature of existential unpacking, there is no way to associate those type
components with the existential package (and thus the generative functor) itself. In contrast,
following Russo (1998), we will describe applicative functors with Fω types of the form
∃α2.∀α1.Σ1→ Σ2. Such signatures indicate that the existential package is constructed only
once, when the functor is defined, not every time it is applied, thus enabling the abstract
types α2 to be associated with the functor itself. The return type of an applicative functor
is always a concrete signature Σ2, with no local existential variables.

Consequently, the introduction of applicative functors does not require any significant
change to our definition of semantic signatures—our existing notion of abstract signature
Ξ already subsumes the kind of quantification that expresses an applicative functor! We
merely extend functor signatures with a simple effect annotation. As defined in Figure 24,
an effect ϕ can either be pure (P) or impure (I). These form a trivial two-point lattice with
P < I, and there is a straightforward definition of join (∨) on effect annotations (we won’t
need meet). To encode effect annotations in our Fω representation of functors, we assume
that there are two distinct record labels lP and lI.

The important point, though, is that a pure functor type may only have a concrete result
signature Σ, which is why we give it as a separate production in the syntax of Σ in Figure 24.
Nevertheless, we will often write ∀α.Σ→ϕ Ξ to range over both kinds of functor signature,
implicitly understanding that Ξ has to be a concrete Σ′ when ϕ = P.

Signature elaboration Figure 25 shows the new elaboration rules for dealing with functor
signatures (we have highlighted the differences from the original rules from Figure 10).
The rule S-FUNCT-I for impure functor signatures leaves the original rule S-FUNCT almost
unchanged, except for adding the effect annotation I on the signature in the conclusion.

In order to match the description of applicative functor signatures we just gave, the new
rule S-FUNCT-P for applicative functors must produce a signature where all existential
quantifiers are “lifted” out of the functor type. It does so by replacing the original α2 in-
ferred for the result signature with fresh α

′
2 that are quantified outside the functor signature.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 35

(effects) ϕ ::= I | P
(concrete signatures) Σ ::= ∀α.Σ→I Ξ | ∀α.Σ→P Σ | . . .

Notation:

ϕ ∨ ϕ := ϕ

I ∨ P := P ∨ I := I

Abbreviations:

(types) τ1→ϕ τ2 := τ1→{lϕ : τ2}
(expressions) λϕ x:τ.e := λx:τ.{lϕ = e}

(e1 e2)ϕ := (e1 e2).lϕ

Fig. 24. Semantic signatures for applicative functors

Signatures Γ ` S Ξ

Γ ` S1 ∃α1.Σ1 Γ,α1,X :Σ1 ` S2 ∃α2.Σ2

Γ ` (X :S1)→ S2 ∀α1.Σ1→I ∃α2.Σ2
S-FUNCT-I

Γ ` S1 ∃α1.Σ1 Γ,α1,X :Σ1 ` S2 ∃α2.Σ2 κα ′2
= κα1 → κα2

Γ ` (X :S1)⇒ S2 ∃α ′2.∀α1.Σ1→P Σ2[α ′2 α1/α2]
S-FUNCT-P

Subtyping Γ ` Ξ≤ Ξ′ f

Γ,α ′ ` Σ′ ≤ ∃α.Σ ↑ τ f1 Γ,α ′ ` Ξ[τ/α]≤ Ξ′ f2 ϕ ≤ ϕ ′

Γ ` (∀α.Σ→ϕ Ξ)≤ (∀α ′.Σ′→ϕ ′ Ξ
′) λ f :(∀α.Σ→ϕ Ξ).λα

′.λϕ ′x:Σ′. f2(f τ (f1 x))ϕ

U-FUNCT

Subeffects ϕ ≤ ϕ ′

ϕ ≤ ϕ
F-REFL

P≤ I
F-SUB

Fig. 25. New rules for applicative functor signatures

But abstract types defined inside a functor might have functional dependencies on the
functor’s parameters. The trick, discovered by Biswas (1995) and Russo (1998), is to
capture such potential dependencies by skolemizing the lifted variables over the universally
quantified types from the functor’s parameter. That is, we raise the kind of each of the α

′
2

so as to generalize it over all the type parameters α1; correspondingly, all occurrences
of an α ∈ α2 are substituted by the application of the corresponding α ′ ∈ α

′
2 to the actual

parameter vector α1. (At this point, clearly, we require not just System F, but the full power
of Fω , to model our semantics.)

To better understand what’s going on here, let us revisit the signature of the Set functor
(cf. Figure 11), and its elaboration into a semantic signature. Figure 26 shows how the anal-
ogous applicative functor signature will be represented semantically. The new elaboration
rule places the existential quantifier for β outside the functor, and it raises the original kind
Ω of β to Ω→ Ω, in order to reflect the functional dependency on α . Everywhere we
originally had a β , we now find β α in the result.

ZU064-05-FPR main 12 December 2012 19:6

36 Andreas Rossberg, Claudio Russo and Derek Dreyer

(Elem : ORD) ⇒ (SET where type t = Elem.t)
 ∃β :(Ω→Ω).

∀α:Ω.{t : [= α : Ω],
eq : [α×α → bool],
less : [α×α → bool]}

→P {set : [= β α : Ω],
elem : [= α : Ω],
empty : [β α],
add : [α×β α → β α],
mem : [α×β α → bool]}

Fig. 26. Example: applicative signature elaboration

Where such a functor is later applied, β remains as is; only α gets substituted by the
concrete argument type. If that is, say, int, then the resulting structure signature will equate
the type set to β int. Any further application of the functor to arguments with a type
component t = int will yield the same type set = β int.

Subtyping Because the definition of semantic signatures barely changed, only a minor
extension is required to define functor subtyping, namely to allow pure functor types to
be subtypes of impure ones. We do not need to change the definition of matching at all.
Abstract types lifted from a functor body act as if they were abstract type constructors
defined outside the functor, and the original matching rule (cf. Figure 12) handles them
just fine. (However, an algorithmic implementation of the rules will require non-trivial
extensions to the type lookup algorithm, as we will discuss in Section 9.2.)

In other words, the correct subtyping relation between applicative and generative functor
signatures falls out almost for free. The F-ing method provides an immediate explanation
of such subtyping and why it is sound.

Modules While signatures for applicative functors are (relatively) easy to elaborate, mod-
ules require more extensive changes to their elaboration rules to account for applicativity
and purity. Superficially, the only extension to the module elaboration judgment is the
inclusion of an effect annotation ϕ , which specifies whether the module is deemed pure or
not. However, the invariants associated with pure and impure module elaboration are quite
different from each other, as we explain below. Figure 28 gives the modified rules (we have
again highlighted the changes relative to the original rules, cf. Figure 13).

Functors We begin by explaining how we handle functors, since this motivates the form
and associated invariants of the module elaboration judgment. We now have two rules:
M-FUNCT-I, which yields a generative functor (as before) if the body M is impure, and
M-FUNCT-P, which yields an applicative functor if M is pure. In both cases, the functor
expression itself is pure, because it is a value form that suspends any effects of M.

For applicative functors, we need to follow what we did for signatures, and implement
∃-lifting. The difficulty, though, is doing it in a way that still allows a compositional
translation of sealing inside an applicative functor.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 37

(kinds) (·)→ κ := κ

(Γ,α)→ κ := Γ→ κα → κ

(Γ,x:τ)→ κ := Γ→ κ

(types) λ (·).τ ′ := τ ′

λ (Γ,α).τ ′ := λΓ.λα.τ ′

λ (Γ,x:τ).τ ′ := λΓ.τ ′

τ ′ (·) := τ ′

τ ′ (Γ,α) := τ ′ Γ α

τ ′ (Γ,x:τ) := τ ′ Γ

(types) ∀(·).τ ′ := τ ′

∀(Γ,α).τ ′ := ∀Γ.∀α.τ ′

∀(Γ,x:τ).τ ′ := ∀Γ.τ →P τ ′

(expressions) λ (·).e := e
λ (Γ,α).e := λΓ.λα.e
λ (Γ,x:τ).e := λΓ.λPx:τ.e

e (·) := e
e (Γ,α) := e Γ α

e (Γ,x:τ) := (e Γx)P

ΓI := ·
ΓP := Γ

Fig. 27. Environment abstraction

What is the problem? Consider the following example:

fun (X : {type t}) ⇒ {type u = X.t × X.t}:>{type u}

If the body of this functor were impure (like the body of Flip from Figure 22), the impure
functor rule M-FUNCT-I would delegate translation of the functor body to a subderivation,
which, in this example, would yield a signature Ξ = ∃β .{u : [= β : Ω]} and some term
e : Ξ. We would then λ -abstract e over the functor argument to produce a function of type
∀α.{t : [= α : Ω]} →I Ξ. Now, if we wanted to adapt this situation for pure functors by
applying the same lifting trick we used for pure functor signatures, then we would have
to somehow take e : Ξ and retroactively lift its hidden type components over α to derive a
term of type ∃β ′ : Ω→ Ω.∀α : Ω.{t : [= α : Ω]} →P {u : [= β ′α : Ω]}. In general, such
retroactive lifting is not possible.

To avoid this dilemma, we employ a different trick: we design the translation of a pure
module (which the body of an applicative functor must be) so that it consistently constructs
an existential package with the necessary lifting already built in!

In fact, for simplicity, the translation of a pure module abstracts over the entire environ-
ment Γ. More precisely, whereas the impure judgment Γ `M :I ∃α.Σ e guarantees that
Γ ` e : ∃α.Σ, the pure judgment Γ ` M :P ∃α.Σ e instead guarantees that e is a closed
term satisfying · ` e : ∃α.∀Γ.Σ (where the notation ∀Γ.Σ is defined in Figure 27).

The pure functor rule M-FUNCT-P then becomes fairly trivial: it just computes the
translation of its body and returns that directly. This means the translation of the functor
will not only abstract over the functor’s parameters as required, but over the rest of the
current environment Γ, too (because ∃α2.∀(Γ,α,X :Σ).Σ2 is just an alternative way of
writing ∃α2.∀Γ.∀α.Σ→P Σ2). But that is fine, because the functor is itself a pure module,
so according to the elaboration invariant for pure modules, it has to abstract over Γ anyway.

It turns out that the rule M-APP for functor application can remain largely unchanged—
it can handle both kinds of functors. In both cases, the effect ϕ on the functor’s type is
unleashed and determines the effect of the application. Note that applicative application is
always degenerate, with Ξ being some concrete signature Σ3, so that there are no existential
quantifiers in the result to lift over.

ZU064-05-FPR main 12 December 2012 19:6

38 Andreas Rossberg, Claudio Russo and Derek Dreyer

Modules Γ `M :ϕ Ξ e

Γ(X) = Σ

Γ ` X :P Σ λΓ.X
M-VAR

Γ ` B :ϕ Ξ e
Γ ` {B} :ϕ Ξ e

M-STRUCT

Γ `M :ϕ ∃α.{lX : Σ, l : Σ′} e
Γ `M.X :ϕ ∃α.Σ unpack 〈α,y〉= e in pack 〈α,λΓϕ .(y Γϕ).lX 〉

M-DOT

Γ ` S ∃α.Σ Γ,α,X :Σ `M :I Ξ e
Γ ` fun X :S⇒M :P ∀α.Σ→I Ξ λΓ.λα.λIX :Σ.e

M-FUNCT-I

Γ ` S ∃α.Σ Γ,α,X :Σ `M :P ∃α2.Σ2 e
Γ ` fun X :S⇒M :P ∃α2.∀α.Σ→P Σ2 e

M-FUNCT-P

Γ(X1) = ∀α.Σ1→ϕ Ξ Γ(X2) = Σ2 Γ ` Σ2 ≤ ∃α.Σ1 ↑ τ f
Γ ` X1 X2 :ϕ Ξ[τ/α] λΓϕ .(X1 τ (f X2))ϕ

M-APP

Γ(X) = Σ′ Γ ` S ∃α.Σ Γ ` Σ′ ≤ ∃α.Σ ↑ τ f κα ′ = Γ→ κα

Γ ` X :>S :P ∃α ′.Σ[α ′Γ/α] pack 〈λΓ.τ,λΓ. f X〉
M-SEAL

Γ ` S Ξ Γ ` E : norm(Ξ) e
Γ ` unpack E:S :I norm(Ξ) e

M-UNPACK

Bindings Γ ` B :ϕ Ξ e
Γ ` E : τ e

Γ ` val X=E :P {lX : [τ]} λΓ.{lX = [e]}
B-VAL

Γ ` T : κ τ

Γ ` type X=T :P {lX : [= τ : κ]} λΓ.{lX = [τ : κ]}
B-TYP

Γ `M :ϕ ∃α.Σ e Σ not atomic
Γ `module X=M :ϕ ∃α.{lX : Σ} unpack 〈α,x〉= e in pack 〈α,λΓϕ .{lX = x Γϕ}〉

B-MOD

Γ ` S Ξ

Γ ` signature X=S :P {lX : [= Ξ]} λΓ.{lX = [Ξ]}
B-SIG

Γ `M :ϕ ∃α.{lX : Σ} e

Γ ` include M :ϕ ∃α.{lX : Σ} e
B-INCL

Γ ` ε :P {} λΓ.{}
B-EMT

Γ ` B1 :ϕ1 ∃α1.{lX1 : Σ1} e1 l′X1
= lX1 − lX2

Γ,α1,X1:Σ1 ` B2 :ϕ2 ∃α2.{lX2 : Σ2} e2 l′X1
: Σ′1 ⊆ lX1 : Σ1

Γ ` B1;B2 :ϕ1∨ϕ2 ∃α1α2.{l′X1
: Σ′1, lX2 : Σ2}

 unpack 〈α1,y1〉= e1 in

unpack 〈α2,y2〉= (let X1 = λΓϕ1∨ϕ2 .(y1 Γϕ1).lX1 in e2) in

pack 〈α1α2, λΓϕ1∨ϕ2 .let X1 = (y1 Γϕ1).lX1 in

let X2 = (y2 (Γ,α1,X1:Σ1)ϕ2).lX2 in {l′X1
= X1, lX2 = X2}〉

B-SEQ

Fig. 28. New rules for applicative functors and modules

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 39

Paths Γ ` P : Σ e

Γ ` P :ϕ ∃α.Σ e Γ ` Σ : Ω

Γ ` P : Σ unpack 〈α,x〉= e in x Γϕ
P-MOD

Expressions Γ ` E : τ e

Γ `M :ϕ ∃α.Σ e Γ ` S Ξ Γ ` ∃α.Σ≤ norm(Ξ) f
Γ ` pack M:S : norm(Ξ) f (unpack 〈α,x〉= e in pack 〈α,x Γϕ 〉)

E-PACK

Fig. 29. New rules for applicative paths and packages

Pure modules and bindings The real “heavy lifting” (so to speak) happens in M-SEAL.
It abstracts the witness types τ over all type variables from Γ, thereby lifting their kinds
in a manner similar to what happens in the elaboration of applicative functor signatures
(except that Γ generally contains more than just the functor’s parameters). Similarly, the
rule abstracts the term component over all of Γ, thereby constructing the desired functor
representation inside the package. Both these abstractions together cause the rule to yield
a lifted existential type, as desired for an applicative functor.

But using a different elaboration invariant for pure modules has implications on the
translation of other module constructs as well. In all places where the original, impure
rules had to unpack and re-pack existential packages in the translated term, the pure ones
also have to apply and re-abstract Γ (rules M-DOT, B-MOD, and B-SEQ). To avoid the need
for a separate set of rules for pure and impure elaboration, we use the Γϕ notation defined
in Figure 27 to make these steps conditional on the effect ϕ . Rules that return concrete
signatures do not need to shuffle around Γ, but simply insert the expected abstraction (rules
M-VAR, M-FUNCT-I, M-APP, B-VAL, B-TYP, B-SIG, B-EMT). Rule B-SEQ on the other
hand is somewhat trickier, because it has to handle all possible combinations of effects
ϕ1 and ϕ2. (The let-expression around e2 in this rule is actually redundant when ϕ2 =
P—because e2 is a closed expression in that case—but we leave it alone for the sake of
simplicity of the rule.)

Interestingly, sealing is always pure in our system. That is because the syntax of our
module language only permits sealing of module variables, which are values. When ex-
panding the derived syntax for M :> S (Figure 2), however, for an M that is impure, the
overall expression will be regarded impure as advertised, thanks to the rules M-DOT and
B-SEQ that are needed to type the expansion.

Rule M-UNPACK is the only source of unconditional impurity. First of all, an unpacked
expression must be considered impure if the expression being unpacked might compute to
package values with different type components (as in the body of Flip). But second, even if
the expression being unpacked is already a value, it is not possible to treat its unpacking as
a pure module expression because doing so would require us to be able to somehow project
out its type components as type-level expressions. (This is necessary if we want to be able
to lift the type components of the unpack over the context Γ.) If we were interpreting ML
modules into a dependent type theory, this might be possible; however, as discussed in
Section 7.1, given that we are interpreting into Fω , with packaged modules represented

ZU064-05-FPR main 12 December 2012 19:6

40 Andreas Rossberg, Claudio Russo and Derek Dreyer

Set
pack 〈λα.listα,

λα.λPElem : {t : [= α : Ω],
eq : [α×α → bool],
less : [α×α → bool]}.

f ((let y1 = λα.λPElem : {. . .}.{elem = [α : Ω]} in
let y2 =

let y21 = (let elem = . . . in λα.λPElem : {. . .}.{set = [listα : Ω]}) in
let y22 =

. . .
in λα.λPElem : {. . .}.

let elem = (y1 α Elem)P.elem in
let set = ((y2 α Elem)P elem)P.set in
let empty = ((y2 α Elem)P elem)P.empty in
let add = ((y2 α Elem)P elem)P.add in
let mem = ((y2 α Elem)P elem)P.mem in
{elem = elem, set = set, empty = empty, add = add, mem = mem}

) α Elem)P
〉∃β :(Ω→Ω).∀α.{t:[=α:Ω],...}→P{set:[=β α:Ω], elem:[=α:Ω], empty:[β α], add:[...], mem:[...]}

Fig. 30. Example: applicative functor elaboration

as existentials, there is no way to project out their abstract type components as type-level
expressions, so we treat all unpacked expressions as impure.

Figure 30 shows the translation of the Set functor as an applicative functor according to
our rules. Compared to the elaboration previously given in Figure 14, the main difference
is that packing and λ -abstractions have switched order, and that the existential witness
type has been abstracted over α accordingly. Moreover, the nested local let-bindings in
the sequence rule have been replaced by applications of the functor parameters inside
the abstraction. As before, the translation produces many administrative redexes that can
be optimized via some fairly obvious partial evaluation scheme. Figure 31 shows the
translated Set functor after eliminating all intermediate structures and functors this way,
for easier comparison with the analogous generative implementation in Figure 15.

Obviously, always abstracting over Γ in its entirety, as our rules do for pure modules,
also leads to over-abstraction (although that is not visible in the example, where we assume
the initial Γ to be empty). In particular, it would be sufficient to abstract only over the part
of Γ that is bound by, or local to, the outermost applicative functor surrounding a pure
module, if any. However, semantically the difference does not matter. It is not difficult
to refine the translation so that it avoids redundant abstractions, but the bureaucracy for
tracking the necessary extra information would unnecessarily clutter the rules.

Paths and packages Finally, Figure 29 shows the modified rules for paths and packages.
They should not reveal any surprises at this point, because all that changes is the insertion
of the right Γ-abstraction/application necessary to match the module rules.

Importantly, the path rule now fully supports functor applications in type paths. For
example, the type expression (Set IntOrd).set is well-formed when Set is an appropriate
applicative functor. This is simply a consequence of our semantic treatment of paths: when
Set is bound to a functor with the signature given in Figure 26, its outer ∃β is separated

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 41

Set
pack 〈λα.listα,

λα.λPElem : {t : [= α : Ω],
eq : [α×α → bool],
less : [α×α → bool]}.

f (let elem = [α : Ω] in
let set = [listα : Ω] in
let empty = [nil] in
let add = [. . .Elem.eq . . .Elem.less . . .] in
let mem = [. . .Elem.eq . . .Elem.less . . .] in
{elem = elem, set = set, empty = empty, add = add, mem = mem})

〉∃β :(Ω→Ω).∀α.{t:[=α:Ω],...}→P{set:[=β α:Ω], elem:[=α:Ω], empty:[β α], add:[...], mem:[...]}

Fig. 31. Example: applicative functor elaboration, simplified

in the environment (according to rule B-SEQ) and the module (Set IntOrd).set simply has
the atomic signature [= β int : Ω]. Since this signature contains no existentials, it is trivially
a legal path.

Contrast that to the behavior under a generative signature for Set, like the one originally
given in Figure 11. Under that typing, (Set IntOrd).set has the type ∃β .[= β : Ω], with a
fresh local β that prevents it from type-checking as a path in rule P-MOD. The same applies
to any other path to an abstract type defined inside a generative functor.

Our semantics does, however, allow functor paths with applications of generative func-
tors if they do not refer to such abstract types. For example, (Set IntOrd).elem yields sig-
nature ∃β .[= int : Ω], which can be used as a path—even in the basic system of Section 4!
In the extended system presented in this section, we could easily rule out such corner cases
by requiring P to be a pure module in rule P-MOD, but there is no real reason to do so.

8 Abstraction safety, dynamic purity, and sharing

The elaboration rules for applicative functors that we presented in the previous section are
type-safe in the basic syntactic sense that they produce well-typed Fω terms and types, but
they are not abstraction-safe. That is to say, they do not ensure that the data abstraction
boundaries imposed by uses of sealing are properly respected. This is not a peculiar fault
of our semantics: contrary to popular belief, none of the existing accounts of applicative
functors in the literature (or in ML compilers) provide abstraction safety either (Harper
et al., 1990; Leroy, 1995; Russo, 1998; Shao, 1999; Dreyer et al., 2003). The reason,
in short, is that tracking only static purity of module expressions—as we have done in
the previous section, and as other approaches have done before us—is not sufficient: it is
important for the purpose of abstraction safety to track dynamic purity as well.

To see what the issue with abstraction safety is, let us turn to the illustrative set of ex-
amples in Figure 32. The first example, concerning the functor Name and its instantiations
Name1 and Name2, demonstrates why we may want to require a functor that is statically
pure, but not dynamically pure, to be treated as generative. The remaining examples,
concerning various applications of the Set functor, show how ensuring abstraction safety
can even be quite tricky when working with a functor that is dynamically pure.

ZU064-05-FPR main 12 December 2012 19:6

42 Andreas Rossberg, Claudio Russo and Derek Dreyer

signature NAME = {
type name
val new : unit → name
val equal : name × name → bool

}

module Name = fun X : {} ⇒ {
type name = int
val counter = ref 0
val new () = (counter := !counter + 1; !counter)
val equal (x, y) = (x = y)

} :> NAME

module Empty = {}
module Name1 = Name Empty
module Name2 = Name Empty

module IntOrd = {type t = int; val eq = Int.eq; val less = Int.less}
module IntOrd’ = IntOrd
module Set0 = Set IntOrd
module Set1 = Set IntOrd’
module Set2 = Set {type t = int; val eq = Int.eq; val less = Int.less}
module Set3 = Set {type t = int; val eq = Int.eq; val less = Int.greater}

module F = fun X : {} ⇒
{type t = int; val eq = Int.eq;
val less = if random() then Int.less else Int.greater}

module Set4 = Set(F Empty)
module Set5 = Set(F Empty)

Fig. 32. Problems with abstraction safety in applicative functors

First, consider the functor Name, which implements an ADT of fresh names. Every
time Name is instantiated, it will return a module with its own abstract type name, along
with its own private integer counter (of type ref int)—initially set to 0—which can be
incremented to generate a fresh value of type name every time its new operation is in-
voked. In order to ensure that new produces a fresh name every time it is applied, it
is crucial that each instantiation of Name has a distinct name type—i.e., that we treat
Name as a generative functor. Otherwise, calling Name1.new might produce a name that
Name2.new had already produced.4 However, since Name does not involve any uses of
unpacking—i.e., it is statically pure—our semantics from Section 7 would consider it to
be applicative, as would OCaml (since in OCaml all functors are applicative) and Moscow
ML (in which, even if Name were declared as generative, it could be subsequently coerced
to an applicative signature by eta-expansion, thus violating abstraction safety). In the case
of our semantics from Section 7, one could induce Name to be considered generative by
replacing the sealing in its body with a pack at NAME followed by an unpack, but this

4 For a more detailed semantic explanation of the importance of generativity in this example, see
Ahmed, Dreyer & Rossberg (2009).

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 43

is a rather indirect approach, and it does not work in OCaml or Moscow ML due to their
restrictions on the use of the unpack construct.

Second, consider the modules Set0 through Set5 defined in the bottom half of Figure 32.
Set0.set, Set1.set, and Set2.set should clearly be equivalent, since they are constructed
by passing Set the exact same argument IntOrd, just written three different ways. To
ensure abstraction safety, however, Set3.set should be considered distinct from the others:
the argument passed to Set in the definition of Set3 provides a different ordering on
integers (Int.greater), thus rendering the representation of Set3.set incompatible with the
representation of sets ordered by Int.less. As for Set4.set and Set5.set, it is important to
distinguish them from each other (and from all the other set types): depending on the
result of a random coin flip, either/both of these types could end up being compatible with
either/both of Set2.set and Set3.set, but statically we have no way of knowing. We must
therefore conservatively insist that they are both fresh types, even though they are defined
using the exact same module expression Set(F Empty).

Getting abstraction-safe applicative behavior on these Set examples seems to be hard, as
indeed all previous accounts of applicative functors are unsafe and/or overly conservative
in one way or another. Assuming that the Set functor has been assigned an applicative
signature, the type system of Section 7, as well as those of Moscow ML, Shao (1999), and
Dreyer et al. (2003), all consider Set0 through Set5 to have equivalent set components.
The reason is that they employ a “static” notion of module equivalence, meaning that
they consider the type components of Set(M1) and Set(M2) to be equivalent so long
as M1 and M2 have equivalent type components. As one can plainly see, though, this
approach is demonstrably unsafe: since sets ordered one way are not compatible with sets
ordered a different way, the semantics of the type component set in the body of the Set

functor clearly depends on the value component less of the functor argument. In contrast,
OCaml only considers Set(M1) and Set(M2) to be equivalent if M1 = M2 syntactically.
However, this is quite restrictive, with the consequence that Set0.set, Set1.set, and Set2.set

are all considered distinct for no good reason. Moreover, OCaml deems Set4.set and
Set5.set equivalent just because they are constructed from syntactically identical module
expressions, even though doing so constitutes a clear violation of abstraction safety.

8.1 Elaboration

In this section, we refine our elaboration from Section 7 in order to arrive at a semantics
that achieves abstraction safety in a satisfactory manner. Our approach is as follows.

First, in order to deal with examples like the Name functor, which ought not to be
applicative, we now take into account not only static purity, but also dynamic purity. That
is, in the elaboration of pure modules, we only permit value bindings that we can prove
to have no side effects. The intuition behind this restriction is simple: if a module defines
abstract types and also has computational effects, then it is only safe to assume that the
semantic meanings of the abstract types are tied up with the effects. For example, the
meaning of the name type in the Name functor is semantically tied to the stateful counter—
in particular, it represents the set of natural numbers less than the current value of counter

(which may only grow over time).

ZU064-05-FPR main 12 December 2012 19:6

44 Andreas Rossberg, Claudio Russo and Derek Dreyer

E ::= . . . | P | pack M:S
P ::= M
M ::= X | {B} |M.X | fun X :S⇒M | X :>S
B ::= val X=E | type X=T |module X=M | signature X=S | include M | ε | B;B

Fig. 33. Non-expansive expressions

(paths) π ::= α | π τ

(concrete signatures) Σ ::= [= π : τ] | . . .

Abbreviations:

(types) [= π : τ] := {val : τ,nam : π}
(expressions) [e as e′] := {val = e,nam = e′}

Fig. 34. Semantic signatures for tracking sharing

Second, we observe that it is only abstraction-safe to equate the types returned by
applicative functors if the arguments passed to them are dynamically (as well as statically)
equivalent. This explains why Set0, Set1, and Set2 produce equivalent set types, but they
are distinct from Set3.set. In order to check for dynamic equivalence of functor arguments,
we thus refine our semantics to (conservatively) track the “identity” of values.

Dynamic purity Determining whether an expression is dynamically pure is undecidable.
As a conservative approximation, we piggyback on a notion that already exists in ML: the
syntactic classification of non-expansive expressions—essentially, syntactic values. In ML,
this notion is used in the core language to prevent unsound implicit polymorphism, the so-
called value restriction (Wright, 1995). It makes perfect sense to reuse it here, because an
applicative functor can be thought of as a polymorphic function on steroids.

Figure 33 gives a suitable grammar for non-expansive expressions E that accounts for
paths and packages. The “. . . ” in the grammar for E will typically define a sub-language of
what is templated as “. . . ” in the grammar for E (cf. Figure 1), but the specifics obviously
depend on the concrete core language. For module expressions M contained in E, the only
constructs disallowed are functor application and unpacking.

Depending on the details of the core language and its type system, more refined strategies
are possible for classifying pure value bindings. Fortunately, this does not affect anything
else in our development, so we stick with the simple notion of non-expansiveness for
simplicity; adopting something more sophisticated should be straightforward.

Semantic paths As we have mentioned already, our approach relies on the tracking of
“identities” for value components of modules. Since equivalence of values is obviously
undecidable in general, we again use a conservative approximation: our new typing rules
employ “phantom types” to identify values, i.e., abstract type expressions that we call
semantic paths π . Usually, such a path is just a type variable, but due to the lifting that
happens with applicative functors, it can actually take the more general form defined in
Figure 34.

Paths are recorded in an extended definition of atomic value signature, also given in
Figure 34. Consequently, every value binding or declaration will be associated with a

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 45

Declarations Γ ` D Ξ

Γ ` T : Ω τ κα = Ω

Γ ` val X :T ∃α.{lX : [= α : τ]}
D-VAL

Subtyping Γ ` Ξ≤ Ξ′ f

π = π ′ Γ ` τ ≤ τ ′ f
Γ ` [= π : τ]≤ [= π ′ : τ ′] λx:[= π : τ].[f (x.val) as x.nam]

U-VAL

Bindings Γ ` B :ϕ Ξ e

Γ ` E : τ e κα = Ω ∀E. E 6= E ∀P. E 6= P
Γ ` val X=E :I ∃α.{lX : [= α : τ]} pack 〈{},{lX = [e as {}]}〉

B-VAL-I

Γ ` E : τ e κα = Γ→Ω ∀P. E 6= P
Γ ` val X=E :P ∃α.{lX : [= α Γ : τ]} pack 〈λΓ.{},λΓ.{lX = [e as {}]}〉

B-VAL-P

Γ ` P :ϕ ∃α.[= π : τ] e
Γ ` val X=P :ϕ ∃α.{lX : [= π : τ]} unpack 〈α,x〉= e in pack 〈α,λΓϕ .{lX = x}〉

B-VAL-ALIAS

Expressions Γ ` E : τ e

Γ ` P :ϕ ∃α.[= π : τ] e Γ ` τ : Ω

Γ ` P : τ unpack 〈α,x〉= e in (x Γϕ).val
E-PATH

Fig. 35. Elaboration of value sharing

semantic path. As with abstract types, we can quantify over path variables (existentially
and universally), and thus abstract over value identities.

Semantic paths can be viewed as a refinement of the concept of structure stamps, which
tracked structure identity in SML’90 (Milner et al., 1990). Here, we reinterpret the ad hoc
operational notion of “stamp” as a phantom type introduced via System F quantification,
and we use it to stamp individual values rather than whole structures, thus enabling the
tracking of identities at a finer granularity. (We could reconstruct “real” structure stamps,
essentially by tracking module identities in addition to value identities. But in the presence
of fine-grained value paths we see no additional benefit in also having structure stamps.)

Obviously, our notion of semantic paths could be refined in various ways. For example,
certain values, such as scalar constants, could be captured more precisely by reflecting them
on the type level (equating more values and hence allowing more programs to type-check).
However, such details are beyond the scope of this article.

Elaboration The new and modified rules for value declarations and bindings are shown
in Figure 35. We once more have highlighted the relevant changes.

ZU064-05-FPR main 12 December 2012 19:6

46 Andreas Rossberg, Claudio Russo and Derek Dreyer

For a value declaration (rule D-VAL), we always introduce a fresh path variable (of
kind Ω) as a place-holder for the actual value’s identity. For value bindings, there are now
three rules. If the binding just rebinds a suitable path P, then we actually know the value’s
identity, and can retain it (rule B-VAL-ALIAS). Otherwise, we treat the value as “new” and
introduce a fresh path variable representing it; the witness type for the variable does not
matter, so we simply pick {}. The binding can be treated as pure if the expression is non-
expansive (rule B-VAL-P), in which case we have to abstract over Γ inside the package, in
the same way we did in the sealing rule M-SEAL (Figure 28).

Subtyping requires atomic value signatures to have matching paths (rule U-VAL). For
now, this condition is trivial to meet, because a rule D-VAL always produces a sepa-
rate, existentially quantified path for every single value declaration, so that the matching
rule U-MATCH can pick them freely before descending into the subtyping check. In Sec-
tion 8.2 below, we present another small language extension that makes the condition more
interesting, though.

Finally, in the premise of the modified rule E-PATH, P is elaborated as a full module.
This is more permissive than going through the generic path rule P-MOD as before (cf.
Figure 29), because the new rule also allows dropping any quantified variable that only
occurs in the path π . Without the modified rule, our encoding of let-expressions would
no longer work, since every local value definition (that is not a mere alias) introduces
an existential quantifier as its path. (Consider let val x = 1 in x+x, which desugars into
{val x = 1; val it = x+x}.it—as a module, its type is ∃α1α2.[= α2 : int], so that α2

cannot be avoided by the path rule P-MOD. Rule E-PATH, on the other hand, can drop
both variables.)

Example Figure 36 shows the result of elaborating the (applicative) functor signature
describing Set, previously shown in Figure 26, under the updated rules. Differences to the
previous result are highlighted: atomic value signatures now carry path information, the
signature abstracts the path variables α1, α2 and β1 to β3, and the export type β has to be
applied not just to the argument type α but also to the argument paths α1,α2, accordingly.

Given a Set functor with the semantic signature from Figure 36, the types Set0.set,
Set1.set, and Set2.set (from the beginning of the section) will be seen as equivalent: they all
elaborate to the semantic type β int πeq πless, with the two paths πeq and πless referring to
the respective members of structure Int. They are distinguished from type Set3.set, which
elaborates to β int πeq πgreater. Types Set4.set and Set5.set are also fresh, because the
functor F will be deemed impure under the new rules, due to its binding for less, which
features an expansive application (random()). Hence F delivers a fresh path for less with
every application, producing different set types when passed on to the Set functor.

The Name functor will be considered impure under the new rules as well, because of
the local effectful binding for counter. Consequently, the functor will behave generatively,
with Name1.name and Name2.name elaborating to distinct fresh abstract types.

8.2 Sharing specifications

Once value identities matter for determining type equivalences, it can be useful to give the
programmer the ability to explicitly specify sharing constraints between values. Figure 37

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 47

(Elem : ORD) ⇒ (SET where type elem = Elem.t)
 ∃β :(Ω3→Ω),β1:(Ω3→Ω),β2:(Ω3→Ω),β3:(Ω3→Ω).

∀α:Ω,α1:Ω,α2:Ω.{t : [= α : Ω],
eq : [= α1 : α×α → bool],
less : [= α2 : α×α → bool]}

→ {set : [= β α α1 α2 : Ω],
elem : [= α : Ω],
empty : [= β1 α α1 α2 : β α α1 α2],
add : [= β2 α α1 α2 : α×β α α1 α2→ β α α1 α2],
mem : [= β3 α α1 α2 : α×β α α1 α2→ bool]}

(where Ω3→Ω := Ω→Ω→Ω→Ω)

Fig. 36. Example: signature elaboration with value tracking

(signatures) S ::= . . . | S where val X=P | S where module X=P | like P
(declarations) D ::= . . . | val X=P |module X=P

Fig. 37. Extension with value and module sharing specifications

presents syntax for manifest value specifications (using module paths P) and a related
signature refinement using where. It also introduces similar forms to specify sharing
between entire modules. Finally, we add a construct, “like P”, which yields the signa-
ture of the module P, and thus can only be matched by modules that provide the same
definitions as P. In essence, this describes a higher-order singleton signature in the manner
introduced by Dreyer et al. (2003).5 A manifest specification module X=P is equivalent
to the specification module X : like P.

One subtlety to point out here is that the design of these constructs depends on the
fact that our elaboration is deterministic, and so any path P trivially has a unique type in
our system. If that weren’t the case—e.g., if modules only had principal types—then the
“where module” and the “like” construct would not yield a unique signature specifica-
tion, i.e., their meaning would be ambiguous. To compensate, it would be necessary to
require the programmer to disambiguate those constructs with explicit signature annota-
tions “:S” on the paths. A deterministic type system avoids any such nuisance.

Elaboration The respective elaboration rules are shown in Figure 38. Rule S-WHERE-VAL

is analogous to S-WHERE-TYP (cf. Figure 10).
Module refinement (rule S-WHERE-MOD) is slightly more involved. It is defined as

refining every individual abstract value and type specification in submodule X of S. This
module has the signature Σ′′, and the type variables α2 identify its abstract entities; the
remaining α1 are used elsewhere in Σ and remain untouched. The concrete signature Σ′

of the refining path P has to match ∃α2.Σ
′′. (Typically, α2 will coincide with the subset

5 It is also very similar to the “module type of” operator that was introduced in recent versions of
OCaml. The difference is that OCaml’s operator does not propagate the identities of abstract types
defined by the module, which we find rather surprising.

ZU064-05-FPR main 12 December 2012 19:6

48 Andreas Rossberg, Claudio Russo and Derek Dreyer

Signatures Γ ` S Ξ

Γ ` S ∃α1αα2.Σ Γ ` P : [= π : τ ′] e
Σ.lX = [= α : τ] Γ ` τ ′ ≤ τ f

Γ ` S where val X=P ∃α1α2.Σ[π/α]
S-WHERE-VAL

Γ ` S ∃α.Σ Γ ` P : Σ′ e Σ.lX = Σ′′

α = α1]α2 ∃α2.Σ
′′ explicit Γ,α1 ` Σ′ ≤ ∃α2.Σ

′′ ↑ τ f

Γ ` S where module X=P ∃α1.Σ[τ/α2]
S-WHERE-MOD

Γ ` P : Σ e Σ explicit
Γ ` like P Σ

S-LIKE

Declarations Γ ` D Ξ

Γ ` P : [= π : τ] e
Γ ` val X=P {lX : [= π : τ]}

D-VAL-EQ

Γ ` P : Σ e Σ explicit
Γ `module X=P {lX : Σ}

D-MOD-EQ

Fig. 38. Elaboration of value and module sharing specifications

of α that are free in Σ′′, because only in rare circumstances can matching succeed with an
unquantified α ∈ α1 left over in Σ′′.6)

The rules for manifest value and module declarations are straightforward, as is the rule
for singletons.

In all the module forms, a side condition about explicitness is necessary to maintain the
elaboration invariant that is required for decidability (cf. Section 5.2). Inductively, we only
know that the respective signatures are valid, but because they can occur on the right-hand
side of a match, we would lose decidability (which we will prove in Section 9.2) if we did
not require them to also be explicit. In practice, the signature of a path (or any module,
for that matter) can always be enforced to be explicit by imposing a signature annotation.
Alternatively, any “classic” syntactic path consisting only of variables, projection, and pure
functor application will satisfy the explicitness criterion, as long as those variables in turn
are bound to definitions with explicit signature annotations.

In the case of rule S-WHERE-MOD, however, ∃α2.Σ
′′ can only be made explicit (and the

refinement made well-formed) by ensuring that the signature of the specialized submodule
is sufficiently self-contained, i.e., none of its type components refers to any of the α1 from
the surrounding signature. It is not merely decidability concerns that demand this. For
example, the refinement in

6 With ML as a core language, one such example would be if Σ′′ contained a value component of
type t int→ t int. This type could be matched by a Σ′ in which the corresponding component had
type ∀α.α → α , which does not mention t but can nonetheless be instantiated to t int→ t int.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 49

signature S = { type t : ? → ?; module A : {type u = t int; . . . }}
module B = {type u = int; . . . }
signature T = S where module A = B

would require higher-order unification to find a t such that t int = int. Not only is that
an undecidable problem in the general case, it also has more than one “solution” for this
example, and the signature T would therefore have an ambiguous meaning. Consequently,
the above example is disallowed by the rule—t is not rooted in the inner signature of A,
although it mentions it. But the example can be disambiguated by splitting the refinement
into stages:7

signature T = (S where type t = fun a ⇒ a) where module A = B

If all types from the surrounding signature have an alias in the submodule, however, then
our system accepts the direct refinement:

signature S = { type t : ? → ?; module A : {type u = t; . . . }}
module B = {type u = fun a ⇒ list a; . . . }
signature T = S where module A = B

(And because we always βη-normalize all types, this even works when u is specified as
fun a ⇒ t a in signature S.)

The “where module” construct has been a rather dark corner of ML-style modules.
While it is often available in one form or another, its semantics tends to be either vague
or over-restrictive (or both), and rarely is it properly specified. The structure sharing spec-
ifications of SML’90 (Milner et al., 1990) were the earliest form of a comparable con-
struct, but they were both relatively restricted and semantically complicated, resorting
to global “admissibility” conditions. In SML’97 (Milner et al., 1997), they were hence
degraded to a form of syntactic sugar, but this is arguably not quite the right thing either,
since their desugaring in fact relies on type information. As has been observed repeatedly
by SML implementers, the SML’97 semantics has a severe limitation: it prevents the
placement of structure sharing constraints on any signatures that export a single transpar-
ent type specification! Generalizations and improvements, including the complementary
“where module” (or “where structure”) mechanism, have been discussed in online
forums and implemented in some compilers (e.g., SML/NJ (SML/NJ Development Team,
1993) and Alice ML (Rossberg et al., 2004)), but have never been formalized as far as we
are aware. In OCaml, “with module” is superficially similar, but actually extends a sig-
nature instead of just refining types, which apparently leads to surprises.8 Our elaboration
rule S-WHERE-MOD may thus be viewed as a novel step in the right direction.

9 Meta-theory revisited

Having made non-trivial extensions to our system in the last two sections, we need to revisit
the meta-theoretical properties that we proved about the initial system in Section 5.

7 In this and the following example, we use the syntax fun X ⇒ T to denote a type function in our
imaginary Core language.

8 See for example the bug reported at http://caml.inria.fr/mantis/view.php?id=5514.

ZU064-05-FPR main 12 December 2012 19:6

50 Andreas Rossberg, Claudio Russo and Derek Dreyer

9.1 Soundness

The soundness statement for the new elaboration rules has to cover the elaboration of pure
modules now. But first a helpful lemma about typing environment abstractions:

Lemma 9.1 (Typing of environment abstraction)
Let Γ `� and Γ1,Γ,Γ2 `�.

1. If and only if Γ ` τ : κ , then · ` λΓ.τ : Γ→ κ .
2. If and only if Γ1,Γ,Γ2 ` τ : Γ→ κ , then Γ1,Γ,Γ2 ` τ Γ : κ .
3. If and only if Γ ` τ : Ω, then · ` ∀Γ.τ : Ω.
4. If and only if Γ ` e : τ , then · ` λΓ.e : ∀Γ.τ .
5. If and only if Γ1,Γ,Γ2 ` e : ∀Γ.τ , then Γ1,Γ,Γ2 ` e Γ : τ .
6. (λΓ.τ) Γ≡ τ .

In the actual soundness statement, pure module elaboration has a somewhat more intri-
cate invariant than its impure version:

Theorem 9.2 (Soundness of elaboration with applicative functors)
Let Γ `�.

1. If Γ ` T : κ τ , then Γ ` τ : κ .
2. If Γ ` E : τ e, then Γ ` τ : Ω and Γ ` e : τ .
3. If Γ ` τ ≤ τ ′ f and Γ ` τ : Ω and Γ ` τ ′ : Ω, then Γ ` f : τ → τ ′.
4. If Γ ` P : Σ e, then Γ ` Σ : Ω and Γ ` e : Σ.
5. If Γ ` S/D Ξ, then Γ ` Ξ : Ω.
6. If Γ `M/B :I Ξ e, then Γ ` Ξ : Ω and Γ ` e : Ξ.
7. If Γ `M/B :P ∃α.Σ e, then Γ ` ∃α.Σ : Ω and · ` e : ∃α.∀Γ.Σ.
8. If Γ ` Ξ≤ Ξ′ f and Γ ` Ξ : Ω and Γ ` Ξ′ : Ω, then Γ ` f : Ξ→ Ξ′.
9. If Γ ` Σ≤ ∃α.Σ′ ↑ τ f and Γ ` Σ : Ω and Γ,α ` Σ′ : Ω,

then Γ ` τ : κα and Γ ` f : Σ→ Σ′[τ/α].

Proof
By simultaneous induction on the derivations. Most cases are proved as before (Theo-
rem 5.1), except that some use additional abstraction over Γ, and we have added a number
of new rules, most of which are fairly straightforward. We give the two most relevant cases
for elaborating applicative functors and pure modules:

• Case M-FUNCT-P: By induction on the first premise we know that Γ ` ∃α.Σ : Ω,
and by iterated inversion this implies (1) Γ,α ` Σ : Ω. Hence we can show that
Γ,α,X :Σ ` �. By induction on the second premise it follows that (2) Γ,α,X :Σ `
∃α2.Σ2 : Ω and (3) Γ ` e : ∃α2.∀(Γ,α,X :Σ).Σ2. Statement (3) already proves the
second goal, because ∃α2.∀(Γ,α,X :Σ).Σ2 = ∃α2.∀Γ.∀α.Σ→P Σ2 by the definition
of environment abstraction.
To prove the first goal, inverting (2) gives Γ,α,X :Σ,α2 ` Σ2 : Ω, which can be triv-
ially strenghtened and reordered to Γ,α2,α ` Σ2 : Ω. By weakening (1) to Γ,α,α2 `
Σ : Ω, applying Fω typing rules, and induction over the length of α1 and then α2, we
arrive at Γ ` ∃α2.∀α.Σ→P Σ2 : Ω.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 51

• Case M-SEAL: Since we assume that Γ is well-formed, the first premise implies (1)
Γ ` Σ′ : Ω. By induction on the second premise we get Γ ` ∃α.Σ, which can be
inverted to (2) Γ,α ` Σ : Ω. By induction (part 9) we can conclude (3) Γ ` τ : κα and
(4) Γ ` f : Σ′→ Σ[τ/α].
Consider the first goal first. By Lemma 9.1 and Fω kinding, we get Γ,α ′ ` α ′ Γ′ : κα ,
and accordingly, Γ,α ′ ` [α ′ Γ/α] : Γ,α , so that the substitution lemma applied to (2)
yields Γ,α ′ ` Σ[α ′ Γ/α] : Ω. By induction over the length of α

′, Fω typing rules then
give Γ ` ∃α ′.Σ[α ′ Γ/α] : Ω as desired.
For the second goal, first derive (5) Γ ` f X : Σ[τ/α] by simple application of Fω

typing rules to (1) and (4). Lemma 9.1 then gives · ` λΓ. f X : ∀Γ.Σ[τ/α]. Likewise,
· ` λΓ.τ : Γ→ κα follows from (3). The lemma also gives (λΓ.τ) Γ = τ , and hence
it holds that Σ[τ/α] = Σ[(λΓ.τ) Γ/α] and we can apply the conversion rule and
Lemma 9.1 to (5) to get · ` λΓ. f X : ∀Γ.Σ[(λΓ.τ) Γ/α]. Since we assume that
α
′ are fresh by convention, this is the same type as ∀Γ.Σ[α ′ Γ/α][(λΓ.τ)/α ′], and

induction over α
′ for application of the pack typing rule gives the wanted result.

9.2 Decidability

Except for the trivial incorporation of effect subtyping, the addition of applicative functors
did not change the declarative subtyping and matching rules. However, it does necessitate
fundamental changes to their algorithmic implementation. In particular, type lookup now
has to look into pure functor signatures in order to find suitable types for matching, and the
contravariance of functor parameters results in a significantly more complex definition of
the lookup function.

Validity and rootedness First, we observe that our previous definition of signature va-
lidity and, specifically, rootedness (cf. Figure 17) is no longer appropriate—it is violated
by the new rules for pure functors (S-FUNCT-P and M-FUNCT-P), where we lift an exis-
tential quantifier over a universal one, and thus separate the existential quantifier from the
structure that roots its variables. We must also take account of abstract value paths.

Figure 39 gives an extended definition of validity and related properties. Rootedness
takes applicative functors into account: a variable may now be rooted in a pure functor’s
codomain. As a side effect, the definition no longer is concerned with plain type variables
only, but generalises to semantic paths π . In the functor case, we extend the current path by
applying the functor’s universal variables before descending into the codomain, mirroring
the kind-raising substitution performed by rule S-FUNCT-P. The path π in the rootedness
relation is always “abstract”, in the sense that it is restricted to the form α α

′. We write
head(π) to denote the head variable α in such a path.

However, we have to be careful not to treat variable occurrences inside a functor as a
root when that functor’s argument already mentions that variable. For example, the (valid)
signature

∀α.{t: [= α : Ω],u: [= β α : Ω]}→P {v: [= β α : Ω]}
cannot possibly be a root for β , even though the path β α on the right has the right form—
intuitively, with β already occurring in its argument, this functor cannot be the origin of the
abstract type β . Rather, it represents the functor signature (X : {type t; type u = b t})

ZU064-05-FPR main 12 December 2012 19:6

52 Andreas Rossberg, Claudio Russo and Derek Dreyer

ε rooted in Σ :⇔ always
α,α rooted in Σ :⇔ α rooted in Σ avoiding α,α ∧ α rooted in Σ

π rooted in [= π ′ : τ] avoiding β (at ε) :⇔ π = π ′

π rooted in [= τ : κ] avoiding β (at ε) :⇔ π = τ

π rooted in {l : Σ} avoiding β (at l.l) :⇔ π rooted in {l : Σ}.l avoiding β (at l)
π rooted in ∀α.Σ1→P Σ2 avoiding β (at l) :⇔ π α rooted in Σ2 avoiding β (at l)∧β ∩ fv(Σ1) = /0

[= π : τ] explicit (always)
∀α.Σ→ϕ Ξ explicit :⇔ ∃α.Σ explicit∧Ξ explicit

. . .

[= π : τ] valid (always)
∀α.Σ→ϕ Ξ valid :⇔ ∃α.Σ explicit∧Ξ valid

. . .

Fig. 39. Validity for applicative functors

→ {type v = b X.t}, where the type b is bound somewhere else. (Technically, the refined
type lookup algorithm that we are going to define in a moment could produce cyclic results
if we treated examples like this as explicit.) The problem extends to multiple variables.
Imagine:

∃β1β2.{F : ∀α.{t : [= α : Ω],u: [= β2 : Ω→Ω]}→P {v : [= β1 α : Ω]},
G : ∀α.{t : [= α : Ω],v: [= β1 : Ω→Ω]}→P {u : [= β2 α : Ω]}}

We cannot allow such a signature to be regarded explicit, because β1 and β2 would then
have a cyclic dependency.

The new rootedness judgment excludes such cyclic examples, by (1) enforcing that
each rooted variable is “avoided” by any functor parameter signature its root is under,
and (2) inductively requiring that for multiple variables, each root not only avoids the
variable itself, but also any of the following ones, thereby imposing sequential dependen-
cies. Intuitively, then, the order of the quantified variables has to reflect the order of the
respective declarations from which they originate. (This means that we are no longer as
free to reorder quantified variables as we were before. We can only pick an order that
represents a topological sorting with respect to the (non-cyclic) dependency graph of the
declarations. Our definition of signature normalization (Section 6) hence is in need of
refinement. However, the details are not very interesting, so we omit them here.)

With the new and improved definition of rootedness, the validity lemma is valid again,
and we can extend it to the pure judgments:

Lemma 9.3 (Simple properties of validity with applicative functors)
1. If and only if π rooted in Σ avoiding β 1 and π rooted in Σ avoiding β 2,

then π rooted in Σ avoiding β 1,β 2.
2. If π rooted in Σ avoiding β 1 and fv(Σ)∩β 2 = /0, then π rooted in Σ avoiding β 1,β 2.
3. If α rooted in Σ, then α rooted in Σ[τ ′/α

′], provided α ∩ (fv(τ ′)∪α
′) = /0.

4. If Ξ explicit, then Ξ valid.
5. If Ξ valid/explicit, then Ξ[τ/α] valid/explicit.
6. If Ξ valid/explicit, then norm(Ξ) valid/explicit.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 53

Lemma 9.4 (Signature validity with applicative functors)
Assume Γ valid.

1. If Γ ` P : Σ e, then Σ valid.
2. If Γ ` S/D Ξ, then Ξ explicit.
3. If Γ `M/B :ϕ Ξ e, then Ξ valid.

Type Lookup Of course, the more liberal definition of rootedness and signature validity
now necessitates a more general type lookup algorithm. The upgrade is shown in Figure 40.
Like rootedness, it now deals with semantic paths π instead of plain variables. That is, it no
longer just looks for type variables but for paths. When lookup descends into the codomain
of a functor type, it extends the current path with the functor’s parameter variables.

But that is not enough. Consider lookupπ(∀α.Σ1 →P Σ2,∀α ′.Σ′1 →P Σ′2). In general, a
type looked up in Σ2 may have occurrences of variables from α , which would escape their
scope if we left them alone. As with functor subtyping, we hence have to substitute α first,
in a contravariant fashion. That is, we inversely look up the corresponding τ

′ in Σ′1 and
substitute in Σ2. As a result, the then looked-up types τ may now contain occurrences of
the right-hand side’s parameter types α

′ (because τ
′ can contain them). But that is fine,

because we have to lambda-abstract over those in the end anyway, in order to match the
kind raising performed for abstract types defined by applicative functors.

Unfortunately, as our earlier discussion of rootedness already suggested, contravariance
complicates the lookup of multiple variables, because it can create dependencies between
the results. Consider:

Ξ = ∃β1β2.Σ, Σ = {F : ∀α.{t : [= α : Ω]}→P {t : [= β1 α : Ω]},
G : ∀α.{t : [= α : Ω]}→P {t : [= β2 α : Ω]}}

Ξ′ = ∃β ′1β ′2.Σ
′, Σ′ = {F : ∀α ′.{t : [= α ′ : Ω]}→P {t : [= β ′1 α ′ : Ω]},

G : {t : [= β ′1 int : Ω]}→P {t : [= β ′2 : Ω]}}

If we want to check Ξ≤ Ξ′, then looking up β ′1,β
′
2 independently would deliver

lookupβ ′1
(Σ,Σ′) ↑ λα ′.β1 α ′

lookupβ ′2
(Σ,Σ′) ↑ β2 (β ′1 int)

The solution for β ′2 still contains an occurrence of β ′1, which we need to substitute away.
Consequently, as in the definition of rootedness, we have to respect the quantification order
of the existential variables (like those from Ξ′ above) and perform their lookup in this order,
substituting types as we go. As explained earlier, the definition of rootedness ensures that
quantification order corresponds to dependency order.

In fact, the lookup rules, in the case of multiple variables and of functors, also contain
explicit side conditions that check that the returned type(s) do not contain the looked-up
variable(s) themselves. The main reason for these side conditions is technical: building
them into the lookup judgment removes mutual interdependencies between various prop-
erties we prove below. In practice, they are implied by rootedness.

Because the new definition of lookup is more complicated, its “simple” properties are a
little bit less simple than before (cf. Lemma 5.4):

Lemma 9.5 (Simple properties of type lookup with applicative functors)

ZU064-05-FPR main 12 December 2012 19:6

54 Andreas Rossberg, Claudio Russo and Derek Dreyer

lookupε (Σ,Σ′) ↑ ε always
lookupα,α(Σ,Σ′) ↑ τ,τ if lookupα (Σ,Σ′) ↑ τ ∧ fv (τ)∩α = /0

∧ lookupα (Σ,Σ′[τ/α]) ↑ τ

lookupπ ([= π ′′ : τ], [= π ′ : τ ′]) ↑ π ′′ if π ′ = π

lookupπ ([= τ : κ], [= τ ′ : κ]) ↑ τ if τ ′ = π

lookupπ ({l : Σ},{l′ : Σ′}) ↑ τ if ∃l ∈ l∩ l′. lookupπ ({l : Σ}.l,{l′ : Σ′}.l) ↑ τ

lookupπ (∀α.Σ1→P Σ2,∀α ′.Σ′1→P Σ′2) ↑ λα
′.τ if lookupα (Σ′1,Σ1) ↑ τ

′ ∧ head(π) /∈ fv(τ ′)
∧ lookupπ α

′(Σ2[τ ′/α],Σ′2) ↑ τ

Fig. 40. Algorithmic type lookup with applicative functors

1. If lookupα(Σ,Σ′) ↑ τ and α ∩ fv(Σ) = /0, then fv(τ)⊆ fv(Σ)∪ fv(Σ′)−α .
2. If lookupπ(Σ,Σ′) ↑ τ and head(π) /∈ fv(Σ), then fv(τ)⊆ fv(Σ)∪ fv(Σ′)−head(π).
3. If lookupα(Σ,Σ′) ↑ τ and α ∩ (α ′∪ fv(τ ′)) = /0,

then lookupα(Σ[τ ′/α
′],Σ′[τ ′/α

′]) ↑ τ[τ ′/α
′].

4. If lookupπ(Σ,Σ′) ↑ τ and fv(π)∩ (α ′∪ fv(τ ′)) = /0,
then lookupπ(Σ[τ ′/α

′],Σ′[τ ′/α
′]) ↑ τ[τ ′/α

′].
(Moreover, in parts 3 and 4, the length of the derivation stays the same.)

The soundness statement also requires a more verbose formulation than before, and
because of the contravariant lookup in the functor case, both parts are mutually dependent:

Theorem 9.6 (Soundness of type lookup with applicative functors)
1. Let Γ` Σ : Ω and Γ,α ` Σ′ : Ω. If lookupπ(Σ,Σ′) ↑ τ1, then Γ,α ` π : κ and Γ` τ1 : κ .

Furthermore, if Γ ` Σ ≤ Σ′[τ2/α] for Γ ` τ2 : κα and π = α α0 (with α ∩α0 = /0),
then τ1 = τ2 α0.

2. Let Γ ` Σ : Ω and Γ,α ` Σ′ : Ω. If lookupα(Σ,Σ′) ↑ τ1, then Γ ` τ1 : κα .
Furthermore, if Γ ` Σ≤ ∃α.Σ′ ↑ τ2, then τ1 = τ2.

Proof
By simultaneous induction on the size of the derivation of the lookup. Interestingly, proving
well-kindedness of the looked-up types requires slightly different inductive steps than
proving the type equivalence(s). Part 1:

• Case lookupπ([= τ1 : κ], [= τ ′ : κ]): Then π = τ ′. By inversion of well-kindedness,
Γ ` τ1 : κ and Γ,α ` τ ′ : κ . Furthermore, by inversion of subtyping, τ1 = τ ′[τ2/α],
for which we know via substitution that τ ′[τ2/α] = π[τ2/α] = τ2 α0.
• Case lookupπ([= π ′′ : τ3], [= π ′ : τ ′3]): Analogous.
• Case lookupπ({l : Σ},{l′ : Σ′}): Then lookupπ(Σ,Σ′) ↑ τ1 for some Σ∈Σ and Σ′ ∈Σ

′.
By inverting well-kindedness, Γ`Σ : Ω and Γ,α `Σ′ : Ω. The first claim then follows
by induction. Furthermore, by inverting subtyping, Γ ` Σ≤ Σ′[τ2/α], and the second
claim likewise follows by induction.
• Case lookupπ(∀α1.Σ1 →P Σ2,∀α ′1.Σ′1 →P Σ′2): Then τ1 = λα

′
1.τ3 such that both

lookupα1
(Σ′1,Σ1) ↑ τ

′
1 with α /∈ fv(τ ′1), and lookupπ α

′
1
(Σ2[τ ′1/α1],Σ′2) ↑ τ3. Let Γ′1 =

Γ,α,α ′1. First, inverting the kinding rules, Γ,α1 ` Σ1/Σ2 : Ω and Γ′1 ` Σ′1/Σ′2 : Ω.
For Σ1, we can weaken to Γ′1,α1 ` Σ1 : Ω, which allows us to invoke the induction
hypothesis for part 2 and conclude Γ′1 ` τ ′1 : κα1 . Because α /∈ fv(τ ′1), the result can
be strengthened to Γ,α ′1 ` τ ′1 : κα1 .

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 55

Let Γ′2 = Γ,α ′1. Obviously, Γ′2 ` [τ ′1/α1] : Γ,α1, and applying the substitution lemma,
Γ′2 ` Σ2[τ ′1/α1] : Ω. We can also use the substitution lemma to reorder Γ′1 and derive
Γ′2,α ` Σ′2 : Ω. We can now invoke the induction hypothesis on the codomains and
get Γ′2,α ` π α

′
1 : κ ′ and Γ′2 ` τ3 : κ ′. With Lemma 9.1, we know both Γ′2,α ` π :

α
′
1→ κ ′ and Γ ` λα

′
1.τ3 : α

′
1→ κ ′. Given that the α

′
1 are locally fresh by the usual

variable convention, and thus don’t occur in π , the former can be strengthened to
Γ,α ` π : α

′
1→ κ ′ as required.

To furthermore prove the type equivalence, we can invert the subtyping assumption,
revealing Γ′2 ` Σ′1[τ2/α] ≤ ∃α1.Σ1 ↑ τ

′
2 and Γ′2 ` Σ2[τ ′2/α1] ≤ Σ′2[τ2/α]. The sub-

stitution lemma implies Γ′2 ` Σ′1[τ2/α] : Ω. And we can apply weakening to kinding
of Σ1, such that Γ′2,α1 ` Σ1 : Ω. Using Lemma 9.5, lookupα1

(Σ′1[τ2/α],Σ1[τ2/α]) ↑
τ
′
1[τ2/α], but by variable containment we actually know that Σ1[τ2/α] = Σ1 and

τ
′
1[τ2/α] = τ

′
1. Because that modified lookup derivation is still shorter than the

current one, we can invoke the induction hypothesis (part 2) for the type equivalence
claim, and get τ

′
1 = τ

′
2. As a consequence, Σ2[τ ′2/α1] = Σ2[τ ′1/α1]. So we know

about the codomain that Γ′2 ` Σ2[τ ′1/α1] ≤ Σ′2[τ2/α]. Consequently, the induction
hypothesis (part 1) also implies τ3 = α α0 α

′
1. or, via η-equivalence, λα

′
1.τ3 = α α0.

Part 2:

• Case lookupε(Σ,Σ′): There is nothing to show.
• Case lookupα,α ′(Σ,Σ′): Then τ1 = τ1,τ

′
1 and lookupα(Σ,Σ′) ↑ τ1 with fv(τ1)∩α

′ =
/0, and lookupα

′(Σ,Σ′[τ1/α]) ↑ τ
′
1. By inverting well-kindedness, Γ,α,α ′ ` Σ′ : Ω,

which, via the substitution lemma, can be tweaked to Γ,α ′,α ` Σ′ : Ω. At the same
time, weakening gives Γ,α ′ `Σ : Ω. Invoking the induction hypothesis (part 1) yields
Γ,α ′,α ` α : κ and Γ,α ′ ` τ1 : κ . Inverting the former tells κ = κα . And because the
side condition says α

′∩ fv(τ1) = /0, the latter can be strengthened to Γ ` τ1 : κα . We
can invoke the substitution lemma to derive Γ,α ′ ` Σ′[τ1/α] : Ω, which is enough to
invoke the induction hypothesis again and conclude Γ ` τ ′1 : κα ′ as well.
Furthermore, for proving the type equivalence, inverting matching reveals Γ ` Σ ≤
Σ′[τ2,τ

′
2/α,α ′] such that Γ` τ2 : κα and Γ ` τ ′2 : κα ′ . And because τ2,τ

′
2 are all well-

formed in plain Γ, the variables α,α ′ don’t appear free in them, so Σ′[τ2,τ
′
2/α,α ′] =

Σ′[τ ′2/α
′][τ2/α] = Σ′[τ2/α][τ ′2/α

′]. Substitution on Σ′ gives Γ,α ` Σ′[τ ′2/α
′] : Ω.

By application of Lemma 9.5, we have lookupα(Σ[τ ′2/α
′],Σ′[τ ′2/α

′]) ↑ τ1[τ ′2/α
′].

By the variable convention, fv(Σ)∩ α
′ = /0. With the side condition on τ1, thus,

lookupα(Σ,Σ′[τ ′2/α
′]) ↑ τ1. Because that still has a derivation shorter than the current

one, we can invoke the induction hypothesis (part 1) again on the first lookup, to
obtain that τ1 = τ2.
Consequently, lookupα(Σ,Σ′[τ2/α]) ↑ τ

′
1 also holds (and still has a derivation smaller

than the current one), and so does Γ,α ′ `Σ′[τ2/α] : Ω. Now, because Σ′[τ2,τ
′
2/α,α ′] =

Σ′[τ2/α][τ ′2/α
′], we can apply U-MATCH to construct a derivation for Γ ` Σ ≤

∃α ′.Σ′[τ2/α] ↑ τ
′
2. We can once more apply the induction hypothesis to that deriva-

tion, which produces τ
′
1 = τ

′
2.

Corollary 9.7 (Uniqueness of type lookup with applicative functors)
Let Γ ` Σ : Ω and Γ ` ∃α.Σ′ : Ω and Γ ` Σ ≤ ∃α.Σ′ ↑ τ . If lookupα(Σ,Σ′) ↑ τ1 and
lookupα(Σ,Σ′) ↑ τ2, then τ1 = τ2 = τ .

ZU064-05-FPR main 12 December 2012 19:6

56 Andreas Rossberg, Claudio Russo and Derek Dreyer

Thanks to uniqueness, we can still read the lookup judgment as a quasi-deterministic
algorithm.

Let us now turn to completeness, which becomes significantly more involved as well:

Theorem 9.8 (Completeness of type lookup with applicative functors)
Let Γ ` Σ : Ω valid and Γ ` ∃α.Σ′ : Ω explicit.

1. If Γ ` Σ≤ Σ′[τ/α] and Γ ` τ : κα , and π rooted in Σ′ avoiding α , with π = α α1 and
α ∈ α and α ∩α1 = /0, then lookupπ(Σ,Σ′) ↑ τ α1 with τ = α[τ/α].

2. If Γ ` Σ≤ ∃α.Σ′ ↑ τ , then lookupα(Σ,Σ′) ↑ τ .

Proof
By simultaneous induction on the derivation of rootedness (implied by explicitness in part
2). Part 1:

• Case π rooted in [= τ ′ : κ]: Then π = τ ′. Inverting subtyping, we know Σ = [= τ ′′ : κ]
with τ ′′ = τ ′[τ/α]. By substitution, π[τ/α] = τ ′[τ/α], and hence transitively, τ ′′ =
π[τ/α] = (α α1)[τ/α] = τ α1. So lookupπ([= τ ′′ : κ], [= τ ′ : κ]) ↑ τ α1.
• Case π rooted in [= π ′ : τ]: Analogous.
• Case π rooted in {l′ : Σ′}: Then π rooted in {l′ : Σ′}.l avoiding α . Inverting sub-

typing, we know Σ = {l : Σ} and Γ ` {l : Σ}.l ≤ {l′ : Σ′}.l[τ/α]. Inverting well-
typedness and validity/explicitness, Γ ` {l : Σ}.l : Ω valid and Γ,α ` {l′ : Σ′}.l : Ω

explicit. Then by invoking the induction hypothesis, lookupπ({l : Σ}.l,{l′ : Σ′}.l) ↑
τ α1.
• Case π rooted in ∀α ′1.Σ′1 →P Σ′2: Then π α

′
1 rooted in Σ′2 avoiding α and fv(Σ′1)∩

α = /0. Let Γ′ = Γ,α ′1. Inverting subtyping, we know Σ = ∀α1.Σ1 →P Σ2 and Γ′ `
Σ′1[τ/α] ≤ ∃α1.Σ1 ↑ τ1 and Γ′ ` Σ2[τ1/α1] ≤ Σ′2[τ/α]. Moreover, inverting well-
typedness and validity/explicitness gives Γ,α,α ′1 ` Σ′1/Σ′2 : Ω explicit and, after
weakening, Γ′,α1 ` Σ1/Σ2 : Ω explicit/valid, where α1 rooted in Σ1.
By substitution and Lemma 9.3, Γ′ ` Σ′1[τ/α] : Ω valid. By typing rules and def-
inition of explicitness, Γ′ ` ∃α1.Σ1 : Ω explicit. Consequently, we can invoke the
induction hypothesis (part 2), and have lookupα1

(Σ′1[τ/α],Σ1) ↑ τ1. Because of the
variable side condition on functor rootedness, Σ′1[τ/α] = Σ′1. Moreover, because
α /∈ fv(Σ1)∪Σ′1[τ/α] by variable containment, Lemma 9.5 implies α /∈ fv(τ1). That
gives the first half of the definition of lookup in functors.
Now, by soundness of type lookup, Γ′ ` τ1 : κα1 . By substitution and Lemma 9.3,
Γ′ ` Σ2[τ1/α1] : Ω valid. We invoke the induction hypothesis a second time (this
time on part 1) and get lookupπ α

′
1
(Σ2[τ1/α1],Σ′2) ↑ τ α1 α

′
1. Consequently, we can

derive lookupπ(Σ,Σ′) ↑ λα
′
1.τ α1 α

′
1, and by η-equivalence, λα

′.τ1 α1 α
′ = τ1 α1.

Part 2: Inverting ∃α.Σ′ explicit implies α rooted in Σ′.

• Case ε rooted in Σ′: Then there is nothing to show.
• Case α,α ′ rooted in Σ′: Then α rooted in Σ′ avoiding α,α ′, and α

′ rooted in Σ′.
Inverting matching implies Γ ` Σ≤ Σ′[τ,τ ′/α,α ′] with Γ ` τ : κα and Γ ` τ ′ : κα ′ .
From inverting well-typedness and explicitness we get Γ,α,α ′ ` Σ′ : Ω explicit. Let
π = α . Then we can invoke part 1 of the induction hypothesis to get lookupα(Σ,Σ′) ↑
τ . By variable containment, fv(τ)∩α

′ = /0.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 57

By substitution and Lemma 9.3, Γ,α ′ `Σ′[τ/α] : Ω explicit and α
′ rooted in Σ′[τ/α],

and so, Γ ` ∃α ′.Σ′[τ/α] : Ω explicit. Because Γ ` τ : κα and Γ ` τ ′ : κα ′ , we know
via variable containment that Σ′[τ,τ ′/α,α ′] = Σ′[τ/α][τ ′/α

′]. With rule U-MATCH

we can then construct the derivation Γ ` Σ ≤ ∃α ′.Σ′[τ/α] ↑ τ
′. With that, we can

invoke part 2 of the induction hypothesis, to also get lookupα
′(Σ,Σ′) ↑ τ

′.

As before, this property is sufficient to imply decidability of matching. (In addition,
when we apply the matching rule U-MATCH algorithmically, we do not actually need to
check the rule’s side condition on the well-formedness of the types we have looked up,
because it is already implied by soundness of lookup.)

Corollary 9.9 (Decidability of matching with applicative functors)
Assume that Γ is well-formed and valid, and also that Γ ` τ ≤ τ ′ f is decidable for
types well-formed under Γ. If Σ valid and Ξ explicit, and both are well-formed under Γ,
then Γ ` Σ ≤ Ξ ↑ τ f is still decidable in the presence of applicative functors and the
relaxed definition of rootedness from Figure 39.

Decidability of elaboration then follows as well, even though the elaboration rules under
the applicative functor extensions are no longer purely syntactic: rules M-FUNCT-I and
M-FUNCT-P overlap. However, they have disjoint premises, and thus the overlap does not
induce any non-determinism. In the case of the multiple rules for value bindings, we have
ensured the absence of overlap via our syntactic side conditions.

Corollary 9.10 (Decidability of elaboration with applicative functors)
Under valid and well-formed Γ, provided we can (simultaneously) show that core elabo-
ration is decidable, then all judgments of module elaboration with applicative functors are
decidable, too.

10 Mechanization in Coq

One of our original motivations for the F-ing approach was that a simpler semantics for
modules would be an easier starting point for language mechanization. As a proof of
concept, we embarked on mechanizing the elaboration semantics of Section 4 and Sec-
tion 6 (but omitting normalization), and proved the soundness result of Theorem 5.1, but
including module packages.

We did so using Coq (Coq Development Team, 2007) and the locally nameless approach
(LN) of Aydemir et al. (2008). (There is no reason we could not have used other proof
assistants such as Twelf or Isabelle; but we were interested in learning Coq and testing the
effectiveness of the locally nameless approach.) This effort required roughly 13,000 lines
of Coq code. As inexpert users of Coq, we made little use of automation, so most likely,
the proofs could easily be shortened significantly.

As with any mechanization, there are some minor differences compared with the infor-
mal system. Our mechanized Fω is simpler than the one we use here in that it supports just
binary products, not records. Instead, we encode ordered records as derived forms using
pairs, with derived typing rules, and target those during elaboration. Ordered records are
easier to mechanize, yet adequate for elaboration.

ZU064-05-FPR main 12 December 2012 19:6

58 Andreas Rossberg, Claudio Russo and Derek Dreyer

The Fω mechanization does not allow rebindings of term variables in the context as our
informal presentation does. Indeed, using the LN approach, subderivations arising from
binding constructs have to hold for all locally fresh names. In the mechanization, we had
to abandon the use of the injection from source identifiers to Fω variables, and instead
use a translation environment that twins source identifiers (which may be shadowed) with
locally fresh Fω variables (which may not). In this way, source identifiers are used to
determine record labels, while their twinned variables are used to translate free occurrences
of identifiers. Lee et al. (2007) use a similar trick in their Twelf mechanization of Standard
ML.

Our use of a non-injective record encoding means that different semantic signatures may
be encoded by the same type. To avoid ambiguity, the mechanization therefore introduces a
special syntactic class of semantic signatures (corresponding to the grammar in Figure 9),
and separately defines the interpretation of semantic signatures as System Fω types by an
inductive definition (again much like the syntactic sugar definitions in Figure 9). Conse-
quently, the mechanized soundness theorems state that if C `M : Ξ e, then C◦ ` e : Ξ◦,
where ◦ denotes the interpretation of elaboration environments and semantic signatures
into plain Fω contexts and types. In retrospect, it would perhaps have been simpler to just
beef up our target language with primitive records (as we have done on paper here). In any
case, this issue is orthogonal to the rest of the mechanization effort.

Our experience of applying the LN approach as advertised was more painful than we had
anticipated. Compared to the sample LN developments, ours was different in making use
of various forms of derived n-ary (as well as basic unary binders) and in dealing with
a larger number of syntactic categories. Though we implemented the n-ary binders as
derived forms over the unary ones provided by basic Fω , we still needed derived lemmas
for n-ary substitution (substituting locally closed terms for free names) and n-ary open
(for opening binders with locally closed terms). Then we needed lemmas relating the
commutation of all the combinations of n-ary and unary operations. The final straw was
dealing with rules (notably for sequencing of binding and declarations) that required us to
extend the scope of bindings over terms from subderivations. Doing this the recommended
way requires the introduction of a third family of closing operations (the inverse of open),
for turning named variables back into bound indices, together with a plethora of lemmas
needed to actually reason about them (again with unary and n-versions of close and all
possible commutations). We managed to work around these two cases by expressing the
desired properties indirectly using additional (and thus unsatisfactory) premises stipulating
equations between opened terms.

In the end, out of a total of around 550 lemmas, approximately 400 were tedious “in-
frastructure” lemmas; only the remainder had direct relevance to the meta-theory of Fω or
elaboration. The number of required infrastructure lemmas appears to be quadratic in the
number of variable classes (type and value variables for us), the number of “substitution”
operations needed per class (we got away with only using LN’s subst and open, and
avoiding close) and the arity classes (unary and n-ary) of binding constructs. So we
cannot, hand-on-heart, recommend the vanilla LN style for anything but small, kernel
language developments. It would, however, be interesting to see whether more recent
proposals to streamline the LN approach (Aydemir et al., 2009) could significantly shorten
larger developments like ours, without obscuring the presentation.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 59

Despite the tedium, the mechanization still turned out to be relatively straightforward
overall, and did not require any technical ingenuity. We believe that a Coq user with more
experience than us (or somebody with respective experience using another theorem prover)
but without specialist background in modules, could easily have carried it out without much
effort.

11 Related work and discussion

The literature on ML module semantics is voluminous and varied. We will therefore focus
on the most closely related work.

Existential types for ADTs Mitchell & Plotkin (1988) were the first to connect the infor-
mal notion of “abstract type” to the existential types of System F. In F, values of existential
type are first-class, in the sense that the construction of an ADT may depend on run-time
information. We exploit this observation in our support for modules as first-class values
(Section 6), which are simply existential packages.

Dependent type systems for modules In a very influential position paper, MacQueen
(1986) criticized existential types as a basis for modular programming, arguing that the
closed-scope elimination construct for existentials (unpack) is too weak and awkward to
be usable in practice. MacQueen instead promoted the use of dependent function types
and “strong sums” (i.e., dependently-typed record/tuple types) as a basis for modular
programming. Since then, there has been a long line of work on understanding and evolving
the ML module system in terms of increasingly more refined dependent type theories
(Harper & Mitchell, 1993; Harper et al., 1990; Harper & Lillibridge, 1994; Leroy, 1996;
Leroy, 1995; Shao, 1999; Dreyer et al., 2003; Dreyer, 2005).

On the design side, the work on dependent type systems led to significant improvements
in the expressiveness of ML modules, most notably the idea of translucency—i.e., the
ability to include both abstract and transparent type declarations in signatures—which was
independently proposed by Harper and Lillibridge (1994) and Leroy (1996). On the seman-
tics side, however, the use of dependent type formalisms unleashed quite a can of worms.
Several ideas and issues pop up again and again in the literature, and for the most part the
“F-ing modules” approach either renders these issues moot or offers straightforward ways
of handling them.

One recurrent notion is phase separation (cf. the discussion at the beginning of Sec-
tion 8), which is essentially the observation that the “dependent” types in these module
systems are not really dependent. The signature of a module may depend on the type
components of another module, but not on its value components. Thus, as Harper, Mitchell
& Moggi (1990) showed (for an early ML-style module system without translucency or
sealing), one can “phase-split” a (higher-order) module into an Fω type (representing its
type components) and an Fω expression (representing its value components). Our approach
of interpreting ML modules into Fω is of course completely compatible with the idea of
phase separation, since we don’t pretend our type system is dependent in the first place.

Another recurrent notion is projectibility—that is, from which module expressions can
one project out the type and value components? As Dreyer, Crary & Harper (2003) ob-

ZU064-05-FPR main 12 December 2012 19:6

60 Andreas Rossberg, Claudio Russo and Derek Dreyer

served, the differences between several different dialects of the ML module system can
be characterized by how they define projectibility. Most dependent module type systems
define projectibility by only allowing projections from modules from a certain restricted
syntactic class of paths. We also employ paths, but define them semantically to be any mod-
ule expressions whose signatures do not mention any “local” (i.e., existentially-quantified)
abstract types. We consider this criterion to be simpler to understand and less ad hoc.
Russo (1998) describes and formalizes a similar notion of ”generalized path”, with an
analogous type-based restriction, as part of his system of higher-order functors. But the
motivation is solely the ability to express paths like (F M).t, whereas for F-ing modules,
we harvest their expressive power as a way of simplifying the language and its rules.

A common stumbling block in dependent module type systems is the so-called avoid-
ance problem. Originally observed in the setting of (a bounded existential extension of)
System F≤ by Ghelli and Pierce (1998), the avoidance problem is roughly that a module
might not have a principal signature (i.e., minimal in the subtyping hierarchy) that “avoids”
(i.e., does not depend on) some local abstract type. As principal signatures are important
for practical typechecking, dependent module type systems typically either lack complete
typechecking algorithms (e.g., Lillibridge (1997) and Leroy (2000)) or else require (at least
in some cases) extra signature annotations when leaving the scope of an abstract type (e.g.,
Shao (1999), Dreyer et al. (2003)). In contrast, under our approach the avoidance problem
does not arise at all: the semantic signature ∃α.Σ of a module M keeps track of all the
abstract types α defined by M, even those which have “gone out of scope” in the sense that
they are not “rooted” anywhere in Σ (to use the terminology of Section 5). Thus, the only
point at which we need to “avoid” anything is when we typecheck a path; at that point, we
need to make sure that its signature does not depend on any local abstract types. Of course,
at that point the avoidance check is not a “problem” but rather the crucial defining element
of well-formedness for paths.

Elaboration semantics for modules Our avoidance of the avoidance problem is due
primarily to our use of an elaboration semantics, which gives us the flexibility to classify a
module using a semantic signature Ξ that is not the translation of any syntactic signature S.
Harper & Stone (2000) exploit elaboration in a similar fashion and to similar ends. One
downside of this approach, some would argue (Shao, 1999), is that one loses “fully syn-
tactic” signatures—i.e., the ability to express the full static information about any module
using a syntactic signature, and thus typecheck the module independently from the context
in which it is used—but it is not clear that in practice this is really such a big deal.

Perhaps a more serious concern is: how does the elaboration semantics we have given
here correspond to existing specifications of ML modules, such as the Definition of SML
or Harper-Stone? In what sense are we formalizing the semantics of “ML modules”?

The short answer is that it is very difficult to prove a precise correspondence between
different accounts of the ML module system. In the few cases where such proofs have
been attempted, the formalizations in question were either not representative of the full
ML module system (e.g., Leroy (1996)) or were lacking some key component, such as a
dynamic semantics (e.g., Russo (1998)). Moreover, one of the main advantages of our ap-
proach (we believe) is that it is simpler than previous approaches. We are not so interested
in “correctness”, i.e., whether our semantics precisely matches that of Standard ML, the

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 61

archaeological artifact; rather, we wish to suggest a way forward in the understanding and
evolution of ML-style module systems. That said, we believe (based on experience) that
our semantics for modules in Section 4 is essentially a conservative extension of SML’s, as
well as the generative fragment of Moscow ML (Russo, 2003).

Higher-order modules and applicative functors The main way in which the language
defined in Section 4 diverges from Standard ML is its support for higher-order modules,
which constitute a relatively simple extension if one sticks to the generative semantics
for functors. (Our semantics for higher-order modules in that section is similar to that of
Leroy (1996) and Harper & Lillibridge (1994).) However, as a number of researchers noted
in the early years of ML modules, the generative semantics is also fairly restrictive, because
it assumes conservatively that any types specified abstractly in the result signature of an
unknown functor will be generated anew every time the functor is applied. For example,
if a higher-order functor H has a functor argument F of type S→ S, then H must account
for the possibility that F is instantiated with an impure/generative functor and treat it as
such during the typechecking of H’s body, even though H may in fact be instantiated with
a transparent F like the identity functor. Thus, under a generative semantics, abstraction
over functor arguments can result in the rejection of seemingly reasonable programs due
to insufficient propagation of type information.

Harper, Mitchell & Moggi (1990) were the first to propose the use of an applicative
semantics (although they did not call it that) for achieving more flexible typechecking of
higher-order functors. Leroy (1995) later popularized the idea of applicative functor se-
mantics in the setting of a more fully realized module language, and it is his semantics that
serves as the basis of OCaml’s module system. In addition to better supporting higher-order
modules, Leroy also motivated applicative semantics by the desire to treat semantically
equivalent types (e.g., integer sets) as equivalent, even if they were created by separate
(but equal) instantiations of the same functor. Indeed, this latter motivation has in practice
turned out to be arguably more compelling than the one concerning higher-order modules.

As we pointed out at the beginning of Section 8, the applicative functor semantics
does not obviate generative semantics—both are appropriate in different instances—but
constructing a language that supports and reconciles both forms has proven very difficult.
Several proposals have been made (Shao, 1999; Russo, 2003; Dreyer et al., 2003), but all of
them suffer from being either too conservative or breaking abstraction safety (cf. Section 8
for examples).

Our semantics of applicative functors in Sections 7 and 8 is novel and does not corre-
spond directly to any existing account. As we explained in those sections, our motivation
has been to provide an account of applicative functors that is (a) simple, (b) abstraction-
safe, and (c) not overly conservative. To achieve simplicity, we adopt the adage that “ap-
plicative = pure” and “generative = impure”. To achieve abstraction safety, we employ
“stamps” (modeled as hidden abstract types) to statically track the identity of values, so
that, for instance, the identity of the type of sets can depend (as it should) on the identity
of the comparison function by which its elements are ordered. While this approach is
necessarily conservative (in order to ensure decidability of typechecking), it is no more
conservative than other abstraction-safe designs, and we have tried to be as liberal as
possible by tracking identity at the level of individual value components.

ZU064-05-FPR main 12 December 2012 19:6

62 Andreas Rossberg, Claudio Russo and Derek Dreyer

Technically, our semantics for applicative functors is based closely on the formulation
in Russo’s thesis (Russo, 1998). Although we believe the applicative higher-order modules
of (Russo, 1998) to be sound, as observed by the third author (Dreyer et al., 2002), their
subsequent integration with Standard ML modules in Moscow ML turned out not to be.
In an attempt at backward compatibility, Moscow ML’s early releases supported both
applicative and generative higher-order functors. The typing relation was a seductively
straightforward integration of both the generative and applicative rules. Dreyer’s counter-
example to type soundness is recounted by Russo (2003), together with a relatively simple,
if unproven, fix. Even if a revised Moscow ML can be proven type sound, we claim that the
marriage of applicative and generative functors presented in this article remains superior,
by offering abstraction safety over and above simple type safety. In our refined system,
only those abstract types whose invariants are guaranteed not to be tied to mutable state
are rendered applicative. Moscow ML provides no such guarantee and freely allows the
coercion of a generative into an applicative functor (by simple η-expansion).

We credit Biswas (1995) for discovering the skolemization technique for typing ap-
plicative higher-order functors: he used it to introduce higher-kinded universal quantifiers,
parameterizing a higher-order functor on its argument’s type dependencies in order to prop-
agate actual dependencies at application of the functor (by implicit type application). The
contribution of Russo (1998) was to additionally use higher-kinded existential quantifiers
to abstract (and thus hide) concrete type dependencies at module sealing (by an implicit
pack).

An alternative semantics for higher-order functors was proposed by MacQueen and
Tofte (1994), but it relied fundamentally on the idea of re-elaborating a functor’s body
at each application. In recent work, Kuan and MacQueen (2009) have investigated how to
account for such a semantics in a more satisfactory way by tracking the “static effects” of
higher-order functors in an “entity calculus”. However, it remains unclear how to reconcile
their approach, which underlies the module system of modern-day SML/NJ, with the
tradition of type-theoretic accounts of ML modules to which “F-ing modules” belongs.

Interpreting ML modules into Fω We are certainly not the first to explain ML modules
by translation into Fω . Harper, Mitchell, and Moggi (1990) give a “phase-splitting” transla-
tion of an early ML module calculus into Fω . Shao (1999) gives a multi-stage translation of
his module calculus into Fω . Shan (Shan, 2004) presents a type-directed translation of the
Dreyer-Crary-Harper calculus (Dreyer et al., 2003) into Fω . We borrowed the technique
of abstracting over the whole environment for the translation of applicative functors from
Shan.

The biggest difference between these previous translations and ours is that the previous
ones all start from a pre-existing dependently-typed module language and show how to
compile it down to Fω . We instead use the type structure of Fω in order to give a static
semantics for ML modules directly. Thus, we feel our approach is simpler and more
accessible to someone who already understands Fω and does not want to learn a new
dependent type system just in order to understand the semantics of ML modules.

As explained in the introduction, our approach can be viewed as giving an evidence
translation, and thus a soundness proof, for (a variant of) the static semantics of SML
modules given in Russo’s thesis (Russo, 1998; Russo, 1999). Russo started with the Defi-

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 63

nition of Standard ML (Milner et al., 1997), and observed that its ad hoc “semantic object”
language could be understood quite clearly in terms of universal and existential types.
A key observation, also made by Elsman (1999), was that the state of generated type
variables, threaded monadically as it was through the static semantics of SML, could be
presented more declaratively as the systematic introduction and elimination of existential
types. Given the non-dependent, Fω -like structure of the semantic objects, it was also
relatively straightforward to extend them to higher-order and first-class modules (Russo,
1998; Russo, 2000).

Our approach also scales to handle more ambitious module-language extensions, at least
if one is willing to beef up the target language somewhat. Inspired by Russo’s work, Dreyer
proposed an extension of Fω called RTG (Dreyer, 2007a), which he and coauthors later
used as the target of an elaboration semantics for recursive modules (Dreyer, 2007b), mixin
modules (Rossberg & Dreyer, 2013), and modules in the presence of type inference (Dreyer
& Blume, 2007). These elaboration semantics are similar to ours in that they use the type
structure of the (beefed-up) Fω language in order to directly encode semantic signatures
for ML-style modules. However, our semantics is significantly simpler, since we are only
trying to formalize a non-recursive ML-like module system and we are only using vanilla
Fω as the target language.

Mechanization of module semantics Lee et al. (2007) mechanized the meta-theory of
full Standard ML, based on a variant of Harper-Stone elaboration given by Dreyer in
his thesis (Dreyer, 2005). It is difficult to compare the mechanizations, since theirs uses
Twelf. However, it is worth noting that a significant piece of their mechanization is devoted
to proving meta-theoretic properties of their target language, which employs singleton
kinds (Stone & Harper, 2006). In contrast, since our internal language is so simple and
well-studied, we largely took it for granted (though we have proved the Fω properties that
we use).

Direct modular programming in Fω Lastly, several authors have advocated doing mod-
ular programming directly in a rich Fω -like core language like Haskell’s (Jones, 1996;
Shields & Peyton Jones, 2002; Shan, 2004), using universal types for client-side data
abstraction and existential types for implementor-side data abstraction. Several other au-
thors (MacQueen, 1986; Harper & Pierce, 2005) have argued why this approach is not
practical. The common theme of the arguments is that Fω is too low-level a language to
program modules in directly, and that ML modules provide a much higher-level idiom for
modular programming. More recently, Montagu and Rémy (2009) have proposed directly
programming in a variant of Dreyer’s RTG (Dreyer, 2007a) (see above), because RTG
addresses to some extent the limitations of closed-scope existential elimination. However,
RTG is still quite low-level compared to ML modules.

In some sense, the point of the present article is to observe that the high-level elegance
of ML modules and the simplicity of Fω typing are not mutually exclusive. One can
understand ML modules precisely as a stylized idiom—a design pattern, if you will—
for constructing Fω programs. The key benefit of programming this idiom using the ML
module system, instead of directly in Fω , is that elaboration offers a significant degree

ZU064-05-FPR main 12 December 2012 19:6

64 Andreas Rossberg, Claudio Russo and Derek Dreyer

of automation (e.g., by inferring signature coercions and implicitly unpacking/repacking
existentials), which in practice is extremely useful.

12 Conclusion

Our contribution in this article is twofold.
First, we gave a dead simple, type-theoretic semantics for a representative ML module

system. The language we defined in Section 4 is essentially a generalization of Standard
ML modules with higher-order functors and local modules. We have shown not only how
to typecheck this language, but also how to compile it, by translation into a vanilla, off-the-
shelf target language Fω , under plain Fω typing environments. The translation does little
more than inserting introduction and elimination forms for existential and universal quan-
tifiers in the appropriate places. The semantics is so elementary, it could be mechanized by
novice users of Coq using textbook meta-theory. We also showed that, under this approach,
incorporating modules as first-class values is largely straightforward.

Second, we showed how to extend our elaboration semantics, without changing the
target language of Fω , to (1) enable OCaml-style fully transparent, higher-order applica-
tive functors (based on ideas from Biswas (1995) and Russo (1998)) and (2) seamlessly
integrate generative and applicative functors. Our combination is not only sound (unlike
Moscow ML (Dreyer et al., 2002)), but novel: we infer the required generativity of functors
by tracking effects. Moreover, ours is the first applicative semantics with an adequate treat-
ment of type equivalence, which protects abstraction under all circumstances. To do this,
we adapted the supposedly antiquated notion of structure sharing, in the more refined form
of value sharing, drawing yet more inspiration from the original Definition of Standard
ML (Milner et al., 1990).

In summary, we have provided a comprehensive semantics of ML modules that accounts
for almost all of the major features that can be found in the literature, as well as in the
various implemented dialects of ML. There is but one big exception: recursive modules. In
our opinion, doing recursive modules “right” requires abandoning some of the fundamental
design decisions of traditional ML modules. Their semantics can no longer be expressed by
System Fω alone either. Nevertheless, the basic ideas of the “F-ing” approach still apply: a
semantics for recursive modules can be given using a variation of our elaboration, and tar-
geting a language that is a conservative extension of Fω . The first and last authors’ work on
MixML, a module system with recursive mixin composition, explores that path (Rossberg
& Dreyer, 2013).

References

Ahmed, Amal, Dreyer, Derek, & Rossberg, Andreas. (2009). State-dependent representation
independence. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL).

Aydemir, Brian, Charguéraud, Arthur, Pierce, Benjamin C., Pollack, Randy, & Weirich, Stephanie.
(2008). Engineering formal metatheory. ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL).

Aydemir, Brian, Weirich, Stephanie, & Zdancewic, Steve. (2009). Abstracting syntax. Technical
report.

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 65

Biswas, Sandip K. (1995). Higher-order functors with transparent signatures. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).

Cardelli, Luca, & Leroy, Xavier. (1990). Abstract types and the dot notation. Pages 479–504 of:
Programming Concepts and Methods. IFIP State of the Art Reports. North Holland.

Coq Development Team. (2007). The Coq proof assistant reference manual. INRIA.
http://coq.inria.fr/.

Dreyer, Derek. (2005). Understanding and Evolving the ML Module System. Ph.D. thesis, Carnegie
Mellon University.

Dreyer, Derek. (2007a). Recursive type generativity. Journal of Functional Programming (JFP),
17(4&5), 433–471.

Dreyer, Derek. (2007b). A type system for recursive modules. ACM SIGPLAN International
Conference on Functional Programming (ICFP).

Dreyer, Derek, & Blume, Matthias. (2007). Principal type schemes for modular programs. European
Symposium on Programming (ESOP).

Dreyer, Derek, Crary, Karl, & Harper, Robert. (2002). Moscow ML’s higher-order modules are
unsound. Posting to Types forum, 17 September.

Dreyer, Derek, Crary, Karl, & Harper, Robert. (2003). A type system for higher-order modules. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Elsman, Martin. (1999). Program modules, separate compilation, and intermodule optimisation.
Ph.D. thesis, University of Copenhagen.

Geuvers, Herman. (1992). The Church-Rosser property for βη-reduction in typed λ -calculi. IEEE
Symposium on Logic in Computer Science (LICS).

Ghelli, Giorgio, & Pierce, Benjamin. (1998). Bounded existentials and minimal typing. Theoretical
Computer Science (TCS), 193(1-2), 75–96.

Goldfarb, Warren D. (1981). The undecidability of the second-order unification problem. Theoretical
Computer Science (TCS), 13, 225–230.

Harper, Robert. (2012). Programming in Standard ML. Working draft available at:
http://www.cs.cmu.edu/~rwh/smlbook/.

Harper, Robert, & Lillibridge, Mark. (1994). A type-theoretic approach to higher-order modules with
sharing. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Harper, Robert, & Mitchell, John C. (1993). On the type structure of Standard ML. ACM
Transactions on Programming Languages and Systems (TOPLAS), 15(2), 211–252.

Harper, Robert, & Pierce, Benjamin C. (2005). Design considerations for ML-style module systems.
Chap. 8 of: Pierce, Benjamin C. (ed), Advanced topics in types and programming languages. MIT
Press.

Harper, Robert, & Stone, Chris. (2000). A type-theoretic interpretation of Standard ML. Proof,
language, and interaction: Essays in honor of robin milner. MIT Press.

Harper, Robert, Mitchell, John C., & Moggi, Eugenio. (1990). Higher-order modules and the
phase distinction. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL).

Igarashi, Atsushi, Pierce, Benjamin C., & Wadler, Philip. (2001). Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3).

Jones, Mark P. (1996). Using parameterized signatures to express modular structure. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).

Kuan, George, & MacQueen, David. (2009). Engineering higher-order modules in SML/NJ.
International symposium on the implementation and application of functional languages (ifl).

Launchbury, John, & Peyton Jones, Simon L. (1995). State in Haskell. LISP and Symbolic
Computation (LASC), 8(4), 293–341.

ZU064-05-FPR main 12 December 2012 19:6

66 Andreas Rossberg, Claudio Russo and Derek Dreyer

Lee, Daniel K., Crary, Karl, & Harper, Robert. (2007). Towards a mechanized metatheory of Standard
ML. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Leroy, Xavier. (1995). Applicative functors and fully transparent higher-order modules. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).

Leroy, Xavier. (1996). A syntactic theory of type generativity and sharing. Journal of Functional
Programming (JFP), 6(5), 1–32.

Leroy, Xavier. (2000). A modular module system. Journal of Functional Programming (JFP), 10(3),
269–303.

Lillibridge, Mark. (1997). Translucent sums: A foundation for higher-order module systems. Ph.D.
thesis, Carnegie Mellon University.

MacQueen, David B. (1986). Using dependent types to express modular structure. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL).

MacQueen, David B., & Tofte, Mads. (1994). A semantics for higher-order functors. European
Symposium on Programming (ESOP).

Milner, Robin, Tofte, Mads, & Harper, Robert. (1990). The definition of Standard ML. MIT Press.
Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The definition of Standard

ML (revised). MIT Press.
Mitchell, John C., & Plotkin, Gordon D. (1988). Abstract types have existential type. ACM

Transactions on Programming Languages and Systems (TOPLAS), 10(3), 470–502.
Montagu, Benoı̂t, & Rémy, Didier. (2009). Modeling abstract types in modules with open existential

types. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
Paulson, L. C. (1996). ML for the working programmer, 2nd edition. Cambridge University Press.
Peyton Jones, Simon. (2003). Wearing the hair shirt: a retrospective on Haskell. Invited

talk, ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
http://research.microsoft.com/~simonpj.

Romanenko, Sergei, Russo, Claudio V., & Sestoft, Peter. (2000). Moscow ML Version 2.0.
http://www.dina.kvl.dk/~sestoft/mosml.

Rossberg, Andreas. (1999). Undecidability of OCaml type checking. Posting to Caml mailing list,
13 July.

Rossberg, Andreas, & Dreyer, Derek. (2013). Mixin’ up the ML module system. ACM Transactions
on Programming Languages and Systems (TOPLAS). To appear.

Rossberg, Andreas, Le Botlan, Didier, Tack, Guido, & Smolka, Gert. (2004). Alice through the
looking glass. Trends in Functional Programming (TFP).

Rossberg, Andreas, Russo, Claudio V., & Dreyer, Derek. (2010). F-ing modules. ACM SIGPLAN
Workshop on Types in Language Design and Implementation (TLDI).

Russo, Claudio V. (1998). Types for modules. Ph.D. thesis, LFCS, University of Edinburgh.
Russo, Claudio V. (1999). Non-dependent types for Standard ML modules. International Conference

on Principles and Practice of Declarative Programming (PPDP).
Russo, Claudio V. (2000). First-class structures for Standard ML. Nordic Journal of Computing,

7(4), 348–374.
Russo, Claudio V. (2003). Types for Modules. Electronic Notes in Theoretical Computer Science

(ENTCS), 60.
Shan, Chung-chieh. (2004). Higher-order modules in System Fω and Haskell. Technical Report,
http://www.cs.rutgers.edu/~ccshan/xlate/xlate.pdf.

Shao, Zhong. (1999). Transparent modules with fully syntactic signatures. ACM SIGPLAN
International Conference on Functional Programming (ICFP).

Shields, Mark, & Peyton Jones, Simon. (2002). First-class modules for Haskell. Pages 28–40 of:
International Workshop on Foundations of Object-Oriented Languages (FOOL).

ZU064-05-FPR main 12 December 2012 19:6

F-ing modules 67

SML/NJ Development Team. 1993 (Feb.). Standard ML of New Jersey user’s guide. 0.93 edn. AT&T
Bell Laboratories.

Stone, Christopher A., & Harper, Robert. (2006). Extensional equivalence and singleton types. ACM
Transactions on Computational Logic (TOCL), 7(4), 676–722.

Sulzmann, Martin, Chakravarty, Manuel M. T., Peyton Jones, Simon, & Donnelly, Kevin. (2007).
System F with type equality coercions. ACM SIGPLAN Workshop on Types in Language Design
and Implementation (TLDI).

Torgersen, Mads, Ernst, Erik, & Hanser, Christian Plesner. (2005). Wild FJ. International Workshop
on Foundations of Object-Oriented Languages (FOOL).

Wright, Andrew. (1995). Simple imperative polymorphism. LISP and Symbolic Computation
(LASC), 343–356.

ZU064-05-FPR main 12 December 2012 19:6

