Recap: While programs with assertions

arithmetic expressions, which denote integer values

\[
a ::= k | x | a_1 + a_2 | a_1 - a_2 | a_1 * a_2 | a_1 / a_2
\]

\(k\) is an integer constant, \(x\) is a variable

Boolean expressions

\[
b ::= a_1 = a_2 | a_1 < a_2 | \neg b | b_1 \land b_2 | b_1 \lor b_2 | \text{true}
\]

programs

\[
c ::= \text{[skip]} | [x := a] | [\text{read}(x)] | [\text{print}(a)] | c_1 ; c_2
\]

\[
| \text{if } [b] \text{ then } \{c_1\} \text{ else } \{c_2\}
\]

\[
| \text{while } [b] \text{ do } \{c\} | [\text{assert}(b)]
\]

\(x\) is a variable, \(a\) is arithmetic expression, \(b\) is a Boolean expression
Recap: Assert statements

\texttt{assert}(b) aborts the execution if \(b \) is false, and has no effect otherwise. We will only insert it at where it is guaranteed to hold.

The definition of transfer functions for \texttt{assert} blocks depends on the analysis problem. Often, insight into the analysis problem is required to define non-trivial and sound constraints for \texttt{assert}.

Idea: use assertions as filters that only let valid information pass
Recap: Constant propagation analysis with assertions
extend the evaluation function $eval$ to boolean expressions: maps a boolean expression b and $d \in D \setminus \{\bot\}$ to an element of \mathbb{B}

- if b is true, then $eval(b, d) := true$,

- if b is $a_1 = a_2$, then $eval(b, d) := true$, if $eval(a_1, d) = eval(a_2, d)$, and $eval(b, d) := false$, otherwise

- if b is $\neg b'$, then $eval(b, d) := true$, if $eval(b', d) = false$, and $eval(b, d) := false$, otherwise

- if b is $b_1 \land b_2$, then $eval(b, d) := true$, if $eval(b_1, d) = eval(b_2, d) = true$, and $eval(b, d) := false$, otherwise

Remark For simplicity, the definition of $eval(a_1 = a_2)$ assumes that the value of both expressions a_1 and a_2 is defined (this holds for expressions that do not contain division). To handle operations with undefined value (e.g., division by zero) the range of $eval$ should be extended with the value \top, and the value \bot should be taken into consideration in the transfer function for $assert$.
Recap: Constant propagation analysis with assertions

for \([\text{assert}(b)]^l\) we define the transfer function \(f_l : D \rightarrow D\)

\[
f_l(d) = \bot \quad \text{if } d = \bot
\]

\[
f_l(d) = \bot \quad \text{if } \neg(\exists d' \in \alpha(d) : \text{eval}(b, d') = \text{true})
\]

\[
f_l(d)(v) = n \quad \text{if } \forall d' \in \alpha(d) : \text{eval}(b, d') = \text{true} \Rightarrow d'(v) = n
\]

\[
f_l(d)(v) = ? \quad \text{otherwise}
\]

where \(\alpha(d)\) is the set of functions from \(Vars\) to \(\mathbb{Z}\) such that \(d' \in \alpha(d)\) if and only if for all \(x \in Vars\) it holds that

\[
d'(x) \in \begin{cases}
\{n\} & \text{if } d(x) = n \in \mathbb{Z} \\
\mathbb{Z} & \text{if } d(x) = ?
\end{cases}
\]
Example: Constant propagation analysis with assertions

\[x := 0 \]
\[x \geq 0 \]
\[\text{assert}(x \geq 0) \]
\[\text{assert}(x < 0) \]
\[y := 0 \]
\[y := 1 \]
\[\text{skip} \]

\((d_x, d_y)\): represents function \(d\) with \(d(x) = d_x\) and \(d(y) = d_y\)

Consider \(d = (0, ?)\)

\(\alpha(d) = \{(0, m) \mid m \in \mathbb{Z}\}\)

d' \in \alpha(d) if and only if

for all \(v \in \{x, y\}\) it holds that

\(d'(v) \in \begin{cases} \{n\} & \text{if } d(v) = n \in \mathbb{Z} \\ \mathbb{Z} & \text{if } d(v) = ? \end{cases}\)
Example: Constant propagation analysis with assertions

\[(d_x, d_y): \text{ represents function } d \text{ with } d(x) = d_x \text{ and } d(y) = d_y\]

consider \(d = (0, ?)\)

\(\alpha(d) = \{(0, m) \mid m \in \mathbb{Z}\}\)

\(\forall d' \in \alpha(d) : eval(x \geq 0, d') = \text{true}\)

\(\forall d' \in \alpha(d) : eval(x < 0, d') = \text{false}\)

\(f_3(d)(x) = 0, f_3(d)(y) = ?\)

\(f_4(d) = \bot\)

\(f_5(f_3(d)) = f_5((0, ?)) = (0, 0)\)

\(f_6(f_4(d)) = f_6(\bot) = \bot\)
Correlations between branches

\[
\text{if } [x \geq 0]^{1}\{
\]
\[
\begin{align*}
&[\text{assert}(x \geq 0)]^{2}; \\
&[\text{open()}]^{3}; \\
&[\text{flag} := 1]^{4}; \\
\}
\]

\[
\text{else } \{
\]
\[
\begin{align*}
&[\text{assert}(x < 0)]^{5}; \\
&[\text{flag} := 0]^{6}; \\
\}
\]

\[
\text{if } [\neg(\text{flag} = 0)]^{7}\{
\]
\[
\begin{align*}
&[\text{assert}(\text{flag} \neq 0)]^{8}; \\
&[\text{close()}]^{9}; \\
\}
\]

\[
\text{else } \{
\]
\[
\begin{align*}
&[\text{assert}(\text{flag} = 0)]^{10}; \\
&[\text{skip}]^{11}; \\
\}
\]

\[
[\text{skip}]^{12}; \\
\]

- open() and close() are functions for opening and closing a specific file
- the file is initially closed
- Goal: develop an analysis that allows us to check whether close() is called only if open() was called before
- Forward may analysis to determine the possible status of the file (open or closed)
Example: first attempt

\[x \geq 0 \]

\[\text{assert}(x \geq 0) \]

\[\text{assert}(x < 0) \]

\[\text{open}() \]

\[\text{flag} := 0 \]

\[\text{flag} := 1 \]

\[\neg(\text{flag} = 0) \]

\[\text{assert}((\text{flag} \neq 0)) \]

\[\text{assert}((\text{flag} = 0)) \]

\[\text{close}() \]

\[\text{skip} \]

\[\text{skip} \]

\[\neg(\text{flag} = 0) \]

\[\text{assert}(\text{flag} = 0) \]

\[\text{open}() \]

\[\text{closed} \]

\[\text{assert}((\text{flag} \neq 0)) \]

\[\text{assert}(\text{flag} = 0) \]

\[\text{close}() \]

\[\text{skip} \]

\[\text{skip} \]

\[\text{assert}(\text{flag} = 0) \]

\[\text{assert}(\text{flag} = 0) \]

\[\text{close}() \]

\[\text{skip} \]

\[\text{skip} \]

\[\text{lattice: } (2\{\text{open, closed}\}, \subseteq) \]

\[\text{initial value: } i = \{\text{closed}\} \]

\[\text{transfer functions} \]

\[f_b(d) = d \text{ for } b \neq 3, 9 \]

\[f_3(d) = \{\text{open}\} \]

\[f_9(d) = \{\text{closed}\} \]

\[X_7^{LFP} = \{\text{open}\} \cup \{\text{closed}\} \]

\[X_9^{LFP} = \{\text{open, closed}\} \]

Program does not pass the check.
Example: second attempt

lattice:
\((2\{\text{open}, \text{close}\}, \subseteq) \times (2\{\text{flag}=0, \text{flag} \neq 0\}, \subseteq)\)

initial value:
i = (\{\text{closed}\}, \{\text{flag} = 0, \text{flag} \neq 0\})

transfer functions
\(f_b(d) = d\) for \(b \neq 3, 4, 6, 8, 9, 10\)
\(f_3((d_1, d_2)) = (\{\text{open}\}, d_2)\)
\(f_9((d_1, d_2)) = (\{\text{closed}\}, d_2)\)
\(f_4((d_1, d_2)) = (d_1, \{\text{flag} \neq 0\})\)
\(f_6((d_1, d_2)) = (d_1, \{\text{flag} = 0\})\)

least fixpoint solution
\(X_7^{LFP} = (\{\text{open, closed}\}, \{\text{flag} = 0, \text{flag} \neq 0\})\)
\(X_9^{LFP} = (\{\text{open, closed}\}, \{\text{flag} \neq 0\})\)
Relational analysis: lattice

lattice: \((2^{\{\text{flag}=0, \text{flag} \neq 0\} \times \{\text{open}, \text{close}\}), \subseteq}) \)

\(\{\text{flag} = 0, \text{flag} \neq 0\} \) is set of path contexts. A path context carries information about the path leading to the program point. The resulting lattice captures relations between variables.

initial value:
\(i = \{(\text{flag} = 0, \text{closed}), (\text{flag} \neq 0, \text{closed})\} \)
Relational analysis: transfer functions

- for open()^l

 \[f_b(d) = \{(c, \text{open}) \mid \exists t : (c, t) \in d\} \]

- for close()^l

 \[f_b(d) = \{(c, \text{closed}) \mid \exists t : (c, t) \in d\} \]

- for $\text{flag} := 0^l$

 \[f_b(d) = \{(\text{flag} = 0, t) \mid \exists c : (c, t) \in d\} \]

- for $\text{flag} := k^l$ for a constant $k \in \mathbb{Z} \setminus \{0\}$

 \[f_b(d) = \{(\text{flag} \neq 0, t) \mid \exists c : (c, t) \in d\} \]

- for $\text{flag} := a^l$ for a non-constant expression a or read(flag)^l

 \[f_b(d) = \{(\text{flag} = 0, t), (\text{flag} \neq 0, t) \mid \exists c : (c, t) \in d\} \]
Relational analysis: transfer functions

- for \([\text{assert}(\text{flag} = 0)]^l\)

 \[f_b(d) = \{(\text{flag} = 0, t) \mid (\text{flag} = 0, t) \in d\} \]

- for \([\text{assert}(\text{flag} \neq 0)]^l\)

 \[f_b(d) = \{(\text{flag} \neq 0, t) \mid (\text{flag} \neq 0, t) \in d\} \]

- for all remaining cases

 \[f_b(d) = d \]

Remark: The transfer functions could be made more precise.
Example: relational analysis

Example: relational analysis

least fixpoint solution

$X_7^{LFP} = \{(\text{flag} \neq 0, \text{open}), (\text{flag} = 0, \text{closed})\}$

$X_9^{LFP} = \{(\text{flag} \neq 0, \text{open})\}$

With this information we can establish that in this program close() is called only when the file was opened.
Interval analysis

Goal: Compute for each program point a lower and an upper bound for the possible values of each variable.

Application: checking array bounds and numerical overflow

Classification: forward may analysis
Interval analysis: lattice

Let $I = \{[l, h] \mid l \leq h, l \in \mathbb{Z} \cup \{-\infty\}, h \in \mathbb{Z} \cup \{\infty\}\}$, where \leq on \mathbb{Z} is extended to an ordering on $\mathbb{Z} \cup \{-\infty, \infty\}$ by setting $-\infty \leq z, z \leq \infty$ and $-\infty \leq \infty$ for all $z \in \mathbb{Z}$.

Let $\inf([l, h]) = l$ and $\sup([l, h]) = h$. Let $[l_1, h_1] \sqsubseteq [l_2, h_2]$ iff

$$\inf(l_2, h_2) \leq \inf(l_1, h_1) \text{ and } \sup(l_1, h_1) \leq \sup(l_2, h_2).$$

We consider (D, \leq), where $((\text{Vars} \to I) \cup \{\bot\}, \leq)$, and the partial ordering \leq on D is defined by

- $\bot \leq d$ for all $d \in D$,
- $d_1 \leq d_2$ iff for every $v \in \text{Vars}$ we have $d_1(v) \sqsubseteq d_2(v)$.
(\(D, \leq\)) defined on the previous slide is a complete lattice:

\[
\bigcup Y = \begin{cases}
\bot & \text{if } Y \subseteq \{\bot\}, \\
\bigwedge \{d' \mid d' \in Y \setminus \{\bot\}\} & \text{otherwise},
\end{cases}
\]

where for each \(v \in \text{Vars}\) is defined by

\[
d(v) = \left[\inf' \{\inf(d'(v)) \mid d' \in Y \setminus \{\bot\}\}, \sup' \{\sup(d'(v)) \mid d' \in Y \setminus \{\bot\}\}\right],
\]

where \(\inf'\) and \(\sup'\) are infimum and supremum operators on \(\mathbb{Z} \cup \{-\infty, \infty\}\) corresponding to the ordering \(\leq\) on \(\mathbb{Z} \cup \{-\infty, \infty\}\):

- \(\inf'(\emptyset) = \infty\), \(\inf'(Z)\) is the least element of \(Z\) or \(-\infty\)
- \(\sup'(\emptyset) = -\infty\), \(\sup'(Z)\) is the greatest element of \(Z\) or \(+\infty\)
Interval analysis: lattice (for a single variable)

\[[-\infty, \infty] \]

\[\begin{array}{ccc}
[-\infty, 1] & \supset & [-1, \infty] \\
[-\infty, 0] & \supset & [-2, 2] \\
[-\infty, -1] & \supset & [0, \infty] \\
[-2, 0] & \supset & [1, \infty] \\
[-2, -1] & \supset & [1, 2] \\
[-2, -2] & \supset & [2, 2] \\
\end{array} \]
Interval analysis: lattice

\[[0, 0] \subseteq [0, 1] \subseteq [0, 2] \subseteq [0, 3] \subseteq [0, 4] \subseteq [0, 5] \ldots \]

The interval lattice \((\mathcal{D}, \leq)\) does not satisfy (ACC).
Interval analysis: transfer functions

We first define the function $eval$ that maps each arithmetic expression a and $d \in D \setminus \{\bot\}$ to an element of I.

- if a is a variable v, then $eval(a, d) := d(v)$
- if a is a constant k, then $eval(a, d) := [k, k]$
- if $a = a_1 \otimes a_2$, then
 - if $eval(a_1, d) = [l_1, h_1]$, and $eval(a_2, d) = [l_2, h_2]$, and for some $z_1 \in [l_1, h_1]$ and $z_2 \in [l_2, h_2]$ the value of $z_1 \otimes z_2$ is undefined, then $eval(a, d) := [-\infty, \infty]$;
 - otherwise $eval(a, d) := eval(a_1, d) \hat{\otimes} eval(a_2, d)$:

\[[l_1, h_1] \hat{\otimes} [l_2, h_2] := [l, h], \text{ where} \]

\[l = \inf' \{z_1 \otimes z_2 \mid z_1 \in [l_1, h_1], z_2 \in [l_2, h_2]\} \]
\[h = \sup' \{z_1 \otimes z_2 \mid z_1 \in [l_1, h_1], z_2 \in [l_2, h_2]\} \]
For $d : Vars \rightarrow I$, $x, v \in Vars$, and $[l, h] \in I$, define the function $d[x \mapsto [l, h]] : Vars \rightarrow I$, such that

$$d[x \mapsto [l, h]](v) = \begin{cases} [l, h] & \text{if } v = x, \\ d(v) & \text{otherwise.} \end{cases}$$
Interval analysis: transfer functions

- for $[x := a]^b$ let

 $$f_b(d) := \begin{cases} \perp & \text{if } d = \perp, \\ d[x \mapsto \text{eval}(a, d)] & \text{otherwise} \end{cases}$$

- for $[\text{read}(x)]^b$ let

 $$f_b(d) := \begin{cases} \perp & \text{if } d = \perp, \\ d[x \mapsto [-\infty, \infty]] & \text{otherwise} \end{cases}$$

- for $[\text{print}(a)]^b$, for $[\text{skip}]^b$, and for condition $[e]^b$ let

 $$f_b(d) = d \text{ for all } d \in D$$
Interval analysis: example

The iterative algorithm for least fixpoint computation may not terminate.

For the program point after the loop (entry of block 7) the iteration starting from \((\bot, \ldots, \bot)\) gives

\[
\begin{align*}
\bot \\
\ldots \\
(x \mapsto [7, 7], y \mapsto [0, 0]) \\
\ldots \\
(x \mapsto [7, 8], y \mapsto [0, 1]) \\
\ldots \\
(x \mapsto [7, 8], y \mapsto [0, 2]) \\
\ldots \\
(x \mapsto [7, 8], y \mapsto [0, 3]) \\
\ldots
\end{align*}
\]
Non-ACC domains

Let f be a monotonic function.

When the lattice does not satisfy (ACC), the sequence

$$f^0(\bot), f^1(\bot), f^2(\bot), \ldots$$

need not stabilize and its least upper bound does may not be $\text{lfp}(f)$

Solution: (soundly) approximate the least fixpoint by using **widening operators** to enforce termination of the iteration.
Widening operators

Let \((D, \leq)\) be a complete lattice. A function \(\nabla : D \times D \rightarrow D\) is a **widening operator** if it satisfies the following conditions:

1. for every \(d_1, d_2 \in D\),

\[
d_1 \sqcup d_2 \leq d_1 \nabla d_2
\]

2. for every ascending chain \(d_0 \leq d_1 \leq \ldots\) the ascending chain \(d_0 \nabla \leq d_1 \nabla \leq \ldots\), where \(d_0 \nabla = d_0, d_{i+1} \nabla = d_i \nabla \nabla d_{i+1}\), eventually stabilizes: there exists \(n \in \mathbb{N}\) such that \(d_i \nabla = d_n \nabla\) for all \(i \geq n\).

Remark: \((d_i \nabla)_{i \in \mathbb{N}}\) is clearly an ascending chain because

\[
d_{i+1} \nabla = d_i \nabla \nabla d_{i+1} \geq d_i \nabla \sqcup d_{i+1} \geq d_i \nabla
\]
Widening operators

Let \((D, \leq)\) be a complete lattice. A function \(\nabla : D \times D \rightarrow D\) is a **widening operator** if it satisfies the following conditions:

1. for every \(d_1, d_2 \in D\),
 \[
 d_1 \sqcup d_2 \leq d_1 \nabla d_2
 \]

2. for every ascending chain \(d_0 \leq d_1 \leq \ldots\) the ascending chain \(d_0^{\nabla} \leq d_1^{\nabla} \leq \ldots\), where \(d_0^{\nabla} = d_0\), \(d_{i+1}^{\nabla} = d_i^{\nabla} \nabla d_{i+1}\), eventually stabilizes: there exists \(n \in \mathbb{N}\) such that \(d_i^{\nabla} = d_n^{\nabla}\) for all \(i \geq n\).

Soundness: The requirement \(d_1 \sqcup d_2 \leq d_1 \nabla d_2\) guarantees soundness.
Interval analysis with widening

Let $K \subseteq \mathbb{Z} \cup \{-\infty, \infty\}$ be a finite set of consisting of constants appearing in the program and $-\infty$ and ∞. We define ∇ as follows:

- $\bot \nabla d := d$, $\nabla \bot := d$,
- otherwise, for all $v \in \text{Vars}$, if $d_1(v) = [l_1, h_1]$ and $d_2(v) = [l_2, h_2]$, then $d_1 \nabla d_2(v) := [l, h]$, where

 $$
 l := \begin{cases}
 l_1 & \text{if } l_1 \leq l_2, \\
 k & \text{if } l_2 < l_1, k = \max\{k \in K \mid k \leq l_2\} \\
 -\infty & \text{if } l_2 < l_1, \forall k \in K : l_2 < k
 \end{cases}
 $$

 $$
 h := \begin{cases}
 h_1 & \text{if } h_2 \leq h_1, \\
 k & \text{if } h_1 < h_2, k = \min\{k \in K \mid h_2 \leq k\} \\
 \infty & \text{if } h_1 < h_2, \forall k \in K : k < h_2
 \end{cases}
 $$

∇ is a widening operator.
Interval analysis with widening: example

\[
\begin{align*}
[x & := 7]^1; \\
[y & := 0]^2; \\
\textbf{while } [\text{true}]^3 \textbf{ do } \{ \\
[x & := 7]^4; \\
[x & := x + 1]^5; \\
[y & := y + 1]^6 \\
\} \\
\textbf{print}(x)^7
\end{align*}
\]

For the program point after the loop (entry of block 7) the iteration starting from \((\bot, \ldots, \bot)\) using widening based on the set \(K = \{-\infty, 0, 1, 7, \infty\}\) gives

\[
\begin{align*}
\bot \\
& \ldots \\
(x & \mapsto [7, 7], y \mapsto [0, 0]) \\
& \ldots \\
(x & \mapsto [7, \infty], y \mapsto [0, 1]) \\
& \ldots \\
(x & \mapsto [7, \infty], y \mapsto [0, 7]) \\
& \ldots \\
(x & \mapsto [7, \infty], y \mapsto [0, \infty]) \\
& \ldots
\end{align*}
\]
Properties of widening operators

Let f be a monotonic function on a complete lattice (D, \leq) and $
abla : D \times D \to D$ be a widening operator. We define $f^0_\nabla(\perp) = \perp$ and for $i \in \mathbb{N}$,

$$f^{i+1}_\nabla(\perp) := \begin{cases} f^i_\nabla(\perp) & \text{if } f(f^i_\nabla(\perp)) \leq f^i_\nabla(\perp), \\ f^i_\nabla(\perp) \nabla f(f^i_\nabla(\perp)) & \text{otherwise} \end{cases}$$

- $(f^i_\nabla(\perp))_{i \in \mathbb{N}}$ is an ascending chain.
- $(f^i_\nabla(\perp))_{i \in \mathbb{N}}$ eventually stabilizes.
- $\bigcup\{f^i_\nabla(\perp) \mid i \in \mathbb{N}\} \geq \text{lfp}(f)$.

24/27
Narrowing

Problem: Results obtained using widening are often imprecise.

Idea: Use narrowing to improve the precision of the result.

Recall that \(\bigcup \{ f_i^\nabla(\bot) \mid i \in N \} \geq \text{lfp}(f) \).

Let \(l^\nabla = \bigcup \{ f_i^\nabla(\bot) \mid i \in N \} \). Then, for all \(i \in \mathbb{N} \)

\[
\text{lfp}(f) \leq f^{i+1}(l^\nabla) \leq f^i(l^\nabla) \leq l^\nabla
\]

Iterate \(f \) starting from \(l \) to improve the precision of the result.

Remarks:
- Narrowing may not terminate (if (DCC) does not hold).
- It is possible to stop after any step with sound result.
Interval analysis with widening and narrowing: example

\[\begin{align*}
[x := 7] &; \\
[y := 0] &;
\end{align*}\]

\textbf{while} [true] \textbf{do} \{ \\
\begin{align*}
[x := 7] &; \\
[x := x + 1] &; \\
[y := y + 1] &;
\end{align*}\}

\textbf{print}(x)

For the program point after the loop (entry of block 7) the iteration starting from \((\bot, \ldots, \bot)\) using widening based on the set \(K = \{-\infty, 0, 1, 7, \infty\}\) gives

\((x \mapsto [7, \infty], y \mapsto [0, \infty])\)

Applying narrowing we get

\((x \mapsto [7, \infty], y \mapsto [0, \infty])\)

\(\ldots\)

\((x \mapsto [7, 8], y \mapsto [0, \infty])\)

\(\ldots\)

\((x \mapsto [7, 8], y \mapsto [0, \infty])\)
Example: the role of assert statements

[read\(x\)]\(^1\);
[y \(:=\) 0]\(^2\);
[z \(:=\) 0]\(^3\);

while \([x > 0]\)\(^4\) do
{
[assert\((x > 0)\)]\(^5\);
[z \(:=\) z + x]\(^6\);
if \([y < 17]\)\(^7\)
{
[assert\((y < 17)\)]\(^8\);
[y \(:=\) y + 1]\(^9\);
}
else
{
[assert\((y \geq 17)\)]\(^10\);
[skip\)]\(^11\);
}
[x \(:=\) x – 1]\(^12\);
}

[assert\((x \leq 0)\)]\(^13\);
[skip\)]\(^14\);

Without the **assert** statements the approximate fixpoint iteration with widening based on the set \(K = \{ -\infty, 0, 1, 17, \infty \}\) yields

\([x \mapsto [-\infty, \infty], y \mapsto [0, \infty], z \mapsto [-\infty, \infty]]\)

for the program point right before block 14.

With the **assert** statements, the result of the analysis for this program point is

\([x \mapsto [-\infty, 0], y \mapsto [0, 17], z \mapsto [0, \infty]]\)