Program Analysis
Lecture 3

Rayna Dimitrova

WS 2016/2017
Tutorials

Tuesday, 15:30, MPI-SWS building (26), room 113
Recap from lecture 2 (While programs)

arithmetic expressions, which denote integer values

\[a ::= k \mid x \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 \times a_2 \mid a_1 / a_2 \]

\(k \) is an integer constant, \(x \) is a variable

Boolean expressions

\[b ::= a_1 = a_2 \mid a_1 < a_2 \mid \neg b \mid b_1 \land b_2 \mid b_1 \lor b_2 \mid \text{true} \]

programs

\[c ::= [\text{skip}]^l \mid [x := a]^l \mid [\text{read}(x)]^l \mid [\text{print}(a)]^l \mid c_1; c_2 \]

\[\mid \text{if } [b]^l \text{ then } \{c_1\} \text{ else } \{c_2\} \]

\[\mid \text{while } [b]^l \text{ do } \{c\} \]

\(x \) is a variable, \(a \) is arithmetic expression, \(b \) is a Boolean expression

Statements are labelled with distinct natural numbers: \([c]^l\) where \(l \in \mathbb{N}_{>0} \). Labelled statements are called **blocks**.
Recap from lecture 2 (CFG)

\[\text{read}(x)\] \[\uparrow\]

\textbf{if} \ [x < 0] \ \{ \\
\hspace{1em} [y := 0]\; \\
\hspace{2em} \textbf{while} \ [x < 0] \ \{ \\
\hspace{3em} [x := x + 1]; \\
\hspace{3em} [y := y + 1] \\
\hspace{2em} \} \\
\hspace{1em} \text{else} \ \\
\hspace{2em} [y := x] \\
\} \\
\] \[\text{print}(y)\] \\

\[\text{read}(x)\] \[\uparrow\] initial

\[\text{read}(x)\] \[\uparrow\] \[x < 0\] \[\uparrow\] [y := 0] \[\uparrow\] [y := x] \[\uparrow\] [x < 0] \[\uparrow\] [x := x + 1] \[\uparrow\] [y := y + 1] \[\uparrow\] [x := x + 1] \[\uparrow\] [y := y + 1] \[\uparrow\] \[\text{print}(y)\] \\

\[\text{read}(x)\] \[\uparrow\] \[\text{print}(y)\] \\

\[\text{read}(x)\] \[\uparrow\] \[\text{print}(y)\] \\

final
Recap from lecture 2 (Monotone framework)

A **dataflow system** is a tuple $S = (G, (D, \leq), i, \{f_b\}_{b \in B})$, where

- $G = (B, E, F)$ is a CFG
- (D, \leq) is a complete lattice that satisfies (ACC)
- $i \in D$ is an initial value for extremal blocks
- $\{f_b\}_{b \in B}$, is a family of monotonic functions $f_b : D \to D$, one for each block in the CFG
Let $S = (G, (D, \leq), i, \{f_b\}_{b \in B})$ be a dataflow system.

We associate with each $b \in B$ a variable X_b with domain D.

With S we associate a system of equations that relate the variable X_b for each node b to those of other nodes.

Consider the lattice (D_S, \leq_S), where $D_S = D^{|B|}$ and $(d_1, \ldots, d_{|B|}) \leq_S (d'_1, \ldots, d'_{|B|})$ if and only if $d_b \leq d'_b$ for all $b \in B$.

Define a monotone function $g_S : D_S \rightarrow D_S$ such that a vector $\overline{d} = (d_1, \ldots, d_{|B|})$ is a solution of S if and only if $g_S(\overline{d}) = \overline{d}$.
Forward versus backward analysis

- **forward analysis** computes information about data that depends on the past of the program execution
- **backward analysis** computes information about data that depends on the future of the program execution

\[
E = \{ \text{initial node} \}
\]

\[
E = \{ \text{final node} \}
\]

For \(b \notin E \)

\[
X_b = \bigsqcup \{ f_p(X_p) \mid p \in \text{pred}(b) \}
\]

\[
X_b = \bigsqcup \{ f_s(X_s) \mid s \in \text{succ}(b) \}
\]
May versus must analysis

- **May analyses** detect properties satisfied by at least one execution path to (or from) the entry (or exit) of a block. The computed information is an overapproximation: it may possibly be true in an actual execution.

- **Must analyses** detect properties satisfied by all paths of execution reaching (or leaving) the entry (or exit) of a block. All values detected by a must analysis are actually reached. The computed information is an underapproximation: it must definitely be true in actual executions.

\[D = \mathcal{P}(A) \]

For suitably chosen \(A \) with \(\leq \) to be \(\subseteq \)

\(\sqcup \) to be \(\cup \)

\(\bot \) to be \(\emptyset \)

\[D = \mathcal{P}(A) \]

For suitably chosen \(A \) with \(\leq \) to be \(\supseteq \)

\(\sqcup \) to be \(\cap \)

\(\bot \) to be \(A \)
Transfer functions

The transfer functions definition depends both on the direction (forward or backward) and on the type of the analysis (may or must).

forward

\[f_b(X) := (X \setminus \text{kill}(b)) \cup \text{gen}(b) \]

- **kill(b)**: information invalidated by block \(b \)
- **gen(b)**: information generated by block \(b \)

backward

\[f_b(X) := (X \setminus \text{kill}(b)) \cup \text{gen}(b) \]

- **kill(b)**: information invalidated by block \(b \)
- **gen(b)**: information generated by block \(b \)
A classification of program analyses

<table>
<thead>
<tr>
<th></th>
<th>may</th>
<th>must</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>backward</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A classification of program analyses

<table>
<thead>
<tr>
<th></th>
<th>may</th>
<th>must</th>
</tr>
</thead>
<tbody>
<tr>
<td>forward</td>
<td>reaching definitions</td>
<td>available expressions</td>
</tr>
<tr>
<td>backward</td>
<td>live variables</td>
<td>very busy expressions</td>
</tr>
</tbody>
</table>
Reaching definitions analysis

Goal: For each program point, determine which assignments may have been made and not overwritten when this point is reached by the program execution along some execution path.

Applications: Establish the correspondence between blocks that produce values and blocks that use them (use-definition chains).

Classification: We need a forward analysis that computes information about the executions up to a certain program point. We have to perform a may analysis overapproximating the information from the possible executions. The computed information is guaranteed to include the behaviour of each execution.
Reaching definitions analysis: CFG

\[\begin{align*}
[x &:= 5]^1; \\
[y &:= 1]^2; \\
\textbf{while } [x > 1]^3 	extbf{ do } \{ \\
& [y := x \times y]^4; \\
& [x := x - 1]^5 \\
\}
\end{align*} \]

\[G = (B, E, F), E = \{1\} \]

\[\begin{array}{c}
\text{initial} \\
\rightarrow [x := 5]^1 \\
\rightarrow \rightarrow [y := 1]^2 \\
\rightarrow \rightarrow \rightarrow [x > 1]^3 \\
\rightarrow \rightarrow \rightarrow \rightarrow [y := x \times y]^4 \\
\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow [x := x - 1]^5
\end{array} \]

\textit{Vars}: the set of variables appearing in the program

\textit{Vars} = \{x, y\}
Reaching definitions analysis: lattice

\((D, \leq) := (\mathcal{P}(\text{Vars} \times (B \cup \{?\})), \subseteq), \bigcup X := \bigcup X, \bot := \emptyset\)

The meaning of \((v, i) \in d \in \mathcal{P}(\text{Vars} \times (B \cup \{?\}))\) is as follows:

- if \(i = ?\), then \(v\) is possibly not initialized yet
- if \(i \in B\), then the last initialization of \(v\) may be in block \(i\)

The lattice satisfies (ACC), since it is finite.
Reaching definitions analysis: transfer functions

initial extremal value \(i := \{(v, ?) \mid v \in Vars\}\)

transfer functions \(f_b : D \to D \)

\[
f_b : P(Vars \times (B \cup \{?\})) \to P(Vars \times (B \cup \{?\}))
\]

\[
f_b(X) := (X \setminus \text{kill}(b)) \cup \text{gen}(b)
\]

- \(\text{kill}(b) \): assignments overwritten in block \(b \)

\[
\text{kill}(b) := \begin{cases}
\{(v, ?)\} \cup \{(v, b') \mid b' \in B\} & \text{if } b = [v := e]^l \\
\emptyset & \text{or } b = [\text{read}(v)]^l, \\
\emptyset & \text{otherwise.}
\end{cases}
\]

- \(\text{gen}(b) \): assignments generated in block \(b \)

\[
\text{gen}(b) := \begin{cases}
\{(v, b)\} & \text{if } b = [v := e]^l \\
\emptyset & \text{or } b = [\text{read}(v)]^l, \\
\emptyset & \text{otherwise.}
\end{cases}
\]

The transfer functions are monotonic.
Example

<table>
<thead>
<tr>
<th>block b</th>
<th>kill(b)</th>
<th>gen(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[x := 5]^1$</td>
<td>${(x,?), (x,1), (x,5)}$</td>
<td>${(x,1)}$</td>
</tr>
<tr>
<td>$[y := 1]^2$</td>
<td>${(y,?), (y,2), (y,4)}$</td>
<td>${(y,2)}$</td>
</tr>
<tr>
<td>$[x > 1]^3$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[y := x \times y]^4$</td>
<td>${(y,?), (y,2), (y,4)}$</td>
<td>${(y,4)}$</td>
</tr>
<tr>
<td>$[x := x - 1]^5$</td>
<td>${(x,?), (x,1), (x,5)}$</td>
<td>${(x,5)}$</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
X_1 &= i \\
X_2 &= f_1(X_1) \\
X_3 &= f_2(X_2) \cup f_5(X_5) \\
X_4 &= f_3(X_3) \\
X_5 &= f_4(X_4)
\end{align*}
\]

\[
\begin{align*}
X_1 &= \{(x,?), (y,?)\} \\
X_2 &= (X_1 \setminus \{(x,?), (x,1), (x,5)\}) \cup \{(x,1)\} \\
X_3 &= (X_2 \setminus \{(y,?), (y,2), (y,4)\}) \cup \{(y,2)\} \cup (X_5 \setminus \{(x,?), (x,1), (x,5)\}) \cup \{(x,5)\} \\
X_4 &= X_3 \\
X_5 &= (X_4 \setminus \{(y,?), (y,2), (y,4)\}) \cup \{(y,4)\}
\end{align*}
\]
Example

\[
\begin{align*}
X_1 &= i = \{(x,?), (y,?)\} \\
X_2 &= f_1(X_1) = (X_1 \setminus \{(x,?), (x,1), (x,5)\}) \cup \{(x,1)\} \\
X_3 &= f_2(X_2) \cup f_5(X_5) = (X_2 \setminus \{(y,?), (y,2), (y,4)\}) \cup \{(y,2)\} \\
 &\quad \cup (X_5 \setminus \{(x,?), (x,1), (x,5)\}) \cup \{(x,5)\} \\
X_4 &= f_3(X_3) = X_3 \\
X_5 &= f_4(X_4) = (X_4 \setminus \{(y,?), (y,2), (y,4)\}) \cup \{(y,4)\}
\end{align*}
\]

compute a solution by computing the least fixpoint of the function

\[
g_S : \mathcal{P}(\text{Vars} \times (B \cup \{?\}))^5 \rightarrow \mathcal{P}(\text{Vars} \times (B \cup \{?\}))^5
\]

in \((\mathcal{P}(\text{Vars} \times (B \cup \{?\}))^5, \subseteq^5)\), starting from \((\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)\)
Example

\[X_1 = i = \{(x,?), (y,?)\}\]
\[X_2 = f_1(X_1) = (X_1 \setminus \{(x,?), (x,1), (x,5)\}) \cup \{(x,1)\}\]
\[X_3 = f_2(X_2) \cup f_5(X_5) = (X_2 \setminus \{(y,?), (y,2), (y,4)\}) \cup \{(y,2)\}\]
\[\cup (X_5 \setminus \{(x,?), (x,1), (x,5)\}) \cup \{(x,5)\}\]
\[X_4 = f_3(X_3) = X_3\]
\[X_5 = f_4(X_4) = (X_4 \setminus \{(y,?), (y,2), (y,4)\}) \cup \{(y,4)\}\]

The least solution is

\[X_1 = \{(x,?), (y,?)\}\]
\[X_2 = \{(y,?), (x,1)\}\]
\[X_3 = \{(x,1), (y,2), (y,4), (x,5)\}\]
\[X_4 = \{(x,1), (y,2), (y,4), (x,5)\}\]
\[X_5 = \{(x,1), (y,4), (x,5)\}\]
Available expressions analysis

Goal: For each program point determine which expressions must have already been computed, and not later modified, on all executions reaching this program point.

Applications: Avoid the recomputation of expressions.

Classification: We need a forward analysis that computes information about the executions up to a certain program point. We have to perform a must analysis underapproximating the information along all possible executions.
Available expressions analysis: CFG

\[
\begin{align*}
 [x & := a + b]^1; \\
 [y & := a * b]^2; \\
 \textbf{while} & [y > a + b]^3 \textbf{ do } \\
 & \{ \\
 & \quad [a := a + 1]^4; \\
 & \quad [x := a + b]^5
 \}
\end{align*}
\]

\[G = (B, E, F), E = \{1\}\]

\[\rightarrow [x := a + b]^1 \quad \text{initial} \]
\[\rightarrow [y := a * b]^2 \]
\[\rightarrow [y > a + b]^3 \]
\[\rightarrow [a := a + 1]^4 \]
\[\rightarrow [x := a + b]^5 \]

\textbf{AExp}: set of non-trivial arithmetic expressions appearing in the program

\textbf{AExp} = \{a+b, a*b, a+1\}

\textbf{Vars}(e) is the set of variables occurring in expression \(e\).
\textbf{AExp}(e) is the set of sub-expressions of expression \(e\).
Available expressions analysis: lattice

\((D, \leq) := (\mathcal{P}(AExp), \supseteq), \bigcup X := \bigcap X, \bot := AExp\)

An element \(d \in \mathcal{P}(AExp)\) denotes a set of expressions.

The lattice satisfies (ACC), since it is finite.
Available expressions analysis: transfer functions

initial extremal value $i := \emptyset$

transfer functions $f_b : D \to D$

$$f_b : \mathcal{P}(AExp) \to \mathcal{P}(AExp)$$

$$f_b(X) := (X \setminus kill(b)) \cup gen(b)$$

- $kill(b)$: expressions whose value is modified by b

$$kill(b) := \begin{cases}
\{ e' \in AExp \mid v \in Vars(e') \} & \text{if } b = [v := e]^l \\
\emptyset & \text{or } b = [\text{read}(v)]^l, \\
\emptyset & \text{otherwise}.
\end{cases}$$

- $gen(b)$: expressions used and not modified in block b

$$gen(b) := \begin{cases}
\{ e' \in AExp(e) \mid v \notin Vars(e') \} & \text{if } b = [v := e]^l, \\
AExp(e) & \text{if } b = [e]^l \text{ for condition } e, \\
\emptyset & \text{or } b = [\text{print}(e)]^l, \\
\emptyset & \text{otherwise}.
\end{cases}$$

The transfer functions are monotonic.
Example

<table>
<thead>
<tr>
<th>block b</th>
<th>$kill(b)$</th>
<th>$gen(b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[x := a + b]$</td>
<td>\emptyset</td>
<td>${a + b}$</td>
</tr>
<tr>
<td>$[y := a \ast b]$</td>
<td>\emptyset</td>
<td>${a \ast b}$</td>
</tr>
<tr>
<td>$[y > a + b]$</td>
<td>\emptyset</td>
<td>${a + b}$</td>
</tr>
<tr>
<td>$[a := a + 1]$</td>
<td>${a + b, a \ast b, a + 1}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$[x := a + b]$</td>
<td>\emptyset</td>
<td>${a + b}$</td>
</tr>
</tbody>
</table>

\[
X_1 = i = \emptyset \\
X_2 = f_1(X_1) = X_1 \cup \{a + b\} \\
X_3 = f_2(X_2) \cap f_5(X_5) = (X_2 \cup \{a \ast b\}) \cap (X_5 \cup \{a + b\}) \\
X_4 = f_3(X_3) = X_3 \cup \{a + b\} \\
X_5 = f_4(X_4) = X_4 \setminus \{a + b, a \ast b, a + 1\}
\]
Example

\[
\begin{align*}
X_1 &= i = \emptyset \\
X_2 &= f_1(X_1) = X_1 \cup \{a + b\} \\
X_3 &= f_2(X_2) \cup f_5(X_5) = (X_2 \cup \{a \ast b\}) \cap (X_5 \cup \{a + b\}) \\
X_4 &= f_3(X_3) = X_3 \cup \{a + b\} \\
X_5 &= f_4(X_4) = X_4 \setminus \{a + b, a \ast b, a + 1\}
\end{align*}
\]

compute a solution by computing the least fixpoint of the function

\[g_S : \mathcal{P}(AExp)^5 \to \mathcal{P}(AExp)^5\]

in \((\mathcal{P}(AExp)^5, \supseteq^5)\) starting at \((AExp, AExp, AExp, AExp, AExp)\)
Example

\[
\begin{align*}
X_1 &= i = \emptyset \\
X_2 &= f_1(X_1) = X_1 \cup \{a + b\} \\
X_3 &= f_2(X_2) \cup f_5(X_5) = (X_2 \cup \{a \ast b\}) \cap (X_5 \cup \{a + b\}) \\
X_4 &= f_3(X_3) = X_3 \cup \{a + b\} \\
X_5 &= f_4(X_4) = X_4 \setminus \{a + b, a \ast b, a + 1\}
\end{align*}
\]

the least solution with respect to \(\supseteq^5\) is

\[
X_1 = X_5 = \emptyset \quad X_2 = X_3 = X_4 = \{a + b\}
\]

We computed the least fixpoint with respect to \(\supseteq^5\), which is also the greatest fixpoint with respect to the dual lattice \((\mathcal{P}(AExp)^5, \subseteq^5)\).