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Problem

Programming not under SC is complicated
Programmers are stupid

Solution: Let the computer do it
Easier said than done
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Goal

Simulate Sequential Consistency, using fences
Automatic
Optimal
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Challenges

Correctness
Optimality
Scalability
Compiler optimizations
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Memory models: Recap.

Operational vs. Axiomatic
Different relations

I Program Order (po)
I Coherence (co)/Memory Order (mo)
I Read From (rf)
I From Read (fr = rf−1; co)
I Static vs. dynamic

Sequential Consistency vs. Relaxed memory models
I SC: acyclic(po ∪ co ∪ rf ∪ fr)
I Relaxed: only a subset

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 8 / 50



Candidate execution

Definition
Event Wxv ,Rxv

Event Structure E , (E, po), E = {events}
Execution Witness X , (co, rf, fr)

Candidate Execution (E ,X )
Memory Model MM : {(E ,X )} 7→ {true, false}

Construction?
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Candidate execution

Example
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Minimal cycles

Definition
MC1 Per thread:

At most 2 accesses
Accesses are adjacent in the cycle

MC2 Per memory location:
At most 3 accesses
Accesses are adjacent in the cycle
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Minimality condition: MC2

Example
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Delay cycles

Definition
Delay is a relaxed edge of po, or rf on an architecture A (MM).
Delays can be prevented using fences.

Theorem
A candidate execution is valid on A but not on SC if:

DC1 It contains at least one cycle that has a delay.
DC2 All of the cycles contain a delay.
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Critical cycles

Definition
CS1 At least one delay
CS2 Per thread:

At most 2 accesses
Accesses are adjacent in the cycle
To different memory locations

CS3 Per memory location:
At most 3 accesses
Accesses are adjacent in the cycle
From different threads
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Critical cycles: proof

Theorem
If an execution candidate is valid on A but not on SC, then there is a cycle
which satisfies:

1 Is a minimal cycle.
2 Has least one delay.
3 Accesses on the same threads are to different locations
4 Accesses to the same location are from different threads
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Abstract Event Graph

Definition
Abstract Event Wx ,Rx : Abstraction of events

Static event set Es = {abstract events}
Static Program Order pos : Abstraction of po

Competing pairs cmp: Communication between threads
AEG aeg , (Es , pos , cmp)
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Abstract Event Graph

Example
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AEG construction

Convert C program to “goto-instructions”
Ignore local variables
Read each instruction, and update the AEG, starting from the empty
graph.
Semi-formally:

τ [ik ; . . .](aeg) = τ [ik′ ; . . .](f (aeg , (ik , . . . , ik′−1)))
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Goto instructions

Example
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Transformation function

Example
τ [x = f (y1, . . . , yk); i ](Es , pos , cmp) =
let reads = {Ry1, . . . ,Ryk} in
let writes = {Wx} in
let E′s = Es ∪ reads ∪ writes in
let po′s = pos ∪ (end(pos)× reads) ∪ (reads × writes) in
τ [i ](E′s , po′s , cmp)

end(x) all sink events of x
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Transformation function: cont.

Example
τ [start thread th; i ](aeg) =
let main = τ [body(th)](∅̄) in
let local = τ [i ](aeg) in
let inter = τ [i ](∅̄) in

(local .Es ∪main.Es , local .pos ∪main.pos , local .Es ⊗ inter .Es)

A⊗ B ,{(a, b) ∈ A× B|
addr(a) = addr(b)∧
(write(a) ∨ write(b))}

∅̄ ,(∅, ∅, ∅)
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Program & AEG

Example

1

2

3
4

8

5
6
7
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Event structure construction

Analogous to AEG
S(P) = {(E, po)}: possible event structures
S(P) = σ(P)(∅): σ is very much like τ
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Transformation function

Example
σ[lhs = rhs; i ](ses) =
let de = dyn evts(lhs = rhs) in
let E′(E,w ,R) = E ∪ {w} ∪ R in
let po′(po,w ,R) = po ∪ (end(po)× R) ∪ (R × {w}) in
let es ′(es,w ,R) = (E′(es.E,w ,R), po′(es.po,w ,R)) in
σ[i ]({es ′(es,w ,R) | es ∈ ses, (w ,R) ∈ de})

dyn evts(lhs = rhs) = {(w ,R)}:
I Set of events that can cause the statement.
I Example:

dyn evts(x = y + z) =
⋃
{(Wxv1, {Ryv2,Rzv3})|v1 = v2 + v3}
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Transformation function: cont.

Example
σ[start thread th; i ](ses) =
let local = σ[body(th)](∅) in
let main = σ[i ](ses) in⋃
esl∈local ,esm∈main{(esl .E ∪ esm.E, esl .po ∪ esm.po)}
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AEG & ES

Example
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Loops

Event a might depend on itself on previous iterations
In that case, duplicate loop body
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Soundness

G = aeg(P)
E ∈ S(P)
Are they related?
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Concretization

Definition
γe(se) ,{e′|∃e ∈ se s.t. addr(e) = addr(e′)∧

dir(e) = dir(e′) ∧ origin(e) = origin(e′)}
γ(srel) ,{(c1, c2)|∃(s1, s2) ∈ srel s.t.

(c1, c2) ∈ γe({s1})× γe({s2})}

Theorem

E1 ⊆ γe(Es,1),E2 ⊆ γe(Es,2)⇒ E1 × E2 ⊆ γ(Es,1 × Es,2)
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Events and program order

Theorem

E ∈ S(P),G = aeg(P)⇒ E .E ⊆ γe(G .Es),E .po ⊆ γ(G .po+
s )

Lemma 5.3 in the article
po+ is po’s closure
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rf, co, and fr

Theorem

E ∈ S(P),X = (rf, co, fr), (E ,X ) is a CE ,G = aeg(P)
⇒

X.rfe, X.coe, X.fre ⊆ γ(G .cmp)

Lemma 5.4 in the article

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 33 / 50



Soundness

Theorem
Let P be a program. Let E ∈ S(P), X = (rf, co, fr) an execution
witness, (E ,X ) a candidate execution. Also, let G = aeg(P).

E .po ∪ X .coi ∪ X .rfi ∪ X .fri ⊆ γ(G .po+
s )

X .coe ∪ X .rfe ∪ X .fre ⊆ γ(G .cmp)
E .E ⊆ γe(G .Es)

From the two previous theorems
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Static critical cycles

Theorem
Let E ∈ S(P), X = (rf, co, fr), G = aeg(P). If (E ,X ) contains a critical
cycle c = c0, . . . , cn−1, then there is a cycle d = d0, . . . , dn−1 in G so that:

{ci} ⊆ γe({di})
{(ci , ci+1 mod n)} ⊆ γ({(di , di+1 mod n)})

Looking for cycles in G will find all cycles in (E ,X )
Any cycle detection algorithm will do.
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Static critical cycles

Example

a′, b′1, d ′, e′, f ′
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Considerations

We have a list of cycles C = {C1, . . . ,Cn}. Now what?

Delays
Fence types, locations & costs
Different for each architecture
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Problem parameters

Input:
I aeg(Es , pos , cmp)
I C = {C1, . . . ,Cn}
I T = {f, lwf, cf, dp}, cost : T 7→ N 1

I placements(C) ⊆ pos × T 1

I Constrains 1

Output:
I ∀(l , t) ∈ placements(C), tl ∈ {0, 1}

Cost function:
I Rough estimation of cost
I Minimize

∑
(l,t)∈placements(C) tl × cost(t)

I Problems?

1Architecture dependent
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Constraints

Every delay needs to be fenced
Each type of delay can be handled by different types of fences
A fence can “participate” in multiple delays
“Any of” condition: . . . ≥ 1

I Promises the problem is satisfiable
I Trust the cost function
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TSO delays & fences

One type of fence f

Only poWR delays
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AEG in TSO

Example

Not that bad, right?
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Power: delays & fences

Delays poWR, poWW, poRW, poRR
f Can solve delays in po+

s .
between(x , y) ,{(e1, e2) ∈ pos |

(x , e1), (e2, y) ∈ po∗s}
lwf Same as f, but unsuitable for poWR violations.
dp Applies only to delays in pos
. . . . . .
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Power: placement & constraints

Exact definition of placements(C):
placements(C) ,{(l , dp)|l ∈ delays(C)}∪

{(l , t)|t ∈ T \ {dp},
l ∈ between(delays(C))}∪
{(l , t)|t ∈ {f, lwf}, l ∈ pos(C)}

For each d ∈ delays(C)
I If d ∈ poWR then

∑
e∈between(d) fe ≥ 1

I If d ∈ poWW then
∑

e∈between(d)(fe + lwfe) ≥ 1
I If d ∈ poRW ∪ poRR then dpd +

∑
e∈between(d)(fe + lwfe) ≥ 1

I . . .

How to solve? ILP
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AEG & ILP
Example
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Evaluation

Measure how well did we do?

Relative overhead
Compared to other tools
Different architectures

Musketeer,Pensieve,Visual Studio, after Each access, after Heap accesses
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Conclusion

Define critical cycles
Discover them using static analysis
Prove the static analysis is sound
Find the best way to place fences
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Excluded topics

Related works
Pointer analysis
Most of the conversion technicalities
Some architecture specifics
Implementation & performance (mostly)
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Questions?
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