Don't Sit on the Fence A Static Analysis Approach to Automatic Fence Insertion

Or Ostrovsky

April 25th 2018

Or Ostrovsky

Don't Sit on the Fence

April 25th 2018 1 / 50

э

▲ 伊 ▶ ▲ 三

Table of contents

Introduction

2 Cycles

- 3 Static Analysis
- 4 Soundness of Construction
- 5 Fence placement

э

Table of contents

Introduction

2 Cycles

- 3 Static Analysis
- 4 Soundness of Construction
- Fence placement

6 Conclusion

э

4 E

Problem

- Programming not under SC is complicated
- Programmers are stupid

< 4³ ► <

э

Problem

- Programming not under SC is complicated
- Programmers are stupid
- Solution: Let the computer do it

Problem

- Programming not under SC is complicated
- Programmers are stupid
- Solution: Let the computer do it
- Easier said than done

- Simulate Sequential Consistency, using fences
- Automatic
- Optimal

→ ∃ →

Image: A match a ma

Challenges

Or Ostrovsky

3

・ロト ・四ト ・ヨト ・ヨト

Challenges

- Correctness
- Optimality
- Scalability
- Compiler optimizations

→ ∃ →

< /□ > < Ξ

э

Table of contents

Introduction

2 Cycles

- 3 Static Analysis
- 4 Soundness of Construction
- Fence placement

6 Conclusion

э

-

▲ 同 ▶ → 三 ▶

Memory models: Recap.

- Operational vs. Axiomatic
- Different relations
 - Program Order (po)
 - Coherence (co)/Memory Order (mo)
 - Read From (rf)
 - From Read $(fr = rf^{-1}; co)$
 - Static vs. dynamic
- Sequential Consistency vs. Relaxed memory models
 - SC: acyclic(po ∪ co ∪ rf ∪ fr)
 - Relaxed: only a subset

Candidate execution

Definition

Event Wxv, RxvEvent Structure $E \triangleq (\mathbb{E}, po), \mathbb{E} = \{events\}$ Execution Witness $X \triangleq (co, rf, fr)$ Candidate Execution (E, X)Memory Model $MM : \{(E, X)\} \mapsto \{true, false\}$

Or Ostrovsky

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Candidate execution

Definition

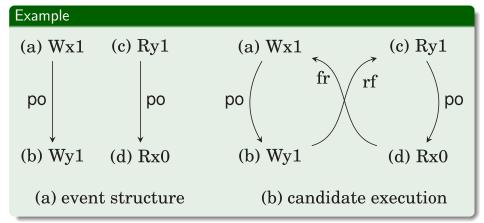
Event Wxv, RxvEvent Structure $E \triangleq (\mathbb{E}, po), \mathbb{E} = \{events\}$ Execution Witness $X \triangleq (co, rf, fr)$ Candidate Execution (E, X)Memory Model $MM : \{(E, X)\} \mapsto \{true, false\}$

Construction?

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Candidate execution



э

→ ∃ →

Minimal cycles

Definition

MC1 Per thread:

- At most 2 accesses
- Accesses are adjacent in the cycle

MC2 Per memory location:

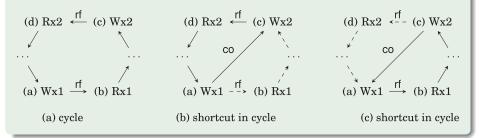
- At most 3 accesses
- Accesses are adjacent in the cycle

4 3 4 3 4 3 4

э

Minimality condition: MC2

Example



э

Delay cycles

Definition

Delay is a relaxed edge of po, or rf on an architecture A (MM). Delays can be prevented using fences.

Theorem

A candidate execution is valid on A but not on SC if:

DC1 It contains at least one cycle that has a delay.

DC2 All of the cycles contain a delay.

<日

<</p>

Critical cycles

Definition

- CS1 At least one delay
- CS2 Per thread:
 - At most 2 accesses
 - Accesses are adjacent in the cycle
 - To different memory locations

CS3 Per memory location:

- At most 3 accesses
- Accesses are adjacent in the cycle
- From different threads

< ∃ ►

Critical cycles

Definition

- CS1 At least one delay
- CS2 Per thread:
 - At most 2 accesses
 - Accesses are adjacent in the cycle
 - To different memory locations
- CS3 Per memory location:
 - At most 3 accesses
 - Accesses are adjacent in the cycle
 - From different threads

< ∃ ►

Critical cycles: proof

Theorem

If an execution candidate is valid on A but not on SC, then there is a cycle which satisfies:

- **1** Is a minimal cycle.
- e Has least one delay.
- Accesses on the same threads are to different locations
- Accesses to the same location are from different threads

Table of contents

Introduction

2 Cycles

- 3 Static Analysis
 - 4 Soundness of Construction
 - Fence placement

Conclusion

э

- ∢ ⊒ →

▲ 同 ▶ → 三 ▶

Abstract Event Graph

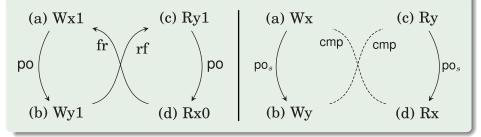
Definition

Abstract Event Wx, Rx: Abstraction of events Static event set $\mathbb{E}_s = \{abstract \ events\}$ Static Program Order po_s : Abstraction of po Competing pairs cmp: Communication between threads AEG $aeg \triangleq (\mathbb{E}_s, po_s, cmp)$

Or Ostrovsky

Abstract Event Graph

Example



э

< ∃⇒

< 1[™] >

AEG construction

- Convert C program to "goto-instructions"
- Ignore local variables
- Read each instruction, and update the AEG, starting from the empty graph.
- Semi-formally:

$$\tau[i_k;\ldots](\mathsf{aeg}) = \tau[i_{k'};\ldots](f(\mathsf{aeg},(i_k,\ldots,i_{k'-1})))$$

Goto instructions

Example

void thread_1(int input)	void thread_2()	thread_1 int r1;	thread_2 int r2, r3, r4;
<pre>{ int r1; x = input; if (rand()%2) y = 1; else r1 = z; x = 1; }</pre>	{ int r2, r3, r4; r2 = y; r3 = z; r4 = x; }	x = input; _Bool tmp; tmp = rand(); [!tmp%2] goto 1; y = 1; goto 2; 1: r1 = z; 2: x = 1; end_function	r2 = y; r3 = z; r4 = x;

3

イロト イヨト イヨト イヨト

Transformation function

Example

 $\begin{aligned} \tau[x = f(y_1, \dots, y_k); i](\mathbb{E}_s, \mathrm{po}_s, \mathrm{cmp}) = \\ & \text{let } reads = \{Ry_1, \dots, Ry_k\} \text{ in} \\ & \text{let } writes = \{Wx\} \text{ in} \\ & \text{let } \mathbb{E}'_s = \mathbb{E}_s \cup reads \cup writes \text{ in} \\ & \text{let } \mathrm{po}'_s = \mathrm{po}_s \cup (end(\mathrm{po}_s) \times reads) \cup (reads \times writes) \text{ in} \\ \tau[i](\mathbb{E}'_s, \mathrm{po}'_s, \mathrm{cmp}) \end{aligned}$

end(x) all sink events of x

Transformation function: cont.

Example

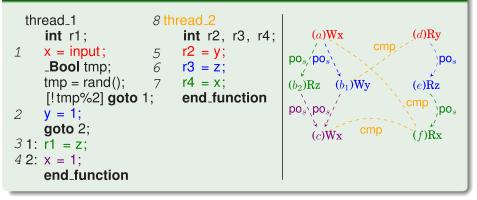
 $\tau[\text{start_thread th; }i](\text{aeg}) = \\ \text{let } main = \tau[body(th)](\bar{\emptyset}) \text{ in} \\ \text{let } local = \tau[i](\text{aeg}) \text{ in} \\ \text{let } inter = \tau[i](\bar{\emptyset}) \text{ in} \\ (local.\mathbb{E}_{s} \cup main.\mathbb{E}_{s}, local.\text{po}_{s} \cup main.\text{po}_{s}, local.\mathbb{E}_{s} \otimes inter.\mathbb{E}_{s}) \end{cases}$

$$egin{aligned} A\otimes B&\triangleq \{(a,b)\in A imes B|\ & addr(a)=addr(b)\wedge\ & (write(a)ee write(b))\}\ & ar{\emptyset}&\triangleq (\emptyset,\emptyset,\emptyset) \end{aligned}$$

- 本間下 本臣下 本臣下 三臣

Program & AEG

Example



э

・ 何 ト ・ ヨ ト ・ ヨ ト

Event structure construction

- Analogous to AEG
- $S(P) = \{(\mathbb{E}, po)\}$: possible event structures
- $S(P) = \sigma(P)(\emptyset)$: σ is very much like τ

э

Transformation function

Example

$$\sigma[lhs = rhs; i](ses) =$$

$$let \ de \qquad = \ dyn_evts(lhs = rhs) \text{ in}$$

$$let \ \mathbb{E}'(\mathbb{E}, w, R) = \mathbb{E} \cup \{w\} \cup R \text{ in}$$

$$let \ po'(po, w, R) = po \cup (end(po) \times R) \cup (R \times \{w\}) \text{ in}$$

$$let \ es'(es, w, R) = (\mathbb{E}'(es.\mathbb{E}, w, R), po'(es.po, w, R)) \text{ in}$$

$$\sigma[i](\{es'(es, w, R) \mid es \in ses, (w, R) \in de\})$$

•
$$dyn_evts(lhs = rhs) = \{(w, R)\}$$
:

- Set of events that can cause the statement.
- Example:

 $dyn_{evts}(x = y + z) = \bigcup \{ (Wxv_1, \{Ryv_2, Rzv_3\}) | v_1 = v_2 + v_3 \}$

3

(日) (四) (日) (日) (日)

Transformation function: cont.

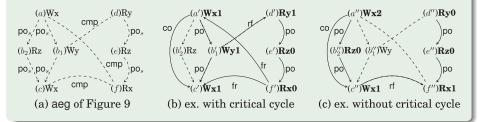
Example

 $\sigma[\text{start_thread th; }i](\text{ses}) = \\ \text{let local} = \sigma[body(th)](\emptyset) \text{ in} \\ \text{let main} = \sigma[i](\text{ses}) \text{ in} \\ \bigcup_{es_l \in local, es_m \in main} \{(es_l.\mathbb{E} \cup es_m.\mathbb{E}, es_l.\text{po} \cup es_m.\text{po})\} \end{cases}$

くぼう くほう くほう しゅ

AEG & ES

Example



э

- ∢ ⊒ →

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Event a might depend on itself on previous iterations
- In that case, duplicate loop body

< 1 k

э

Table of contents

Introduction

2 Cycles

4 Soundness of Construction

Fence placement

6 Conclusion

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Soundness

- G = aeg(P)
- *E* ∈ *S*(*P*)
- Are they related?

э

イロト イヨト イヨト イヨト

Concretization

Definition

$$\begin{split} \gamma_e(se) &\triangleq \{e' | \exists e \in se \ s.t. \ addr(e) = addr(e') \land \\ dir(e) &= dir(e') \land origin(e) = origin(e') \} \\ \gamma(srel) &\triangleq \{(c_1, c_2) | \exists (s_1, s_2) \in srel \ s.t. \\ (c_1, c_2) \in \gamma_e(\{s_1\}) \times \gamma_e(\{s_2\}) \} \end{split}$$

Theorem

$$\mathbb{E}_1 \subseteq \gamma_e(\mathbb{E}_{s,1}), \mathbb{E}_2 \subseteq \gamma_e(\mathbb{E}_{s,2}) \Rightarrow \mathbb{E}_1 \times \mathbb{E}_2 \subseteq \gamma(\mathbb{E}_{s,1} \times \mathbb{E}_{s,2})$$

3

イロト イヨト イヨト イヨト

Events and program order

Theorem

$$\mathsf{E} \in \mathsf{S}(\mathsf{P}), \mathsf{G} = \mathsf{aeg}(\mathsf{P}) \Rightarrow \mathsf{E}.\mathbb{E} \subseteq \gamma_{e}(\mathsf{G}.\mathbb{E}_{s}), \mathsf{E}.\mathtt{po} \subseteq \gamma(\mathsf{G}.\mathtt{po}_{s}^{+})$$

- Lemma 5.3 in the article
- po⁺ is po's closure

э

(B)

< A >

rf, co, and fr

Theorem

$$E \in S(P), X = (\texttt{rf}, \texttt{co}, \texttt{fr}), (E, X) \text{ is a } CE, G = aeg(P)$$

 \Rightarrow
X.rfe, X.coe, X.fre $\subseteq \gamma(G.\texttt{cmp})$

• Lemma 5.4 in the article

3

A D N A B N A B N A B N

Soundness

Theorem

Let P be a program. Let $E \in S(P)$, X = (rf, co, fr) an execution witness, (E, X) a candidate execution. Also, let G = aeg(P).

$$egin{aligned} E. ext{po} \cup X. ext{coi} \cup X. ext{rfi} \cup X. ext{fri} &\subseteq \gamma(G. ext{po}_s^+) \ X. ext{coe} \cup X. ext{rfe} \cup X. ext{fre} &\subseteq \gamma(G. ext{cmp}) \ E.\mathbb{E} &\subseteq \gamma_e(G.\mathbb{E}_s) \end{aligned}$$

From the two previous theorems

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Static critical cycles

Theorem

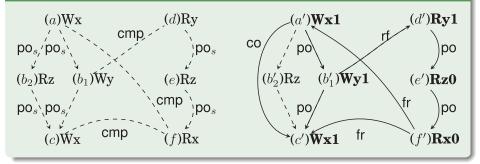
Let $E \in S(P)$, X = (rf, co, fr), G = aeg(P). If (E, X) contains a critical cycle $c = c_0, \ldots, c_{n-1}$, then there is a cycle $d = d_0, \ldots, d_{n-1}$ in G so that:

•
$$\{c_i\} \subseteq \gamma_e(\{d_i\})$$

- $\{(c_i, c_{i+1 \mod n})\} \subseteq \gamma(\{(d_i, d_{i+1 \mod n})\})$
- Looking for cycles in G will find all cycles in (E, X)
- Any cycle detection algorithm will do.

Static critical cycles

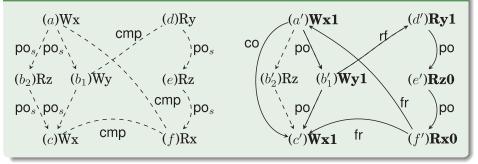
Example



< 1 k

Static critical cycles

Example



• a', b'_1, d', e', f'

3. 3

Table of contents

Introduction

2 Cycles

- 3 Static Analysis
- 4 Soundness of Construction
- 5 Fence placement

Conclusion

-

< 1 k

Considerations

• We have a list of cycles $C = \{C_1, \ldots, C_n\}$. Now what?

3

< □ > < 同 > < 回 > < 回 > < 回 >

Considerations

- We have a list of cycles $C = \{C_1, \ldots, C_n\}$. Now what?
- Delays
- Fence types, locations & costs
- Different for each architecture

Problem parameters

Input:

- $aeg(\mathbb{E}_s, po_s, cmp)$
- $C = \{C_1, \ldots, C_n\}$
- $\mathbb{T} = \{ \texttt{f}, \texttt{lwf}, \texttt{cf}, \texttt{dp} \}, \ \textit{cost} : \mathbb{T} \mapsto \mathbb{N}^{-1}$
- $placements(C) \subseteq po_s \times \mathbb{T}^{-1}$
- Constrains ¹
- Output:
 - $\forall (l, t) \in placements(C), t_l \in \{0, 1\}$
- Cost function:
 - Rough estimation of cost
 - Minimize $\sum_{(l,t)\in placements(C)} t_l \times cost(t)$
 - Problems?

¹Architecture dependent

Constraints

- Every delay needs to be fenced
- Each type of delay can be handled by different types of fences
- A fence can "participate" in multiple delays
- "Any of" condition: $\ldots \ge 1$
 - Promises the problem is satisfiable
 - Trust the cost function

TSO delays & fences

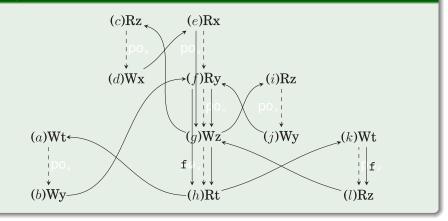
- One type of fence f
- Only poWR delays

3

イロト イヨト イヨト イヨト

$\mathsf{AEG} \text{ in } \mathsf{TSO}$

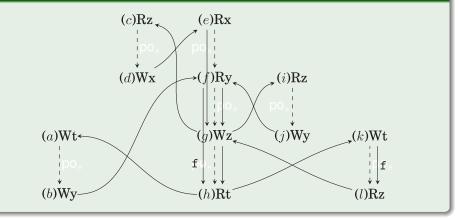
Example



- 2

$\mathsf{AEG} \text{ in } \mathsf{TSO}$

Example



• Not that bad, right?

Or Ostrovsky

2

A D N A B N A B N A B N

Power: delays & fences

Delays poWR, poWW, poRW, poRR

- f Can solve delays in po_s^+ . *between*(x, y) $\triangleq \{(e_1, e_2) \in po_s | (x, e_1), (e_2, y) \in po_s^*\}$
- lwf Same as f, but unsuitable for poWR violations. dp Applies only to delays in po_s

.

3

Power: placement & constraints

• Exact definition of
$$placements(C)$$
:
 $placements(C) \triangleq \{(I, dp) | I \in delays(C)\} \cup \{(I, t) | t \in \mathbb{T} \setminus \{dp\}, I \in between(delays(C))\} \cup \{(I, t) | t \in \{f, lwf\}, I \in po_s(C)\}$
• For each $d \in delays(C)$

• For each $d \in delays(C)$

- ▶ If $d \in poWR$ then $\sum_{e \in \textit{between}(d)} f_e \geq 1$
- ▶ If $d \in poWW$ then $\sum_{e \in between(d)} (f_e + lwf_e) \ge 1$
- ▶ If $d \in poRW \cup poRR$ then $dp_d + \sum_{e \in between(d)} (f_e + lwf_e) \ge 1$
- ▶ ...

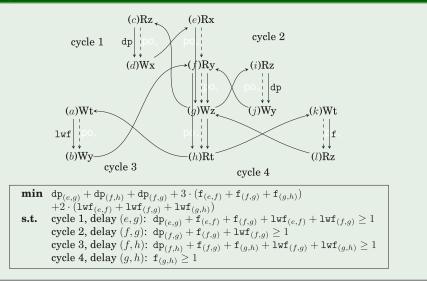
Power: placement & constraints

- If $d \in poWW$ then $\sum_{e \in between(d)} (f_e + lwf_e) \ge 1$
- ▶ If $d \in poRW \cup poRR$ then $dp_d + \sum_{e \in between(d)} (f_e + lwf_e) \ge 1$ ▶ ...

• How to solve? ILP

AEG & ILP

Example



Or Ostrovsky

Table of contents

Introduction

2 Cycles

- 3 Static Analysis
- 4 Soundness of Construction
 - Fence placement

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Evaluation

• Measure how well did we do?

æ

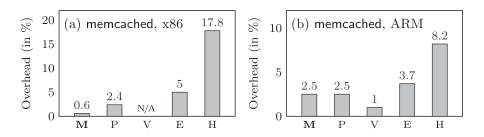
イロト イヨト イヨト イヨト

Evaluation

- Measure how well did we do?
- Relative overhead
- Compared to other tools
- Different architectures

Evaluation

- Measure how well did we do?
- Relative overhead
- Compared to other tools
- Different architectures



Musketeer, Pensieve, Visual Studio, after Each access, after Heap accesses

Conclusion

- Define critical cycles
- Discover them using static analysis
- Prove the static analysis is sound
- Find the best way to place fences

Excluded topics

- Related works
- Pointer analysis
- Most of the conversion technicalities
- Some architecture specifics
- Implementation & performance (mostly)

Questions?

Or Ostrovsky

2