
Don’t Sit on the Fence
A Static Analysis Approach to Automatic Fence Insertion

Or Ostrovsky

April 25th 2018

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 1 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 2 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 3 / 50

Problem

Programming not under SC is complicated
Programmers are stupid

Solution: Let the computer do it
Easier said than done

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 4 / 50

Problem

Programming not under SC is complicated
Programmers are stupid
Solution: Let the computer do it

Easier said than done

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 4 / 50

Problem

Programming not under SC is complicated
Programmers are stupid
Solution: Let the computer do it
Easier said than done

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 4 / 50

Goal

Simulate Sequential Consistency, using fences
Automatic
Optimal

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 5 / 50

Challenges

Correctness
Optimality
Scalability
Compiler optimizations

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 6 / 50

Challenges

Correctness
Optimality
Scalability
Compiler optimizations

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 6 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 7 / 50

Memory models: Recap.

Operational vs. Axiomatic
Different relations

I Program Order (po)
I Coherence (co)/Memory Order (mo)
I Read From (rf)
I From Read (fr = rf−1; co)
I Static vs. dynamic

Sequential Consistency vs. Relaxed memory models
I SC: acyclic(po ∪ co ∪ rf ∪ fr)
I Relaxed: only a subset

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 8 / 50

Candidate execution

Definition
Event Wxv ,Rxv

Event Structure E , (E, po), E = {events}
Execution Witness X , (co, rf, fr)

Candidate Execution (E ,X)
Memory Model MM : {(E ,X)} 7→ {true, false}

Construction?

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 9 / 50

Candidate execution

Definition
Event Wxv ,Rxv

Event Structure E , (E, po), E = {events}
Execution Witness X , (co, rf, fr)

Candidate Execution (E ,X)
Memory Model MM : {(E ,X)} 7→ {true, false}

Construction?

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 9 / 50

Candidate execution

Example

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 10 / 50

Minimal cycles

Definition
MC1 Per thread:

At most 2 accesses
Accesses are adjacent in the cycle

MC2 Per memory location:
At most 3 accesses
Accesses are adjacent in the cycle

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 11 / 50

Minimality condition: MC2

Example

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 12 / 50

Delay cycles

Definition
Delay is a relaxed edge of po, or rf on an architecture A (MM).
Delays can be prevented using fences.

Theorem
A candidate execution is valid on A but not on SC if:

DC1 It contains at least one cycle that has a delay.
DC2 All of the cycles contain a delay.

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 13 / 50

Critical cycles

Definition
CS1 At least one delay
CS2 Per thread:

At most 2 accesses
Accesses are adjacent in the cycle
To different memory locations

CS3 Per memory location:
At most 3 accesses
Accesses are adjacent in the cycle
From different threads

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 14 / 50

Critical cycles

Definition
CS1 At least one delay
CS2 Per thread:

At most 2 accesses
Accesses are adjacent in the cycle
To different memory locations

CS3 Per memory location:
At most 3 accesses
Accesses are adjacent in the cycle
From different threads

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 14 / 50

Critical cycles: proof

Theorem
If an execution candidate is valid on A but not on SC, then there is a cycle
which satisfies:

1 Is a minimal cycle.
2 Has least one delay.
3 Accesses on the same threads are to different locations
4 Accesses to the same location are from different threads

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 15 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 16 / 50

Abstract Event Graph

Definition
Abstract Event Wx ,Rx : Abstraction of events

Static event set Es = {abstract events}
Static Program Order pos : Abstraction of po

Competing pairs cmp: Communication between threads
AEG aeg , (Es , pos , cmp)

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 17 / 50

Abstract Event Graph

Example

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 18 / 50

AEG construction

Convert C program to “goto-instructions”
Ignore local variables
Read each instruction, and update the AEG, starting from the empty
graph.
Semi-formally:

τ [ik ; . . .](aeg) = τ [ik′ ; . . .](f (aeg , (ik , . . . , ik′−1)))

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 19 / 50

Goto instructions

Example

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 20 / 50

Transformation function

Example
τ [x = f (y1, . . . , yk); i](Es , pos , cmp) =
let reads = {Ry1, . . . ,Ryk} in
let writes = {Wx} in
let E′s = Es ∪ reads ∪ writes in
let po′s = pos ∪ (end(pos)× reads) ∪ (reads × writes) in
τ [i](E′s , po′s , cmp)

end(x) all sink events of x

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 21 / 50

Transformation function: cont.

Example
τ [start thread th; i](aeg) =
let main = τ [body(th)](∅̄) in
let local = τ [i](aeg) in
let inter = τ [i](∅̄) in

(local .Es ∪main.Es , local .pos ∪main.pos , local .Es ⊗ inter .Es)

A⊗ B ,{(a, b) ∈ A× B|
addr(a) = addr(b)∧
(write(a) ∨ write(b))}

∅̄ ,(∅, ∅, ∅)

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 22 / 50

Program & AEG

Example

1

2

3
4

8

5
6
7

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 23 / 50

Event structure construction

Analogous to AEG
S(P) = {(E, po)}: possible event structures
S(P) = σ(P)(∅): σ is very much like τ

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 24 / 50

Transformation function

Example
σ[lhs = rhs; i](ses) =
let de = dyn evts(lhs = rhs) in
let E′(E,w ,R) = E ∪ {w} ∪ R in
let po′(po,w ,R) = po ∪ (end(po)× R) ∪ (R × {w}) in
let es ′(es,w ,R) = (E′(es.E,w ,R), po′(es.po,w ,R)) in
σ[i]({es ′(es,w ,R) | es ∈ ses, (w ,R) ∈ de})

dyn evts(lhs = rhs) = {(w ,R)}:
I Set of events that can cause the statement.
I Example:

dyn evts(x = y + z) =
⋃
{(Wxv1, {Ryv2,Rzv3})|v1 = v2 + v3}

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 25 / 50

Transformation function: cont.

Example
σ[start thread th; i](ses) =
let local = σ[body(th)](∅) in
let main = σ[i](ses) in⋃
esl∈local ,esm∈main{(esl .E ∪ esm.E, esl .po ∪ esm.po)}

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 26 / 50

AEG & ES

Example

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 27 / 50

Loops

Event a might depend on itself on previous iterations
In that case, duplicate loop body

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 28 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 29 / 50

Soundness

G = aeg(P)
E ∈ S(P)
Are they related?

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 30 / 50

Concretization

Definition
γe(se) ,{e′|∃e ∈ se s.t. addr(e) = addr(e′)∧

dir(e) = dir(e′) ∧ origin(e) = origin(e′)}
γ(srel) ,{(c1, c2)|∃(s1, s2) ∈ srel s.t.

(c1, c2) ∈ γe({s1})× γe({s2})}

Theorem

E1 ⊆ γe(Es,1),E2 ⊆ γe(Es,2)⇒ E1 × E2 ⊆ γ(Es,1 × Es,2)

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 31 / 50

Events and program order

Theorem

E ∈ S(P),G = aeg(P)⇒ E .E ⊆ γe(G .Es),E .po ⊆ γ(G .po+
s)

Lemma 5.3 in the article
po+ is po’s closure

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 32 / 50

rf, co, and fr

Theorem

E ∈ S(P),X = (rf, co, fr), (E ,X) is a CE ,G = aeg(P)
⇒

X.rfe, X.coe, X.fre ⊆ γ(G .cmp)

Lemma 5.4 in the article

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 33 / 50

Soundness

Theorem
Let P be a program. Let E ∈ S(P), X = (rf, co, fr) an execution
witness, (E ,X) a candidate execution. Also, let G = aeg(P).

E .po ∪ X .coi ∪ X .rfi ∪ X .fri ⊆ γ(G .po+
s)

X .coe ∪ X .rfe ∪ X .fre ⊆ γ(G .cmp)
E .E ⊆ γe(G .Es)

From the two previous theorems

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 34 / 50

Static critical cycles

Theorem
Let E ∈ S(P), X = (rf, co, fr), G = aeg(P). If (E ,X) contains a critical
cycle c = c0, . . . , cn−1, then there is a cycle d = d0, . . . , dn−1 in G so that:

{ci} ⊆ γe({di})
{(ci , ci+1 mod n)} ⊆ γ({(di , di+1 mod n)})

Looking for cycles in G will find all cycles in (E ,X)
Any cycle detection algorithm will do.

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 35 / 50

Static critical cycles

Example

a′, b′1, d ′, e′, f ′

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 36 / 50

Static critical cycles

Example

a′, b′1, d ′, e′, f ′

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 36 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 37 / 50

Considerations

We have a list of cycles C = {C1, . . . ,Cn}. Now what?

Delays
Fence types, locations & costs
Different for each architecture

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 38 / 50

Considerations

We have a list of cycles C = {C1, . . . ,Cn}. Now what?
Delays
Fence types, locations & costs
Different for each architecture

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 38 / 50

Problem parameters

Input:
I aeg(Es , pos , cmp)
I C = {C1, . . . ,Cn}
I T = {f, lwf, cf, dp}, cost : T 7→ N 1

I placements(C) ⊆ pos × T 1

I Constrains 1

Output:
I ∀(l , t) ∈ placements(C), tl ∈ {0, 1}

Cost function:
I Rough estimation of cost
I Minimize

∑
(l,t)∈placements(C) tl × cost(t)

I Problems?

1Architecture dependent
Or Ostrovsky Don’t Sit on the Fence April 25th 2018 39 / 50

Constraints

Every delay needs to be fenced
Each type of delay can be handled by different types of fences
A fence can “participate” in multiple delays
“Any of” condition: . . . ≥ 1

I Promises the problem is satisfiable
I Trust the cost function

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 40 / 50

TSO delays & fences

One type of fence f

Only poWR delays

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 41 / 50

AEG in TSO

Example

Not that bad, right?

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 42 / 50

AEG in TSO

Example

Not that bad, right?

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 42 / 50

Power: delays & fences

Delays poWR, poWW, poRW, poRR
f Can solve delays in po+

s .
between(x , y) ,{(e1, e2) ∈ pos |

(x , e1), (e2, y) ∈ po∗s}
lwf Same as f, but unsuitable for poWR violations.
dp Applies only to delays in pos
.

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 43 / 50

Power: placement & constraints

Exact definition of placements(C):
placements(C) ,{(l , dp)|l ∈ delays(C)}∪

{(l , t)|t ∈ T \ {dp},
l ∈ between(delays(C))}∪
{(l , t)|t ∈ {f, lwf}, l ∈ pos(C)}

For each d ∈ delays(C)
I If d ∈ poWR then

∑
e∈between(d) fe ≥ 1

I If d ∈ poWW then
∑

e∈between(d)(fe + lwfe) ≥ 1
I If d ∈ poRW ∪ poRR then dpd +

∑
e∈between(d)(fe + lwfe) ≥ 1

I . . .

How to solve? ILP

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 44 / 50

Power: placement & constraints

Exact definition of placements(C):
placements(C) ,{(l , dp)|l ∈ delays(C)}∪

{(l , t)|t ∈ T \ {dp},
l ∈ between(delays(C))}∪
{(l , t)|t ∈ {f, lwf}, l ∈ pos(C)}

For each d ∈ delays(C)
I If d ∈ poWR then

∑
e∈between(d) fe ≥ 1

I If d ∈ poWW then
∑

e∈between(d)(fe + lwfe) ≥ 1
I If d ∈ poRW ∪ poRR then dpd +

∑
e∈between(d)(fe + lwfe) ≥ 1

I . . .

How to solve? ILP

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 44 / 50

AEG & ILP
Example

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 45 / 50

Table of contents

1 Introduction

2 Cycles

3 Static Analysis

4 Soundness of Construction

5 Fence placement

6 Conclusion

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 46 / 50

Evaluation

Measure how well did we do?

Relative overhead
Compared to other tools
Different architectures

Musketeer,Pensieve,Visual Studio, after Each access, after Heap accesses

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 47 / 50

Evaluation

Measure how well did we do?
Relative overhead
Compared to other tools
Different architectures

Musketeer,Pensieve,Visual Studio, after Each access, after Heap accesses

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 47 / 50

Evaluation

Measure how well did we do?
Relative overhead
Compared to other tools
Different architectures

Musketeer,Pensieve,Visual Studio, after Each access, after Heap accesses

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 47 / 50

Conclusion

Define critical cycles
Discover them using static analysis
Prove the static analysis is sound
Find the best way to place fences

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 48 / 50

Excluded topics

Related works
Pointer analysis
Most of the conversion technicalities
Some architecture specifics
Implementation & performance (mostly)

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 49 / 50

Questions?

Or Ostrovsky Don’t Sit on the Fence April 25th 2018 50 / 50

	Introduction
	Cycles
	Static Analysis
	Soundness of Construction
	Fence placement
	Conclusion

