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Abstract. Snapshot isolation (SI) is a standard transactional consistency
model used in databases, distributed systems and software transactional
memory (STM). Its semantics is formally defined both declaratively as
an acyclicity axiom, and operationally as a concurrent algorithm with
memory bearing timestamps.

We develop two simpler equivalent operational definitions of SI as lock-
based reference implementations that do not use timestamps. Our first
locking implementation is prescient in that requires a priori knowledge
of the data accessed by a transaction and carries out transactional writes
eagerly (in-place). Our second implementation is non-prescient and per-
forms transactional writes lazily by recording them in a local log and
propagating them to memory at commit time. Whilst our first implemen-
tation is simpler and may be better suited for developing a program logic
for SI transactions, our second implementation is more practical due to
its non-prescience. We show that both implementations are sound and
complete against the declarative SI specification and thus yield equivalent
operational definitions for SI.

We further consider, for the first time formally, the use of SI in a context
with racy non-transactional accesses, as can arise in STM implementations
of SI. We introduce robust snapshot isolation (RSI), an adaptation of SI
with similar semantics and guarantees in this mixed setting. We present
a declarative specification of RSI as an acyclicity axiom and analogously
develop two operational models as lock-based reference implementations
(one eager, one lazy). We show that these operational models are both
sound and complete against the declarative RSI model.

1 Introduction

Transactions are the de facto synchronisation mechanism in databases and
geo-replicated distributed systems, and are thus gaining adoption in the shared-
memory setting via software transactional memory (STM) [33,20]. In contrast
to other synchronisation mechanisms, transactions readily provide atomicity,
isolation, and consistency guarantees for sequences of operations, allowing pro-
grammers to focus on the high-level design of their systems.

However, providing these guarantees comes at a significant cost. As such,
various transactional consistency models in the literature trade off consistency



guarantees for better performance. At nearly the one end of the spectrum, we
have serialisability [28], which requires transactions to appear to have been
executed in some total order. Serialisability provides strong guarantees, but is
widely considered too expensive to implement. The main problem is that two
conflicting transactions (e.g. one reading from and one updating the same datum)
cannot both execute and commit in parallel.

Consequently, most major databases, both centralised (e.g. Oracle and MS
SQL Server) and distributed [15,32,29], have opted for a slightly weaker model
called snapshot isolation (SI) [7] as their default consistency model. SI has much
better performance than serialisability by allowing conflicting transactions to
execute concurrently and commit successfully as long as they do not have a
write-write conflict. This in effect allows reads of SI transactions to read from
an earlier memory snapshot than the one affected by their writes, and permits
the write skew anomaly [11] depicted in Fig. 1. Besides this anomaly, however,
SI is essentially the same as serialisability: Cerone et al. [11] provide a widely
applicable condition under which SI and serialisability coincide for a given set
of transactions. For these reasons, SI has also started gaining adoption in the
generic programming language setting via STM implementations [1,16,8,26,25]
that provide SI semantics for their transactions.

The formal study of SI, however, has so far not accounted for the more general
STM setting in which both transactions and uninstrumented non-transactional
code can access the same memory locations. While there exist two equivalent
definitions of SI—one declarative in terms of an acyclicity constraint [10,11]
and one operational in terms of an optimistic multi-version concurrency control
algorithm [7]—mneither definition supports mized-mode (i.e. both transactional
and non-transactional) accesses to the same locations. Extending the definitions
to do so is difficult for two reasons: (1) the operational definition attaches a
timestamp to every memory location, which heavily relies on the absence of
non-transactional accesses; and (2) there are subtle interactions between the
transactional implementation and the weak memory model underlying the non-
transactional accesses.

In this article, we address these limitations of SI. We develop two simple
lock-based reference implementations for SI that do not use timestamps. Our first
implementation is prescient [19] in that it requires a priori knowledge of the data
accessed by a transaction, and performs transactional writes eagerly (in-place).
Our second implementation is non-prescient and carries out transactional writes
lazily by first recording them in a local log and subsequently propagating them to
memory at commit time. Our first implementation is simpler and may be better
suited for understanding and developing a program logic for SI transactions,
whilst our second implementation is more practical due to its non-prescience. We
show that both implementations are sound and complete against the declarative
SI specification and thus yield equivalent operational definitions for SI.

We then extend both our eager and lazy implementations to make them robust
under uninstrumented non-transactional accesses, and characterise declaratively



the semantics we obtain. We call this extended model robust snapshot isolation
(RSI) and show that it gives reasonable semantics with mixed-mode accesses.

To provide SI semantics, instead of timestamps, our implementations use
multiple-readers-single-writer (MRSW) locks. They acquire locks in reader mode
to take a snapshot of the memory locations accessed by a transaction and then
promote the relevant locks to writer mode to enforce an ordering on transac-
tions with write-write conflicts. As we discuss in §4, the equivalence of the RSI
implementation and its declarative characterisation depends heavily upon the
axiomatisation of MRSW locks: here, we opted for the weakest possible axioma-
tisation that does not order any concurrent reader lock operations and present
an MRSW lock implementation that achieves this.

Outline In §2 we present an overview of our contributions by describing our
reference implementations for both SI and RSI. In §3 we define the declarative
framework for specifying STM programs. In §4 we present the declarative SI
specification against which we demonstrate the soundness and completeness of
our SI implementations. In §5 we formulate a declarative specification for RSI
and demonstrate the soundness and completeness of our RSI implementations.
We discuss related and future work in §6.

2 Background and Main Ideas

As noted earlier, the key challenge in specifying STM transactions lies in ac-
counting for the interactions between mixed-mode accesses to the same data.
One simple approach is to treat each non-transactional access as a singleton
mini-transaction and to provide strong isolation [27,9], i.e. full isolation between
transactional and non-transactional code. This, however, requires instrumenting
non-transactional accesses to adhere to same access policies as transactional
ones (e.g. acquiring the necessary locks), which incurs a substantial performance
penalty for non-transactional code. A more practical approach is to enforce
isolation only amongst transactional accesses, an approach known as weak isola-
tion [27,9], adopted by the relaxed transactions of C++ [2].

As our focus is on STMs with SI guarantees, instrumenting non-transactional
accesses is not feasible. In particular, as we expect many more non-transactional
accesses than transactional ones, we do not want to incur any performance degra-
dation on non-transactional code when executed in parallel with transactional
code. As such, we opt for an STM with SI guarantees under weak isolation.
Under weak isolation, however, transactions with explicit abort instructions are
problematic as their intermediate state may be observed by non-transactional
code. As such, weakly isolated STMs (e.g. C++ relaxed transactions [2]) often
forbid explicit aborts altogether. Throughout our development we thus make
two simplifying assumptions: (1) transactions are not nested; and (2) there are
no explicit abort instructions, following the example of weakly isolated relaxed

3 A full version of this article is available at [31].
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Fig.1: Litmus tests illustrating transaction anomalies and their admissibility
under SI and RSI. In all tests, initially, x = y = z = 0. The /v annotation next
to a read records the value read.

transactions of C++. As we describe later in §2.3, it is straightforward to lift the
latter restriction (2) for our lazy implementations.

For non-transactional accesses, we naturally have to pick some consistency
model. For simplicity and uniformity, we pick the release/acquire (RA) subset of
the C++ memory model [6,23], a well-behaved platform-independent memory
model, whose compilation to x86 requires no memory fences.

Snapshot Isolation (SI) The initial model of SI in [7] is described informally
in terms of a multi-version concurrent algorithm as follows. A transaction T
proceeds by taking a snapshot S of the shared objects. The execution of T is then
carried out locally: read operations query S and write operations update S. Once
T completes its execution, it attempts to commit its changes and succeeds only if
it is not write-conflicted. Transaction T is write-conflicted if another committed
transaction T’ has written to a location also written to by T, since T recorded
its snapshot. If T fails the conflict check it aborts and may restart; otherwise,
it commits its changes, and its changes become visible to all other transactions
that take a snapshot thereafter.

To realise this, the shared state is represented as a series of multi-versioned
objects: each object is associated with a history of several versions at different
timestamps. In order to obtain a snapshot, a transaction T chooses a start-
timestamp to, and reads data from the committed state as of ¢y, ignoring updates
after tg. That is, updates committed after ¢y are invisible to T. In order to commit,
T chooses a commit-timestamp t. larger than any existing start- or commit-
timestamp. Transaction T is deemed write-conflicted if another transaction T’
has written to a location also written to by T and the commit-timestamp of T’ is
in the execution interval of T ([to, t.]).



2.1 Towards an SI Reference Implementation without Timestamps

While the SI description above is suitable for understanding SI, it is not useful
for integrating the ST model in a language such as C/C++ or Java. From a
programmer’s perspective, in such languages the various threads directly access
the uninstrumented (single-versioned) shared memory; they do not access their
own instrumented snapshot at a particular timestamp, which is loosely related
to the snapshots of other threads. Ideally, what we would therefore like is an
equivalent description of SI in terms of accesses to uninstrumented shared memory
and a synchronisation mechanism such as locks.

In what follows, we present our first lock-based reference implementation for
SI that does not rely on timestamps. To do this, we assume that the locations
accessed by a transaction can be statically determined. Specifically, we assume
that each transaction T is supplied with its read set, RS, and write set, WS,
containing those locations read and written by T, respectively (a static over-
approximation of these sets suffices for soundness.). As such, our first reference
implementation is prescient [19] in that it requires a priori knowledge of the
locations accessed by the transaction. Later in §2.3 we lift this assumption and
develop an SI reference implementation that is non-prescient and similarly does
not rely on timestamps.

Conceptually, a candidate implementation of transaction T would (1) obtain
a snapshot of the locations read by T; (2) lock those locations written by T; (3)
execute T locally; and (4) unlock the locations written. The snapshot is obtained
via snapshot (RS) in Fig. 3 where the values of locations in RS are recorded in a
local array s. The local execution of T is carried out by executing (T) in Fig. 3,
which is obtained from T by (i) modifying read operations to read locally from
the snapshot in s, and (ii) updating the snapshot after each write operation. Note
that the snapshot must be obtained atomically to reflect the memory state at a
particular instance (cf. start-timestamp). An obvious way to ensure the snapshot
atomicity is to lock the locations in the read set, obtain a snapshot, and unlock
the read set. However, as we must allow for two transactions reading from the
same location to execute in parallel, we opt for multiple-readers-single-writer
(MRSW) locks.

Let us now try to make this general pattern more precise. As a first attempt,
consider the implementation in Fig. 2a written in a simple while language, which
releases all the reader locks at the end of the snapshot phase before acquiring
any writer locks. This implementation is unsound as it admits the lost update
(LU) anomaly in Fig. 1 disallowed under SI [11]. To understand this, consider a
scheduling where T2 runs between lines 3 and 4 of T1 in Fig. 2a, which would
result in T1 having read a stale value. The problem is that the writer locks on WS
are acquired too late, allowing two conflicting transactions to run concurrently.
To address this, writer locks must be acquired early enough to pre-empt the
concurrent execution of write-write-conflicting transactions. Note that locks have
to be acquired early even for locations only written by a transaction to avoid
exhibiting a variant of the lost update anomaly (LU2).



1.for (x€RS) lock.r x |1.for (x€WS) lockw x; I. for (x €ERSUWS) lock.r x
2. snapshot (RS) ; 2. for (x €RS\WS) lock.r x |2. snapshot(RS);
3. for (x €RS) unlock.r x | 3. snapshot (RS) ; 3. for (x €RSUWS) {
4. for (x€WS) lockw x |4.for (x €RS\WS) unlock r x|4. if (x €WS) promote x
5.(T); 5.(T); 5. else unlockr x; }
6. for (x €WS) unlock w x | 6. for (x €EWS) unlockw x |6.(T);
7. for (x €WS) unlock w x
(a) (b) (c)
Sound: X Sound: v/ Sound: v/
allows (LU), (LU2) Complete: X Complete: X
disallows (WS) disallows (WS2)

Fig. 2: Candidate SI implementations of transaction T given read/write sets RS,WS

As such, our second candidate implementation in Fig. 2b brings forward the
acquisition of writer locks. Whilst this implementation is sound (and disallows lost
update), it nevertheless disallows behaviours deemed valid under SI such as the
write skew anomaly (WS) in Fig. 1, and is thus incomplete. The problem is that
such early acquisition of writer locks not only pre-empts concurrent execution
of write-write-conflicting transactions, but also those of read-write-conflicting
transactions (e.g. WS) due to the exclusivity of writer locks.

To remedy this, in our third candidate implementation in Fig. 2c we first
acquire weaker reader locks on all locations in RS or WS, and later promote the
reader locks on WS to exclusive writer ones, while releasing the reader locks on
RS. The promotion of a reader lock signals its intent for exclusive ownership and
awaits the release of the lock by other readers before claiming it exclusively as
a writer. To avoid deadlocks, we further assume that RSUWS is ordered so that
locks are promoted in the same order by all threads.

Although this implementation is “more complete” than the previous one, it
is still incomplete as it disallows certain behaviour admitted by SI. In particular,
consider a variant of the write skew anomaly (WS2) depicted in Fig. 1, which is
admitted under SI, but not admitted by this implementation.

To understand why this is admitted by SI, recall the operational SI model
using timestamps.Let the domain of timestamps be that of natural numbers N.
The behaviour of (WS2) can be achieved by assigning the following execution
intervals for T1: [t;! =2, tT1=2]; T2: [t*=1,t"2=4]; and T3: [t;*=3, t72=3]. To see
why the implementation in Fig. 2¢ does not admit the behaviour in (WS2), let
us assume without loss of generality that x is ordered before y. Upon executing
lines 3-5, a) T1 promotes y; b) T2 promotes x and then c) releases the reader
lock on y; and d) T3 releases the reader lock on x. To admit the behaviour in
(WS2), the release of y in (¢) must occur before the promotion of y in (a) since
otherwise T2 cannot read 0 for y. Similarly, the release of x in (d) must occur
before its promotion in (b). On the other hand, since T3 is executed by the
same thread after T1, we know that (a) occurs before (d). This however leads to
circular execution: (b)—(c)—(a)—(d)—(b), which cannot be realised.



snapshot (RS) £ for (XERS) sy:=x
0. Ls:= 0; 2
1. for (XERSUWS) lock.r x snapshotpg; (RS) =
2. snapshot (RS) ; start: for (x €ERS) syx:=x
3. for (XGRS\WS) unlock.r x for (x €RS) {
4. for (x €WS) { if (sx!=x) goto start
5. if (can-promote x) LS.add(x) }
6. else {
7. for (x €LS) unlock.w x g 2 aem
8. for (x €WS \ LS) unlockr x (a:=x) = a:=s.
13 ) goto line 0 } (x:=a) 2 x:=a; s;:=a
1. (T); (S1582) = (S1);(S2)
12. for (x €WS) unlock.w x

(while(e) S) £ while(e) (S)

.. and so on...

Fig. 3: SI implementation of transaction T given RS, WS; the code in blue ensures
deadlock avoidance. The RSI implementation (§5) is obtained by replacing
snapshot on line 2 with snapshotpg;.

To overcome this, in our final candidate execution in Fig. 3 (ignoring the code
in blue), after obtaining a snapshot, we first release the reader locks on RS, and
then promote the reader locks on WS, rather than simultaneously in one pass. As
we demonstrate in §4, the implementation in Fig. 3 is both sound and complete
against its declarative SI specification.

Avoiding Deadlocks As two distinct reader locks on x may simultaneously
attempt to promote their locks, promotion is done on a ‘first-come-first-served’
basis to avoid deadlocks. A call to can-promote x by reader r thus returns a
boolean denoting either (i) successful promotion (true); or (ii) failed promotion
as another reader 1/ is currently promoting a lock on x (false). In the latter case,
r must release its reader lock on x to ensure the successful promotion of x1 by r’
and thus avoid deadlocks. To this end, our implementation in Fig. 3 includes a
deadlock avoidance mechanism (code in blue) as follows. We record a list LS of
those locks on the write set that have been successfully promoted so far. When
promoting a lock on x succeeds (line 5), the LS is extended with x. On the other
hand, when promoting x fails (line 6), all those locks promoted so far (i.e. in
LS) as well as those yet to be promoted (i.e. in WS \LS) are released and the
transaction is restarted.

Remark 1. Note that the deadlock avoidance code in blue does not influence
the correctness of the implementation in Fig. 3, and is merely included to make
the reference implementation more realistic. In particular, the implementation
without the deadlock avoidance code is both sound and complete against the SI
specification, provided that the conditional can-promote call on line 5 is replaced
by the blocking promote call.



Avoiding Over-Synchronisation due to MRSW Locks Consider the store
buffering program (SBT) shown in Fig. 1. If, for a moment, we ignore transac-
tional accesses, our underlying memory model (RA)—as well as all other weak
memory models—allows the annotated weak behaviour. Intuitively, placing the
two transactions that only read z in (SBT) should still allow the weak behaviour
since the two transactions do not need to synchronise in any way. Nevertheless,
most MRSW lock implementations forbid this outcome because they use a single
global counter to track the number of readers that have acquired the lock, which
inadvertently also synchronises the readers with one another. As a result, the
two read-only transactions act as memory fences forbidding the weak outcome of
(SBT). To avoid such synchronisation, in the technical appendix [31] we provide
a different MRSW implementation using a separate location for each thread so
that reader lock acquisitions do not synchronise.

To keep the presentation simple, we henceforth assume an abstract speci-
fication of a MRSW lock library providing operations for acquiring/releasing
reader /writer locks, as well as promoting reader locks to writer ones. We require
that (1) calls to writer locks (to acquire, release or promote) synchronise with
all other calls to the lock library; and (2) writer locks provide mutual exclusion
while held. We formalise these notions in §4. These requirements do not restrict
synchronisation between two read lock calls: two read lock calls may or may
not synchronise. Synchronisation between read lock calls is relevant only for the
completeness of our RST implementation (handling mixed-mode code); for that
result, we further require that (3) read lock calls not synchronise.

2.2 Handling Racy Mixed-Mode Accesses

Let us consider what happens when data accessed by a transaction is modified
concurrently by an uninstrumented atomic non-transactional write. Since such
writes do not acquire any locks, the snapshots taken may include values written by
non-transactional accesses. The result of the snapshot then depends on the order
in which the variables are read. Consider the (MPT) example in Fig. 1. In our
implementation, if in the snapshot phase y is read before x, then the annotated
weak behaviour is not possible because the underlying model (RA) disallows
this weak “message passing” behaviour. If, however, x is read before y, then the
weak behaviour is possible. In essence, this means that the SI implementation
described so far is of little use when there are races between transactional and
non-transactional code. Technically, our SI implementation violates monotonicity
with respect to wrapping code inside a transaction. The weak behaviour of the
(MPT) example is disallowed by RA if we remove the transaction block T2, and
yet it is exhibited by our SI implementation with the transaction block.

To get monotonicity under RA, it suffices for the snapshots to read the
variables in the same order they are accessed by the transactions. Since a static
calculation of this order is not always possible, following [30], we achieve this
by reading each variable twice. In more detail, our snapshotyg; implementation
in Fig. 3 takes two snapshots of the locations read by the transaction, and
checks that they both return the same values for each location. This ensures



that every location is read both before and after every other location in the
transaction, and hence all the high-level happens-before orderings in executions
of the transactional program are also respected by its implementation. As we
demonstrate in §5, our RSI implementation is both sound and complete against
our proposed declarative semantics for RSI. There is however one caveat: since
equality of values is used to determine whether the two snapshots agree, we
will miss cases where different non-transactional writes to a location write the
same value. In our formal development (see §5), we thus assume that if multiple
non-transactional writes write the same value to the same location, they cannot
race with the same transaction. Note that this assumption cannot be lifted
without instrumenting non-transactional writes, and thus impeding performance
substantially. That is, to lift this restriction we must instead replace every
non-transactional write x:=v with lock.w x; x:=v; unlock_w x.

2.3 Non-Prescient Reference Implementations without Timestamps

Recall that the SI and RSI implementations in §2.1 are prescient in that they
require knowledge of the read and write sets of transactions beforehand. In what
follows we present alternative SI and RSI implementations that are non-prescient.

Non-Prescient SI Reference Implementation In Fig. 4 we present a lazy
lock-based reference implementation for SI. This implementation is non-prescient
and does not require a priori knowledge of the read set RS and the write set WS.
Rather, the RS and WS are computed on the fly as the execution of the transaction
unfolds. As with the SI implementation in Fig. 3, this implementation does not
rely on timestamps and uses MRSW locks to synchronise concurrent accesses
to shared data. As before, the implementation consults a local snapshot at s
for read operations. However, unlike the eager implementation in Fig. 3 where
transactional writes are performed in-place, the implementation in Fig. 4 is lazy
in that it logs the writes in the local array s and propagates them to memory at
commit time, as we describe shortly.

Ignoring the code in blue, the implementation in Fig. 4 proceeds with initial-
ising RS and WS with () (line 1); it then populates the local snapshot array at s
with initial value L for each location x (line 2). It then executes (T) which is
obtained from T as follows. For each read operation a:=x in T, first the value
of s[x] is inspected to ensure it contains a snapshot of x. If this is not the case
(i.e. x € RS UWS), a reader lock on x is acquired, a snapshot of x is recorded
in s[x], and the read set RS is extended with x. The snapshot value in s[x] is
subsequently returned in a. Analogously, for each write operation x:=a, the WS
is extended with x, and the written value is lazily logged in s[x]. Recall from
our candidate executions in Fig. 2 that to ensure implementation correctness, for
each written location x, the implementation must first acquire a reader lock on x,
and subsequently promote it to a writer lock. As such, for each write operation
in T, the implementation first checks if a reader lock for x has been acquired (i.e.
x € RS UWS) and obtains one if this is not the case.



0. LS:=0; (a:=x) £if (x RSUWS) {

1. RS:=@; WS:=0; lock.r x; RS.add(x);
2. for (x€Locs) slx]:=1 s[x]:=x;

i gTD;( RS\WS) unlock )

. for (xe unlock.r x = .

5. for (xews) { a:=slxl;

6. if (c?n—promote x) LS.add(x) (x:=a) £ if (x€RSUWS) lock.r x;
7. else . U
8. for (x €LS) unlockw x WS.add(x); slx]:=a;
9. for (x €WS\LS) unlock.r x S-S50 2 (55D (S
10. goto line O } (513.52) = (51D (52)
1. for (x€WS) x:=s[x] (while(e) S) £ while(e) (S)
12. for (x €WS) unlock w x

..and so on...

Fig. 4: Non-prescient SI implementation of transaction T with RS and WS computed
on the fly; the code in blue ensures deadlock avoidance.

Once the execution of (T is completed, the implementation proceeds to
commit the transaction. To this end, the reader locks on RS are released (line
4), reader locks on WS are promoted to writer ones (line 6), the writes logged
in s are propagated to memory (line 11), and finally the writer locks on WS are
released (line 12). As we demonstrate later in §4, the implementation in Fig. 4 is
both sound and complete against the declarative SI specification.

Note that the implementation in Fig. 4 is optimistic in that it logs the writes
performed by the transaction in the local array s and propagates them to memory
at commit time, rather than performing the writes in-place as with its pessimistic
counterpart in Fig. 3. As before, the code in blue ensures deadlock avoidance and
is identical to its counterpart in Fig. 3. As before, this deadlock avoidance code
does not influence the correctness of the implementation and is merely included
to make the reference implementation more practical.

Non-Prescient RSI Reference Implementation In Fig. 5 we present a lazy
lock-based reference implementation for RSI. As with its SI counterpart, this
implementation is non-prescient and computes the RS and WS on the fly. As
before, the implementation does not rely on timestamps and uses MRSW locks
to synchronise concurrent accesses to shared data. Similarly, the implementation
consults the local snapshot at s for read operations, whilst logging write operations
lazily in a write sequence at wseq, as we describe shortly.

Recall from the RSI implementation in §2.1 that to ensure snapshot validity,
each location is read twice to preclude intermediate non-transactional writes. As
such, when writing to a location x, the initial value read (recorded in s) must
not be overwritten by the transaction to allow for subsequent validation of the
snapshot. To this end, for each location x, the snapshot array s contains a pair
of values, (r,c), where r denotes the snapshot value (initial value read), and ¢
denotes the current value which may have overwritten the snapshot value.

Recall that under weak isolation, the intermediate values written by a trans-
action may be observed by non-transactional reads. For instance, given the



0. LS:=0;

1. RS:=0; WS:=0; wseq:=[1; (a:=x) £ if (xZRSUWS) {

_; Eo[)r (x€Locs) slx]:=(L,1) lock.r x; RS.add(x);
3. (T); = .= )
4. for (x€RS) {(r,-):=slx]; T X"_S[X]'_ (r',_r)i
5. if (x!=r) { /read x again b (=,0)=slx]; ai=c;
El égio(xleirlfes%w}s)} unlock.r x (x:=a) £ if (xZRSUWS) lockr x
8. for (x €RS\WS) unlock.r x WS.add(x);

9. for (xews) { (r,-):=slx];slxl:=(r,a);
}(l) i{ (c?n—promote x) LS.add(x) wseq:=wseq++[(x,a)];

. else
12. for (x€LS) unlock.w x (S1;S2) £ (S1);(S2)
13. for (x€WS\LS) unlock.r x o
14. goto line 0 } } (vhile(e) S) = while(e) (S)
15. for ((x,v) Ewseq) x:=V d
16. for (x€WS) unlockw x -+ and soom...

Fig.5: Non-prescient RSI implementation of transaction T with RS and WS com-
puted on the fly; the code in blue ensures deadlock avoidance.

T: [z := 1;2 := 2 || a :=  program, the non-transactional read a := z, may read
either 1 or 2 for x. As such, at commit time, it is not sufficient solely to propagate
the last written value (in program order) to each location (e.g. to propagate
only the x := 2 write in the example above). Rather, to ensure implementation
completeness, one must propagate all written values to memory, in the order
they appear in the transaction body. To this end, we track the values written by
the transaction as a (FIFO) write sequence at location wseq, containing items of
the form (z,v), denoting the location written (x) and the associated value (v).

Ignoring the code in blue, the implementation in Fig. 5 initialises RS and WS
with (), initialises wseq as an empty sequence [] (line 1), and populates the local
snapshot array s with initial value (L, L) for each location x (line 2). It then
executes (T), obtained from T in an analogous manner to that in Fig. 4. For every
read a:=x in (T), the current value recorded for x in s (namely ¢ when s[x]
holds (-,c)) is returned in a. Dually, for every write x:=a in (T), the current
value recorded for x in s is updated to a, and the write is logged in the write
sequence wseq by appending (x,a) to it.

Upon completion of (T), the snapshot in s is validated (lines 4-7). Each
location x in RS is thus read again and its value is compared against the snapshot
value in s[x]. If validation fails (line 5), the locks acquired are released (line 6)
and the transaction is restarted (line 7).

If validation succeeds, the transaction is committed: the reader locks on RS
are released (line 8), the reader locks on WS are promoted (line 10), the writes in
wseq are propagated to memory in FIFO order (line 15), and finally the writer
locks on WS are released (line 16).

As we show in §5, the implementation in Fig. 5 is both sound and complete
against our proposed declarative specification for RSI. As before, the code in blue
ensures deadlock avoidance; it does not influence the implementation correctness
and is merely included to make the implementation more practical.



Supporting Explicit Abort Instructions It is straightforward to extend
the lazy implementations in Fig. 4 and Fig. 5 to handle transactions containing
explicit abort instructions. More concretely, as the effects (writes) of a transaction
are logged locally and are not propagated to memory until commit time, upon
reaching an abort in (7)) no roll-back is necessary, and one can simply release
the locks acquired so far and return. That is, one can extend (.) in Fig. 4 and
Fig. 5, and define (abort|) = for (x €RSUWS) unlock r x; return.

3 A Declarative Framework for STM

We present the notational conventions used in the remainder of this article, and
describe a general framework for declarative concurrency models. Later in this
article, we present SI, its extension with non-transactional accesses, and their
lock-based implementations as instances of this general definition.

Notation Given a relation r on a set A, we write r’, rt and r* for the
reflexive, transitive and reflexive-transitive closure of r, respectively. We write
r=! for the inverse of r; r|4 for r N (A x A); [A] for the identity relation on A,
ie. {(a,a)|a € A};irreflexive(r) for Ba. (a,a) € r; and acyclic(r) for irreflexive(r™).
Given two relations r; and ry, we write ry; ro for their (left) relational composition,
ie. {(a,b) ‘ Je. (a,¢) € 11 A (e, b) € rap}. Lastly, when r is a strict partial order, we
write flimm for the immediate edges in r: {(a,b) € r| fe. (a,c¢) € r A (c,b) €1}

Assume finite sets of locations Loc; values VAL; thread identifiers TIp, and
transaction identifiers TXIp. We use z, y, z to range over locations, v over values,
7 over thread identifiers, and £ over transaction identifiers.

Definition 1 (Events). An event is a tuple (n,7,£,1), where n € N is an event
identifier, 7 € TID W {0} is a thread identifier (0 is used for initialisation events),
¢ € TXIpW{0} is a transaction identifier (0 is used for non-transactional events),
and | is an event label that takes one of the following forms:

— A memory access label: R(xz,v) for reads; W(x,v) for writes; and U(z, v, vy)
for updates.

— A lock label: RL(x) for reader lock acquisition; RU(z) for reader lock release;
WL(x) for writer lock acquisition; WU(z) for writer lock release; and PL(x)
for reader to writer lock promotion.

We typically use a, b, and e to range over events. The functions tid, tx, lab,
typ, loc, val, and val, respectively project the thread identifier, transaction
identifier, label, type (in {R7 W,U,RL,RU, WL, WU, PL}), location, and read/written
values of an event, where applicable. We assume only reads and writes are used
in transactions (tx(a) #0 = typ(a) € {R,W}).

Given a relation r on events, we write ri. for {(a,b) € r|loc(a) = loc(b)}.
Analogously, given a set A of events, we write A, for {a € A ‘ loc(a)=x}.

Definition 2 (Execution graphs). An execution graph, G, is a tuple of the
form (E, po,rf, mo, lo), where:



— F is a set of events, assumed to contain a set Eq of initialisation events,
consisting of a write event with label W(x,0) for every x € Loc. The sets of
read events in E is denoted by R = {e € E ‘ typ(e) € {R,U}}; write events
by W = {e cF ‘ typ(e) € {W, U}}; update events by U £ RNW; and lock
events by L £ {e € E‘typ(e) € {RL,RU, WL, WU, PL}}, The sets of reader
lock acquisition and release events, RL and RU, writer lock acquisition and
release events, WL and WU, and lock promotion events PL are defined
analogously. The set of transactional events in E is denoted by T (T £
{e er ‘ tx(e) # 0}); and the set of non-transactional events is denoted by
NT (NT 2 E\T).

— po C E x FE denotes the ‘program-order’ relation, defined as a disjoint union
of strict total orders, each ordering the events of one thread, together with
Eo x (E\ Eg) that places the initialisation events before any other event. We
assume that events belonging to the same transaction are ordered by po, and
that any other event po-between them also belongs to the same transaction.

— rf CW X R denotes the ‘reads-from’ relation, defined between write and read
events of the same location with matching read and written values; it is total
and functional on reads, i.e. every read is related to exactly one write.

- C W x W denotes the ‘modification-order’ relation, defined as a disjoint
union of strict total orders, each ordering the write events on one location.

— lo C L x L denotes the ‘lock-order’ relation, defined as a disjoint union of
strict orders, each of which (partially) ordering the lock events to one location.

In the context of an execution graph G=(E, po, rf, mo, lo)—we often use “G.”
as a prefix to make this explicit—the ‘same-transaction’ relation, st € T x T, is
the equivalence relation given by st £ {(a,b) € T x T | tx(a) = tx(b)}. Given a
relation r C E x E, we write rt for lifting r to transaction classes: rr £ st; (r\st); st.
For instance, when (w,r) € rf, w is a transaction &; event and r is a transaction
&5 event, then all all events in & are rfr-related to all events in £;. Analogously,
we write ry to restrict r to its intra-transactional edges (within a transaction):
rf £ rNst; and write rg to restrict r to its extra-transactional edges (outside a
transaction): rg = r\ st. Lastly, the ‘reads-before’ relation is defined by rb £
(rf=1;mo) \ [E]. Intuitively, rb relates a read r to all writes w that are mo-after
the write r reads from; i.e. when (w’,r) € rf and (w’,w) € mo, then (r,w) € rb.
In the transactional literature, this is known as the anti-dependency relation [4,3].

Execution graphs of a given program represent traces of shared memory
accesses generated by the program. The set of execution graphs associated with
programs written in our while language can be straightforwardly defined by
induction over the structure of programs as in e.g. [35]. Each execution of a
program P has a particular program outcome, prescribing the final values of local
variables in each thread. In this initial stage, the execution outcomes are almost
unrestricted as there are very few constraints on the rf, and lo relations. Such
restrictions and thus the permitted outcomes of a program are determined by
defining the set of consistent executions, which is defined separately for each
model we consider. Given a program P and a model M, the set outcomesy, (P)
collects the outcomes of every M-consistent execution of P.



4 Snapshot Isolation (SI)

We present a declarative specification of SI and demonstrate that the SI imple-
mentations presented in Fig. 3 and Fig. 4 are both sound and complete with
respect to the SI specification.

In [11] Cerone and Gotsman developed a declarative specification for SI using
dependency graphs [4,3]. Below we adapt their specification to the notation of §3.
As with [11], throughout this section, we take SI execution graphs to be those in
which E =T C (RUW)\U. That is, the SI model handles transactional code
only, consisting solely of read and write events (excluding updates).

Definition 3 (SI consistency [11]). An ST ezecution G = (E, po,rf, mo, lo)
is Sl-consistent if the following conditions hold:

— rffUmor Urbr C po (INT)
— acyclic((poT Urfru T); I’bT?) (EXT)

Informally, (INT) ensures the consistency of each transaction internally, while
(EXT) provides the synchronisation guarantees among transactions. In particular,
we note that the two conditions together ensure that if two read events in the same
transaction read from the same location x, and no write to x is po-between them,
then they must read from the same write (known as ‘internal read consistency’).
Next, we provide an alternative equivalent formulation of SI-consistency which
will serve as the basis of our extension with non-transactional accesses in §5.

Proposition 1. An SI execution G = (E, po,rf, mo, lo) is SI-consistent if and
only if INT holds and the ‘SI-happens-before’ relation si-hb = (pot U rft U moT U
si-rb) T is irreflexive, where si-rb = [Rg]; rby; W] and Re £ {r | Jw. (w,r) € rfg}.

Proof. The full proof is given in the technical appendix [31].

Intuitively, SI-happens-before orders events of different transactions; this
order is due to either the program order (pot), or synchronisation enforced by the
implementation (rf+ U mot Usi-rb). By contrast, events of the same transaction
are unordered, as the implementation may well execute them in a different order
(in particular, by taking a snapshot, it executes external reads before the writes).

In more detail, the rft corresponds to transactional synchronisation due to
causality, i.e. when one transaction T observes an effect of an earlier transaction
T;. The inclusion of rft ensures that To cannot read from T; without observing
its entire effect. This in turn ensures that transactions exhibit ‘all-or-nothing’
behaviour: they cannot mix-and-match the values they read. For instance, if Ty
writes to both x and y, transaction T may not read x from T; but read y from
an earlier (in ‘happens-before’ order) transaction To.

The mot corresponds to transactional synchronisation due to write-write
conflicts. Its inclusion enforces write-conflict-freedom of SI transactions: if T; and
T2 both write to = via events w; and ws such that (wy,ws) € , then T, must
commit before Ty, and thus its entire effect must be visible to Ts.



To understand si-rb, first note that Rg denotes the external transactional
reads (i.e. those reading a value written by another transaction). That is, the
Re are the read events that get their values from the transactional snapshot
phases. By contrast, internal reads (those reading a value written by the same
transaction) happen only after the snapshot is taken. Now let there be an rbr
edge between two transactions, T; and Ty. This means there exist a read event r
of T1 and a write event w of Ty such that (r,w) € rb; i.e. there exists w’ such that
(w',r) € rf and (w',w) € mo. If r reads internally (i.e. w’ is an event in Ty), then
T, and T are conflicting transactions and as accounted by mot described above,
all events of T; happen before those of To. Now, let us consider the case when
r reads externally (w’ is not in T;). From the timestamped model of SI, there
exists a start-timestamp tgl as of which the Ty snapshot (all its external reads
including r) is recorded. Similarly, there exists a commit-timestamp ¢12 as of
which the updates of T (including w) are committed. Moreover, since (r,w) € rb
we know #)' < t%2 (otherwise 7 must read the value written by w and not w').
That is, we know all events in the snapshot of T; (i.e. all external reads in T;)
happen before all writes of Ty.%

We use the declarative framework in §3 to formalise the semantics of our
implementation. Here, our programs include only non-transactional code, and thus
implementation execution graphs are taken as those in which 7 = ). Furthermore,
we assume that locks in implementation programs are used in a well-formed
manner: the sequence of lock events for each location, in each thread (following
po), should match (a prefix of) the regular expression (RL-RU | WL-WU | RL-PL-WU)*.
For instance, a thread never releases a lock, without having acquired it earlier in
the program. As a consistency predicate on execution graphs, we use the C11
release/acquire consistency augmented with certain constraints on lock events.

Definition 4. An implementation execution graph G = (E,po,rf,mo,lo) is
RA-consistent if the following hold, where hb £ (po U rf U lo)T™ denotes the
‘RA-happens-before’ relation:

— Vo.Ya e WL,UWULUPLy, b e Ly a=0bV(a,b) €loV(b,a) € lo (WSYNC)
— WLUPL]; (lo\ po); [£] C po; [WU]; lo (WEX)
— [RL]; (lo\ po); WL UPL| C po; [RUUPLI; lo (RSHARE)
— acyclic(hbye U mo U rb) (Acyc)

)

The (WSYNC) states that write lock calls (to acquire, release or promote
synchronise with all other calls to the same lock.

The next two constraints ensure the ‘single-writer-multiple-readers’ paradigm.
In particular, (WEX) states that write locks provide mutual exclusion while held:
any lock event [ of thread 7 lo-after a write lock acquisition or promotion event
" of another thread 7/, is lo-after a subsequent write lock release event u of 7/
(i.e. (I',u) € po and (u,l) € lo). As such, the lock cannot be acquired (in read or
write mode) by another thread until it has been released by its current owner.

The (RSHARE) analogously states that once a thread acquires a lock in read
mode, the lock cannot be acquired in write mode by other threads until it has

4 By taking rbt instead of si-rb in Prop. 1 one obtains a characterisation of serialisability.



either been released, or promoted to a writer lock (and subsequently released) by
its owner. Note that this does not preclude other threads from simultaneously
acquiring the lock in read mode. In the technical appendix [31] we present two
MRSW lock implementations that satisfy the conditions outlined above.

The last constraint (Acyc) is that of C11 RA consistency [23], with the hb
relation extended with lo.

Remark 2. Our choice of implementing the SI STMs on top of the RA fragment is
purely for presentational convenience. Indeed, it is easy to observe that execution
graphs of (P) are data race free, and thus, Acyc could be replaced by any
condition that implies V. ((W,]; (po U lo)™; [W.]; (poUlo)t; [R,]) Nrf =0 and
that is implied by acyclic(poUrfUloUmoUrb). In particular, the C11 non-atomic
accesses or sequentially consistent accesses may be used.

We next show that our SI implementations in Fig. 3 and Fig. 4 are sound and
complete with respect to the declarative specification given above. The proofs
are non-trivial and the full proofs are given in the technical appendix [31].

Theorem 1 (Soundness and completeness). Let P be a transactional pro-
gram; let (P)g denote its eager implementation as given in Fig. 8 and (P). denote
its lazy implementation as given in Fig. 4. Then:

outcomesgy(P) = outcomesga ((P)g) = outcomesga ((P).)

Proof. The full proofs for both implementations is given in the technical ap-
pendix [31].

Stronger MRSW Locks As noted in §2, for both (prescient and non-
prescient) SI implementations our soundness and completeness proofs show that
the same result holds for a stronger lock specification, in which reader locks

synchronise as well. Formally, this specification is obtained by adding the following
to Def. 4:

—Vz.Va,be RL, URU,. a =bV (a,b) €loV (b,a) € lo (RSYNC)

Soundness of this stronger specification (outcomesga ((P)x) C outcomesg;(P) for
X € {E,L}) follows immediately from Thm. 1. Completeness (outcomesgi(P) C
outcomesga ((P)x) for X € {E,L}), however, is more subtle, as we need to addi-
tionally satisfy (RSYNC) when constructing lo. While we can do so for SI, it is
essential for the completeness of our RSI implementations that reader locks not
synchronise, as shown by (SBT) in §2.

In the technical appendix [31] we present two MRSW lock implementations
sound against the lo conditions in Def. 4. Additionally, the first implementation
is complete against the conditions of Def. 4 augmented with (RSYNC), whilst the
second is complete against the conditions of Def. 4 alone.
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Fig. 6: RSI-inconsistent executions due to (a) rsi-po; (b) [N'T]; rf;st; (¢) (mo;rf)r

5 Robust Snapshot Isolation (RSI)

We explore the semantics of SI STMs in the presence of non-transactional code
with weak isolation guarantees (see §2). We refer to this model as robust snapshot
isolation (RSI), due to its ability to provide SI guarantees between transactions
even in the presence of non-transactional code. We propose the first declarative
specification of RSI programs and develop two lock-based reference implementa-
tions that are both sound and complete against our proposed specification.

A Declarative Specification of RSI STMs We formulate a declarative
specification of RSI semantics by adapting the SI semantics in Prop. 1 to account
for non-transactional accesses. To specify the abstract behaviour of RSI programs,
RSI execution graphs are taken to be those in which £ = @. Moreover, as with SI
graphs, RSI execution graphs are those in which 7 C (R UW) \ Y. That is, RSI
transactions comprise solely read and write events, excluding updates.

Definition 5 (RSI consistency). An execution G = (E, po, rf,mo,lo) is RSI-
consistent iff INT holds and acyclic(rsi-hby,, U mo U rb), where rsi-hb = (rsi-po U
rsi-rf U mot U si-rb)T is the ‘RSI-happens-before’ relation, with rsi-po 2 (po \
por) U [W]; por; W] and rsi-rf £ (rf; INT]) U (IN'T]; rf; st) U rfr U (mos rf) .

As with ST and RA, we characterise the set of executions admitted by RSI
as graphs that lack cycles of certain shapes. To account for non-transactional
accesses, similar to RA, we require rsi-hb,. U U rb to be acyclic (recall that
rsi-hbioe £ {(a,b) € rsi-hb ‘ loc(a) = loc(b)}). The RSI-happens-before relation
rsi-hb includes both the synchronisation edges enforced by the transactional
implementation (as in si-hb), and those due to non-transactional accesses (as in
hb of the RA consistency). The rsi-hb relation itself is rather similar to si-hb. In
particular, the mot and si-rb subparts can be justified as in si-hb; the difference
between the two lies in rsi-po and rsi-rf.

To justify rsi-po, recall from §4 that si-hb includes pot. The rsi-po is indeed
a strengthening of pot to account for non-transactional events: it additionally
includes (i) po to and from non-transactional events; and (ii) po between two
write events in a transaction. We believe (i) comes as no surprise to the reader;



for (ii), consider the execution graph in Fig. 6a, where transaction T is denoted by
the dashed box labelled T, comprising the write events w; and wy. Removing the
T block (with w; and ws as non-transactional writes), this execution is deemed
inconsistent, as this weak “message passing” behaviour is disallowed in the RA
model. We argue that the analogous transactional behaviour in Fig. 6a must
be similarly disallowed to maintain monotonicity with respect to wrapping non-
transactional code in a transaction (see Thm. 3). As in SI, we cannot include the
entire po in rsi-hb because the write-read order in transactions is not preserved
by the implementation.

Similarly, rsi-rf is a strengthening of rft to account for non-transactional
events: in the absence of non-transactional events rsi-rf reduces to rft+ U (mo;rf)y
which is contained in si-hb. The rf; [NT| part is required to preserve the ‘happens-
before’ relation for non-transactional code. That is, as rf is included in the hb
relation of underlying memory model (RA), it is also included in rsi-hb.

The [NT];rf;st part asserts that in an execution where a read event r of
transaction T reads from a non-transactional write w, the snapshot of T reads
from w and so all events of T happen after w. Thus, in Fig. 6b, r’ cannot read
from the overwritten initialisation write to y.

For the (moj;rf)t part, consider the execution graph in Fig. 6¢ where there is
a write event w of transaction T; and a read event r of transaction Ty such that
(w,r) € mo;rf. Then, transaction Ty must acquire the read lock of loc(w) after
T, releases the writer lock, which in turn means that every event of Ty happens
before every event of Ts.

Remark 3. Recall that our choice of modelling SI and RSI STMs in the RA
fragment is purely for presentational convenience (see Remark 2). Had we chosen
a different model, the RSI consistency definition (Def. 5) would largely remain

unchanged, with the exception of rsi-rf = (sw; [N'T]) U ([N'T];sw;st) U rfr U
(mo; rf)T, where in the highlighted changes the rf relation is replaced with sw,

denoting the ‘synchronises-with’ relation. As in the RA model sw £ rf, we have
inlined this in Def. 5.

SI and RSI Consistency @ We next demonstrate that in the absence of
non-transactional code, the definitions of Sl-consistency (Prop. 1) and RSI-
consistency (Def. 5) coincide. That is, for all executions G, if GNT = (), then G
is SI-consistent if and only if G is RSI-consistent.

Theorem 2. For all executions G, if GNT =0, then:
G is SI-consistent <= G is RSI-consistent
Proof. The full proof is given in the technical appendix [31].

Note that the above theorem implies that for all transactional programs P, if
P contains no non-transactional accesses, then outcomesg;(P) = outcomesgg(P).



RSI Monotonicity = We next prove the monotonicity of RSI when wrap-
ping non-transactional events into a transaction. That is, wrapping a block of
non-transactional code inside a new transaction does not introduce additional be-
haviours. More concretely, given a program P, when a block of non-transactional
code in P is wrapped inside a new transaction to obtain a new program Pr, then
outcomesggsi(Pr) C outcomesgsi(P). This is captured in the theorem below, with
its full proof given in the technical appendix [31].

Theorem 3 (Monotonicity). Let Py and P be RSI programs such that Pr
is obtained from P by wrapping a block of non-transactional code inside a new
transaction. Then:

outcomesggsy(Pr) C outcomesgg(P)
Proof. The full proof is given in the technical appendix [31].

Lastly, we show that our RSI implementations in §2 (Fig. 3 and Fig. 5) are
sound and complete with respect to Def. 5. This is captured in the theorem below.
The soundness and completeness proofs are non-trivial; the full proofs are given
in the technical appendix [31].

Theorem 4 (Soundness and completeness). Let P be a program that possi-
bly mizes transactional and non-transactional code. Let (P)g denote its eager RSI
implementation as given in Fig. 3 and (P)), denote its lazy RSI implementation
as given in Fig. 5. If for every location x and value v, every RSI-consistent
execution of P contains either (i) at most one non-transactional write of v to
x; or (i) all non-transactional writes of v to x are happens-before-ordered with
respect to all transactions accessing x, then:

outcomesggsy(P) = outcomesga ((P)) = outcomesga ((P)..)

Proof. The full proofs for both implementations are given in the technical ap-
pendix [31].

6 Related and Future Work

Much work has been done in formalising the semantics of weakly consistent
database transactions [7,34,3,4,10,12,11,13,14,18], both operationally and declar-
atively. On the operational side, Berenson et al. [7] gave an operational model of
ST as a multi-version concurrent algorithm. Later, Sovran et al. [34] described
and operationally defined the parallel snapshot isolation model (PSI), as a close
relative of SI with weaker guarantees.

On the declarative side, Adya et al. [3,4] introduced dependency graphs (similar
to execution graphs of our framework in §3) for specifying transactional semantics
and formalised several ANSI isolation levels. Cerone et al. [10,12] introduced
abstract executions and formalised several isolation levels including SI and PSI.
Later in [11], they used dependency graphs of Adya to develop equivalent SI



and PSI semantics; recently in [13], they provided a set of algebraic laws for
connecting these two declarative styles.

To facilitate client-side reasoning about the behaviour of database transac-
tions, Gotsman et al. [18] developed a proof rule for proving invariants of client
applications under a number of consistency models.

Recently, Kaki et al. [21] developed a program logic to reason about transac-
tions under ANSI SQL isolation levels (including SI). To do this, they formulated
an operational model of such programs (parametric in the isolation level). They
then proved the soundness of their logic with respect to their proposed operational
model. However, the authors did not establish the soundness or completeness
of their operational model against existing formal semantics, e.g. [11]. The lack
of the completeness result means that their proposed operational model may
exclude behaviours deemed valid by the corresponding declarative models. This
is a particular limitation as possibly many valid behaviours cannot be shown
correct using the logic and is thus detrimental to its usability.

By contrast, transactional semantics in the STM setting with mixed (both
transactional and non-transactional) accesses is under-explored on both oper-
ational and declarative sides. Recently, Dongol at al. [17] applied execution
graphs [5] to specify serialisable STM programs under weak memory models.
Raad et al. [30] formalised the semantics of PST STMs declaratively (using execu-
tion graphs) and operationally (as lock-based reference implementations). Neither
work, however, handles the semantics of SI STMs with weak isolation guarantees.

Finally, Khyzha et al. [22] formalise the sufficient conditions on STMs and
their programs that together ensure strong isolation. That is, non-transactional
accesses can be viewed as singleton transactions (transactions containing single
instructions). However, their conditions require serialisability for fully transac-
tional programs, and as such, RSI transactions do not meet their conditions.
Nevertheless, we conjecture that a DRF guarantee for strong atomicity, similar
to [22], may be established for RSI. That is, if all executions of a fully transac-
tional program have no races between singleton and non-singleton transactions,
then it is safe to replace all singleton transactions by non-transactional accesses.

In the future, we plan to build on the work presented here by developing
reasoning techniques that would allow us to verify properties of STM programs.
This can be achieved by either extending existing program logics for weak memory,
or developing new ones for currently unsupported models. In particular, we can
reason about the SI models presented here by developing custom proof rules in
the existing program logics for RA such as [24,35].
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