
What’s Decidable about Causally Consistent Shared Memory?

ORI LAHAV, Tel Aviv University, Israel

UDI BOKER, Interdisciplinary Center (IDC) Herzliya, Israel

While causal consistency is one of the most fundamental consistency models weaker than sequential con-

sistency, the decidability of safety verification for (finite-state) concurrent programs running under causally

consistent shared memories is still unclear. In this paper, we establish the decidability of this problem for two

standard and well-studied variants of causal consistency. To do so, for each variant, we develop an equivalent

“lossy” operational semantics, whose states track possible futures, rather than more standard semantics that

record the history of the execution. We show that these semantics constitute well-structured transition systems,

thus enabling decidable verification. Based on a key observation, which we call the “shared-memory causality

principle”, the two novel semantics may also be of independent use in the investigation of weakly consistent

models and their verification. Interestingly, our results are in contrast to the undecidability of this problem

under the Release/Acquire fragment of the C/C++11 memory model, which forms another variant of causally

consistent memory that, in terms of allowed outcomes, lies strictly between the two models studied here.

Nevertheless, we show that all these three variants coincide for write/write-race-free programs, which implies

the decidability of verification for such programs under Release/Acquire.

CCS Concepts: • Software and its engineering → Software verification; Concurrent programming
languages; • Theory of computation → Concurrency; Logic and verification; Program verification; •
Information systems→ Distributed database transactions.

Additional Key Words and Phrases: weak memory models, causal consistency, release/acquire, shared-memory,

concurrency, verification, decidability, well-structured transition systems

ACM Reference Format:
Ori Lahav and Udi Boker. 2021. What’s Decidable about Causally Consistent Shared Memory?. ACM Trans.
Program. Lang. Syst. 0, 0, Article 0 (2021), 54 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Causal consistency is one of the most fundamental consistency models weaker than sequential con-

sistency, which is especially common and well studied in distributed data stores (see, e.g., [44, 57]).

Roughly speaking, by allowing nodes to disagree on the relative order of some operations, and

requiring global consensus only on the order of “causally related” operations, unlike sequential

consistency, causal consistency allows scalable, partition-tolerant and available implementations,

and considered as an “optimal tradeoff between user-perceived correctness and coordination over-

head” [57]. Nowadays, causal consistency also plays a central role in shared memory multithreaded

programming. For instance, the Release/Acquire fragment (RA) of the C/C++11 standard [15, 27, 28],

which specifies the guarantees C and C++ ensure for their widely used memory_order_release
and memory_order_acquire synchronization accesses, is a form of causal consistency. In addition,

multiprocessor architectures like POWER, which is not “multi-copy atomic” (it allows different

Authors’ addresses: Ori Lahav, Tel Aviv University, Israel, orilahav@tau.ac.il; Udi Boker, Interdisciplinary Center (IDC)

Herzliya, Israel, udiboker@idc.ac.il.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0164-0925/2021/0-ART0 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/nnnnnnn.nnnnnnn

0:2 Ori Lahav and Udi Boker

threads to detect stores of another thread at different times), provide barriers that can be used

to ensure causal consistency, and are cheaper than the barriers needed for ensuring sequential

consistency [10, 36, 50].

Despite their centrality, until recently not much was known about the safety verification problem

under causal consistencymodels. That is: canwe automatically verify that a given program satisfies a

certain safety specification (e.g., it never crashes) when it runs under a causally consistent memory?

When the program’s data domain is bounded, this verification problem is trivially decidable under

sequential consistency (SC). Indeed, such a program can be represented as a finite-state transition

system; the SC memory constitutes another finite-state system; and their synchronization is easily

expressible as a finite-state system as well. However, if the memory does not ensure sequential

consistency, but rather provides weaker consistency guarantees, causal consistency in particular,

the decidability of the safety verification problem becomes completely unclear.

The challenge arises since causally consistent memories are inherently infinite-state. In these

models threads may generally read from an unbounded past, and whether or not a thread can

read some value depends on the arbitrarily long execution history. More technically speaking, by

“operationalizing” the declarative (a.k.a. axiomatic) formulations of causal consistency, one obtains

infinite-state machines where each state records the (partially ordered) unbounded execution history

that led to this state (either explicitly or implicitly using, e.g., timestamps). A more concrete evidence

for this verification challenge is provided by the reduction of Atig et al. [12] from reachability

in lossy FIFO channel machines to safety verification under x86-TSO semantics. This reduction

straightforwardly applies to causally consistent models, which implies a tough non-primitive

recursive lower bound on the safety verification problem under causal consistency, and, in turn,

entails that the causal models cannot have finite representations (see Remark 4). In fact, recently,

Abdulla et al. [2] proved that for theRA fragment of C/C++11 this verification problem is undecidable.
The main contribution of this paper is a novel operational semantics for two causally consistent

models that is equivalent to their original semantics and allows us to establish the decidability of

safety verification for these models. The two models, called SRA (for Strong Release/Acquire) and

WRA (for Weak Release/Acquire), are standard well-studied variants of causal consistency. The

SRA model is the causal consistency model employed in distributed data stores as defined in [19].

As shown in [36] it also precisely captures the guarantees provided by the POWER architecture

for programs compiled from the C/C++’s RA fragment. In turn, the WRA model provides the most

minimal guarantees required from a model to satisfy causal consistency; it is equivalent to the

model called CC studied in [17]; and it was considered as a useful candidate for shared-memory

concurrency semantics [31, 34].
1

The key idea in the new semantics for the SRA or WRA memory models is that, instead of

keeping track of the execution past (a.k.a. history) in the system’s states as often done in weakly

consistent models, we maintain the possible execution future. Concretely, the states of the new
memory systems record the potential of each thread that prescribes what sequences of operations

the thread may perform. Thus, read transitions are simple—they deterministically consume a prefix

of the potential. The complexity is left to write transitions that non-deterministically “set the

future”: what thread will read from the executed write and when. This requires us to identify how

to increase the potentials of the threads when a write is performed in a way that is defined solely

in terms of the threads’ potentials before the write, and is both sound (sufficiently constrained to

ensure only causally consistent behaviors) and complete (sufficiently free to allow every causally

consistent behavior). To do so, we identify a key property that characterizes causal consistency in

terms of threads’ potentials, which we call the shared-memory causality principle (see §5). We prove

1
We refer the reader to §3.1 for a detailed discussion on the relation between SRA and WRA to other models.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:3

the correspondence of our semantics to SRA’s andWRA’s original formulations using simulation

arguments (forward simulation for one direction and backward simulation for the converse). We

believe that the framework of potential-based semantics may be applicable for other variants of

causal consistency and also beyond the context of causal consistency.

Decidability of verification in the new semantics follows by using the framework of well-

structured transition systems [1, 8, 25]. Intuitively speaking, this framework allows one to establish

decidability of control state reachability under infinite-state “lossy” systems, where (i) states may

non-deterministically forget some information they include; and (ii) the relation determining

whether one state is obtained from another by losing information constitutes a well-quasi-ordering.

When states consist of execution histories this approach cannot be applied. First, in many cases

forgetting information from an execution history results in strictly weaker constraints that allow

outcomes that cannot be obtained without losing the information. Second, execution histories are

only partially ordered and embedding between (general) partial orders is not a well-quasi-ordering.
On the other hand, the potential-based semantics, that tracks possible futures easily lends itself

to verification in this framework. It is naturally “lossy”: losing some parts of a possible potential

never allows for additional behaviors. In addition, unlike histories, potentials are represented using

total orders (lists of future actions), whose embedding relation (based on the ordinary subsequence

relation) is a well-quasi-ordering.

Interestingly, the RA model, which induces an undecidable verification problem [2], is placed in

between WRA and SRA—the behaviors allowed under SRA are a subset of those allowed by RA,

which are a subset of those allowed byWRA. Thus, if one is specifically interested in verification

under RA, our results provide both an over-approximation (successful verification under WRA

implies safety under RA) and an under-approximation (a bug under SRA implies a bug under RA).

Furthermore, we show that RA, SRA and WRA coincide on write/write-race-free programs, and

hence, we obtain the decidability of safety verification also under RA for this large and widely used

class of programs (see §3.2).

Outline. The rest of this paper is organized as follows. In §2 we define the safety verification

problem under general declarative models. In §3 we present the WRA, RA and SRA declarative

models and prove that they coincide for write/write-race-free programs. In §4we present operational

presentations of these models and define their induced reachability problem. In §5 and §6 we

introduce our novel operational lossy semantics of SRA andWRA based on the “shared-memory

causality principle” (starting with SRA since its semantics is simpler). In §7 we establish the

correspondence of the lossy systems to the original semantics. In §8, we show how the lossy

systems are used to decide the safety verification problem. In §9 we survey related work. We

conclude and discuss several avenues for future work in §10. Appendix A presents the full proofs

of the equivalence results sketched in §7.

To establish confidence, we have formalized the equivalence proofs in the Coq proof assistant.

Claims that were proved in Coq are marked with a symbol, and the formalization is available at

https://www.cs.tau.ac.il/~orilahav/papers/causal_verification/.

Differences with the conference version of this paper. This paper is an extension and a continuation

of the conference paper [35]. The latter studied only the SRA model and naturally skipped most of

the proofs. In turn, in this paper we show that the potential technique is more widely applicable,

by extending it to the much weaker WRA model. Thus, interestingly, we “surround” the RA model

whose verification problem is undecidable with two models, one stronger and one weaker, and for

both of which we establish the decidability of verification. We also include more examples, detailed

discussions, proof outlines, and full proofs.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://www.cs.tau.ac.il/~orilahav/papers/causal_verification/

0:4 Ori Lahav and Udi Boker

𝑣 ∈ Val ⊆ N values

𝑥,𝑦, 𝑧 ∈ Loc ⊆ {x, y, ...} locations

𝑟 ∈ Reg ⊆ {a, b, ...} registers

𝜏, 𝜋, 𝜂 ∈ Tid ⊆ {T1, T2, ...} thread identifiers

𝑆 ∈ SProg ≜ {0, 1, ... ,𝑁 } → Inst sequential programs

𝑃 : Tid → SProg (concurrent) programs

𝑒 ::= 𝑟 | 𝑣 | 𝑒 + 𝑒 | 𝑒 = 𝑒 | 𝑒 ≠ 𝑒 | ...

Inst ∋ inst ::= 𝑟 := 𝑒 | if 𝑒 goto 𝑛 |
𝑥 := 𝑒 | 𝑟 := 𝑥 | 𝑟 := FADD(𝑥, 𝑒) |
𝑟 := XCHG(𝑥, 𝑒) | 𝑟 := CAS(𝑥, 𝑒, 𝑒)

Fig. 1. Domains, metavariables and programming language syntax.

2 PRELIMINARIES: SAFETY VERIFICATION UNDER DECLARATIVE MODELS

In this section, we describe the safety verification problem for finite-state concurrent programs

running under a (general) declarative memory model. For this matter, we introduce a toy program-

ming language and the interpretation of its programs as transition systems (§2.1), and present the

generic framework of declarative shared-memory semantics using execution graphs (§2.2).

2.1 Programming Language

Let Val ⊆ N, Loc ⊆ {x, y, ...}, Reg ⊆ {a, b, ...} and Tid ⊆ {T1, T2, ...} be finite sets of values, (shared)
memory locations, register names and thread identifiers. Figure 1 presents our toy programming

language. Its expressions are constructed from registers (local variables) and values. Instructions

include assignments and conditional branching, as well as memory operations. Intuitively speaking,

an assignment 𝑟 := 𝑒 assigns the value of 𝑒 to register 𝑟 (involving no memory access); if 𝑒 goto 𝑛

sets the program counter to 𝑛 iff the value of 𝑒 is not 0; a “write” 𝑥 := 𝑒 stores the value of 𝑒 in 𝑥 ; a

“read” 𝑟 := 𝑥 loads the value of 𝑥 to register 𝑟 ; 𝑟 := FADD(𝑥, 𝑒) atomically increments 𝑥 by the value

of 𝑒 and loads the old value of 𝑥 to 𝑟 ; 𝑟 := XCHG(𝑥, 𝑒) atomically swaps 𝑥 to the value of 𝑒 and loads

the old value of 𝑥 to 𝑟 ; and 𝑟 := CAS(𝑥, 𝑒R, 𝑒W) atomically loads the value of 𝑥 to 𝑟 , compares it to

the value of 𝑒R, and if the two values are equal, replaces the value of 𝑥 by the value of 𝑒W.

A sequential program 𝑆 is a function from a finite subset of N = {0, 1, 2, ...} (possible values
of the program counter) to instructions. We denote by SProg the set of all sequential programs.

A (concurrent) program 𝑃 is a top-level parallel composition of sequential programs, defined as

a mapping from Tid of thread identifiers to SProg. In our examples, we often write sequential

programs as sequences of instructions delimited by line breaks, use ‘∥’ for parallel composition,

ignore threads that are mapped to the empty sequential program and refer to the program threads

as T1, T2, ... following their left-to-right order in the program listing (see, e.g., Ex. 3.3 on Page 9).

Sequential and concurrent programs induce labeled transition systems.

Labeled transition systems. A labeled transition system (LTS) 𝐴 over an alphabet Σ is a triple

⟨𝑄,𝑄0,𝑇 ⟩, where 𝑄 is a set of states, 𝑄0 ⊆ 𝑄 is the set of initial states, and 𝑇 ⊆ 𝑄 × Σ × 𝑄 is a

set of transitions. We denote by 𝐴.Q, 𝐴.Q0 and 𝐴.T the three components of an LTS 𝐴; write
𝜎−→𝐴

for the relation {⟨𝑞, 𝑞′⟩ | ⟨𝑞, 𝜎, 𝑞′⟩ ∈ 𝐴.T} and −→𝐴 for

⋃
𝜎∈Σ

𝜎−→𝐴. A state 𝑞 ∈ 𝐴.Q is reachable in 𝐴

if 𝑞0 −→∗
𝐴
𝑞 for some 𝑞0 ∈ 𝐴.Q0. A sequence 𝜎1, ... ,𝜎𝑛 is a trace of 𝐴 if 𝑞0

𝜎1−→𝐴 · ·· 𝜎𝑛−−→𝐴 𝑞 for some

𝑞0 ∈ 𝐴.Q0 and 𝑞 ∈ 𝐴.Q. The set of predecessors of a set 𝑆 ⊆ 𝐴.Q w.r.t. a symbol 𝜎 ∈ Σ, denoted by

pred
𝜎
𝐴 (𝑆), is given by {𝑞 ∈ 𝐴.Q | ∃𝑞′ ∈ 𝑆. 𝑞

𝜎−→𝐴 𝑞′}. The set of predecessors of a set 𝑆 ⊆ 𝐴.Q, denoted
by pred𝐴 (𝑆), is given by

⋃
𝜎∈Σ pred

𝜎
𝐴 (𝑆).

For sequential programs the alphabet Σ is the set of labels (extended with 𝜀 for silent transitions),
as defined next.

Definition 2.1. A label is either R (𝑥, 𝑣R) (read label), W (𝑥, 𝑣W) (write label) or RMW (𝑥, 𝑣R, 𝑣W) (read-
modify-write label), where 𝑥 ∈ Loc and 𝑣R, 𝑣W ∈ Val. We denote by Lab the set of all labels. The

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:5

𝑆 (pc) = 𝑟 := 𝑒

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒)]

⟨pc, 𝜙⟩ 𝜀−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = if 𝑒 goto 𝑛

𝜙 (𝑒) ≠ 𝑛 =⇒ pc′ = 0

𝜙 (𝑒) = 0 =⇒ pc′ = pc + 1

⟨pc, 𝜙⟩ 𝜀−→ ⟨pc′, 𝜙⟩

𝑆 (pc) = 𝑥 := 𝑒

𝑙 = W (𝑥, 𝜙 (𝑒))

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙⟩

𝑆 (pc) = 𝑟 := 𝑥

𝑙 = R (𝑥, 𝑣) 𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := FADD(𝑥, 𝑒)
𝑙 = RMW (𝑥, 𝑣, 𝑣 + 𝜙 (𝑒))

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := XCHG(𝑥, 𝑒)
𝑙 = RMW (𝑥, 𝑣, 𝜙 (𝑒))
𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := CAS(𝑥, 𝑒R, 𝑒W)
𝑙 = RMW (𝑥, 𝜙 (𝑒R), 𝜙 (𝑒W))
𝜙 ′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒R)]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := CAS(𝑥, 𝑒R, 𝑒W)
𝑙 = R (𝑥, 𝑣) 𝑣 ≠ 𝜙 (𝑒R)

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→ ⟨pc + 1, 𝜙 ′⟩

Fig. 2. Transitions of LTS induced by a sequential program 𝑆 ∈ SProg.

functions typ, loc, valR and valW return (when applicable) the type (R/W/RMW), location, read value
and written value of a given label 𝑙 ∈ Lab.

A sequential program 𝑆 ∈ SProg induces an LTS over Lab ∪ {𝜀}. Its states are pairs 𝑠 = ⟨pc, 𝜙⟩
where 𝑝𝑐 ∈ N (called program counter) and 𝜙 : Reg → Val (called local store, and extended to

expressions in the obvious way). Its only initial state is ⟨0, 𝜆𝑟 ∈ Reg. 0⟩ and its transitions are given

in Fig. 2, following the informal description above. Note that at this level, the loaded values are not

restricted whatsoever, so that, in particular, a read instruction in 𝑆 induces |Val| transitions with
different read values. The execution of a sequential program 𝑆 terminates when pc reaches a value
that is not in the domain of 𝑆 . In the sequel, we identify sequential programs with their induced

LTSs (when writing, e.g., 𝑆.Q and −→𝑆 for a sequential program 𝑆).

In turn, a concurrent program 𝑃 is identified with an LTS over the alphabet Tid × (Lab ∪ {𝜀}).
Its states are functions, denoted by 𝑝 , assigning a state in 𝑃 (𝜏).Q to every 𝜏 ∈ Tid; its initial states

set is {𝑝 | ∀𝜏 . 𝑝 (𝜏) ∈ 𝑃 (𝜏).Q0}; and its transitions are “interleaved transitions” of 𝑃 ’s components,

given by:

𝑙 ∈ Lab 𝑝 (𝜏) 𝑙−→𝑃 (𝜏) ⟨pc, 𝜙⟩

𝑝
𝜏,𝑙−−→ 𝑝 [𝜏 ↦→ ⟨pc, 𝜙⟩]

𝑝 (𝜏) 𝜀−→𝑃 (𝜏) ⟨pc, 𝜙⟩
𝑝

𝜏,𝜀−−→ 𝑝 [𝜏 ↦→ ⟨pc, 𝜙⟩]

2.2 Declarative Memory Models and their Reachability Problem

A declarative memory model is formulated as a collection of constraints on execution graphs, which

determine the consistent execution graphs—the ones allowed by the model. Each execution graph

describes a (partially ordered) history of a particular program run. Next, we present the general

notions used to assign such semantics to concurrent programs. First, we define execution graphs,

starting with their nodes, called events.

Definition 2.2. An event is a triple 𝑒 = ⟨𝜏, 𝑛, 𝑙⟩, where 𝜏 ∈ Tid is a thread identifier, 𝑛 ∈ N is

a serial number and 𝑙 ∈ Lab is a label (of the form R (𝑥, 𝑣R), W (𝑥, 𝑣W) or RMW (𝑥, 𝑣R, 𝑣W), as defined
in Def. 2.1). The function tid returns the thread identifier of an event. The functions typ, loc,
valR and valW are lifted to events in the obvious way. We denote by E the set of all events,

and use R,W,RMW for its subsets: R ≜ {𝑒 | typ(𝑒) ∈ {R, RMW}}, W ≜ {𝑒 | typ(𝑒) ∈ {W, RMW}}
and RMW ≜ R ∩ W. Sub/superscripts are used to restrict these sets to certain location (e.g.,

W𝑥 = {𝑤 ∈ W | loc(𝑤) = 𝑥}) and/or thread identifier (e.g., E
𝜏 = {𝑒 ∈ E | tid(𝑒) = 𝜏}).

Our representation of events induces a partial order < on them: events of the same thread are

ordered according to their serial numbers (i.e., ⟨𝜏1, 𝑛1, 𝑙1⟩ < ⟨𝜏2, 𝑛2, 𝑙2⟩ iff 𝜏1 = 𝜏2 and 𝑛1 < 𝑛2). In

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:6 Ori Lahav and Udi Boker

turn, an execution graph consists of a set of events, a reads-from mapping that determines the write

event from which each read event reads its value, and a modification order (a.k.a. coherence order
or store order) that totally orders the writes to each location.

2

Definition 2.3. A relation rf is a reads-from relation for a set 𝐸 of events if the following hold:

• If ⟨𝑤, 𝑟 ⟩ ∈ rf , then𝑤 ∈ 𝐸 ∩W, 𝑟 ∈ 𝐸 ∩ R, loc(𝑤) = loc(𝑟) and valW (𝑤) = valR (𝑟).
• If ⟨𝑤1, 𝑟 ⟩, ⟨𝑤2, 𝑟 ⟩ ∈ rf , then𝑤1 = 𝑤2 (that is, rf −1 = {⟨𝑟,𝑤⟩ | ⟨𝑤, 𝑟 ⟩ ∈ rf } is functional).
• ∀𝑟 ∈ 𝐸 ∩ R. ∃𝑤. ⟨𝑤, 𝑟 ⟩ ∈ rf (each read event reads from some write event).

Definition 2.4. A relation mo is a modification order for a set 𝐸 of events if mo is a disjoint union
of relations {mo𝑥 }𝑥∈Loc where each mo𝑥 is a strict total order on 𝐸 ∩W𝑥 .

Definition 2.5. An execution graph is a triple 𝐺 = ⟨𝐸, rf ,mo⟩ where 𝐸 is a finite set of events, rf
is a reads-from relation for 𝐸 and mo is a modification order for 𝐸. We denote by EGraph the set of

all execution graphs. The components of 𝐺 are denoted by 𝐺.E, 𝐺.rf and 𝐺.mo. The program order
in 𝐺 , denoted by 𝐺.po, is the restriction of < to 𝐺.E (i.e., 𝐺.po ≜ {⟨𝑒1, 𝑒2⟩ ∈ 𝐸 × 𝐸 | 𝑒1 < 𝑒2}). For a
set 𝐸 ⊆ E, we write 𝐺.𝐸 for 𝐺.E ∩ 𝐸 (e.g., 𝐺.W𝑥 = 𝐺.E ∩W𝑥).

The next definition is used to associate execution graphs to programs. Multiple examples below

(e.g., on Pages 9 and 10) illustrate execution graphs of different programs.

Notation 2.6. For a set 𝐸 of events, thread identifier 𝜏 ∈ Tid and label 𝑙 ∈ Lab, NextEvent(𝐸, 𝜏, 𝑙)
denotes the event given by ⟨𝜏, 1 +max({𝑛 ∈ N | ∃𝑙 ′ ∈ Lab. ⟨𝜏, 𝑛, 𝑙 ′⟩ ∈ 𝐸}), 𝑙⟩.

Definition 2.7. An execution graph𝐺 is generated by a program 𝑃 with final state 𝑝 if ⟨𝑝
0
,𝐺0⟩ →∗

⟨𝑝,𝐺⟩ for some 𝑝
0
∈ 𝑃 .Q0, where 𝐺0 denotes the empty execution graph (given by 𝐺0 ≜ ⟨∅, ∅, ∅⟩)

and → is defined by:

𝑝
𝜏,𝑙−−→𝑃 𝑝

′
𝐸′ = 𝐸 ∪ {NextEvent(𝐸, 𝜏, 𝑙)}

rf ⊆ rf ′ mo ⊆ mo′

⟨𝑝, ⟨𝐸, rf ,mo⟩⟩ → ⟨𝑝′, ⟨𝐸′, rf ′,mo′⟩⟩
𝑝

𝜏,𝜀−−→𝑃 𝑝
′

⟨𝑝,𝐺⟩ → ⟨𝑝′,𝐺⟩

The rf andmo components are arbitrary at this stage, except for the fact that they have to satisfy

the conditions of Definitions 2.3 and 2.4 (so that ⟨𝐸, rf ,mo⟩ at each step is indeed an execution

graph).
3
Restrictions on rf and mo are determined by the particular model at hand (see §3).

Definition 2.8. A declarative model X is a set of execution graphs. We often refer to the elements

of X as X-consistent execution graphs.

Then, reachable program states under a declarative model are formally defined as follows.

Definition 2.9. A state 𝑝 of a concurrent program 𝑃 is reachable under a declarative model X if

some X-consistent execution graph is generated by 𝑃 with final state 𝑝 .

In turn, for a declarative model X, the X reachability problem asks whether for a given concurrent

program 𝑃 and “bad state” 𝑝 ∈ 𝑃 .Q, we have that 𝑝 is reachable under X. Unfolding the definitions,

this is equivalent to asking whether the state 𝑝 is reachable in the transition system induced by the

given program 𝑃 via a program trace ⟨𝜏1, 𝑙1⟩, ... ,⟨𝜏𝑛, 𝑙𝑛⟩ and some graph that is generated by this

trace according to Def. 2.7 is X-consistent.

2
To define the WRA model below, we do not need the modification order. Nevertheless, for uniformity, we include it in the

general definition.

3
Since rf must be an inverse of a function from 𝐸 ∩ R (by Def. 2.3) and we require rf ⊆ rf ′ at each step, we can only

generate graphs 𝐺 with 𝐺.po ∪𝐺.rf being acyclic. This suffices for the purpose of this paper, but will require certain

generalization if applied for other weak memory models.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:7

3 DECLARATIVE CAUSALLY CONSISTENT MEMORY MODELS

In this section, we formulate the three variants of causal consistency discussed in this paper as declar-

ative models: Weak Release/Acquire (WRA), Release/Acquire (RA), and Strong Release/Acquire

(SRA). Our presentation generally follows [34]. Figure 3 illustrates the different consistency con-

straints described below, and Table 1 summaries the constraints of each model.

After presenting the models and various examples, in §3.1 we discuss alternative formulations

from the literature that result in models that are similar or equivalent to the ones presented here;

and in §3.2 we establish a race freedom guarantee showing that the three models coincide for

write-write-race free programs.

To formulate constraints on execution graphs, we use several additional notations.

Notation 3.1 (Relations). Given a relation 𝑅, dom(𝑅) denotes its domain; 𝑅?
and 𝑅+

denote its

reflexive and transitive closures; and𝑅−1
denotes its inverse. The (left) composition of relations𝑅1, 𝑅2

is denoted by𝑅1 ;𝑅2. We denote by [𝐴] the identity relation on a set𝐴, and so [𝐴] ;𝑅 ; [𝐵] = 𝑅∩(𝐴×𝐵).

The causal consistency models are based on the following basic derived “happens-before” relation:

𝐺.hb ≜ (𝐺.po ∪𝐺.rf)+

The happens-before relation captures the “causality relation” in execution graphs. In words, hb
is the smallest transitive relation that contains the program order (po) and the reads-from (rf)
relations. We note that every read synchronizes with the write it reads from (rf ⊆ hb), in contrast to
more elaborate models like RC11 [40], where only certain reads-from edges induce synchronization.

Causality is assumed to be a partial order, and accordingly, the first fundamental condition in all

causal consistency models is:

𝐺.hb is irreflexive (irr-hb)

In particular, this condition forbids so-called “load-buffering” behaviors [46], which are allowed in

weaker models that aim to support write-after-read reorderings (and unless restricted appropriately

lead to the infamous “out-of-thin-air” problem [14, 30]).

The next condition requires that the modification order mo “agrees” with the causality order.

There are two natural ways to formally state this property. The first, followed by the RA model,

requires a local agreement:

𝐺.mo ;𝐺.hb is irreflexive (write-coherence)

In words, if hb orders two writes to the same location, then mo must follow the same order. (Recall

that, by definition, mo orders every pair of distinct writes to the same location.) A stronger condition,

followed by SRA, requires a global agreement:

(𝐺.hb ∪𝐺.mo)+ is irreflexive (strong-write-coherence)

Note that (hb ∪ mo)-cycles involving only one location are already disallowed by write-coherence

(using the fact that mo is total on writes to the same location). But, strong-write-coherence imposes

constraints on the relation between [W𝑥] ; mo ; [W𝑥] and [W𝑦] ; mo ; [W𝑦] also for 𝑥 ≠ 𝑦 (see the

2+2W program in Ex. 3.6 below). In turn, in WRA, the modification order mo plays no role, and
imposing either write-coherence or strong-write-coherence (or none of them) has no effect on the

outcomes allowed underWRA.

The next condition intuitively requires that “a thread cannot read a value when it is aware of a

later value written to the same location”. There is more than one way to precisely interpret this

requirement: what do “aware” and “later” mean? The three models agree on the interpretation of

“aware”, identifying a thread 𝜏 being aware of some write event𝑤 with hb from𝑤 to (some event

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:8 Ori Lahav and Udi Boker

WRA irr-hb weak-read-coherence weak-atomicity

RA irr-hb write-coherence read-coherence atomicity

SRA strong-write-coherence read-coherence atomicity

Table 1. The constraints used in each model.

of) 𝜏 . They do, however, differ in their interpretation of one write being “later” than another. RA

and SRA employ the modification order mo for this purpose. Thus, RA and SRA require that:

𝐺.mo ;𝐺.hb ;𝐺.rf−1 is irreflexive (read-coherence)

Indeed, if a read event 𝑟 reads from a write event𝑤1, while being aware of an mo-later write event
𝑤2 to the same location, we have ⟨𝑤1,𝑤2⟩ ∈ mo, ⟨𝑤2, 𝑟 ⟩ ∈ hb and ⟨𝑟,𝑤1⟩ ∈ rf−1.

WRA imposes a weaker condition by using hb to decide whether a write is “later” than another

write to the same location, thus only partially ordering the writes. To stateWRA’s formal condition,

it is convenient to use a per-location restriction of the happens-before relation:

𝐺.hb|loc ≜ {⟨𝑒1, 𝑒2⟩ ∈ 𝐺.hb | loc(𝑒1) = loc(𝑒2)}
Using hb|loc, the condition of WRA is given by:

𝐺.hb|loc ; [W] ;𝐺.hb ;𝐺.rf−1 is irreflexive (weak-read-coherence)

Again, if a read event 𝑟 reads from a write event𝑤1, while being aware of an hb-later write event
𝑤2 to the same location, we have ⟨𝑤1,𝑤2⟩ ∈ hb|loc ; [W], ⟨𝑤2, 𝑟 ⟩ ∈ hb and ⟨𝑟,𝑤1⟩ ∈ rf−1. Note that
write-coherence (or its stronger variant—strong-write-coherence) implies that [W];hb|loc;[W] ⊆ mo,
and so weak-read-coherence is implied by read-coherence, and thus it holds in RA and SRA.

Finally, an additional condition ensures the “atomicity” of RMWs (without such condition an

RMW would be nothing more than a read followed by a write). In RA and SRA, RMWs can only

read from their immediate mo-predecessors:

𝐺.mo ;𝐺.mo ;𝐺.rf−1 is irreflexive (atomicity)

In words, if an RMW event 𝑒 is reading from a write event𝑤 , then no write event can intervene

mo-between𝑤 and 𝑒 .4 In WRA, mo is immaterial, and one only requires that different RMW events

never read from the same write event. Formally:

∀⟨𝑤1, 𝑒1⟩, ⟨𝑤2, 𝑒2⟩ ∈ 𝐺.rf ; [RMW] . 𝑤1 = 𝑤2 =⇒ 𝑒1 = 𝑒2 (weak-atomicity)

(That is, 𝐺.rf ; [RMW] is a partial function.) This simple condition suffices for implementing lock

acquisitions using RMWs inWRA, as well as for implementing fences using RMWs to an otherwise-

unused location (see Ex. 3.9). To see that atomicity implies weak-atomicity (in the presence of

write-coherence or strong-write-coherence), assume a violation of weak-atomicity, and note that

since mo must order the two RMWs and write-coherence (or strong-write-coherence) dictates that

mo ; rf is irreflexive, it entails a violation of atomicity.

Figure 3 illustrates the different constrains, and Table 1 lists the constraints of each model. Since

write-coherence and read-coherence together imply weak-read-coherence; write-coherence and

atomicity together imply weak-atomicity; and strong-write-coherence implies both irr-hb and

write-coherence, the following proposition trivially holds.

Proposition 3.2. SRA-consistency implies RA-consistency, which in turn impliesWRA-consistency.
4
Note that because of the domain restrictions on rf and mo, only RMW events can have both an incoming rf edge and an

incoming mo edge, so atomicity can be equivalently stated as𝐺.mo ;𝐺.mo ; [RMW] ;𝐺.rf−1 is irreflexive.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:9

E

hb

irr-hb

W𝑥

W𝑥

hbmo

write-coherence

W𝑥 W𝑥

R𝑥

rf hb

hb

weak-read-coherence

W𝑥

RMW𝑥RMW𝑥

rf rf

weak-atomicity

E

(hb ∪ mo)+

strong-write-coherence

W𝑥 W𝑥

R𝑥

rf hb

mo

read-coherence

W𝑥 W𝑥

RMW𝑥

rf mo

mo

atomicity

Fig. 3. Illustration of forbidden patterns in the causally consistent models.

Consequently, we clearly have that all states of a program 𝑃 that are reachable under SRA are

also reachable under RA; and all states of 𝑃 reachable under RA are also reachable underWRA. The

converses of the claims in Prop. 3.2 do not hold in general (see examples below), but, as we show in

§3.2, they do hold for the class of write/write-race-free programs.

Next, we list some examples to demonstrate the different models (some of which are revisited in

the sequel). Most of the examples are well-known litmus tests. To simplify the presentation, instead

of referring to reachable program states, we consider possible program outcomes assigning final
values to (some) registers. An outcome 𝑂 : Reg ⇀ Val is allowed for a program under a declarative

model X if some state in which the registers have their values in 𝑂 and the program counters have

their maximal values is reachable under X (see Def. 2.9). We use program comment annotations

(“//”) to denote particular outcomes.

Remark 1. To simplify our presentation, we require explicit initialization of memory locations

and adapt well-known examples to include explicit initialization. Reading from an uninitialized

location blocks the thread. (For example, only the initial execution graph 𝐺0 is generated by a

program consisting of a single thread that reads from some location, without previously writing to

it.) This is only a presentation matter: one may always achieve implicit initialization by augmenting

the program with an additional thread that sets each variable to its initial value, and then signals

all other threads (using an additional flag) to start running.

Example 3.3 (Store buffering). The following program outcome is allowed by all three causal

consistency models. The justifying execution graph is presented on the right.

The rf edges are forced because of the

read values, whereas the mo edges in RA

and SRA are forced due to write-coherence

and strong-write-coherence. It can be easily

verified that the execution graph is SRA-

consistent, and thus it is also RA-consistent

and WRA-consistent.

x := 0

x := 1

a := y //0

y := 0

y := 1

b := x //0

✓WRA ✓RA ✓ SRA

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

W (y, 1)

R (x, 0)

mo

rf

mo

rf

(SB)

Example 3.4 (Message passing). Causal consistency models support “flag-based” synchronization

(which makes them useful in shared-memory concurrent programs). That is, the following outcome

is disallowed under each of the models defined above.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:10 Ori Lahav and Udi Boker

An execution graph for this outcome must

have rf edges as depicted on the right. How-

ever, we have hb|loc from W (x, 0) to W (x, 1),
hb from W (x, 1) to R (x, 0) and rf from W (x, 0)
to R (x, 0). Hence, weak-read-coherence does
not hold, and the execution graph is notWRA-

consistent.

x := 0

x := 1

y := 1

a := y //1
b := x //0

✗WRA ✗RA ✗ SRA

W (x, 0)

W (x, 1)

W (y, 1)

R (y, 1)

R (x, 0)

rf
(MP)

Note that po and rf edges equally contribute to hb in causal consistency. Hence, for the same

reason the following outcome is disallowed as well:

x := 0

y := 1

a := y //1
x := 1

b := x //1
c := x //0

✗WRA ✗RA ✗ SRA

W (x, 0)

W (y, 1)

R (y, 1)

W (x, 1)

R (x, 1)

R (x, 0)

rf rf (MP-trans)

Example 3.5 (Independent reads of independent writes). A main difference between the causal

consistency models and the x86-TSO model [48] is that the former are non-multi-copy-atomic:
a write by some thread could become visible to some other threads before becoming visible to

all other threads. Thus, unlike x86-TSO, the three causal consistency models allow the following

outcome, in which T2 observes W (x, 1) but not W (y, 1), while T3 observes W (y, 1) but not W (x, 1). The
justifying execution graph appears on the right:

x := 0

x := 1

a := x //1
b := y //0

c := y //1
d := x //0

y := 0

y := 1

✓WRA ✓RA ✓ SRA

W (x, 0) W (y, 0)

W (x, 1)

R (x, 1)

R (y, 0)

R (y, 1)

R (x, 0) W (y, 1)

mo morf rf (IRIW)

Example 3.6. The following example, adapted from [58], demonstrates the fact that the local
agreement between mo and hb required in RA is indeed weaker than the global agreement required

by SRA:

x := 1

y := 2

a := y //1

y := 1

x := 2

b := x //1

✓WRA ✓RA ✗ SRA

W (x, 1)

W (y, 2)

R (y, 1)

W (y, 1)

W (x, 2)

R (x, 1)

mo

rf
(2+2W)

An execution graph for this outcome must have rf and mo edges as depicted above (to satisfy

read-coherence), and it contains a (hb ∪ mo)-cycle, which is allowed by RA and disallowed by SRA.

Example 3.7. Unlike RA and SRA,WRA does not provide “sequential-consistency-per-location”—

even programs with a single location may exhibit non-sequentially-consistent behaviors. For

instance, this happens in the following programs:

(WW) (Oscillating) (SF)

x := 1

a := x //2
x := 2

b := x //1

✓WRA ✗RA ✗ SRA

x := 1

a := x //1
b := x //2
c := x //1

x := 2

✓WRA ✗RA ✗ SRA

x := 1

a := x //2
b := x //1

x := 2

✓WRA ✗RA ✗ SRA

W (x, 1) W (x, 2)

R (x, 2) R (x, 1)
rf

W (x, 1) W (x, 2)

R (x, 1)

R (x, 2)

R (x, 1)

rf

rf

rf
W (x, 2)

W (x, 1)

R (x, 2)

R (x, 1)

rf
rf

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:11

Interestingly, WRA validates a particular form of the store forwarding optimization that applies

when a certain read is preceded (in program order) by a write to the same location and there are no

writes between these two operations. In this case, the compiler may eliminate the read by assuming

that it reads the value written by the write. This optimization, performed by certain Java compilers

(see [24, §2.2]), is particularly applicable when pointers are involved, e.g., x := 1; a := ∗p; b := x
can be optimized to x := 1; a := ∗p; b := 1 without any pointer analysis (that is, without knowing

whether p points to x or not). The (SF) example above shows that it is an unsound optimization for

RA and SRA—the annotated outcome is disallowed under these models, but if we apply the above

optimization, we may replace b := x by b := 1, and the get a = 2 and b = 1 even under SC. We note

that the standard store forwarding that only applies when the read immediately follows the write

(with no operations in between) is sound in all three models.

Example 3.8. For implementing locks using RMWs it is crucial that two different RMWs never

read from the same write. This is enforced directly in WRA, and follows from atomicity in RA and

SRA. Indeed, in the following example, any (total) mo order of the three events cannot place the
write of 0 as the immediate predecessor of both RMWs.

x := 0

a := CAS(x, 0, 1) //0 b := CAS(x, 0, 1) //0

✗WRA ✗RA ✗ SRA

W (x, 0)

RMW (x, 0, 1) RMW (x, 0, 1)
rf

rf
(2RMW)

Example 3.9. RMWs to an otherwise-unused (unique) location can be used as fences. Indeed, the
consistency constraints (of any of the models) imply that if, except for the initialization write event,

all write events to some location 𝑥 in 𝐺 are RMWs then hb must totally order𝐺.W𝑥 . For example,

placing such fences forbids the weak outcome of the SB program (Ex. 3.3). An execution graph for

this outcome must have the edges as depicted on the right, and any choice of the two missing rf
edges (to the two RMW events) will violate some condition of WRA.

z := 0

x := 0

x := 1

a := FADD(z, 0)
b := y //0

y := 0

y := 1

a := FADD(z, 0)
c := x //0

✗WRA ✗RA ✗ SRA

W (x, 0) W (y, 0)

W (z, 0)
W (x, 1)

RMW (z, 0, 0)

R (y, 0)

W (y, 1)

RMW (z, 0, 0)

R (x, 0)

rf (SB+RMWs)

3.1 Alternative Formulations

Our presentation follows C/C++11’s mathematical formalization [15, 40], where the RA model

above is the fragment of the C/C++11 model consisting of release stores, acquire reads and acquire-

release RMWs. In turn, SRA is a strengthening of RA proposed in [36], whereas WRA is a natural

weakening of RA that is a fragment of the weak RC11 model proposed in [31], and is sufficiently

strong for the race-freedom result (Thm. 3.12 below) to hold. The WRA and SRA models appear in

the literature in multiple disguises, especially as correctness criteria for distributed data stores:

POWER. As proved in [36], SRA precisely coincides with the POWER model of [10] (which was

validated by extensive testing against real hardware), when the latter is restricted to programs

that result from compiling C/C++11 programs in the release/acquire fragment, using the standard

compilation scheme [45] (that is, placing lwsync before every store and ctrl+isync after every

load). While POWER’s plain instructions result in a model that does not provide causal consistency

guarantees, this compilation scheme ensures that POWER provides causal consistency, and the

observation of [36] this form of causal consistency precisely matches SRA.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:12 Ori Lahav and Udi Boker

Causal Convergence. Ignoring RMWs, the SRA model is equivalent to the causal convergence
model, denoted by CCv, of [17] (when the latter is applied to the standard sequential specification

of a key-value store supporting read and write operations), as well as to the causal consistency

model of [44] when restricted to single-instruction transactions. These models are formulated in

[19, 21] in terms of visibility (𝑣𝑖𝑠) and arbitration (𝑎𝑟) relations. For example, the graph on the left

for the IRIW program (Ex. 3.5) is captured in these terms by the graph on the right (where the

dotted arrow is used for the visibility relation and circled numbers denote the arbitration order):

W (x, 0) W (y, 0)

W (x, 1)

R (x, 1)

R (y, 0)

R (y, 1)

R (x, 0) W (y, 1)

mo morf rf

1 W (x, 0) 3 W (y, 0)

2 W (x, 1)

5 R (x, 1)

6 R (y, 0)

7 R (y, 1)

8 R (x, 0) 4 W (y, 1)

One direction of the correspondence between our formulation of SRA and the alternative one

formulated in terms of 𝑣𝑖𝑠 and 𝑎𝑟 follows by setting 𝑣𝑖𝑠 = hb and taking 𝑎𝑟 to be some total order

extending hb ∪ mo. For the converse, one takes rf to relate each read 𝑟 with the 𝑎𝑟 -maximal write

to the same location that is 𝑣𝑖𝑠-before 𝑟 , and sets mo =
⋃

𝑥∈Loc [W𝑥] ; 𝑎𝑟 ; [W𝑥]. Furthermore, our

program order (po) corresponds to session order (𝑠𝑜), and SRA’s consistency ensures strong session
guarantees (𝑠𝑜 ⊆ 𝑣𝑖𝑠) [54].

RMWs in distributed databases require expensive global coordination. A naive implementation of

RMWs as transactions that read and write from/to the same location does not guarantee atomicity,

as it allows the lost update anomaly (e.g., it will allow the outcome in Ex. 3.8). In the particular case

when a certain location is only accessed by RMWs, its accesses are totally ordered by hb, which
corresponds to marking of certain transactions as serializable, as in the Red-Blue model of [16, 43].

Basic Causal Consistency. WRA (without RMWs) is equivalent to a basic causal consistency model

called CC in [17], when CC is applied to the standard sequential specification of a key-value store

supporting read and write operations. The CC model requires the existence of a partial “causal”

order 𝑆 such that for every read event 𝑟 , the restriction of 𝑆 on dom(𝑆 ; [{𝑟 }]) can be extended to

a total order in which the value written by the last write to loc(𝑟) is valR (𝑟). This condition is

equivalent to the constraints of WRA.

Parallel-Snapshot-Isolation. Parallel snapshot isolation (PSI) is a standard transactional consis-

tency model used in databases and distributed systems that offers scalability and availability

in large-scale geo-replicated systems [11, 16, 20, 49, 52]. When restricted to single-instruction

transactions, PSI is captured by strengthening read-coherence to require:

𝐺.mo ; (𝐺.po ∪𝐺.rf ∪𝐺.mo)+ ;𝐺.rf−1 is irreflexive (strong-read-coherence)

Example 3.10. The following behavior is allowed by SRA but disallowed by PSI:

x := 0

x := 1

y := 1

a := y //2

y := 2

b := x //0

✓WRA ✓RA ✓ SRA ✗PSI

W (x, 0)

W (x, 1)

W (y, 1)

R (y, 2)

W (y, 2)

R (x, 0)

mo

mo

rf

rf

(WW-MP)

An execution graph for this outcome must have rf and mo edges as depicted above (to satisfy

read-coherence), and it violates strong-read-coherence.

It can be shown that when all store instructions are implemented using atomic exchanges

(implementing 𝑥 := 𝑒 as _ := XCHG(𝑥, 𝑒)), SRA precisely captures PSI. Hence, our decidability result

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:13

for SRA entails the decidability for PSI with single-instruction transactions, via a simple reduction

substituting all stores in a given program by atomic exchanges that do not use the values being

exchanged. For instance, if we use in the above example c := XCHG(y, 2) instead of y := 2, then the

mo edge between the two writes to y would become an rf edge (and the second write would be

labeled with RMW (y, 1, 2)), so the annotated outcome would violate read-coherence and be forbidden

also under SRA.

3.2 Write/Write-Race Freedom Guarantee

Following Prop. 3.2, we have thatWRA is weaker than RA, which is weaker than SRA. The examples

above show that these relations are strict: the annotated behaviors of the programs in Ex. 3.7 are

allowed by WRA but not by RA; and the annotated behavior of the 2+2W program in Ex. 3.6 is

allowed by RA but not by SRA. We note that in all these examples, the programs exhibit write/write

races, namely two different threads write to the same location with no happens-before relation

between the conflicting writes. Roughly speaking, since the difference between the models concerns

the mo relation, only a write/write race might expose the gap between them. In this section,

we formally prove this fact by showing that the three models coincide on write/write-race-free

programs. We note that the vast majority of concurrent algorithms we know of do not employ

write/write races (in fact, it is rather hard to locate ones that do), which makes the next theorem

widely applicable.
5

Inspired by DRF models and results [9, 14, 40], which ensure SC semantics for programs that are

data-race-free under SC-semantics, we show that write/write-race freedom of all SRA-consistent
execution graphs of a given program suffices for the established correspondence. This allows

programmers to adhere to a safe programming discipline (that is, avoid write/write races, e.g., using

locks) without even understanding the two weaker models,WRA and RA. Indeed, to establish the

premise of the following theorem, one only needs to know the SRA-consistency predicate.

Definition 3.11. An execution graph 𝐺 is write/write-race free if for every 𝑤1,𝑤2 ∈ 𝐺.W with

loc(𝑤1) = loc(𝑤2), we have𝑤1 = 𝑤2, ⟨𝑤1,𝑤2⟩ ∈ 𝐺.hb or ⟨𝑤2,𝑤1⟩ ∈ 𝐺.hb.

Theorem 3.12. Let 𝑃 be a concurrent program such that every SRA-consistent execution graph that
is generated by 𝑃 is write/write-race free. Then, the sets of states of 𝑃 that are reachable under (1) SRA,
(2) RA and (3) WRA all coincide.

Proof. Using Prop. 3.2, it suffices to show that every state of 𝑃 that is reachable underWRA is

also reachable under SRA.

We call an execution graph𝐺 SRA-pre-consistent if some execution graph𝐺 ′
with𝐺 ′ .E = 𝐺.E and

𝐺 ′ .rf = 𝐺.rf (but possibly𝐺 ′ .mo ≠ 𝐺.mo) is SRA-consistent. Let G be the set of allWRA-consistent

but not SRA-pre-consistent execution graphs that are generated by 𝑃 . To show that every state of

𝑃 that is reachable under WRA is also reachable under SRA, it suffices to show that G is empty.

Suppose otherwise and let 𝐺 be a minimal element in G, in the sense that every proper 𝐺.hb-
prefix of 𝐺 is not in G (where a proper 𝐺.hb-prefix of 𝐺 is any execution graph of the form

⟨𝐸𝑝 , [𝐸𝑝] ;𝐺.rf ; [𝐸𝑝], [𝐸𝑝] ;𝐺.mo ; [𝐸𝑝]⟩ for some 𝐸𝑝 ⊊ 𝐺.E such that dom(𝐺.hb ; [𝐸𝑝]) ⊆ 𝐸𝑝).

Note that 𝐺 cannot be empty, since the empty execution graph 𝐺0 is trivially SRA-pre-consistent.

Let 𝑒 be some𝐺.hb-maximal event in𝐺.E, and let 𝐸′ = 𝐺.E\{𝑒}. The minimality of𝐺 ensures that

the restriction of 𝐺 to 𝐸′
(namely, the execution graph ⟨𝐸′, [𝐸′] ;𝐺.rf ; [𝐸′], [𝐸′] ;𝐺.mo ; [𝐸′]⟩) is

SRA-pre-consistent. Letmo′ be amodification order for 𝐸′
such that𝐺 ′ = ⟨𝐸′, [𝐸′] ;𝐺.rf ; [𝐸′],mo′⟩

5
This fact was previously utilized in [31, Section 5] that provided an improved bounded model checking algorithm for

write/write-race free programs, and identified that (sound but incomplete) separation-logic-based program logics for RA are

essentially making a similar simplification, and do not support reasoning about concurrent writes.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:14 Ori Lahav and Udi Boker

is SRA-consistent. Note that our assumption on 𝑃 ensures that 𝐺 ′
is write/write-race free, thus

using strong-write-coherence, it follows that mo′ ⊆ 𝐺 ′ .hb|loc ⊆ 𝐺.hb|loc.
We consider the possible types of 𝑒 . In each case, we define a modification order m̂o for 𝐺.E

and show that 𝐺 = ⟨𝐺.E,𝐺 .rf, m̂o⟩ is SRA-consistent, which contradicts the fact that 𝐺 is not

SRA-pre-consistent.

• typ(𝑒) = R: We define m̂o = mo′. Then,𝐺 satisfies strong-write-coherence, as a (𝐺.hb∪m̂o)-cycle
would have implied a cycle in 𝐺.hb ∪mo′ ⊆ 𝐺.hb, which cannot exist, since 𝐺 satisfies irr-hb.

In addition, 𝐺 satisfies atomicity, since its violation does not involve read events, and would

have occurred also in𝐺 ′
. Assume toward contradiction that𝐺 does not satisfy read-coherence.

Since 𝑒 is 𝐺.hb-maximal, there exist 𝑤1,𝑤2 ∈ 𝐸′
such that ⟨𝑤1,𝑤2⟩ ∈ mo′, ⟨𝑤2, 𝑒⟩ ∈ 𝐺.hb

and ⟨𝑤1, 𝑒⟩ ∈ 𝐺.rf. It follows that ⟨𝑤1,𝑤2⟩ ∈ 𝐺.hb|loc, and so 𝐺 does not satisfy weak-read-

coherence, which contradicts the fact that 𝐺 is WRA-consistent.

• typ(𝑒) = W: We define m̂o = mo′ ∪ (𝐺.W𝑥 × {𝑒}) where 𝑥 = loc(𝑒). It is easy to see that 𝐺 is

SRA-consistent.

• typ(𝑒) = RMW: Let 𝑥 = loc(𝑒) and let 𝑤 ∈ 𝐺.W such that ⟨𝑤, 𝑒⟩ ∈ 𝐺.rf. We define m̂o =

mo′ ∪ (𝑊 × {𝑒}) ∪ ({𝑒} × (𝐺.W𝑥 \𝑊)) where𝑊 = {𝑤 ′ ∈ 𝐺.W𝑥 | ⟨𝑤 ′,𝑤⟩ ∈ mo′?}.
Assume toward contradiction that 𝐺 is not SRA-consistent. At least one of the following hold:

– strong-write-coherence is not satisfied by 𝐺 : Then, since 𝐺 ′
is SRA-consistent, there exists

𝑤 ′ ∈ 𝐸′
such that ⟨𝑒,𝑤 ′⟩ ∈ m̂o and ⟨𝑤 ′, 𝑒⟩ ∈ 𝐺.hb. Hence, we have ⟨𝑤,𝑤 ′⟩ ∈ mo′ ⊆ 𝐺.hb|loc,

and since ⟨𝑤, 𝑒⟩ ∈ 𝐺.rf, this contradicts the fact that 𝐺 satisfies weak-read-coherence.

– read-coherence is not satisfied by 𝐺 : Then, since 𝐺 ′
is SRA-consistent, there exist 𝑤 ′ ∈ 𝐸′

such that ⟨𝑤,𝑤 ′⟩ ∈ m̂o and ⟨𝑤 ′, 𝑒⟩ ∈ 𝐺.hb. It follows that ⟨𝑤,𝑤 ′⟩ ∈ 𝐺.hb|loc, which again

contradicts the fact that 𝐺 satisfies weak-read-coherence.

– atomicity is not satisfied by𝐺 : Then, since𝐺 ′
is SRA-consistent, it follows that there exist𝑤 ′ ∈

𝐸′ .W and 𝑢 ∈ 𝐸′ .RMW, such that ⟨𝑤 ′, 𝑒⟩, ⟨𝑒,𝑢⟩ ∈ m̂o and ⟨𝑤 ′, 𝑢⟩ ∈ 𝐺.rf. The construction
of m̂o ensures that ⟨𝑤 ′,𝑤⟩ ∈ mo′? and ⟨𝑤,𝑢⟩ ∈ mo′. Hence, ⟨𝑤 ′,𝑤⟩ ∈ 𝐺.hb|?loc and ⟨𝑤,𝑢⟩ ∈
𝐺.hb|loc. Now, if ⟨𝑤 ′,𝑤⟩ ∈ 𝐺.hb|loc, then again we obtain a contradiction to the fact that 𝐺

satisfies weak-read-coherence. Otherwise, we have𝑤 ′ = 𝑤 . Thus, we have both ⟨𝑤, 𝑒⟩ ∈ 𝐺.rf
and ⟨𝑤,𝑢⟩ ∈ 𝐺.rf (where 𝑒 ≠ 𝑢 since 𝑢 ∈ 𝐸′

), which contradicts the fact the 𝐺 satisfies

weak-atomicity. □

4 AN OPERATIONAL LOOK AT CAUSAL CONSISTENCY AND ITS INDUCED

REACHABILITY PROBLEM

While the above formulations of the casual consistency models are declarative, it is straightforward

to “operationalize” these definitions. Indeed, for the models above, instead of first generating a

program execution graph (using Def. 2.7) and a posteriori checking its consistency, one may impose

consistency at each step during an incremental construction of the execution graph. This results in

equivalent operational presentations, which are easier to relate to the alternative lossy semantics

we define below. In this section, we present such operational reformulations of the declarative

semantics above, formulating them as memory systems.6 We will reuse this operational framework

for the lossy semantics (§5 and §6).

Definition 4.1. A memory system is a (possibly infinite) LTS over the alphabet (Tid × Lab) ∪ {𝜀}.

The alphabet symbols of the memory system are either pairs in Tid × Lab, representing the

thread identifier and the label of the performed operation, or 𝜀 for internal (silent) memory actions.

6
A similar construction appears in [10] for hardware memory models and the resulting memory systems are called

“Intermediate Machines”.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:15

Example 4.2 (Sequential consistency as a memory system). The most well-known memory system

is the one of sequential consistency, denoted here by SC. This memory system simply tracks the

most recent value written to each location (or ⊥ for uninitialized locations). Formally, it is defined

by SC.Q ≜ Loc → (Val ∪ {⊥}), SC.Q0 ≜ {𝜆𝑥 ∈ Loc.⊥} and −→SC is given by:

write

𝜇′ = 𝜇 [𝑥 ↦→ 𝑣W]

𝜇
𝜏,W (𝑥,𝑣W)−−−−−−−→SC 𝜇′

read

𝜇 (𝑥) = 𝑣R

𝜇
𝜏,R (𝑥,𝑣R)−−−−−−−→SC 𝜇

rmw

𝜇 (𝑥) = 𝑣R 𝜇′ = 𝜇 [𝑥 ↦→ 𝑣W]

𝜇
𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−→SC 𝜇′

Note that SC is oblivious to the thread that takes the action (we have 𝜇
𝜏,𝑙−−→SC 𝜇′ iff 𝜇

𝜋,𝑙−−→SC 𝜇′), and
it has no silent transitions.

By synchronizing a program and a memory system, we obtain a concurrent system:

Definition 4.3. A program 𝑃 and a memory system𝑀 form a concurrent system, denoted by 𝑃 ∥ 𝑀 .

It is an LTS over (Tid × (Lab ∪ {𝜀})) ∪ {𝜀} whose set of states is 𝑃 .Q ×𝑀.Q; its initial states set is
𝑃 .Q0 ×𝑀.Q0; and its transitions are “synchronized transitions” of 𝑃 and𝑀 , given by:

𝑙 ∈ Lab 𝑝
𝜏,𝑙−−→𝑃 𝑝

′

𝑚
𝜏,𝑙−−→𝑀 𝑚′

⟨𝑝,𝑚⟩ 𝜏,𝑙−−→𝑃 ∥𝑀 ⟨𝑝′,𝑚′⟩

𝑝
𝜏,𝜀−−→𝑃 𝑝

′

⟨𝑝,𝑚⟩ 𝜏,𝜀−−→𝑃 ∥𝑀 ⟨𝑝′,𝑚⟩

𝑚
𝜀−→𝑀 𝑚′

⟨𝑝,𝑚⟩ 𝜀−→𝑃 ∥𝑀 ⟨𝑝,𝑚′⟩

To relate a declarative model X and a memory system𝑀 , we use the following definitions.

Definition 4.4. A state 𝑝 of a concurrent program 𝑃 is reachable under a memory system 𝑀 if

⟨𝑝,𝑚⟩ is reachable in 𝑃 ∥ 𝑀 for some𝑚 ∈ 𝑀.Q.

Definition 4.5. A memory system𝑀 characterizes a declarative model X if for every concurrent

program 𝑃 , the set of program states that are reachable under X (see Def. 2.9) coincides with the set

of program states that are reachable under𝑀 .

Next, we present the memory systems opWRA, opRA, and opSRA that characterize the respec-

tive declarative model. (The opRA memory system is defined here for the completeness of the

presentation, but it is not used in the sequel.) The states of these systems are execution graphs

capturing (partially ordered) histories of executed actions, and the only initial state is 𝐺0 (recall

that 𝐺0 denotes the empty execution graph ⟨∅, ∅, ∅⟩). Formally,𝑀.Q ≜ EGraph and𝑀.Q0 ≜ {𝐺0}
for𝑀 ∈ {opWRA, opRA, opSRA}. Before providing the transitions, we refer the reader to Fig. 4 on

Page 22, which illustrates a run of opSRA (or opRA, opWRA) for the SB program from Ex. 3.3.

Remark 2. Following [31], our formulation of the memory systems below does not directly refer

to the consistency predicates, but rather articulate necessary and sufficient conditions that ensure

that the target state is a consistent execution graph provided the consistency of the source state.

It is possible to take a step further and develop an equivalent semantics with more economical

states that may feel “more operational” and intuitive. Indeed, for the systems below, it suffices to

maintain a partially ordered set of write events, together with a mapping of which writes each

thread is already aware of (the “observed writes set” of [23]). When the writes to each location are

totally ordered (as in RA and SRA), this can be implemented using timestamps, messages and thread
views, as was done, e.g., in [29] for RA.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:16 Ori Lahav and Udi Boker

Weak Release/Acquire. The transitions of opWRA are given by:

write

𝑒 = NextEvent(𝐺.E, 𝜏, W (𝑥, 𝑣W))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}
𝐺 ′ .rf = 𝐺.rf

𝐺
𝜏,W (𝑥,𝑣W)−−−−−−−−→opWRA 𝐺 ′

read

𝑒 = NextEvent(𝐺.E, 𝜏, R (𝑥, 𝑣R))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}
𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏])

𝐺
𝜏,R (𝑥,𝑣R)−−−−−−−−→opWRA 𝐺 ′

rmw

𝑒 = NextEvent(𝐺.E, 𝜏, RMW (𝑥, 𝑣R, 𝑣W))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}
𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏])
𝑤 ∉ dom(𝐺.rf ; [RMW])

𝐺
𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−−−→opWRA 𝐺 ′

A write step simply adds a corresponding fresh write event to the graph placed in the end of the

thread executing the write. A read step adds a corresponding fresh read event and justifies it with

a reads-from edge. Its source𝑤 must be a write event to the same location (𝑤 ∈ 𝐺.W𝑥), writing the

value being read (valW (𝑤) = 𝑣), and the thread executing the read must not be aware of an hb-later
write to the same location (𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏])). An rmw step is similar to a

read step (adding an RMW event), with the additional condition on𝑤 : it should not be read by any

RMW event in the current execution graph (𝑤 ∉ dom(𝐺.rf ; [RMW])). We note that the write

step in opWRA is deterministic, while the read and rmw steps are non-deterministic—often more

than one write can be chosen as the source of the new rf edges.

Theorem 4.6. opWRA characterizes WRA.

Proof. Given a WRA-consistent execution graph 𝐺 , one obtains a run of opWRA by following

any total order extending𝐺.hb. The preconditions required by each step follow directly from the

fact that 𝐺 is WRA-consistent. For the converse, it suffices to note that all reachable states of

opWRA areWRA-consistent execution graphs. Hence, if ⟨𝑝,𝐺⟩ is reachable in 𝑃 ∥ opWRA, then𝐺

is a WRA-consistent execution graph that is generated by 𝑃 with final state 𝑝 . □

Remark 3. Instead of requiring𝑤 ∉ dom(𝐺.rf ; [RMW]) in the rmw step, we may equivalently

require that {𝑒 ∈ RMW | ⟨𝑤, 𝑒⟩ ∈ 𝐺.rf} ⊆ E
𝜏
(namely, if 𝑤 is read by an RMW event, then that

RMW event is in thread 𝜏). Indeed, 𝑤 ∉ dom(𝐺.rf ; [RMW]) trivially implies this condition.

Conversely, if this condition holds then since 𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]), we cannot
have 𝑤 ∈ dom(𝐺.rf ; [RMW]). While this reformulation is an unnecessary complication at this

stage, it plays a key role in the alternative lossy semantics for WRA in §6.

Release/Acquire. To handle modification order (mo) updates in transitions of opRA, we use the

following notation:

Notation 4.7. Given a relation 𝑅 that contains a total order on a set 𝐴, a subset 𝐴before ⊆ 𝐴 that

is downward closed (dom(𝑅 ; [𝐴before]) ⊆ 𝐴before) and an element 𝑏 ∉ 𝐴, AddAfter(𝑅,𝐴,𝐴before, 𝑏)
denotes the extension of 𝑅 obtained by placing 𝑏 after all elements in𝐴before and before all elements

of 𝐴 \𝐴before (formally, AddAfter(𝑅,𝐴,𝐴before, 𝑏) ≜ 𝑅 ∪ (𝐴before × {𝑏}) ∪ ({𝑏} × (𝐴 \𝐴before))).

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:17

The transitions of opRA are given by:

write

𝑒 = NextEvent(𝐺.E, 𝜏, W (𝑥, 𝑣W))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}
𝐺 ′ .rf = 𝐺.rf

𝐺 ′ .mo = AddAfter(𝐺.mo,𝐺 .W𝑥 ,𝑊 , 𝑒)
dom(𝐺.mo ; [𝑊]) ⊆𝑊 ⊆ 𝐺.W𝑥

𝑤 = max𝐺.mo𝑊

𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏])
𝑤 ∉ dom(𝐺.rf ; [RMW])

𝐺
𝜏,W (𝑥,𝑣W)−−−−−−−−→opRA 𝐺 ′

read

𝑒 = NextEvent(𝐺.E, 𝜏, R (𝑥, 𝑣R))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}
𝐺 ′ .mo = 𝐺.mo

𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏])

𝐺
𝜏,R (𝑥,𝑣R)−−−−−−−−→opRA 𝐺 ′

rmw

𝑒 = NextEvent(𝐺.E, 𝜏, RMW (𝑥, 𝑣R, 𝑣W))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}
𝐺 ′ .mo = AddAfter(𝐺.mo,𝐺 .W𝑥 ,𝑊 , 𝑒)
𝑊 = {𝑤 ′ ∈ 𝐺.W𝑥 | ⟨𝑤 ′,𝑤⟩ ∈ 𝐺.mo?}

𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏])
𝑤 ∉ dom(𝐺.rf ; [RMW])

𝐺
𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−−−→opRA 𝐺 ′

The write step adds a corresponding fresh write event 𝑒 to the graph (placed after all events of

thread 𝜏) and extends mo to order the freshly added event w.r.t. all previously added writes to the

same location. The extension of mo must respect write-coherence (“local agreement” between mo
and hb). Thus, all of 𝑒’s successors in the new mo order cannot be events of which thread 𝜏 is aware.

Equivalently, 𝑒 should be placed as the immediate successor of some event𝑤 = max𝐺.mo𝑊 , such that

thread 𝜏 is not aware of any mo-successors of𝑤 (𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏])). In addition, for the

extension of mo to respect atomicity, the new write 𝑒 should not intervene between an RMW event

and its reads-from source (which, according to atomicity, must be its immediate mo-predecessor).
Hence,𝑤 cannot be read by an RMW event (𝑤 ∉ dom(𝐺.rf ; [RMW])). We note that for the very

first write to each location, we must have𝑊 = ∅, in which case we assume that the two conditions

on𝑤 (𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]) and𝑤 ∉ dom(𝐺.rf ; [RMW])) hold by definition.

A read step by thread 𝜏 adds a corresponding fresh read event and justifies it with a reads-from

edge. This is exactly as in opWRA, but to capture later writes, instead of using 𝐺.hb|loc (as per
read-coherence), we now use mo (as per weak-read-coherence).

An rmw step is a combination of read and write. To respect atomicity, it forces the reads-from

source of the freshly added RMW event to be its immediate predecessor in the extended mo.

Theorem 4.8. opRA characterizes RA.

Proof. The proof proceeds exactly as the proof for WRA (Thm. 4.6). Given an RA-consistent

execution graph 𝐺 , one obtains a run of opRA by following any total order extension of 𝐺.hb.
The preconditions required by each step follow directly from the fact that 𝐺 is RA-consistent.

For the converse, it suffices to note that all reachable states of opRA are RA-consistent execution

graphs. Hence, if ⟨𝑝,𝐺⟩ is reachable in 𝑃 ∥ opRA, then𝐺 is a RA-consistent execution graph that is

generated by 𝑃 with final state 𝑝 . □

Strong Release/Acquire. The transitions of opSRA are given by:

write

𝑒 = NextEvent(𝐺.E, 𝜏, W (𝑥, 𝑣W))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}
𝐺 ′ .rf = 𝐺.rf

𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑒})

𝐺
𝜏,W (𝑥,𝑣W)−−−−−−−−→opSRA 𝐺 ′

read

𝑒 = NextEvent(𝐺.E, 𝜏, R (𝑥, 𝑣R))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}
𝐺 ′ .mo = 𝐺.mo

𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏])

𝐺
𝜏,R (𝑥,𝑣R)−−−−−−−−→opSRA 𝐺 ′

rmw

𝑒 = NextEvent(𝐺.E, 𝜏, RMW (𝑥, 𝑣R, 𝑣W))
𝐺 ′ .E = 𝐺.E ∪ {𝑒}

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}
𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑒})
𝑤 ∈ 𝐺.W𝑥 valW (𝑤) = 𝑣R

𝑤 ∉ dom(𝐺.mo)

𝐺
𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−−−→opSRA 𝐺 ′

Awrite step by thread 𝜏 adds a fresh write event 𝑒 placed after all events of thread 𝜏 and extends

mo to order 𝑒 after all existing writes to the same location. The read is identical to the read step of

opRA. The rmw is also similar to the rmw step of opRA, but it must pick𝑤 to be the mo-maximal

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:18 Ori Lahav and Udi Boker

write to the relevant location in the current execution graph. We note that the write and rmw

steps in opSRA are deterministic, while the read step is non-deterministic.

This semantics exploits the fact that hb ∪ mo is acyclic in SRA-consistent execution graphs

(“global agreement” between mo and hb, as per strong-write-coherence). Hence, to generate an

SRA-consistent execution graph in a run of an operational semantics, we can follow a total order

extending hb ∪ mo, which guarantees that writes are executed following their mo-order. In turn,

since RMWs should read from their immediate mo-predecessor, we require that RMWs read from

the current mo-maximal write. Accordingly, the next theorem is proved as for WRA and RA, using

𝐺.hb ∪𝐺.mo instead of 𝐺.hb when traversing an SRA-consistent execution graph 𝐺 .

Theorem 4.9. opSRA characterizes SRA.

4.1 The Reachability Problem for Memory Systems

When an operational semantics for a declarative model X is available (in the form of a memory

system as defined above), the X reachability problem (formulated in §2.2) can be stated in more

standard terms.

Proposition 4.10. If a memory system𝑀 characterizes a declarative model X, then the X reacha-
bility problem is equivalent to the problem given by:

Input: a concurrent program 𝑃 and a “bad state” 𝑝 ∈ 𝑃 .Q.
Question: is 𝑝 reachable under𝑀 (i.e., by Def. 4.4, is 𝑝 reachable in the concurrent system 𝑃 ∥ 𝑀

for some𝑚 ∈ 𝑀.Q)?

For the causal models defined above, as mentioned in the introduction to this paper, the challenge

in solving this problem stems from the fact that 𝑃 ∥ 𝑀 is an infinite transition system (since

opWRA, opRA and opSRA are all infinite state). This is in contrast to 𝑃 ∥ SC (see Ex. 4.2), which is

a finite system of size polynomial in the size of 𝑃 (since SC is of size quadratic in the number of

locations and values), thus inducing a PSPACE-complete reachability problem [32]. Hypothetically,

there might have been finite SC-like alternative equivalent representations of the causal systems,

however this is not possible, as explained in Remark 4 below.

Remark 4. The reduction of Atig et al. [12] from reachability in lossy FIFO channel machines to

reachability under the x86-TSO model holds without any change for the three causal models WRA,

RA, and SRA. As a corollary we obtain a lower complexity bound to the reachability problem under

these causal models, which, in turn, implies that they cannot have finite representations. Indeed,

since the non-primitive recursive lower bound holds for fixed finite sets of threads, locations and

values, and since the reachability problem of some program 𝑃 under a memory system can be

resolved by tracing all paths of the transition system, whose states are the product of the program

states and the memory states, a fixed finite number of states in a memory system allows for a

PSPACE (w.r.t. 𝑃 ’s size) algorithm to the reachability problem.

Theorem 4.11. For X ∈ {WRA,RA, SRA}, the X reachability is non-primitive-recursive.

In fact, it was recently shown that RA reachability is undecidable via a delicate reduction from

Post correspondence problem [2]. The rest of this paper is devoted to establishing decidability for

SRA andWRA. To do so, we use the framework of well-structured transition systems (see §8.1 for a

brief reminder). We note that we are unable to directly use opSRA and opWRA in this framework.

Roughly speaking, the challenges here stem from: (i) losing parts of the state (the current execution

graph) may allow for behaviors that were not allowed without losing this part (e.g., if we discard

a write event, we may read overwritten writes); and (ii) naive ordering of partial orders via their

induced embedding relation is not a well-quasi order. In the sequel, we overcome these challenges

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:19

by introducing alternative memory systems for SRA and WRA that are still infinite, but fit well in

the framework of well-structured transition systems.

5 MAKING STRONG RELEASE/ACQUIRE LOSSY: THE loSRAMEMORY SYSTEM

In this section, we introduce an alternative memory system, which we call loSRA (for “lossy-SRA”).

Later, we will establish the equivalence of loSRA to opSRA, and show how loSRA is used to decide

the reachability problem in the framework of well-structured transition systems. We begin with an

intuitive discussion to motivate our definitions, and later spell out the formal details.

A memory state of loSRA maintains for each thread a set of “option lists”, called the potential of
the thread, where each (read) option 𝑜 contains a location loc(𝑜), a value val(𝑜) and two other

components that are explained below. Each option list stands for a sequence of possible future reads

of the thread, listing the values that it may read in the order that it may read them. For example, the

list 𝑜1 · 𝑜2 allows the thread to read val(𝑜1) from location loc(𝑜1) and then val(𝑜2) from location

loc(𝑜2). These lists do not ascribe mandatory continuations, but rather possible futures (hence,

options). In the beginning, the empty list is assigned to all threads—before any write is executed,

no reads are possible (recall that we assume explicit initialization, see Remark 1). In addition, the

semantics is designed so that option lists are “lossy”, allowing a non-deterministic step that removes

arbitrary options from the lists.

The option lists in the potentials dictate the possible read steps threads can take: for a thread 𝜏

to read 𝑣 from 𝑥 , an option 𝑜 with val(𝑜) = 𝑣 and loc(𝑜) = 𝑥 must be the first in each of 𝜏 ’s lists.

Then, to progress to the next option in the list, the thread may consume these options, and discard

the first element from each of its lists.

A write step is more involved, encapsulating the requirements of opSRA. First, since opSRA

performs write events following their mo-order, when a thread writes to 𝑥 , it cannot later read the

value of 𝑥 from a write that was already performed (this would violate read-coherence in terms of

SRA). Accordingly, we do not allow a thread to write to 𝑥 if some read option 𝑜 with loc(𝑜) = 𝑥

appears in its potential. Second, when a thread performs a write of 𝑣 to 𝑥 , it allows future reads from

this write. That is, new read options 𝑜 with loc(𝑜) = 𝑥 and val(𝑜) = 𝑣 may be added to every list of

every thread. This makes the write step in loSRA (unlike the one of opSRA) non-deterministic—the
writer essentially has to “guess” which threads will read from the new write and when.

But, where in the lists should we allow to add such options? The following examples demonstrate

two possible cases. We write in them 𝑜𝑣𝑥 for a read option of value 𝑣 from location 𝑥 .

Example 5.1. Consider the IRIW program with its (SRA-allowed) outcome in Ex. 3.5. Clearly, the

first step may only be a write by T1 or T4. Suppose, w.l.o.g., that T1 begins. Since T3 reads 0 from x,
an option 𝑜0x should be added in the lists of T3. Now, before reading 0 from x, T3 has to read 1 from

y. Hence, when T4 writes 1 to y, an option 𝑜1y should be placed before 𝑜0x in the lists of T3.

Example 5.2. Consider the MP program with its outcome in Ex. 3.4. It is forbidden under SRA,

and so we need to avoid the following scenario: First, T1 writes 0 to x and adds a corresponding

option 𝑜0x to the (initially empty) list of T2, and then writes 1 to x without adding any option to

any list (no thread reads 1 from x in this program outcome). Then, T1 further writes 1 to y and

adds a corresponding option 𝑜1y in the list of T1 placed before 𝑜0x. Finally, T2 may run: read 1 from y

(consuming 𝑜1y) and then 0 from x (consuming 𝑜0x).

How can we resolve the tension between the two examples? The restriction we impose on the

positions of the added read options is based on the following key observation:
7

7
A weaker observation, which only considers single reads, was essential for the soundness of OGRA—an Owicki Gries logic

for RA introduced in [38].

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:20 Ori Lahav and Udi Boker

Shared-memory causality principle: After thread 𝜋 reads from a certain write executed by thread
𝜏 , thread 𝜋 can perform a sequence of operations only if thread 𝜏 could perform the same sequence
immediately after it executed the write.
Indeed, if thread 𝜏 has just performed a write𝑤 , then after thread 𝜋 reads from𝑤 , it “synchronizes”

with 𝜏 and it is thus confined by the sequences of reads that 𝜏 may perform. (Note that the converse

does not hold: thread 𝜏 may be able to read values that thread 𝜋 cannot read anymore, since thread

𝜋 may be already aware of later writes to other locations.) Hence, to allow the addition of a read

option 𝑜 in certain positions of a list 𝐿 of some thread 𝜋 , we require a justification: the suffix of

𝐿 after the first occurrence of 𝑜 should be a subsequence of an option list of the writing thread 𝜏 .

This guarantees that after 𝜋 reads from a write𝑤 of 𝜏 , it will not be able to read something that 𝜏

could not read at the time that it wrote𝑤 . (Revisiting Ex. 5.2, the read option 𝑜1y cannot be placed
before 𝑜0x, because T1 cannot have 𝑜

0

x in its lists at the point of writing 1 to y.)

Example 5.3. We revisit Ex. 5.1 and show how the weak outcome of the IRIW program (see

Ex. 3.5) is obtained in the lossy SRA machine loSRA. One possible way to obtain this outcome is

depicted as follows:
8

{𝜖} {𝜖} {𝜖} {𝜖} T1−−−−→
W (x,0)

{𝜖} {𝜖} {𝑜0x} {𝑜0x}
T1−−−−→

W (x,1)
{𝜖}{𝑜1x}{𝑜0x}{𝑜0x}

T4−−−−→
W (y,0)

{𝜖}{𝑜1x𝑜0y}{𝑜0x}{𝑜0x}
T4−−−−→

W (y,1)

{𝜖}{𝑜1x𝑜0y}{𝑜1y𝑜0x}{𝑜0x}
T2−−−−→

R (x,1)
{𝜖}{𝑜0y}{𝑜1y𝑜0x}{𝑜0x}

T2−−−−→
R (y,0)

{𝜖}{𝜖}{𝑜1y𝑜0x}{𝑜0x}
T3−−−−→

R (y,1)
{𝜖}{𝜖}{𝑜0x}{𝑜0x}

T3−−−−→
R (x,0)

{𝜖}{𝜖}{𝜖}{𝑜0x}

Initially, all potentials are empty. Then, T1 performs its write x := 0 and adds new options in the

list of T3 and T4 (the first will be used later, since we want T3 to read 0 from x, and the second will

be needed as a justification for y := 1 by T4). Then, T1 completes its code by executing x := 1 and

adding a read option in T2’s list. Now, T4 performs its two writes: y := 0 adds a read option in the

end of T2’s list, and y := 1 adds a read option in the beginning of T3’s list. The latter adds a read
option before existing ones (𝑜1y is positioned before 𝑜0x), and thus requires a justification: T4 (the

writing thread) should itself have the option 𝑜0x at this stage. Indeed, 𝑜
0

x appears in the potential of

T4 (it was added by T1). Finally, we can execute all reads, each consumes the corresponding read

option. In the end, 𝑜0x is left in the potential of T4, which has no effect (and it is possible to remove

it by taking a non-deterministic step that loses some parts of the potentials).

Now, since the potential of thread 𝜏 is used both for (i) dictating future reads of 𝜏 , and (ii) justifying

placement of read options that are generated by 𝜏 ’s write steps, we may need more than one option

list for each thread. We also allow to discard existing lists in silent moves of the memory system.

This is demonstrated in the following example.

Example 5.4. Consider the following program, whose annotated outcome is allowed under SRA:

x := 0

x := 1

a1 := z //1
a2 := y //0

y := 0

y := 1

b1 := x //1
b2 := z //0

z := 0

z := 1

c1 := y //1
c2 := x //0

d1 := x //1
d2 := y //1
d3 := z //0

e1 := y //1
e2 := z //1
e3 := x //0

f1 := z //1
f2 := x //1
f3 := y //0

✓ SRA

Suppose that it can be obtained by the memory system outlined above when it is restricted to

one option list per thread (i.e., singleton potentials). Suppose, w.l.o.g., that z := 1 is the last write

performed in the execution. Later, T3 has to read 1 from y and 0 from x. Hence, its option list must

include 𝑜1y and 𝑜0x in this order. In addition, a read option 𝑜1z should be placed in T6’s list before

𝑜1x · 𝑜0y. The justification for it requires 𝑜1x · 𝑜0y to be a subsequence of T3’s list. This implies that T3’s

8
We adopt the · ∥ ... ∥ · notation to denote the states of the lossy system. For example, 𝐵1 𝐵2 𝐵3 𝐵4 denotes a mapping

from Tid that assigns 𝐵𝑖 to T𝑖 for 1 ≤ 𝑖 ≤ 4 and {𝜖 } to all other threads in Tid.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:21

list should contain some interleaving of 𝑜1y · 𝑜0x and 𝑜1x · 𝑜0y. But, no such interleaving is a possible

future for T3 (and thus cannot be generated by loSRA): reading 𝑜1y does not allow T3 to read 𝑜0y
later; and reading 𝑜1x does not allow T3 to read 𝑜0x later. By allowing more than one option list per

thread, we can have 𝑜1y · 𝑜0x and 𝑜1x · 𝑜0y as two separate lists in the potential of T3—both are possible

continuations for it after z := 1. Then, after executing z := 1 and placing a new read option 𝑜1z
before 𝑜1x ·𝑜0y in the potential of T6 using the list 𝑜

1

x ·𝑜0y as a justification, T3 may “lose” the justifying

list 𝑜1x · 𝑜0y, and choose to continue with 𝑜1y · 𝑜0x for its own reads.

Another complication arises due to the fact that read options do not uniquely identify write

events in the execution graph (this is unavoidable—for the decision procedure, we need the alphabet

of read options to be finite):

Example 5.5. Consider the following program:

x := 0

x := 1

z := 1

y := 0

y := 1

z := 1

a := z //1
w := 1

b := x //0

c := w //1
d := y //0 ✗ SRA (2MP)

Its annotated outcome is disallowed under SRA. Indeed, since T3 reads x = 0 after z = 1, the read

of z must read from the write of T2. But then, after reading w = 1 (from T3) T4 cannot read y = 0.

However, the semantics described so far allows this outcome as in the following snippet:

{𝜖} {𝜖} {𝜖} {𝜖} T1−−−−→
W (x,0)

T1−−−−→
W (x,1)

T2−−−−→
W (y,0)

T2−−−−→
W (y,1)

T1−−−−→
W (z,1)

{𝑜0y} {𝑜0x} {𝑜0x, 𝑜1z𝑜0y} {𝑜0y}
T2−−−−→

W (z,1)

{𝑜0y} {𝑜0x} {𝑜1z𝑜0x, 𝑜1z𝑜0y} {𝑜0y}
T3−−−−→

R (z,1)
{𝑜0y} {𝑜0x} {𝑜0x, 𝑜0y} {𝑜0y}

T3−−−−→
W (w,1)

{𝑜0y} {𝑜0x} {𝑜0x, 𝑜0y} {𝑜1w𝑜0y} ...

What went wrong? The problem arises when T3 reads 1 from z. At this point it has two possible

futures, 𝑜1z𝑜
0

x and 𝑜
1

z𝑜
0

y. Since read options, consisting of location and value, do not uniquely identify

writes, it may read 1 from z, and remain with both 𝑜0x and 𝑜
0

y. Now, it uses one of these options to

justify the position of 𝑜1w in the list of T4, and the other for its own read. However, in a single run of

opSRA, when reading 1 from z, T3 must pick which write event to read from, and then, either it

cannot read x = 0 or it cannot read y = 0.

To remedy this problem, we make read options to be more informative. Together with location

and value, read options also include the thread identifier that performed the write. When a thread

writes, it adds options with its own thread identifier in the different lists. For a thread 𝜏 to read 𝑣

from 𝑥 , a read option 𝑜 with val(𝑜) = 𝑣 and loc(𝑜) = 𝑥 and some unique writing thread identifier

must be the first in every option list of 𝜏 . In this example, the two 𝑜1z options will carry different

thread identifiers, which forces T3 to discard one of its lists before reading.

Even with thread identifiers, read options do not uniquely identify write events. Nevertheless,

as our proof shows, the ambiguity inside the writing thread does not harm the adequacy of the

semantics. Roughly speaking, it can be resolved by picking the po-earliest write event, as reading
from it enforces the weakest constraints for the rest of the run.

Finally, RMWs behave like an atomic combination of a read and a write, with a slight adaptation

of the above semantics. Recall that in opSRA, an RMW may only read from the mo-maximal write

to the relevant location. To achieve this in loSRA, we include an additional flag in read options

whose value is either R or RMW. Intuitively, an RMW value means that the read option is set to read

from the mo-maximal write. Accordingly, an rmw step may only consume read options marked as

RMW. Since write steps to 𝑥 replace the mo-maximal write to 𝑥 in the execution graph, they may

choose to mark any of the added read options as RMW, but they can only execute when no existing

read option (of any thread) from location 𝑥 is marked as an RMW.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:22 Ori Lahav and Udi Boker

T
1−−−−→

W (x,0)

W (x, 0)

T
1−−−−→

W (x,1)

W (x, 0)

W (x, 1)

mo

T
2−−−−→

W (y,0)

W (x, 0) W (y, 0)

W (x, 1)

mo

T
1−−−−→

R (y,0)

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

mo rf
T
2−−−−→

W (y,1)

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

W (y, 1)

mo rf mo

T
2−−−−→

R (x,0)

W (x, 0) W (y, 0)

W (x, 1)

R (y, 0)

W (y, 1)

R (x, 0)

mo rf mo

{𝜖 }
{𝜖 }

T
1−−−−→

W (x,0)

{𝜖 }
{OR (T1, x, 0, R) }

T
1−−−−→

W (x,1)

{𝜖 }
{OR (T1, x, 0, R) }

T
2−−−−→

W (y,0)

{OR (T2, y, 0, R) }
{OR (T1, x, 0, R) }

T
1−−−−→

R (y,0)

{𝜖 }
{OR (T1, x, 0, R) }

T
2−−−−→

W (y,1)

{𝜖 }
{OR (T1, x, 0, R) }

T
2−−−−→

R (x,0)

{𝜖 }
{𝜖 }

Fig. 4. Illustration of runs of opSRA (top) and loSRA (bottom) for the SB program (Ex. 3.3). In opSRA’s states

(execution graphs), events of T1 are on the left and of T2 on the right. In loSRA’s states (a potential for each

thread), the potential of T1 is at the top and of T2 at the bottom. In this simple example, all option lists consist

of at most one option and all potentials are singletons.

Next, we turn to the formal definitions.

Notation 5.6 (Sequences). We use 𝜖 to denote the empty sequence. The length of a sequence 𝑠

is denoted by |𝑠 | (in particular |𝜖 | = 0). We often identify a sequence 𝑠 over Σ with its underlying

function in {1, ... ,|𝑠 |} → Σ, and write 𝑠 (𝑘) for the symbol at position 1 ≤ 𝑘 ≤ |𝑠 | in 𝑠 . We write

𝜎 ∈ 𝑠 if the symbol 𝜎 appears in 𝑠 , that is if 𝑠 (𝑘) = 𝜎 for some 1 ≤ 𝑘 ≤ |𝑠 |. We use “·” for the
concatenation of sequences, and lift it to concatenation of sets 𝑆1 and 𝑆2 of sequences in the obvious

way (𝑆1 · 𝑆2 ≜ {𝑠1 · 𝑠2 | 𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2}). We identify symbols with sequences of length 1 or their

singletons when needed (e.g., in expressions like 𝜎 · 𝑆 for 𝜎 ∈ Σ and a set 𝑆 of sequences over Σ).

Definition 5.7. Read options, option lists and potentials are defined as follows:

(1) A read option is a quadruple 𝑜 = OR (𝜏, 𝑥, 𝑣,𝑢), where 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑣 ∈ Val and𝑢 ∈ {R, RMW}.
The functions tid, loc, val and rmw return the thread identifier (𝜏), location (𝑥), value (𝑣),

and RMW flag (𝑢) of a given read option.

(2) An option list 𝐿 is a sequence of read options.

(3) A potential 𝐵 is a finite non-empty set of option lists.

We define an ordering on option lists, which extends to potentials and to mappings of potentials

to threads.

Definition 5.8. The (overloaded) relation ⊑ is defined by:

(1) on option lists: 𝐿 ⊑ 𝐿′ if 𝐿 is a (not necessarily contiguous) subsequence of 𝐿′;
(2) on potentials: 𝐵 ⊑ 𝐵′

if ∀𝐿 ∈ 𝐵. ∃𝐿′ ∈ 𝐵′ . 𝐿 ⊑ 𝐿′ (a.k.a. “Hoare ordering”);
(3) on functions from Tid to the set of potentials: B ⊑ B′

if B(𝜏) ⊑ B′ (𝜏) for every 𝜏 ∈ Tid.

The loSRA memory system is formally defined (in the setting of Def. 4.1) as follows. Figure 4

illustrates a run of loSRA for the SB program (Ex. 3.3) alongside with a corresponding run of opSRA.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:23

B:

T1’s potential:
{𝐿̂ = OR (T2, y, 3, R) OR (T1, y, 0, R) OR (T2, y, 1, RMW)
...Other option lists ...}

T2’s potential:
{𝐿 = OR (T1, x, 0, R) OR (T2, y, 3, R) OR (T1, y, 0, R) OR (T2, y, 1, RMW)
...Other option lists ...}

T
1−−−−→

W (x,4)

B′
:

T1’s potential:
{ ...}
T2’s potential:
{𝐿′ = OR (T1, x, 0, R) OR (T1, x, 4, R) OR (T2, y, 3, R) OR (T1, y, 0, R)

OR (T1, x, 4, R) OR (T2, y, 1, RMW)
...Other option lists ...}

Fig. 5. Illustration of loSRA’s write step, as defined in Def. 5.9. Two read options OR (T1, x, 4, R) are added
to the option list 𝐿′ of thread T2 in B′

, constructed from the list 𝐿 of T2 and justified by the list 𝐿̂ of T1
in B. Observe that 𝐿̂ = 𝐿1 · 𝐿2, 𝐿 = 𝐿0 · 𝐿1 · 𝐿2 and 𝐿′ = 𝐿0 · OR (T1, x, 4, R) · 𝐿1 · OR (T1, x, 4, R) · 𝐿2, where
𝐿0 = OR (T1, x, 0, R), 𝐿1 = OR (T2, y, 3, R) OR (T1, y, 0, R) and 𝐿2 = OR (T2, y, 1, RMW).

Definition 5.9. loSRA is defined by: loSRA.Q is the set of functions B assigning a potential to

every 𝜏 ∈ Tid; loSRA.Q0 = {𝜆𝜏 ∈ Tid. {𝜖}};9 and the transitions are as follows:

write

∀𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋) . ∃𝑛 ≥ 0, 𝑢1, ... ,𝑢𝑛, 𝐿0, ... ,𝐿𝑛 .

𝐿′ = 𝐿0 · OR (𝜏, 𝑥, 𝑣W, 𝑢1) · 𝐿1 · ... · OR (𝜏, 𝑥, 𝑣W, 𝑢𝑛) · 𝐿𝑛
∧ 𝐿0 · ... · 𝐿𝑛 ∈ B(𝜋) ∧ 𝐿1 · ... · 𝐿𝑛 ∈ B(𝜏)
∧ ∀𝑜 ∈ 𝐿1 · ... · 𝐿𝑛 . loc(𝑜) ≠ 𝑥

∧ ∀𝑜 ∈ 𝐿0 . loc(𝑜) = 𝑥 =⇒ 𝜋 ≠ 𝜏 ∧ rmw(𝑜) = R

B 𝜏,W (𝑥,𝑣W)−−−−−−−−→loSRA
B′

rmw

loc(𝑜) = 𝑥 val(𝑜) = 𝑣R
rmw(𝑜) = RMW

B = B
mid

[𝜏 ↦→ 𝑜 · B
mid

(𝜏)]
B
mid

𝜏,W (𝑥,𝑣W)−−−−−−−−→loSRA
B′

B 𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−−−→loSRA
B′

read

loc(𝑜) = 𝑥 val(𝑜) = 𝑣R B = B′ [𝜏 ↦→ 𝑜 · B′ (𝜏)]

B 𝜏,R (𝑥,𝑣R)−−−−−−−−→loSRA
B′

lower

B′ ⊑ B

B 𝜀−→loSRA
B′

The definition of the write step generally follows the intuitive explanation above. (See an

illustration in Fig. 5.) Every option list of thread 𝜋 (𝐿′ ∈ B′ (𝜋)) after a write transition by thread

𝜏 is obtained by adding 𝑛 ≥ 0 read options (OR (𝜏, 𝑥, 𝑣W, 𝑢1), ... ,OR (𝜏, 𝑥, 𝑣W, 𝑢𝑛)) of the current write
to an existing list 𝐿 of thread 𝜋 (𝐿 = 𝐿0 · ... · 𝐿𝑛 ∈ B(𝜋)), provided that: (i) the suffix of the

existing list right after the position of the first added option is an option list of the writing thread

(𝐿1 · ... · 𝐿𝑛 ∈ B(𝜏)); (ii) the list 𝐿′ cannot have other read options from location 𝑥 after the first

added read option (∀𝑜 ∈ 𝐿1 · ... · 𝐿𝑛 . loc(𝑜) ≠ 𝑥); (iii) before the first added read option (i.e., in 𝐿0)

thread 𝜏 should not have other read options from 𝑥 (that is, if 𝜋 = 𝜏 , then the list 𝐿′ cannot have
any read options from 𝑥 besides of the newly added ones), and other threads may have read options

from 𝑥 , but these options cannot be RMW options (∀𝑜 ∈ 𝐿0. loc(𝑜) = 𝑥 =⇒ 𝜋 ≠ 𝜏 ∧ rmw(𝑜) = R).
When 𝑛 = 0 (no new options are added to some list), we assume that the conditions involving

𝐿1, ... ,𝐿𝑛 vacuously hold, and thus we only require 𝐿′ = 𝐿0 ∈ B(𝜋) (the list is left intact) and

∀𝑜 ∈ 𝐿0. loc(𝑜) = 𝑥 =⇒ 𝜋 ≠ 𝜏 ∧ rmw(𝑜) = R. Note that since the universal quantification is

on lists of the new state, the step allows to “duplicate” lists before modifying them, as well as to

“discard” complete lists (as often useful when a certain list is needed only as a justification for

positioning a read option; see, e.g., Ex. 5.5). We also note that several RMW options can be added, but

only one of them may be later fulfilled.

Remark 5. Our formal write step insists on having a justification in the form of a complete

option list of the writing thread (𝐿1 · ... · 𝐿𝑛 ∈ B(𝜏)). It suffices, however, for the suffix after the

first added read option to be a subsequence of some list of the writing thread ({𝐿1 · ... · 𝐿𝑛} ⊑ B(𝜏)).
9
To achieve implicit initialization of all locations to 0, one should take loSRA.Q0 to consist of all functions assigning to each

thread sequences consisting of read options of the form OR (T0, 𝑥, 0,𝑢) where T0 is a distinguished thread identifier that is

not used in programs (corresponds to the initializing thread, see Remark 1).

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:24 Ori Lahav and Udi Boker

Indeed, this less restrictive step is derivable by combining a lower step and a write step. For

𝜋 = 𝜏 (adding read options in the lists of the thread that performed the write), this means that no

justification is needed (since 𝐿0 ·...·𝐿𝑛 ∈ B(𝜏) implies {𝐿1 · ... · 𝐿𝑛} ⊑ B(𝜏)). Similarly, no justification

is required for placing read options in the end of existing lists (since {𝜖} ⊑ B(𝜏) always holds).
The read step requires that the first option in all lists in the executing thread’s potential are

the same read option 𝑜 , and allows the thread to read the value of 𝑜 from the location of 𝑜 , while

consuming 𝑜 from all these lists. Note that, by definition, the potential B′ (𝜏) is non-empty, and

so the set B(𝜏) as defined in the step is non-empty. When all options are consumed, 𝜏 ’s potential

consists of a single empty list.

Remark 6. Our formal read step always discards the first option from the lists, which was used

to justify the read. An alternative semantics that keeps the lists unchanged in read steps (allowing

to discard the first option using the lower step) would be equivalent. Indeed, the write step that

added the consumed option could always add multiple identical consecutive read options.

The rmw step is an atomic sequencing of read and write to the same location. The read part

can only be performed provided that the first option in all lists is marked with RMW.
The lower transition allows to remove read options, as well as full option lists, at any point. It

also allows to add new lists, provided that each new list is “at most as powerful” as some existing

list (as used in Remark 5). Intuitively, lower can only reduce the possible traces, while it allows us

to show that loSRA is a well-structured transition system.

Example 5.10. Consider the 2+2W program with its (SRA-disallowed) outcome in Ex. 3.6. To see

that this outcome cannot be obtained by loSRA, consider the last write executed in a run of this

program. Suppose, w.l.o.g., that it is y := 2 by T1. After executing this write, T1 cannot have any
other read options of location y in its lists. Hence, a read option of the form OR (_, y, 1, _) should be

added to T1’s potential after T1 executed y := 2. This contradicts our assumption that y := 2 was

the last executed write.

Example 5.11. Consider the 2RMW program with its (SRA-disallowed) outcome in Ex. 3.8. To

try to obtain this outcome in loSRA, the x := 0 by T1 must add a read option OR (T1, x, 0, RMW) in
both its own list and in a list of T2. But, the execution of the first RMW, which consumes one of

these options, cannot proceed if there is another option marked with RMW. Hence, the second RMW

cannot read 0, and this outcome cannot be obtained by loSRA.

We conclude with the equivalence of opSRA and loSRA. We postpone its proof to §7, after we

introduce a similar system for WRA.

Theorem 5.12. For every program 𝑃 , the set of program states that are reachable under opSRA
coincides with the set of program states that are reachable under loSRA.

6 MAKINGWEAK RELEASE/ACQUIRE LOSSY: THE loWRAMEMORY SYSTEM

As we did for SRA, we introduce an alternative memory system, which we call loWRA (for “lossy-

WRA”), that is equivalent to opWRA. Like loSRA, the loWRA memory system is based on thread

potentials, where machine states record information on what can be done from now on, rather than

on what was done until now, as in opSRA and opWRA. The causality constraints are maintained by

adhering to the “shared-memory causality principle” (see §5), thus requiring appropriate justifica-

tions for the positioning of added read options in other threads’ lists. However, as we explain below

loWRA requires a key change w.r.t. loSRA that has to do with what thread potentials consist of.

The first observation about loWRA is that it must allow existing read options from location 𝑥 to

appear in the potential of thread 𝜏 after 𝜏 writes to 𝑥 . Indeed, this is necessary for allowing certain

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:25

outcomes that loSRA forbids (e.g., Examples 3.6 and 3.7). Intuitively speaking, the fact that thread 𝜏

writes to 𝑥 should not restrict the thread from later reading from a write that was executed before

𝜏 ’s write, as long as 𝜏 is not already aware of the other write at the point of writing. This is in

contrast to SRA, where writes can be executed following their mo order, and thus writing to some

location makes the thread aware of the latest write.

We further observe that simply allowing read options from 𝑥 in write steps to 𝑥 as mentioned

above would make the semantics overly weak. First, if 𝜏 writes to 𝑥 and adds read options 𝑜1, ... ,𝑜𝑛
in one of its own lists, it should not write again to 𝑥 before consuming (or discarding) each of

𝑜1, ... ,𝑜𝑛 . Indeed, if 𝜏 writes to 𝑥 again, then the second write is aware (via po ⊆ hb) of the first
one, and reading from the first one after executing the second would violate weak-read-coherence.

Second, if 𝑜1, ... ,𝑜𝑛 are added in a list of another thread 𝜋 , then after consuming 𝑜1 but before

consuming 𝑜𝑛 thread 𝜋 should not write to 𝑥 . Indeed, performing the read specified by 𝑜1 will

make thread 𝜋 aware of the write𝑤 associated with 𝑜2, ... ,𝑜𝑛 . When 𝜋 writes to 𝑥 , its write will be

hb-after𝑤 , and reading again from𝑤 will violate weak-read-coherence.

Thus, we need to put certain limitations on the ability to write to a location 𝑥 that are related to

the read options from 𝑥 in the potentials. The key idea is that such restrictions can be supported by

setting the potentials of loWRA to include write options in addition to read options. Write options

take the form OW (𝑥) where 𝑥 ∈ Loc. In the initial states, all lists consist solely of write options (to

some locations), which reflect the initial possible continuations of each thread. Then, when 𝜏 writes

to 𝑥 , it (1) has to discard all of its lists that do not begin with OW (𝑥), and consume the OW (𝑥) option
from the head of each of its remaining lists; (2) cannot place read options in its own lists after some

OW (𝑥) option; and (3) cannot place new read options in other threads’ lists in a way that will make

some OW (𝑥) option appear between two of the added read options. The “shared-memory causality

principle” now applies not only to read options, but also to write options: if 𝜏 has just performed a

write𝑤 , then after 𝜋 reads from𝑤 , it “synchronizes” with 𝜏 , and so its continuations (sequences

of both reads and writes) should all be possible continuations of 𝜏 . In fact, as our correspondence

proofs show, enforcing the “shared-memory causality principle” and conditions (1)-(3) above
suffices to precisely captureWRA.

Example 6.1. The annotated outcome of the WW program in Ex. 3.7 can be obtained with the

following run (using subscripts and superscripts for locations and values while eliding the other

components of read options):

{OW (x)} {OW (x)}
T1−−−−−→

W (x,1)
{𝜖} {OW (x) · 𝑜1x}

T2−−−−−→
W (x,2)

{𝑜2x} {𝑜1x}
T1−−−−−→

R (x,2)
{𝜖} {𝑜1x}

T2−−−−−→
R (x,1)

{𝜖} {𝜖}

We start with an OW (x) option for both threads. Then, T1 executes its write: consumes its OW (x),
and adds a read option in the end of T2’s list. Now, T2 executes its write: consumes its OW (x) and
adds a read option in the end of T1’s list. Finally, both threads perform their reads by consuming

the read options from their potentials. Justifications for the writes trivially exist (essentially, no

justification is needed for placing a read option in the end of some list). Note that in order to obtain

this behavior it is crucial to weaken the condition of loSRA: some thread (T2 in this example) has to

write to location x while it has already an option to read from x in its potential.

Example 6.2. The annotated outcome of the oscillating program in Ex. 3.7 can be obtained with

the following (prefix of) run (using subscripts and superscripts as above):

{OW (x)} {𝜖} {OW (x)}
T1−−−−−→

W (x,1)
{𝜖} {𝑜1x · 𝑜1x} {OW (x) · 𝑜1x}

T3−−−−−→
W (x,2)

{𝜖} {𝑜1x · 𝑜2x · 𝑜1x} {𝑜1x}
T2−−−−−→

R (x,1)
...

We start with an OW (x) option for T1 and T3. Then, T1 executes its write: consumes its OW (x), and
adds two read options to T2 and one to T3. Now, T3 executes its write: consumes its OW (x) and adds

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:26 Ori Lahav and Udi Boker

in the list of T2 a read option in between the two options that were added by T1. This is justified
since (after consuming OW (x)) T3 has 𝑜1x in its list. Finally, T2 can run and perform the three reads.

Example 6.3. We demonstrate why loWRA disallows the annotated outcome of the MP-trans

program in Ex. 3.4. The first executed operation must be x := 0 by T1. Since T3 reads 0 from x, a
corresponding read option 𝑜0x has to be added to lists of T3. Then, since T3 will read 1 from x (which
is written by T2) before it reads 0, when T2 executes x := 1, a read option 𝑜1x has to be added to

lists of T3 and be placed before 𝑜0x. The semantics of loWRA requires a justification for placing 𝑜1x
before 𝑜0x: a list of T2 that contains OW (x) and somewhere after it 𝑜0x. Hence, when T1 executes x := 0,

the read option 𝑜0x should also be added to the lists of T2 after OW (x). Now, since T2 reads 1 from y
before it executes x := 1, when T1 executes y := 1, a read option 𝑜1y has to be added to lists of T2,

and be placed before OW (x) (which precedes 𝑜0x). In turn, this requires a justification in the form of a

list of T1 that contains OW (x) that precedes 𝑜0x. Therefore, when T1 executes x := 0, the read option

𝑜0x should also be added to the lists of T1, somewhere after OW (x), which is disallowed by loWRA.

Finally, RMWs in loWRA are handled differently than in loSRA. Indeed, all we have inWRA is

that two RMWs never read from the same event, and thus we cannot require, as required in loSRA,

that after executing a write, no RMW will read from a write that was executed earlier. Naively,

WRA’s weak-atomicity constraint could be supported by adding at most one option marked with

RMW when performing a write. This is in contrast, however, with the “shared-memory causality

principle”: if we decide to give thread 𝜋 an RMW-option, then later when it reads from a write of

thread 𝜏 , it may still be able to perform an RMW, while thread 𝜏 never had such option. To resolve

this mismatch, we utilize the observation in Remark 3, and slightly modify loWRA’s read options.

Instead of marking read options with RMW flags, we instrument them with RMW thread identifiers,
denoting the (unique) thread that may consume this option when executing an RMW. When a

thread writes, it picks an arbitrary but unique thread identifier to include in this field of its added

options; reads ignore this field; and RMWs by thread 𝜏 can only consume read options whose RMW

thread identifier is 𝜏 . Now, in the above scenario, instead of saying that 𝜋 has some option that

𝜏 hasn’t, we will have that both threads have the same option, which is a conditional option to

perform an RMW if their identifier matches the RMW thread identifier of the option. This allows

us to maintain the “shared-memory causality principle”.

We turn to the formal definitions. Some notions (e.g., read optionsg) overlap with these of §5. To

improve readability, we use the same terms, and the ambiguity is resolved by the context.

Definition 6.4. An option 𝑜 is either OR (𝜏, 𝑥, 𝑣, 𝜋RMW) (read option) or OW (𝑥) (write option), where
𝜏, 𝜋RMW ∈ Tid, 𝑥 ∈ Loc and 𝑣 ∈ Val. The functions typ, tid, loc, val and rmw-tid return (when

applicable) the type (R/W), thread identifier (𝜏), location (𝑥), value (𝑣), and RMW thread identifier

(𝜋RMW) of a given option.

Option lists (which now include both read and write options) and potentials, as well as the ⊑
ordering, are defined as in Definitions 5.7 and 5.8 (using Def. 6.4 instead of loSRA’s read options).

Definition 6.5. The memory system loWRA is defined by: loWRA.Q is the set of functions B
assigning a potential to every 𝜏 ∈ Tid; loWRA.Q0 = {B | ∀𝜏 ∈ Tid, 𝐿 ∈ B(𝜏), 𝑜 ∈ 𝐿. typ(𝑜) = W};

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:27

and the transitions are as follows:

write

𝑜 = OR (𝜏, 𝑥, 𝑣, 𝜋RMW)
∀𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋). ∃𝑛 ≥ 0, 𝐿0, ... ,𝐿𝑛 .

𝐿′ = 𝐿0 · 𝑜 · 𝐿1 · ... · 𝑜 · 𝐿𝑛 ∧ OW (𝑥) · 𝐿1 · ... · 𝐿𝑛 ∈ B(𝜏)
∧ (𝜋 = 𝜏 =⇒ OW (𝑥) · 𝐿0 · ... · 𝐿𝑛 ∈ B(𝜏) ∧ OW (𝑥) ∉ 𝐿0 · ... · 𝐿𝑛−1)
∧ (𝜋 ≠ 𝜏 =⇒ 𝐿0 · ... · 𝐿𝑛 ∈ B(𝜋) ∧ OW (𝑥) ∉ 𝐿1 · ... · 𝐿𝑛−1)

B 𝜏,W (𝑥,𝑣W)−−−−−−−−→loWRA
B′

rmw

loc(𝑜) = 𝑥 val(𝑜) = 𝑣R
rmw-tid(𝑜) = 𝜏

B = B
mid

[𝜏 ↦→ 𝑜 · B
mid

(𝜏)]
B
mid

𝜏,W (𝑥,𝑣W)−−−−−−−−→loWRA
B′

B 𝜏,RMW (𝑥,𝑣R,𝑣W)−−−−−−−−−−−−→loWRA
B′

read

loc(𝑜) = 𝑥 val(𝑜) = 𝑣R B = B′ [𝜏 ↦→ 𝑜 · B′ (𝜏)]

B 𝜏,R (𝑥,𝑣R)−−−−−−−−→loWRA
B′

lower

B′ ⊑ B

B 𝜀−→loWRA
B′

The read, rmw and lower steps are as in loSRA (except for the precondition rmw-tid(𝑜) = 𝜏

instead of rmw(𝑜) = RMW in the rmw step).

The write step follows the intuitive explanation above. Keeping in mind that the writing thread

consumes a write option to the written location, every option list after the write transition is

obtained from some previous list (OW (𝑥) ·𝐿0 ·...·𝐿𝑛 ∈ B(𝜏) for the writing thread and 𝐿0 ·...·𝐿𝑛 ∈ B(𝜋)
for other threads), with the addition of 𝑛 ≥ 0 read options of the current write (all with the same

RMW thread identifier), provided that: (1) the suffix of the existing list right after the position of

the first added read option is an option list (after consuming the first write option) of the writing

thread (OW (𝑥) · 𝐿1 · ... · 𝐿𝑛 ∈ B(𝜏)); (2) for the writing thread, the prefix of the existing list (after

consuming the first write option) before the position of the last added read option cannot have

options to write to 𝑥 (OW (𝑥) ∉ 𝐿0 ·...· 𝐿𝑛−1); and (3) for the other threads, the part of the existing list

between the first and the last positions of the added read options cannot have options to write to 𝑥

(OW (𝑥) ∉ 𝐿1 · ... · 𝐿𝑛−1). When 𝑛 = 0 for some 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋) (no new options are added to

some list), we only require OW (𝑥) · 𝐿′ ∈ B(𝜏) if 𝜋 = 𝜏 , and 𝐿′ ∈ B(𝜋) otherwise.
We conclude with the equivalence of opWRA and loWRA. The proof is given in the next section,

together with the proof of the corresponding theorem for SRA (Thm. 5.12).

Theorem 6.6. For every program 𝑃 , the set of program states that are reachable under opWRA

coincides with the set of program states that are reachable under loWRA.

7 EQUIVALENCE OF loSRA AND opSRA AND OF loWRA AND opWRA

In this section, we establish the equivalence of loSRA and opSRA (Thm. 5.12) and of loWRA and

opWRA (Thm. 6.6). We use the same approach for both SRA andWRA, while having some different

technical arguments for each. Here, we provide the approach and proof sketch, while detailing the

full proofs in Appendix A. Whenever possible, we speak of opXRA and loXRA, standing for both

opSRA and opWRA, and for both loSRA and loWRA, respectively.

To establish the equivalence of loXRA and opXRA, we define a simulation ⋎ ⊆ loXRA.Q×opXRA.Q,
formalizing the intuitive relation between loXRA’s potentials and opXRA’s execution graphs. For

defining ⋎, we first define a “write list” linking the read options in an option list 𝐿 to write events

in an execution graph 𝐺 . For loWRA, a write list also has write options that need to be identical to

the write options in 𝐿; and we also assume a mapping tidRMW : W → Tid relating every write event

to the unique thread that may read from it in an RMW event.

Definition 7.1. A write list is a sequence of write events and write options. Let𝐺 be an execution

graph, 𝐿 an option list and tidRMW : W → Tid. A write list𝑊 is a ⟨𝐺, 𝐿⟩-write-list (for SRA) or a
⟨𝐺, 𝐿, tidRMW⟩-write-list (for WRA) if |𝐿 | = |𝑊 | and the following hold for every 1 ≤ 𝑘 ≤ |𝑊 |:

• If typ(𝐿(𝑘)) = R (i.e., 𝐿(𝑘) is a read option), then the following hold:

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:28 Ori Lahav and Udi Boker

– 𝑊 (𝑘) ∈ 𝐺.W.

– tid(𝑊 (𝑘)) = tid(𝐿(𝑘)), loc(𝑊 (𝑘)) = loc(𝐿(𝑘)) and valW (𝑊 (𝑘)) = val(𝐿(𝑘)).
– for SRA: if rmw(𝐿(𝑘)) = RMW, then𝑊 (𝑘) ∉ dom(𝐺.mo).
– forWRA: tidRMW (𝑊 (𝑘)) = rmw-tid(𝐿(𝑘)).

• If typ(𝐿(𝑘)) = W (i.e., 𝐿(𝑘) is a write option), then𝑊 (𝑘) = 𝐿(𝑘) (relevant only for WRA).

The following notion of ⟨𝐺, 𝜏⟩-consistency of awrite list𝑊 intuitivelymeans thatXRA-consistency

is satisfied by the extension of the execution graph𝐺 with a sequence of reads and writes of thread

𝜏 obtained by following𝑊 : For an element𝑤 ∈𝑊 that is in 𝐺.W, the corresponding extension of

𝐺 is a read event reading from𝑤 , and for an element of𝑊 of the form OW (𝑥), the extension of 𝐺 is

a write event to 𝑥 (writing an arbitrary value).

Ensuring this consistency depends on the constraints of XRA and is thus different for SRA and

WRA. For SRA, we should ensure that 𝜏 is not already aware of some write that is mo-later than
some write of𝑊 , and that after reading from a write𝑤1 of𝑊 , thread 𝜏 will not become aware of

some write that is mo-later than some write𝑤2 that appears after𝑤1 in𝑊 . Formally:

Definition 7.2. A write list𝑊 is ⟨𝐺, 𝜏⟩-consistent for SRA if for every 1 ≤ 𝑘 ≤ |𝑊 |, we have

𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]).
ForWRA, we should ensure that (1) 𝜏 is not already aware of some write that is hb|loc-later than

some write of𝑊 ; (2) after reading from a write𝑤1 of𝑊 , 𝜏 will not become aware of some write

that is hb|loc-later than some write𝑤2 that appears after𝑤1 in𝑊 ; (3) if 𝜏 is already aware of some

write𝑤 to 𝑥 , then it cannot write to 𝑥 and then read from𝑤 ; and (4) if 𝜏 is becoming aware of some

write𝑤 to 𝑥 by reading from a write (not necessarily to 𝑥), it cannot later write to 𝑥 and then read

from𝑤 . In the following definition, the first two properties are covered by condition C1, and the

third and the fourth by conditions C2 and C3, respectively:

Definition 7.3. Awrite list𝑊 is ⟨𝐺, 𝜏⟩-consistent forWRA if for every 1 ≤ 𝑘 ≤ |𝑊 | with𝑊 (𝑘) ∈ E:

C1 𝑊 (𝑘) ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]).
C2 If𝑊 (𝑖) = OW (loc(𝑊 (𝑘))) for some 𝑖 < 𝑘 , then𝑊 (𝑘) ∉ dom(𝐺.hb? ; [E𝜏]).
C3 For every 𝑗 < 𝑘 , if𝑊 (𝑖) = OW (loc(𝑊 (𝑘))) for some 𝑗 < 𝑖 < 𝑘 , then ⟨𝑊 (𝑘),𝑊 (𝑗)⟩ ∉ 𝐺.hb?.

Now, ⋎ relates an loXRA state B with an execution graph 𝐺 if each option list in B has an

appropriate write list. For loWRA, we require in addition the existence of a mapping tidRMW : W →
Tid relating every write event to the unique thread that may read from it in an RMW event, and

enforce that tidRMW matches the execution graph𝐺 (the last requirement in the following definition).

Definition 7.4. A state B ∈ loXRA.Q matches an execution graph 𝐺 , denoted by B ⋎ 𝐺 , if:
• For SRA: for every 𝜏 ∈ Tid and 𝐿 ∈ B(𝜏), there exists a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿⟩-write-list.
• ForWRA: there exists a function tidRMW : W → Tid, such that the following hold:

– For every 𝜏 ∈ Tid and 𝐿 ∈ B(𝜏), there exists a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list.
– For every ⟨𝑤, 𝑒⟩ ∈ 𝐺.rf ; [RMW], we have tid(𝑒) = tidRMW (𝑤).

Equipped with these definitions, we show that every trace of opXRA is a trace of loXRA, and vice

versa. In one direction we will show a forward simulation from loXRA to opXRA and for the other

direction a backward simulation. Notice that 𝜀-transitions (using lower) do not affect reachability

of program states, and thus the trace equivalence ignores 𝜀-transitions.

Definition 7.5. Two traces are equivalent if their restrictions to non 𝜀-transitions are equal.

The next theorem encompasses the right-to-left direction of both Thm. 5.12 and Thm. 6.6.

Lemma 7.6. For every trace of loXRA there is an equivalent trace of opXRA.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:29

Proof sketch. We show that ⋎ constitutes a forward simulation relation from loXRA to opXRA.

First, the initial states clearly match: For SRA: we clearly have (𝜆𝜏 ∈ Tid. {𝜖}) ⋎ 𝐺0. For WRA: for

every B ∈ loWRA.Q0 we have B⋎𝐺0, since (using any function tidRMW : W → Tid) for every 𝜏 ∈ Tid

and 𝐿 ∈ B(𝜏), 𝐿 itself, having only write options, is a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list,
regardless of what 𝐺 is.

Now, suppose that B ⋎ 𝐺 and B 𝜏,𝑙−−→loXRA B′
for some 𝜏 ∈ Tid and 𝑙 ∈ Lab. We

show that there exists 𝐺 ′
such that B′ ⋎ 𝐺 ′

and 𝐺
𝜏,𝑙−−→opXRA 𝐺 ′

(as depicted on

the right).

B 𝐺

B′ 𝐺 ′

⋎

⋎
∃

𝜏, 𝑙 𝜏, 𝑙

Unfolding Def. 7.4:

• For SRA: For every 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋), let𝑊⟨𝜋,𝐿⟩ be a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list.
• For WRA: Let tidRMW : W → Tid be a function satisfying the conditions of Def. 7.4, and for every

𝜋 ∈ Tid and 𝐿 ∈ B(𝜋), let𝑊⟨𝜋,𝐿⟩ be a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list.
Consider the possible cases:

• write step, 𝑙 = W (𝑥, 𝑣W): We obtain𝐺 ′
by extending𝐺 with the appropriate write event𝑤 . Then,

using the write lists that exist for 𝐺 , we construct the required write lists for𝐺 ′
. For this matter,

let 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). Let 𝐿 be the option list in B(𝜋) from which 𝐿′ is constructed by

adding new read options; and 𝐿justify be the option list in B(𝜏) that justifies the positioning of the
new read options in 𝐿′. A write list𝑊 ′

for 𝐿′ is constructed as follows (we informally identify

read options with their indices in the corresponding list, but the intention should be clear):

– The new read options OR (𝜏, 𝑥, 𝑣W, _) in 𝐿′ (added by loXRA’s write step) are all mapped by𝑊 ′

to𝑤 (the new write event in 𝐺 ′
).

– Every read option 𝑜 in 𝐿′ that appears before the first added read option OR (𝜏, 𝑥, 𝑣W, _) is mapped

by𝑊 ′
to the same write it is mapped to by𝑊⟨𝜋,𝐿⟩ .

– Every other read option 𝑜 in 𝐿′ is mapped by𝑊 ′
to the po-maximal write between the write

event that 𝑜 is mapped to by𝑊⟨𝜋,𝐿⟩ and the write event that 𝑜 is mapped to by𝑊⟨𝜏,𝐿justify ⟩ . Here,
we use the fact that both𝑊⟨𝜋,𝐿⟩ and𝑊⟨𝜏,𝐿justify ⟩ map 𝑜 to a write event in 𝐺 of the same thread

(which is tid(𝑜)). Hence, the two mentioned writes are ordered by po. This construction
ensures that both corresponding writes in𝑊⟨𝜋,𝐿⟩ and in𝑊⟨𝜏,𝐿justify ⟩ have mo (in SRA) or hb|loc
(inWRA) to the write event that𝑊 ′

maps 𝑜 to.

Now, it is possible to show that any violation of consistency of𝑊 ′
(Definitions 7.2 and 7.3)

entails a violation of consistency of𝑊⟨𝜋,𝐿⟩ or of𝑊⟨𝜏,𝐿justify ⟩ . (For WRA, we use the function

tidRMW [𝑤 ↦→ 𝜋RMW] where 𝜋RMW is the RMW thread identifier of the read options added in the step.)

This establishes the required simulation invariant and shows that B′ ⋎ 𝐺 ′
.

• read step, 𝑙 = R (𝑥, 𝑣R): We obtain the graph 𝐺 ′
by extending 𝐺 with the appropriate read event

𝑟 . As 𝑟 ’s reads-from source in𝐺 ′
, we have multiple candidates: each option list 𝐿 in 𝜏 ’s potential

in B has to start with OR (𝜂, 𝑥, 𝑣R, _) for some (unique) 𝜂 ∈ Tid which is mapped by the write

list𝑊⟨𝜏,𝐿⟩ to some write event𝑤𝐿 of thread 𝜂 writing 𝑣R to 𝑥 . Among all these writes, we pick

the po-minimal one as the reads-from source of 𝑟 in 𝐺 ′
. Using the consistency of the write lists

for 𝐺 (in particular, condition C1 for WRA), we show that opXRA can indeed take the read step

from 𝐺 to 𝐺 ′
. In turn, write lists for 𝐺 ′

are obtained from those for 𝐺 in the straightforward

way (since no read options are added in this step). Their consistency is again derived from the

consistency of the𝑊⟨𝜏,𝐿⟩ lists for 𝐺 . Intuitively speaking, picking the po-minimal write as the

reads-from source of 𝑟 in𝐺 ′
, imposes on 𝜏 the weakest constraints in 𝐺 ′

, and allows us to prove

the consistency of the new write lists.

• rmw step, 𝑙 = RMW (𝑥, 𝑣R, 𝑣W): This case is handled by carefully combining the write and read

steps. We note that for SRA, each option list 𝐿 in 𝜏 ’s potential has to start with OR (_, 𝑥, 𝑣R, RMW),

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:30 Ori Lahav and Udi Boker

and thus, all these options are mapped by the corresponding write lists to the mo-maximal write

event to 𝑥 in 𝐺 . This ensures that opSRA can take the RMW step.

In turn, forWRA, we have to show that the reads-from source of the new RMW event in 𝐺 ′
is

not already read by another RMW. Here, we use the fact that each option list 𝐿 in 𝜏 ’s potential

has to start with OR (_, 𝑥, 𝑣R, 𝜏). Thus, the first write event in each of the corresponding write lists

is mapped by tidRMW to 𝜏 , which means that it is read by RMWs only by thread 𝜏 . Together with

C1, this implies that none of these write events is read by an RMW event, and so, opWRA can

take the RMW step (see also Remark 3).

Finally, for handling the lower step, suppose that B⋎𝐺 and B 𝜀−→loXRA B′
. To see that B′⋎𝐺 , we

adapt the write lists that exist forB to “skip” on all indices that were removed by the lower transition.

That is, if 𝑓 is an increasing function such that 𝐿′ (𝑘) = 𝐿(𝑓 (𝑘)) where 𝐿′ ∈ B′ (𝜏) and 𝐿 ∈ B(𝜏),
we derive a write list𝑊 ′

for 𝐿′ from the write list𝑊⟨𝜏,𝐿⟩ by setting:𝑊 ′ = 𝜆𝑘. 𝑊⟨𝜏,𝐿⟩ (𝑓 (𝑘)). Then,
the required properties of𝑊 ′

follow from the corresponding properties of𝑊 . □

For the converses (left-to-right direction of both Thm. 5.12 and Thm. 6.6), we favor backward
simulation, since loXRA requires to “guess” the future, and without knowing the target state, we

cannot construct the next step.

Lemma 7.7. For every trace of opXRA there is an equivalent trace of loXRA.

Proof sketch. We show that ⋎−1 constitutes a backward simulation from opXRA to loXRA.
10

The two first requirements of a backward simulation clearly hold for ⋎: (1) ⋎−1 is total, as for every
state 𝐺 of opXRA, we have (𝜆𝜏 ∈ Tid. {𝜖}) ⋎ 𝐺 . (2) Consider a state B of loXRA, such that B ⋎ 𝐺0.

By the definition of ⋎, it should be possible to link every read option of B to some write event of

𝐺0. Since there are no events in𝐺0, there cannot be read options in B, implying that B ∈ loXRA.Q0.

We move to the third requirement. Suppose that𝐺
𝜏,𝑙−−→opXRA 𝐺 ′

and B′ ⋎𝐺 ′
. We

construct a state B such that B 𝜏,𝑙−−→loXRA B′
and B ⋎ 𝐺 (depicted on the right).

B 𝐺

B′ 𝐺 ′

⋎

⋎

∃

𝜏, 𝑙 𝜏, 𝑙

Unfolding Def. 7.4:

• For SRA: For every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), let𝑊 ′
⟨𝜋,𝐿′ ⟩ be a ⟨𝐺

′, 𝜋⟩-consistent ⟨𝐺, 𝐿′⟩-write-list.
• For WRA: Let tidRMW : W → Tid be a function satisfying the conditions of Def. 7.4, and for every

𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), let𝑊 ′
⟨𝜋,𝐿′ ⟩ be a ⟨𝐺

′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list.
Consider the possible cases:

• write step, 𝑙 = W (𝑥, 𝑣W): Let𝑤 be the write event that is added in thread 𝜏 when opXRA moves

from 𝐺 to 𝐺 ′
. We obtain B by:

– Removing from every option list 𝐿′ ∈ B′ (𝜋) of every thread 𝜋 the read options that correspond

to the write event𝑤 in𝑊 ′
⟨𝜋,𝐿′ ⟩ .

– Adding to B(𝜏) “justifying lists”: For every list 𝐿′ ∈ B′ (𝜋) of every thread 𝜋 , we add to B(𝜏)
a list 𝐿 that is obtained from 𝐿′ by taking its suffix from the first read option that corresponds

to𝑤 in𝑊 ′
⟨𝜋,𝐿′ ⟩ , and removing from 𝐿 all read options that correspond to𝑤 in𝑊 ′

⟨𝜋,𝐿′ ⟩ .

– For WRA: we also add a write option OW (𝑥) in the beginning of every option list of 𝜏 .

Using the correlation between every option list 𝐿′ and the write list𝑊 ′
⟨𝜋,𝐿′ ⟩ , we are able to show

that B 𝜏,𝑙−−→loXRA B′
. It remains to show that B ⋎ 𝐺 , namely that for every thread 𝜋 and option

10
Recall that a backward simulation from an LTS 𝐴 to an LTS 𝐵 is a relation 𝑅 ⊆ 𝐴.Q × 𝐵.Q such that (1) 𝑅 is total (for

every 𝑞 ∈ 𝐴.Q, we have ⟨𝑞, 𝑝 ⟩ ∈ 𝑅 for some 𝑝 ∈ 𝐵.Q); (2) if ⟨𝑞, 𝑝 ⟩ ∈ 𝑅 and 𝑞 ∈ 𝐴.Q0, then 𝑝 ∈ 𝐵.Q0; and (3) if 𝑞
𝜎−→𝐴 𝑞′

and ⟨𝑞′, 𝑝′ ⟩ ∈ 𝑅, then there exists 𝑝 ∈ 𝐵.Q such that 𝑝
𝜎−→𝐵 𝑝′ and ⟨𝑞, 𝑝 ⟩ ∈ 𝑅.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:31

list 𝐿 ∈ B(𝜋), there exists an appropriate write-list𝑊 . Since every list 𝐿 ∈ B(𝜋) is obtained
from some list 𝐿′ ∈ B′ (𝜋), as described above, we can construct𝑊 , by removing from𝑊 ′

⟨𝜋,𝐿′ ⟩
the write events that correspond to the read options that where removed from 𝐿′ in the process

of generating 𝐿. (For WRA, we also add a write option OW (𝑥) in the beginning of𝑊 , in case that

𝜋 = 𝜏 .)

• read step, 𝑙 = R (𝑥, 𝑣R): Let 𝑟 be the read event that is added in thread 𝜏 when opXRAmoves from

𝐺 to𝐺 ′
, and𝑤 be the write event from which 𝑟 reads (i.e.,𝐺 ′ .rf = 𝐺.rf∪ {⟨𝑤, 𝑟 ⟩}). Let 𝑜 be the

read option given by 𝑜 ≜ OR (tid(𝑤), 𝑥, 𝑣R, R) for SRA and 𝑜 ≜ OR (tid(𝑤), 𝑥, 𝑣R, tidRMW (𝑤)) for
WRA. We obtain B by adding 𝑜 in the beginning of every option list 𝐿′ ∈ B′ (𝜏) of the reading
thread 𝜏 . By definition, we have B 𝜏,𝑙−−→loXRA B′

.

We show that B ⋎𝐺 . For every thread 𝜋 that is not the reading thread 𝜏 , we have that the option

lists in B(𝜋) are exactly the same as the lists in B′ (𝜋), and we can thus use for them the same

write lists as we have for B′ (𝜋). Now, every option list 𝐿 ∈ B(𝜏) of the reading thread 𝜏 is

obtained from some option list 𝐿′ ∈ B′ (𝜏). We define an appropriate write list𝑊 , by adding𝑤

at the beginning of the write list𝑊 ′
⟨𝜏,𝐿′ ⟩ . Following the preconditions of the read step in opXRA,

we are able to show that these write lists are indeed consistent.

• rmw step, 𝑙 = RMW (𝑥, 𝑣R, 𝑣W):
This case combines the proofs given for the read and write cases. In particular, since we consider

backward simulation, we obtain B by first manipulating B′
into an intermediate state B′′

according to the write case, and then manipulating B′′
into B according to the read step.

Observe, however, that the condition for performing the rmw step requires from B more than

the condition for performing the read step: the first read option in all option lists of B should

have the RMW flag for SRA and the same RMW-thread identifier forWRA. We generate B to

meet these requirements by changing the added read option 𝑜 , as defined above for the read

step, to have the RMW flag for SRA and the thread 𝜏 as the RMW-thread identifier for WRA

(since we add the same read option to all lists of B, they share the same RMW-thread identifier).

The write lists that witness B ⋎ 𝐺 are also defined by first generating, as in the write case, the

write lists that are consistent with respect to B′′
and from them, as in the read case, the write

lists that are consistent with respect to B. □

8 DECIDABILITY OF THE REACHABILITY PROBLEMS UNDER SRA ANDWRA

In this section, we solve the reachability problems under SRA andWRA using the framework of

well-structured transition systems. As in §7, whenever possible we speak of XRA, standing for both

SRA andWRA.

Given the equivalence between XRA and opXRA (Theorems 4.6 and 4.9) and Prop. 4.10, the

reachability problem under the declarative XRA model is reduced to reachability under opXRA.

In turn, given the equivalence between opXRA and loXRA (Theorems 5.12 and 6.6), to show the

decidability of the reachability problem under XRA, it suffices to establish the decidability of

reachability under loXRA. That is, for a concurrent program 𝑃 and a “bad state” 𝑝 ∈ 𝑃 .Q, we need
to check whether 𝑝 is reachable (see Def. 4.4) under the memory system loXRA.

To show the decidability of this problem, we use the framework of well-structured transition

systems. More precisely, we reduce reachability under loXRA to coverability in a well-structured

transition system that meets the conditions ensuring that coverability is decidable.

We start in §8.1 with preliminaries on well-structured transition systems, continue in §8.2 with

reformulation of the write step, which will be useful in §8.3, where we conclude with showing

that loXRA is indeed a well-structured transition system that admits the required properties.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:32 Ori Lahav and Udi Boker

8.1 Preliminaries on well-structured transition systems

We recall the relevant definitions and propositions about well-structured transition systems. We

refer the reader to [8, 25, 51] for a more detailed exposition.

A well-quasi-ordering (wqo) on a set 𝑆 is a reflexive and transitive relation ≾ on 𝑆 such that

for every infinite sequence 𝑠1, 𝑠2, ... of elements of 𝑆 , we have 𝑠𝑖 ≾ 𝑠 𝑗 for some 𝑖 < 𝑗 . In a context

of a set 𝑆 and a wqo ≾ on 𝑆 , the upward closure of a set 𝑈 ⊆ 𝑆 , denoted by ↑𝑈 , is given by

{𝑠 ∈ 𝑆 | ∃𝑢 ∈ 𝑈 . 𝑢 ≾ 𝑠}; a set𝑈 ⊆ 𝑆 is called upward closed if 𝑈 = ↑𝑈 ; and a set 𝐵 ⊆ 𝑈 is called a

basis of𝑈 if𝑈 = ↑𝐵. The properties of a wqo ensure that every upward closed set has a finite basis.
A well-structured transition system (WSTS) is an LTS 𝐴 equipped with a wqo ≾ on 𝐴.Q that is

compatible with 𝐴, that is: if 𝑞1 −→𝐴 𝑞2 and 𝑞1 ≾ 𝑞3, then there exists 𝑞4 ∈ 𝐴.Q such that 𝑞3 −→∗
𝐴
𝑞4

and 𝑞2 ≾ 𝑞4. The coverability problem for ⟨𝐴,≾⟩ asks whether an input state 𝑞 ∈ 𝐴.Q is coverable,
namely: is some state 𝑞′ with 𝑞 ≾ 𝑞′ reachable in 𝐴?

Coverability is decidable (see, e.g., [8, 25]) for a WSTS ⟨𝐴,≾⟩ provided that ≾ is decidable and
the following hold:

(i) effective initialization: there exists an algorithm that accepts a state 𝑞 ∈ 𝐴.Q and decides whether
↑{𝑞} ∩𝐴.Q0 = ∅.

(ii) effective pred-basis: there exists an algorithm that accepts a state 𝑞 ∈ 𝐴.Q and returns a finite

basis of ↑pred𝐴 (↑{𝑞}).
Roughly speaking, these conditions ensure that (1) backward reachability analysis from 𝑞 will

converge to a fixed point; (2) each step in its calculation is effective; and (3) we can check whether

the fixed point contains an initial state.

8.2 Backwards formulation of the write step

The following alternative formulation of the write step is convenient to use in our proofs. This

formulation “works backwards”—choosing read options to omit from the target state for reaching

the source state. Each such possibility is an “index choice”:

Definition 8.1. An index choice for a state B′ ∈ loXRA.Q is a function P assigning a set P(𝜋, 𝐿′) ⊆
{1, ... ,|𝐿′ |} to every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). An index choice P for B′ supports a ⟨𝜏, W (𝑥, 𝑣W)⟩-step,
denoted by P |=XRA ⟨𝜏, W (𝑥, 𝑣W)⟩, if the following hold for some (unique) 𝜋RMW ∈ Tid (in the case of

WRA) and every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋):
• For every 𝑘 ∈ P(𝜋, 𝐿′):
– For SRA: 𝐿′ (𝑘) ∈ {OR (𝜏, 𝑥, 𝑣W, R), OR (𝜏, 𝑥, 𝑣W, RMW)}.
– For WRA: 𝐿′ (𝑘) = OR (𝜏, 𝑥, 𝑣W, 𝜋RMW).

• For every 𝑘 ∈ {1, ... ,|𝐿′ |} \ P(𝜋, 𝐿′):
– For SRA: loc(𝐿′ (𝑘)) ≠ 𝑥 whenever at least one of the following hold:

∗ 𝑘 > 𝑝 for some 𝑝 ∈ P(𝜋, 𝐿′).
∗ 𝜋 = 𝜏 .

∗ rmw(𝐿′ (𝑘)) = RMW.
– For WRA: 𝐿′ (𝑘) ≠ OW (𝑥) whenever at least one of the following hold:

∗ 𝑝1 < 𝑘 < 𝑝2 for some 𝑝1, 𝑝2 ∈ P(𝜋, 𝐿′).
∗ 𝜋 = 𝜏 and 𝑘 < 𝑝 for some 𝑝 ∈ P(𝜋, 𝐿′).

The first condition requires that each read option included in the index choice corresponds to

a write by thread 𝜏 to location 𝑥 of value 𝑣W, and for WRA all the read options should also share

the same RMW thread identifier. The second condition requires that, besides the positions in the

index choice (i.e., for options that existed before the write step): For SRA—the location 𝑥 does not

appear in any list after the first position in P(𝜋, 𝐿′); the location 𝑥 does not appear at all in lists of

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:33

thread 𝜏 ; and options to read from 𝑥 are not RMW options. ForWRA—there are no write options to 𝑥

between two positions in the index choice, and for lists of thread 𝜏 there are also no write options

to 𝑥 before the first position in the index choice.

To formulate the justification requirement, we use the following notations:

Notation 8.2 (List filters). For a list 𝐿 and a set 𝑃 ⊆ {1, ... ,|𝐿 |} of positions in 𝐿, we define:

• 𝐿 \ 𝑃 is the list derived from 𝐿 by removing from it the positions in 𝑃 . The mapping of the

positions of 𝐿 that are not in 𝑃 to their matching positions in 𝐿 \ 𝑃 is denoted byMap⟨𝐿,𝑃 ⟩
(formally,Map⟨𝐿,𝑃 ⟩ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |} \ 𝑃 . 𝑘 − |{ 𝑗 ∈ 𝑃 | 𝑗 < 𝑘}|).

• 𝐿 \\ 𝑃 further removes from 𝐿 the positions before the first position in 𝑃 , namely returns the

list 𝐿\(𝑃 ∪ {1, ... ,min(𝑃) − 1}) (undefined if 𝑃 = ∅). Themapping of the positions of 𝐿 that are

not in 𝑃 and not before the first position in 𝑃 to their matching positions in 𝐿 \\ 𝑃 is denoted

byMMap⟨𝐿,𝑃 ⟩ (formally,MMap⟨𝐿,𝑃 ⟩ ≜ 𝜆𝑘 ∈ {min(𝑃), ... ,|𝐿 |} \ 𝑃 . Map⟨𝐿,𝑃 ⟩ (𝑘) −min(𝑃) + 1).

For example, for the option list of loSRA (used in Fig. 5)

𝐿′ = OR (T1, x, 0, R) OR (T1, x, 4, R) OR (T2, y, 3, R) OR (T1, y, 0, R) OR (T1, x, 4, R) OR (T2, y, 1, RMW)
and 𝑃 = {2, 5}, we have:

• 𝐿′ \ 𝑃 = OR (T1, x, 0, R) OR (T2, y, 3, R) OR (T1, y, 0, R) OR (T2, y, 1, RMW)
• Map⟨𝐿′,𝑃 ⟩ = [1 ↦→ 1; 3 ↦→ 2; 4 ↦→ 3; 6 ↦→ 4]
• 𝐿′ \\ 𝑃 = OR (T2, y, 3, R) OR (T1, y, 0, R) OR (T2, y, 1, RMW)
• MMap⟨𝐿′,𝑃 ⟩ = [3 ↦→ 1; 4 ↦→ 2; 6 ↦→ 3]

Definition 8.3. The source of B′
w.r.t. a thread 𝜏 and an index choice P for B′

, denoted by

src(B′, 𝜏,P), is given by:

src(B′, 𝜏,P) ≜ 𝜆𝜋 ∈ Tid.


{𝐿′ \ P(𝜋, 𝐿′) | 𝐿′ ∈ B′ (𝜋)} 𝜋 ≠ 𝜏

{𝐿′ \ P(𝜏, 𝐿′) | 𝐿′ ∈ B′ (𝜏)} ∪ 𝜋 = 𝜏

{𝐿′ \\ P(𝜂, 𝐿′) | 𝜂 ∈ Tid, 𝐿′ ∈ B′ (𝜂) such that P(𝜂, 𝐿′) ≠ ∅}

The following proposition follow directly from our definitions.

Proposition 8.4. B 𝜏,W (𝑥,𝑣W)−−−−−−−→loXRA B′ iff the following hold for some index choice P for B′:
• P |=XRA ⟨𝜏, W (𝑥, 𝑣W)⟩.
• src(B′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every 𝜋 ∈ Tid \ {𝜏}.
• For SRA: src(B′, 𝜏,P)(𝜏) ⊆ B(𝜏).
• ForWRA: OW (𝑥) · src(B′, 𝜏,P)(𝜏) ⊆ B(𝜏).

8.3 loXRA as a WSTS

We continue with showing that concurrent systems with loXRA serving as the memory system are

well-structured transition systems that satisfy the above requirements.

The ⊑ ordering on the states of loXRA (see Def. 5.8) is clearly decidable and also forms a wqo.

Indeed, by Higman’s lemma [26], ⊑ is a wqo on the set of all option lists. In turn, its lifting to

potentials (which are finite by definition) is a wqo on the set of all potentials (see [51]). Finally, by

Dickson’s lemma [22], the pointwise lifting of ⊑ to functions assigning a potential to every 𝜏 ∈ Tid

(i.e., states of loXRA) is also a wqo.

Now, let 𝑃 be a program. The ⊑ ordering is naturally lifted to states of the concurrent system

𝑃 ∥ loXRA (that is, pairs ⟨𝑝,B⟩ ∈ 𝑃 .Q × loXRA.Q; see Def. 4.3) by defining ⟨𝑝,B⟩ ⊑ ⟨𝑝′,B′⟩ iff
𝑝 = 𝑝

′
and B ⊑ B′

. We show next that 𝑃 ∥ loXRA equipped with ⊑ is indeed a WSTS that admits

the required conditions for having a decidable coverability problem.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:34 Ori Lahav and Udi Boker

Lemma 8.5. ⟨𝑃 ∥ loXRA, ⊑⟩ is a WSTS that admits effective initialization and effective pred-basis.

Proof.

• ⊑ is compatible with 𝑃 ∥ loXRA: First, since 𝑃 .Q is (by definition) finite and ⊑ is a wqo on

loXRA.Q, we have that ⊑ is a wqo on (𝑃 ∥ loXRA).Q. Second, since lower is explicitly included

in loXRA, ⊑ is trivially compatible with 𝑃 ∥ loXRA. Indeed, given 𝑞1 = ⟨𝑝
1
,B1⟩, 𝑞2 = ⟨𝑝

2
,B2⟩

and 𝑞3 = ⟨𝑝
3
,B3⟩ such that 𝑞1 −→𝑃 ∥ loXRA 𝑞2 and 𝑞1 ⊑ 𝑞3 (so 𝑝

1
= 𝑝

3
), for 𝑞4 = 𝑞2, we have

𝑞3 −→∗
𝑃 ∥ loXRA 𝑞4 (since B3

𝜀−→loXRA B1 using the lower step) and 𝑞2 ⊑ 𝑞4.

• Effective initialization: 𝑃 ∥ loXRA trivially admits effective initialization. Indeed, the states

⟨𝑝,B⟩ for which ↑{⟨𝑝,B⟩} ∩ (𝑃 ∥ loXRA).Q0 ≠ ∅ are exactly the initial states themselves—

𝑃 .Q0 × loXRA.Q0.
• Effective pred-basis: To prove that 𝑃 ∥ loXRA has effective pred-basis, it suffices to show

how to calculate a finite basis 𝑄𝛼
of ↑pred𝛼

loXRA
(↑{B′}) for each 𝛼 of the form ⟨𝜏, W (𝑥, 𝑣W)⟩,

⟨𝜏, R (𝑥, 𝑣R)⟩, ⟨𝜏, RMW (𝑥, 𝑣R, 𝑣W)⟩ or 𝜀. Then, a finite basis of ↑pred𝛼𝑃 ∥ loXRA (↑{⟨𝑝
′
,B′⟩}) is given by

pred
𝛼
𝑃 ({𝑝

′}) ×𝑄𝛼
for 𝛼 ≠ 𝜀; and by {𝑝′} ×𝑄𝛼

for 𝛼 = 𝜀 (silent memory step). In addition, for a

silent program step, a finite basis of ↑pred⟨𝜏,𝜀 ⟩
𝑃 ∥ loXRA (↑{⟨𝑝

′
,B′⟩}) is given by pred

⟨𝜏,𝜀 ⟩
𝑃

({𝑝′}) × {B′}.
Silent memory step The set of predecessors of B′

with respect to a silent memory step (i.e.,

using lower) is very simple—it contains any state B such that B′ ⊑ B. Thus, {B′} is a finite
basis of ↑pred𝜀

loXRA
({B′}).

Read We split the handling of loSRA and loWRA.

– For loSRA: A predecessorB ofB′
with respect to a read stepB is similar toB′

, except for hav-

ing in each option list of 𝜏 an additional first read option 𝑜 with loc(𝑜) = 𝑥 and val(𝑜) = 𝑣R.

Hence, for 𝛼 = ⟨𝜏, R (𝑥, 𝑣R)⟩, the set {B′ [𝜏 ↦→ OR (𝜏W, 𝑥, 𝑣R, 𝑢) · B′ (𝜏)] | 𝜏W ∈ Tid, 𝑢 ∈ {R, RMW}}
is a finite basis of ↑pred𝛼

loSRA
({B′}). It is also a basis of ↑pred𝛼

loSRA
(↑{B′}): For a state

B′′
with B′ ⊑ B′′

, a corresponding read option OR (𝜏W, 𝑥, 𝑣R, 𝑢) appears in the lists of 𝜏

in pred
𝛼
loSRA

({B′′}) before some additional read options, ensuring that pred
𝛼
loSRA

({B′}) ⊑
pred

𝛼
loSRA

({B′′}).
– For loWRA: The calculation is almost the same as for loSRA, with the only difference that for

𝛼 = ⟨𝜏, R (𝑥, 𝑣R)⟩, the set {B′ [𝜏 ↦→ OR (𝜏W, 𝑥, 𝑣R, 𝜋RMW) · B′ (𝜏)] | 𝜏W, 𝜋RMW ∈ Tid} is a finite basis
of ↑pred⟨𝜏,R (𝑥,𝑣R) ⟩

loWRA
({B′}).

Write We construct the basis of the predecessors w.r.t. a write step by considering all (finitely

many) possibilities of omitting read options from lists of B′
, using Prop. 8.4 and the following

technical lemma, which shows that if B′ ⊑ B′′
then for every source state src(B′′, 𝜏,P′′) of

B′′
there exists a source state src(B′, 𝜏,P′) of B′

, such that src(B′, 𝜏,P′) ⊑ src(B′′, 𝜏,P′′).
Lemma 8.6. Let P′′ be an index choice for B′′ ∈ loXRA.Q such that P′′ |=XRA ⟨𝜏, W (𝑥, 𝑣W)⟩.
If B′ ⊑ B′′, then src(B′, 𝜏,P′) ⊑ src(B′′, 𝜏,P′′) for some index choice P′ for B′ such that
P′ |=XRA ⟨𝜏, W (𝑥, 𝑣W)⟩.
Proof. Since B′ ⊑ B′′

, for every 𝜋 ∈ Tid, there exists a function 𝐹𝜋 : B′ (𝜋) → B′′ (𝜋)
such that for every 𝐿′ ∈ B′ (𝜋), we have 𝐿′ ⊑ 𝐹𝜋 (𝐿′), witnessed by a strictly increasing

function 𝑓⟨𝜋,𝐿′ ⟩ : {1, ... ,|𝐿′ |} → {1, ... ,|𝐹𝜋 (𝐿′) |}, such that 𝐿′ (𝑘) = (𝐹𝜋 (𝐿′)) (𝑓⟨𝜋,𝐿′ ⟩ (𝑘)) for
every 𝑘 ∈ {1, ... ,|𝐿′ |}.
We define P′

to be the positions in P′′
that originated in B′

, according to the 𝑓⟨𝜋,𝐿′ ⟩ functions.
That is,

P′ ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋) . {𝑘 ∈ {1, ... ,|𝐿′ |} | 𝑓⟨𝜋,𝐿′ ⟩ (𝑘) ∈ P′′ (𝜋, 𝐹𝜋 (𝐿′))}.
It is easy to verify that P′

supports a ⟨𝜏, W (𝑥, 𝑣W)⟩-step. Let B′
0
= src(B′, 𝜏,P′). We show that

B′
0
⊑ src(B′′, 𝜏,P′′).

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:35

Recall that for every thread 𝜋 ∈ Tid, we have that every list 𝐿′
0
∈ B′

0
(𝜋) is equal to 𝐿′ \P′ (𝜋, 𝐿′)

(or resp. to 𝐿′ \\ P′ (𝜂, 𝐿′)) for some list 𝐿′ of B′ (𝜋) (resp. for some list 𝐿′ of B′ (𝜂) for some

𝜂 ∈ Tid with P′ (𝜂, 𝐿′) ≠ ∅). Hence, we can define a function 𝐻𝜋 : B′
0
(𝜋) → src(B′′, 𝜏,P′′) (𝜋),

by setting 𝐻𝜋 (𝐿′0) = 𝐹𝜋 (𝐿′) \ P′′ (𝜋, 𝐹𝜋 (𝐿′)). Observe that for every 𝐿′
0
∈ B′

0
(𝜋), we have

𝐿′
0
⊑ 𝐻𝜋 (𝐿′0), witnessed by the function ℎ⟨𝜋,𝐿′

0
⟩ : {1, ... ,|𝐿′0 |} → {1, ... ,|𝐻𝜋 (𝐿′0) |} that adapts

𝑓⟨𝜋,𝐿′ ⟩ to the positions of 𝐿′
0
that originated from 𝐿′. Namely, for every 𝑘 ∈ {1, ... ,|𝐿′

0
|}, the

value of ℎ⟨𝜋,𝐿′
0
⟩ (𝑘) is the position in 𝐻𝜋 (𝐿′0) that corresponds (according to P′′

) to the position

in 𝐹𝜋 (𝐿′) that is the value of 𝑓⟨𝜋,𝐿′ ⟩ on the position in 𝐿′ that corresponds (according to P′
) to

𝑘 . Formally,

ℎ⟨𝜋,𝐿′
0
⟩ (𝑘) ≜ Map⟨𝐹𝜋 (𝐿′),P′′ (𝜋,𝐹𝜋 (𝐿′)) ⟩ (𝑓⟨𝜋,𝐿′ ⟩ (Map

−1
⟨𝐿′,P′ (𝜋,𝐿′) ⟩ (𝑘))).

(Respectively, we define 𝐻𝜋 (𝐿′0) = 𝐹𝜂 (𝐿′) \\ P′′ (𝜂, 𝐹𝜂 (𝐿′))), witnessed analogously.) □

By Prop. 8.4 and Lemma 8.6, we get a finite basis of ↑pred⟨𝜏,W (𝑥,𝑣W) ⟩
loXRA

(↑{B′}), given by:

– For SRA: {src(B′, 𝜏,P) |P ∈ 𝑆SRA (B′, 𝜏, 𝑥, 𝑣W)}
– For WRA: {src(B′, 𝜏,P)[𝜏 ↦→ OW (𝑥) · src(B′, 𝜏,P)(𝜏)] |P ∈ 𝑆WRA (B′, 𝜏, 𝑥, 𝑣W)}
where: 𝑆XRA (B′, 𝜏, 𝑥, 𝑣W) = {P | P is an index choice for B′

such that P |=XRA ⟨𝜏, W (𝑥, 𝑣W)⟩}.
Indeed, Prop. 8.4 provides the direct correspondence between the source states and prede-

cessor states of B′
; the left upward closure of ↑pred⟨𝜏,W (𝑥,𝑣W) ⟩

loXRA
(↑{B′}) preserves the equiva-

lence, since a finite basis refers by definition to an upward closed set; and Lemma 8.6 shows

that the equivalence holds also with the right upward closure: if B′ ⊑ B′′
then for every

source state src(B′′, 𝜏,P′′) of B′′
there exists a source state src(B′, 𝜏,P′) of B′

, such that

src(B′, 𝜏,P′) ⊑ src(B′′, 𝜏,P′′).
RMW The predecessor with respect to an RMW step intuitively combines the predecessors

with respect to the read and write steps. By Prop. 8.4 and Lemma 8.6, we get that the following

is a finite basis of ↑pred⟨𝜏,RMW (𝑥,𝑣R,𝑣W) ⟩
loXRA

(↑{B′}):
– For SRA: {src(B′, 𝜏,P)[𝜏 ↦→ OR (𝜏W, 𝑥, 𝑣R, RMW) · src(B′, 𝜏,P)(𝜏)] |P ∈ 𝑆SRA (B′, 𝜏, 𝑥, 𝑣W)}
– ForWRA: {src(B′, 𝜏,P)[𝜏 ↦→ OR (𝜏W, 𝑥, 𝑣R, 𝜏) · OW (𝑥) · src(B′, 𝜏,P)(𝜏)] |P ∈ 𝑆WRA (B′, 𝜏, 𝑥, 𝑣W)}
where: 𝑆XRA (B′, 𝜏, 𝑥, 𝑣W) = {P | P is an index choice for B′

such that P |=XRA ⟨𝜏, W (𝑥, 𝑣W)⟩}.
□

It is now easy to establish the decidability of reachability under loSRA and under loWRA.

Theorem 8.7 (loSRA and loWRA reachability). Given a program 𝑃 and a state 𝑝 ∈ 𝑃 .Q, it is
decidable to check whether 𝑝 is reachable (see Def. 4.4) under the memory systems loSRA and loWRA.

Proof. Since the first component (the program state) in ⊑-ordered pairs of 𝑃 ∥ loXRA’s states is
equal, reachability under loXRA is reduced to coverability in 𝑃 ∥ loXRA w.r.t. ⊑ (a.k.a. control-state
reachability), which is decidable by Lemma 8.5 and the results of [8]. □

Corollary 8.8. The SRA and WRA reachability problems are decidable.

Proof. Directly follows from Theorems 4.9 and 5.12 (for SRA) or Theorems 4.6 and 6.6 (for

WRA), as well as Prop. 4.10 and Thm. 8.7. □

Corollary 8.9 (RA race-free reachability). Given a program 𝑃 such that every SRA-consistent
execution graph that is generated by 𝑃 is write/write-race free (see Def. 3.11), and a state 𝑝 ∈ 𝑃 .Q, it is
decidable to check whether 𝑝 is reachable under RA.

Proof. Directly follows from Thm. 3.12 and Corollary 8.8. □

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:36 Ori Lahav and Udi Boker

9 RELATEDWORK

Decidability results. The reachability problem was previously investigated for TSO—the “total

store ordering” model of x86 multiprocessors. TSO is a multi-copy-atomic model stronger than

any of the models studied here (in particular it disallows the weak behavior of the IRIW program

in Ex. 3.5). Atig et al. [12, 13] established the decidability of the problem (and a non-primitive

recursive lower bound) by reducing it to (and from) reachability in lossy channel systems. Since

causal consistency models are not multi-copy atomic and they lack any notion of a global mapping

from locations to values, the idea behind their reduction to reachability in lossy channel system

cannot be applied for the models studied here. Notably, unlike TSO and other (less realistic) models

studied in [13], the models studied in the current paper cannot be fully explained by program

transformations (instruction reordering and merging) [39]. On the other hand, the reduction of

[12] from reachability in lossy channel systems to reachability under TSO, which establishes the

non-primitive recursive lower bound, applies as is to the causal models.

More recently, Abdulla et al. [4] greatly simplified the previous proofs for TSO (and demonstrated

much better practical running times on certain benchmarks) by developing and utilizing a “load-

buffer” semantics for TSO. Load-buffers are roughly similar to our potential lists, but while load

buffers are FIFO queues, our lists necessarily allow the insertion of future reads at different positions,

subject to certain (novel) conditions ensuring that causal consistency is not violated. In addition,

while the “load-buffer” semantics for TSO includes a global machine memory, our causal consistency

semantics are, roughly speaking, based on point-to-point communication, allowing our “shared-

memory causality principle” to govern the interactions between threads. Finally, our semantics

employs more than one option list per thread, while the “load-buffer” semantics for TSO has exactly

one buffer of reads per thread.

Undecidability results. Abdulla et al. [2] proved the undecidability of safety verification under

RA using a reduction from Post correspondence problem. More recently, in [5] the reachability

problem was shown to be undecidable for the relaxed fragment of PS 2.0 (a version of the promising

semantics) [41], and in [3] undecidability was established for the full POWER model as well.

Causal consistency and its related verification problems. Different causally consistent shared-

memorymodels, their verification problems and approaches to address these problemswere recently

outlined in [34], where the problems we resolve here were left open. Operational “message-passing”

semantics for SRAwas developed in [36], but it is inadequate for our purposes since making it “lossy”

would affect its allowed outcomes. Verification of programs under causal consistency (especially

under RA) has received considerable amount of attention in recent years. The different approaches

include (non-automated) program logics [23, 29, 38, 55, 56], (bounded) model checking [2, 6, 31, 42]

and robustness verification [18, 37, 47]. The latter reduces the verification problem to the verification

under sequential consistency and the verification of the program’s robustness against causal

consistency. Thus, this approach cannot work for programs that meet their safety specification

but still exhibit non-sequentially-consistent behaviors. Finally, the problem asking whether a

given implementation provides causal consistency guarantees was studied in [17]. It is, however,

completely independent from verification of client programs assuming causal consistency, as we

study here.

10 CONCLUSION AND FUTUREWORK

We have established the decidability of reachability under two main causal consistency models, SRA

andWRA. To do so, we developed novel operational semantics for the two models that are based

on the notion of thread potentials and meet the requirements for decidability of the framework of

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:37

well-structured transition systems. Besides the theoretical interest, Abdulla et al. [4] demonstrate

that similar verification procedures (also of non-primitive recursive complexity) may be actually

practical for challenging (even though naturally quite small) algorithms and synchronization

mechanisms. We plan to explore this in the future.

In contrast to our results, reachability is undecidable under RA, the C/C++11’s causal consistency

model [2]. Intuitively, this stems from the fact that RA requires one to maintain mo separately from

the execution order, while SRA allows the execution of writes following hb ∪ mo, andWRA does

not use mo at all. More concretely, to support RA, the condition of loSRA that ensures that writes to

each location 𝑥 cannot execute when there are options to read 𝑥 in the thread’s potential has to

be weakened (see Ex. 5.10). In turn, the conditions of loWRA are too weak, as they, in particular,

do not ensure that all threads observe the writes to each location 𝑥 in a way that is consistent

across all threads (see Ex. 6.1). Finding alternative conditions on the write steps that will capture

conditions closer to those of RA (either from above, like SRA, or from below, likeWRA) is rather

delicate and left to future work. In particular, we note that while the undecidability of RA implies

that no similar WSTS can be developed for RA, the existing reduction that shows undecidability

crucially relies on RMWs, and the decidability of RA without RMW operations is (to the best of our

knowledge) still open.

We note that since SRA,RA andWRA coincide onwrite/write-race-free programs, andwrite/write-

race freedom can be checked under SRA (Thm. 3.12), our result allows the verification of safety

properties under RA for this class of programs. Concurrent separation logics [29, 55, 56], designed

for verification under RA, are also essentially limited to reason only about write/write-race-free

programs and stateless model checking is significantly simpler with this assumption (see [31,

§5 and Remark 3]). We also note that it is straightforward to support C/C++11’s non-atomics,

with “catch-fire” semantics (i.e., data races are errors) in addition to release/acquire accesses and

sequentially consistent fences (which are modeled as RMWs as in Ex. 3.9). Indeed, as demonstrated

in [29], it suffices to check for data races assuming RA semantics. Supporting other features of

C/C++11, such as relaxed and sequentially consistent accesses, is left to future work.

We believe that the potential-based semantics—both specifically for SRA and WRA and as a

general idea for operational semantics—may be of independent interest in the development of

verification techniques for programs running under weak consistency, including program logics and

model-checking techniques. In particular, we are interested in developing abstraction techniques,

as was done for TSO and similar buffer-based models (see, e.g., [33, 53]). Other directions for

future work include handling other variants of causally consistent shared-memory (see, e.g., [17]),

supporting transactions (to enable, e.g., full verification of client programs under PSI, see §3.1) and

studying verification of parametrized programs under causal consistency (which is decidable for

TSO [4, 7]).

REFERENCES

[1] Parosh Aziz Abdulla. 2010. Well (and better) quasi-ordered transition systems. The Bulletin of Symbolic Logic 16, 4
(2010), 457–515. http://www.jstor.org/stable/40961367

[2] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankaranarayanan Krishna. 2019. Verification of

programs under the release-acquire semantics. In PLDI. ACM, New York, NY, USA, 1117–1132. https://doi.org/10.

1145/3314221.3314649

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, Egor Derevenetc, Carl Leonardsson, and Roland Meyer.

2021. On the state reachability problem for concurrent programs under Power. In NETYS. Springer International
Publishing, Cham, 47–59.

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo. 2018. A load-buffer semantics for

total store ordering. Logical Methods in Computer Science Volume 14, Issue 1 (Jan. 2018). https://doi.org/10.23638/LMCS-

14(1:9)2018

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

http://www.jstor.org/stable/40961367
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.23638/LMCS-14(1:9)2018
https://doi.org/10.23638/LMCS-14(1:9)2018

0:38 Ori Lahav and Udi Boker

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis. 2021. The decidability

of verification under PS 2.0. In ESOP. Springer International Publishing, Cham, 1–29.

[6] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal stateless model

checking under the release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA, Article 135 (Oct. 2018), 29 pages.
https://doi.org/10.1145/3276505

[7] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Rojin Rezvan. 2019. Parameterized verification under TSO is

PSPACE-complete. Proc. ACM Program. Lang. 4, POPL, Article 26 (Dec. 2019), 29 pages. https://doi.org/10.1145/3371094
[8] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. 2000. Algorithmic analysis of programswithwell

quasi-ordered domains. Information and Computation 160, 1 (2000), 109 – 127. https://doi.org/10.1006/inco.1999.2843

[9] Sarita V. Adve and Mark D. Hill. 1990. Weak ordering—a new definition. In ISCA. ACM, New York, NY, USA, 2–14.

https://doi.org/10.1145/325164.325100

[10] Jade Alglave, LucMaranget, andMichael Tautschnig. 2014. Herding cats: modelling, simulation, testing, and data mining

for weak memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

[11] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-monotonic snapshot isolation: Scalable and strong

consistency for geo-replicated transactional systems. In SRDS. IEEE Computer Society, Washington, DC, USA, 163–172.

https://doi.org/10.1109/SRDS.2013.25

[12] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the verification

problem for weak memory models. In POPL. ACM, New York, NY, USA, 7–18. https://doi.org/10.1145/1706299.1706303

[13] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2012. What’s decidable

about weak memory models?. In ESOP. Springer-Verlag, Berlin, Heidelberg, 26–46. https://doi.org/10.1007/978-3-642-

28869-2_2

[14] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The problem of

programming language concurrency semantics. In ESOP. Springer, Berlin, Heidelberg, 283–307. https://doi.org/10.

1007/978-3-662-46669-8_12

[15] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In

POPL. ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1925844.1926394

[16] Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against consistency models with atomic visibility. In

CONCUR. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:15. https://doi.org/10.4230/

LIPIcs.CONCUR.2016.7

[17] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On verifying causal consistency. In POPL.
ACM, New York, NY, USA, 626–638. https://doi.org/10.1145/3009837.3009888

[18] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. 2018. Static serializability analysis for causal

consistency. In PLDI. ACM, New York, NY, USA, 90–104. https://doi.org/10.1145/3192366.3192415

[19] Sebastian Burckhardt. 2014. Principles of eventual consistency. Found. Trends Program. Lang. 1, 1-2 (Oct. 2014), 1–150.
https://doi.org/10.1561/2500000011

[20] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2015. Transaction chopping for parallel snapshot isolation. In

DISC. Springer-Verlag, Berlin, Heidelberg, 388–404. https://doi.org/10.1007/978-3-662-48653-5_26

[21] Andrea Cerone, Alexey Gotsman, and Hongseok Yang. 2017. Algebraic laws for weak consistency. In CONCUR. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 26:1–26:18. https://doi.org/10.4230/LIPIcs.CONCUR.

2017.26

[22] Leonard Eugene Dickson. 1913. Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime

Factors. American Journal of Mathematics 35, 4 (1913), 413–422. http://www.jstor.org/stable/2370405

[23] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2019. Verifying C11 programs operationally. In

PPoPP. ACM, New York, NY, USA, 355–365. https://doi.org/10.1145/3293883.3295702

[24] Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding data races in space and time. In PLDI.
ACM, New York, NY, USA, 242–255. https://doi.org/10.1145/3192366.3192421

[25] Alain Finkel and Philippe Schnoebelen. 2001. Well-structured transition systems everywhere! Theoretical Computer
Science 256, 1 (2001), 63 – 92. https://doi.org/10.1016/S0304-3975(00)00102-X

[26] Graham Higman. 1952. Ordering by Divisibility in Abstract Algebras. Proceedings of the London Mathematical Society
s3-2, 1 (1952), 326–336. https://doi.org/10.1112/plms/s3-2.1.326

[27] ISO/IEC 14882:2011. 2011. Programming language C++.

[28] ISO/IEC 9899:2011. 2011. Programming language C.

[29] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong logic for weak

memory: Reasoning about release-acquire consistency in Iris. In ECOOP. Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, Dagstuhl, Germany, 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

[30] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for

Relaxed-Memory Concurrency. In POPL. ACM, New York, NY, USA, 175–189. https://doi.org/10.1145/3009837.3009850

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/10.1145/3276505
https://doi.org/10.1145/3371094
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/2627752
https://doi.org/10.1109/SRDS.2013.25
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1561/2500000011
https://doi.org/10.1007/978-3-662-48653-5_26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
https://doi.org/10.4230/LIPIcs.CONCUR.2017.26
http://www.jstor.org/stable/2370405
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1016/S0304-3975(00)00102-X
https://doi.org/10.1112/plms/s3-2.1.326
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850

What’s Decidable about Causally Consistent Shared Memory? 0:39

[31] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective stateless model

checking for C/C++ concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017), 32 pages. https:

//doi.org/10.1145/3158105

[32] Dexter Kozen. 1977. Lower bounds for natural proof systems. In SFCS. IEEE Computer Society, Washington, 254–266.

https://doi.org/10.1109/SFCS.1977.16

[33] Michael Kuperstein, Martin Vechev, and Eran Yahav. 2011. Partial-coherence abstractions for relaxed memory models.

In PLDI. ACM, New York, NY, USA, 187–198. https://doi.org/10.1145/1993498.1993521

[34] Ori Lahav. 2019. Verification under causally consistent shared memory. ACM SIGLOG News 6, 2 (April 2019), 43–56.
https://doi.org/10.1145/3326938.3326942

[35] Ori Lahav and Udi Boker. 2020. Decidable verification under a causally consistent shared memory. In PLDI. ACM, New

York, NY, USA, 211–226. https://doi.org/10.1145/3385412.3385966

[36] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming release-acquire consistency. In POPL. ACM, New

York, NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

[37] Ori Lahav and Roy Margalit. 2019. Robustness against release/acquire semantics. In PLDI. ACM, New York, NY, USA,

126–141. https://doi.org/10.1145/3314221.3314604

[38] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries reasoning for weak memory models. In ICALP. Springer-Verlag,
Berlin, Heidelberg, 311–323. https://doi.org/10.1007/978-3-662-47666-6_25

[39] Ori Lahav and Viktor Vafeiadis. 2016. Explaining relaxed memory models with program transformations. In FM.

Springer, Cham, 479–495. https://doi.org/10.1007/978-3-319-48989-6_29

[40] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency

in C/C++11. In PLDI. ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

[41] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.

2020. Promising 2.0: global optimizations in relaxed memory concurrency. In PLDI. ACM, New York, NY, USA, 362–376.

https://doi.org/10.1145/3385412.3386010

[42] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: Certified causally consistent distributed key-value

stores. In POPL. ACM, New York, NY, USA, 357–370. https://doi.org/10.1145/2837614.2837622

[43] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012. Making

geo-replicated systems fast as possible, consistent when necessary. In OSDI. USENIX Association, Berkeley, CA, USA,

265–278. http://dl.acm.org/citation.cfm?id=2387880.2387906

[44] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual:

Scalable causal consistency for wide-area storage with COPS. In SOSP. ACM, New York, NY, USA, 401–416. https:

//doi.org/10.1145/2043556.2043593

[45] Mapping 2019. C/C++11 mappings to processors. Retrieved July 3, 2019 from http://www.cl.cam.ac.uk/~pes20/cpp/

cpp0xmappings.html

[46] Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A tutorial introduction to the ARM and POWER relaxed memory

models. http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[47] Kartik Nagar and Suresh Jagannathan. 2018. Automated detection of serializability violations under weak consistency.

In CONCUR. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 41:1–41:18. https://doi.org/10.

4230/LIPIcs.CONCUR.2018.41

[48] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model: x86-TSO. In TPHOLs. Springer,
Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

[49] Azalea Raad, Ori Lahav, and Viktor Vafeiadis. 2018. On parallel snapshot isolation and release/acquire consistency. In

ESOP. Springer, Berlin, Heidelberg, 940–967. https://doi.org/10.1007/978-3-319-89884-1_33

[50] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multipro-

cessors. In PLDI. ACM, New York, NY, USA, 175–186. https://doi.org/10.1145/1993498.1993520

[51] Sylvain Schmitz and Philippe Schnoebelen. 2012. Algorithmic aspects of WQO theory. (Aug. 2012). https://cel.archives-

ouvertes.fr/cel-00727025 Lecture notes.

[52] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems.

In SOSP. ACM, New York, NY, USA, 385–400. https://doi.org/10.1145/2043556.2043592

[53] Thibault Suzanne and Antoine Miné. 2016. From array domains to abstract interpretation under store-buffer-based

memory models. In SAS. Springer, Berlin, Heidelberg, 469–488.
[54] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent W. Welch. 1994. Session

guarantees for weakly consistent replicated data. In PDIS. IEEE Computer Society, Washington, DC, USA, 140–149.

http://dl.acm.org/citation.cfm?id=645792.668302

[55] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigating weak memory with ghosts, protocols, and

separation. In OOPSLA. ACM, New York, NY, USA, 691–707. https://doi.org/10.1145/2660193.2660243

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1145/1993498.1993521
https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/2837614.2837622
http://dl.acm.org/citation.cfm?id=2387880.2387906
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2043556.2043593
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-319-89884-1_33
https://doi.org/10.1145/1993498.1993520
https://cel.archives-ouvertes.fr/cel-00727025
https://cel.archives-ouvertes.fr/cel-00727025
https://doi.org/10.1145/2043556.2043592
http://dl.acm.org/citation.cfm?id=645792.668302
https://doi.org/10.1145/2660193.2660243

0:40 Ori Lahav and Udi Boker

[56] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: A program logic for C11 concurrency. In

OOPSLA. ACM, New York, NY, USA, 867–884. https://doi.org/10.1145/2509136.2509532

[57] Paolo Viotti and Marko Vukolić. 2016. Consistency in non-transactional distributed storage systems. ACM Comput.
Surv. 49, 1, Article 19 (June 2016), 34 pages. https://doi.org/10.1145/2926965

[58] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically comparing memory

consistency models. In POPL. ACM, New York, NY, USA, 190–204. https://doi.org/10.1145/3009837.3009838

A FULL EQUIVALENCE PROOFS

In this appendix, we provide full proofs of Lemmas 7.6 and 7.7, first for SRA and then for WRA.

Our proofs assume the alternative definition of loXRA’s write steps that is given in Prop. 8.4.

A.1 Equivalence of loSRA and opSRA

Lemma A.1. For every trace of loSRA there is an equivalent trace of opSRA.

Proof. As described in §7, we show that ⋎ constitutes a forward simulation relation from loSRA

to opSRA. We detail here the simulation step. Suppose that B ⋎ 𝐺 and B 𝜏,𝑙−−→loSRA B′
for some

𝜏 ∈ Tid and 𝑙 ∈ Lab. We show that there exists 𝐺 ′
such that B′ ⋎ 𝐺 ′

and 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

. Consider

the possible cases:

• write step, 𝑙 = W (𝑥, 𝑣W):
Let 𝑤 = NextEvent(𝐺.E, 𝜏, 𝑙). Let 𝐺 ′

be the execution graph defined by 𝐺 ′ .E = 𝐺.E ∪ {𝑤},
𝐺 ′ .rf = 𝐺.rf and 𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}). By definition, we have 𝐺

𝜏,𝑙−−→opSRA 𝐺 ′
. We

show that B′ ⋎ 𝐺 ′
. By Prop. 8.4, since B 𝜏,𝑙−−→loSRA B′

, there exists an index choice P for B′

such that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩. and src(B′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every 𝜋 ∈ Tid. Let 𝜋 ∈ Tid and

𝐿′ ∈ B′ (𝜋). We construct a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
. Let 𝑃 ≜ P(𝜋, 𝐿′), 𝐿 ≜ 𝐿′ \𝑃 ,

𝑓 ≜ Map⟨𝐿′,𝑃 ⟩ , 𝐿𝜏 ≜ 𝐿′ \\ 𝑃 and 𝑓𝜏 ≜ MMap⟨𝐿′,𝑃 ⟩ (the last two are only defined if 𝑃 ≠ ∅).
Since B ⋎ 𝐺 , there exist a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊 , and a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿𝜏 ⟩-
write-list𝑊𝜏 . We define𝑊 ′

as follows:

𝑊 ′ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}.


𝑤 𝑘 ∈ 𝑃

𝑊 (𝑓 (𝑘)) 𝑘 < min(𝑃)
max𝐺.mo{𝑊 (𝑓 (𝑘)),𝑊𝜏 (𝑓𝜏 (𝑘))} otherwise

It is easy to see that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list. In particular, to show that rmw(𝐿′ (𝑘)) = RMW

implies𝑊 ′ (𝑘) ∉ dom(𝐺 ′ .mo), we use the fact that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩, and so for every 𝑘 ∈
{1, ... ,|𝐿′ |} \ 𝑃 , we have that rmw(𝐿′ (𝑘)) = RMW implies loc(𝐿′ (𝑘)) ≠ 𝑥 .

We show that𝑊 ′
is ⟨𝐺 ′, 𝜋⟩-consistent.

Let 1 ≤ 𝑘 ≤ |𝐿′ |. We prove that 𝑊 ′ (𝑘) ∉ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘}]).
Suppose otherwise. First, note that we cannot have 𝑘 ∈ 𝑃 , since𝑤 is a maximal element in𝐺 ′ .mo.
Let𝑤𝜋 =𝑊 (𝑓 (𝑘)) and𝑤𝜏 =𝑊𝜏 (𝑓𝜏 (𝑘)) (the latter is only defined if 𝑘 > min(𝑃)). Consider the
two possible cases:

– 𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋]): The definition of𝑊 ′
ensures that ⟨𝑤𝜋 ,𝑊

′ (𝑘)⟩ ∈ 𝐺 ′ .mo?,
and so 𝑤𝜋 ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋]). From the ⟨𝐺, 𝜋⟩-consistency of𝑊 , we know that

𝑤𝜋 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜋]), and therefore it must be the case that 𝜋 = 𝜏 and ⟨𝑤𝜋 ,𝑤⟩ ∈
𝐺 ′ .mo. Hence, loc(𝑤𝜋) = 𝑥 , and so loc(𝐿′ (𝑘)) = 𝑥 , which contradicts the fact that P |=SRA

⟨𝜏, W (𝑥, 𝑣W)⟩.
– ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺 ′ .mo ;𝐺 ′ .hb? for some 1 ≤ 𝑗 < 𝑘 . Consider the two possible cases:

∗ 𝑊 ′ (𝑗) = 𝑤 : In this case we must have 𝑘 > min(𝑃), and so𝑊 ′ (𝑘) = max𝐺.mo{𝑤𝜋 ,𝑤𝜏 }. Hence,
we have ⟨𝑤𝜏 ,𝑊

′ (𝑘)⟩ ∈ 𝐺.mo?, and so ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′ .mo;𝐺 ′ .hb?. Now, if ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′ .mo;𝐺 ′ .hb,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/2926965
https://doi.org/10.1145/3009837.3009838

What’s Decidable about Causally Consistent Shared Memory? 0:41

then we also have𝑤𝜏 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), which contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-
consistent. Therefore, we have ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′ .mo. Hence, loc(𝑤𝜏) = 𝑥 , and so loc(𝐿′ (𝑘)) = 𝑥

, which contradicts the fact that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩.
∗ 𝑊 ′ (𝑗) ≠ 𝑤 : In this case, we must have ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?. The definition of𝑊 ′

ensures that ⟨𝑤𝜋 ,𝑊
′ (𝑘)⟩ ∈ 𝐺.mo?, and so ⟨𝑤𝜋 ,𝑊

′ (𝑗)⟩ ∈ 𝐺.mo;𝐺.hb?. Now, since𝑊 is ⟨𝐺, 𝜋⟩-
consistent, we cannot have𝑊 ′ (𝑗) =𝑊 (𝑓 (𝑗)). Hence, 𝑗 > min(𝑃) and𝑊 ′ (𝑗) =𝑊𝜏 (𝑓𝜏 (𝑗)).
Let 𝑤 ′

𝜏 = 𝑊𝜏 (𝑓𝜏 (𝑗)). It follows that 𝑘 > min(𝑃), and so ⟨𝑤𝜏 ,𝑊
′ (𝑘)⟩ ∈ 𝐺.mo?. Hence, we

have ⟨𝑤𝜏 ,𝑤
′
𝜏 ⟩ ∈ 𝐺.mo ;𝐺.hb?. This contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

• read step, 𝑙 = R (𝑥, 𝑣R):
By definition, since B 𝜏,𝑙−−→loSRA B′

, there exists a read option 𝑜 with loc(𝑜) = 𝑥 and val(𝑜) = 𝑣R
such that B(𝜏) = 𝑜 · B′ (𝜏). Since B ⋎ 𝐺 , for every 𝐿 ∈ B(𝜏) there exists a ⟨𝐺, 𝜏⟩-consistent
⟨𝐺, 𝐿⟩-write-list𝑊𝐿 . Let 𝐴 = {𝑊𝐿 (1) | 𝐿 ∈ B(𝜏)}. Since B(𝜏) is non-empty, we know that 𝐴 is

not empty. Since each𝑊𝐿 is a ⟨𝐺, 𝐿⟩-write-list, we have that tid(𝑤) = tid(𝑜) for every𝑤 ∈ 𝐴.

Hence, 𝐺.po totally orders 𝐴. Let 𝑤 = min𝐺.po𝐴 and let 𝐿min ∈ B(𝜏) such that 𝑤 = 𝑊𝐿min
(1).

Let 𝑟 = NextEvent(𝐺.E, 𝜏, 𝑙) and let 𝐺 ′
be the execution graph given by 𝐺 ′ .E = 𝐺.E ∪ {𝑟 },

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑟 ⟩} and 𝐺 ′ .mo = 𝐺.mo.

We show that 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

. By definition, it suffices to show the following:

– 𝑤 ∈ 𝐺.W𝑥 and valW (𝑤) = 𝑣R: We have 𝑤 = 𝑊𝐿min
(1), and since𝑊𝐿min

is a ⟨𝐺, 𝐿min⟩-write-
list, we have that 𝑤 ∈ 𝐺.W, loc(𝑤) = loc(𝑊𝐿min

(1)) = loc(𝐿min (1)) = loc(𝑜) = 𝑥 and

valW (𝑤) = valW (𝑊𝐿min
(1)) = val(𝐿min (1)) = val(𝑜) = 𝑣R.

– 𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]): Since𝑊𝐿min
is ⟨𝐺, 𝜏⟩-consistent and 𝑤 = 𝑊𝐿min

(1), we cannot
have𝑤 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]).

It remains to show that B′ ⋎ 𝐺 ′
. Let 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). We define a ⟨𝐺 ′, 𝜋⟩-consistent

⟨𝐺 ′, 𝐿′⟩-write-list. Consider two cases:

– 𝜋 ≠ 𝜏 : By definition, since B 𝜏,𝑙−−→loSRA B′
, we have 𝐿′ ∈ B(𝜋). Since B ⋎ 𝐺 , there exists a

⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿′⟩-write-list𝑊 . It is easy to see that𝑊 is a ⟨𝐺 ′, 𝐿′⟩-write-list. We show

that𝑊 is also ⟨𝐺 ′, 𝜋⟩-consistent. Let 1 ≤ 𝑘 ≤ |𝐿′ |.
Suppose by contradiction that𝑊 (𝑘) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). It
follows that𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜋 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). This contradicts the fact
that𝑊 is ⟨𝐺, 𝜋⟩-consistent.

– 𝜋 = 𝜏 : Let 𝐿 = 𝑜 ·𝐿′. Then, 𝐿 ∈ B(𝜏). Let𝑊 ′ = 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}. 𝑊𝐿 (1+𝑘). It is easy to see that
𝑊 ′

is a ⟨𝐺 ′, 𝐿′⟩-write-list. We show that𝑊 ′
is ⟨𝐺 ′, 𝜏⟩-consistent. Suppose by contradiction

that𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜏 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘}]).
Now, if𝑊 ′ (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘}]), it follows that

𝑊𝐿 (1 + 𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊𝐿 (1 + 𝑗) | 1 ≤ 𝑗 < 𝑘}]),
which contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent. Hence, we must have ⟨𝑊 ′ (𝑘),𝑤⟩ ∈
𝐺.mo ;𝐺.hb?. Since 𝐿(1) = 𝑜 , the definition of𝑤 ensures that ⟨𝑤,𝑊𝐿 (1)⟩ ∈ 𝐺.po?. It follows that
⟨𝑊𝐿 (1 + 𝑘),𝑊𝐿 (1)⟩ ∈ 𝐺.mo ;𝐺.hb?, which again contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent.

• rmw step, 𝑙 = RMW (𝑥, 𝑣R, 𝑣W):
This case is handled by carefully combining the write and read steps. By definition, since

B 𝜏,𝑙−−→loSRA B′
, there exists a read option 𝑜 with loc(𝑜) = 𝑥 , val(𝑜) = 𝑣R and rmw(𝑜) = RMW such

that 𝐿(1) = 𝑜 for every 𝐿 ∈ B(𝜏). Since B ⋎𝐺 , for every 𝐿 ∈ B(𝜏) there exists a ⟨𝐺, 𝜏⟩-consistent
⟨𝐺, 𝐿⟩-write-list𝑊𝐿 . Moreover, since rmw(𝑜) = RMW, we have𝑊𝐿 (1) = max𝐺.mo𝐺.W𝑥 for every

𝐿 ∈ B(𝜏).
Let𝑤 = max𝐺.mo𝐺.W𝑥 , 𝑒 = NextEvent(𝐺.E, 𝜏, 𝑙) and 𝐺 ′

be the execution graph given by 𝐺 ′ .E =

𝐺.E ∪ {𝑒}, 𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩} and 𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑒}).

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:42 Ori Lahav and Udi Boker

For showing that 𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

, it suffices, by definition, to show that valW (𝑤) = 𝑣R. Indeed,

since B(𝜏) is (by definition) non-empty, we can take some 𝐿 ∈ B(𝜏). We have𝑤 =𝑊𝐿 (1), and
since𝑊𝐿 is a ⟨𝐺, 𝐿⟩-write-list, we have that valW (𝑤) = valW (𝑊𝐿 (1)) = val(𝐿(1)) = val(𝑜) = 𝑣R.

It remains to show that B′ ⋎𝐺 ′
. Using Prop. 8.4, since B 𝜏,𝑙−−→loSRA B′

, we know that there exists

an index choice P for B′
such that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩, src(B′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every

𝜋 ∈ Tid \ {𝜏} and 𝑜 · src(B′, 𝜏,P)(𝜏) ⊆ B(𝜏).
Let 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). We construct a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list 𝑊 ′

. Let

𝑃 ≜ P(𝜋, 𝐿′) and (𝐿𝜏 and 𝑓𝜏 and are only defined if 𝑃 ≠ ∅):

𝐿 ≜

{
𝐿′ \ 𝑃 𝜋 ≠ 𝜏

𝑜 · (𝐿′ \ 𝑃) 𝜋 = 𝜏
𝑓 ≜

{
Map⟨𝐿′,𝑃 ⟩ 𝜋 ≠ 𝜏

𝜆𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 . Map⟨𝐿′,𝑃 ⟩ (𝑘) + 1 𝜋 = 𝜏

𝐿𝜏 ≜ 𝑜 · 𝐿′ \\ 𝑃 𝑓𝜏 ≜ 𝜆𝑘 ∈ {min(𝑃), ... ,|𝐿′ |} \ 𝑃 . MMap⟨𝐿′,𝑃 ⟩ (𝑘) + 1

Since B ⋎ 𝐺 , there exist a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list𝑊 , and a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿𝜏 ⟩-
write-list𝑊𝜏 . We define𝑊 ′

as follows:

𝑊 ′ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}.


𝑒 𝑘 ∈ 𝑃

𝑊 (𝑓 (𝑘)) 𝑘 < min(𝑃)
max𝐺.mo{𝑊 (𝑓 (𝑘)),𝑊𝜏 (𝑓𝜏 (𝑘))} otherwise

It is easy to see that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list. In particular, to show that rmw(𝐿′ (𝑘)) = RMW

implies𝑊 ′ (𝑘) ∉ dom(𝐺 ′ .mo), we use the fact that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩, and so for every 𝑘 ∈
{1, ... ,|𝐿′ |} \ 𝑃 , we have that rmw(𝐿′ (𝑘)) = RMW implies loc(𝐿′ (𝑘)) ≠ 𝑥 .

We show that𝑊 ′
is ⟨𝐺 ′, 𝜋⟩-consistent.

Let 1 ≤ 𝑘 ≤ |𝐿′ |. We prove that 𝑊 ′ (𝑘) ∉ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘}]).
Suppose otherwise. First, note that we cannot have 𝑘 ∈ 𝑃 , since 𝑒 is a maximal element in 𝐺 ′ .mo.
Let𝑤𝜋 =𝑊 (𝑓 (𝑘)) and𝑤𝜏 =𝑊𝜏 (𝑓𝜏 (𝑘)) (the latter is only defined if 𝑘 > min(𝑃)). Consider the
two possible cases:

– 𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋]): The definition of𝑊 ′
ensures that ⟨𝑤𝜋 ,𝑊

′ (𝑘)⟩ ∈ 𝐺 ′ .mo?,
and so𝑤𝜋 ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋]). From the ⟨𝐺, 𝜋⟩-consistency of𝑊 , we know that𝑤𝜋 ∉

dom(𝐺.mo ;𝐺.hb? ; [E𝜋]), and therefore it must be the case that ⟨𝑤𝜋 , 𝑒⟩ ∈ 𝐺 ′ .mo ; (𝐺.hb ;𝐺 ′ .rf)?
and 𝜋 = 𝜏 . Since P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩, we have loc(𝐿′ (𝑘)) ≠ 𝑥 , and so loc(𝑤𝜋) ≠ 𝑥 . Hence,

⟨𝑤𝜋 , 𝑒⟩ ∉ 𝐺 ′ .mo, and so we have ⟨𝑤𝜋 , 𝑒⟩ ∈ 𝐺.mo ;𝐺.hb ;𝐺 ′ .rf, namely ⟨𝑤𝜋 ,𝑤⟩ ∈ 𝐺.mo ;𝐺.hb.
However,𝑊 (1) = 𝑤 , contradicting the ⟨𝐺, 𝜋⟩-consistency of𝑊 .

– ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺 ′ .mo ;𝐺 ′ .hb? for some 1 ≤ 𝑗 < 𝑘 . Consider the two possible cases:

∗ 𝑊 ′ (𝑗) = 𝑒 : In this case we must have 𝑘 > min(𝑃), and so𝑊 ′ (𝑘) = max𝐺.mo{𝑤𝜋 ,𝑤𝜏 }. There
are three possibilities:

· 𝑊 ′ (𝑘) = 𝑤 : Then loc(𝑤𝜏) = loc(𝐿′ (𝑘)) = 𝑥 , which contradicts the fact that P |=SRA

⟨𝜏, W (𝑥, 𝑣W)⟩.
· ⟨𝑊 ′ (𝑘),𝑤⟩ ∈ 𝐺 ′ .mo ;𝐺 ′ .hb?: This contradicts the ⟨𝐺, 𝜏⟩-consistency of𝑊𝜏 , as𝑊𝜏 (1) = 𝑤

and ⟨𝑤𝜏 ,𝑊
′ (𝑘)⟩ ∈ 𝐺 ′ .mo?, implying that ⟨𝑤𝜏 ,𝑊𝜏 (1)⟩ ∈ 𝐺.mo ;𝐺.hb?.

· ⟨𝑊 ′ (𝑘), 𝑒⟩ ∈ 𝐺 ′ .mo ;𝐺 ′ .hb? ;𝐺 ′ .po: This also contradicts the ⟨𝐺, 𝜏⟩-consistency of𝑊𝜏 , as

we get that𝑤𝜏 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]).
∗ 𝑊 ′ (𝑗) ≠ 𝑒: In this case, we must have ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?. The definition of𝑊 ′

ensures that ⟨𝑤𝜋 ,𝑊
′ (𝑘)⟩ ∈ 𝐺.mo?, and so ⟨𝑤𝜋 ,𝑊

′ (𝑗)⟩ ∈ 𝐺.mo;𝐺.hb?. Now, since𝑊 is ⟨𝐺, 𝜋⟩-
consistent, we cannot have𝑊 ′ (𝑗) =𝑊 (𝑓 (𝑗)). Let𝑤 ′

𝜏 =𝑊𝜏 (𝑓𝜏 (𝑗)). Hence, 𝑗 > min(𝑃) and
𝑊 ′ (𝑗) = 𝑤 ′

𝜏 . It follows that 𝑘 > min(𝑃), and so ⟨𝑤𝜏 ,𝑊
′ (𝑘)⟩ ∈ 𝐺.mo?. Hence, we have

⟨𝑤𝜏 ,𝑤
′
𝜏 ⟩ ∈ 𝐺.mo ;𝐺.hb?. This contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:43

Finally, for handling the lower step, suppose that B ⋎ 𝐺 and B 𝜀−→loSRA B′
. We show that

B′ ⋎ 𝐺 . Let 𝜏 ∈ Tid and 𝐿′ ∈ B′ (𝜏). We define a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿′⟩-write-list 𝑊 ′
. By

definition, since B 𝜀−→loSRA B′
, there exists 𝐿 ∈ B(𝜏) such that 𝐿′ ⊑ 𝐿. Let 𝑓 : {1, ... ,|𝐿′ |} → N

be an increasing function such that 𝐿′ (𝑘) = 𝐿(𝑓 (𝑘)) for every 𝑘 ∈ dom(𝑓). Since B ⋎ 𝐺 , there
exists a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿⟩-write-list 𝑊 . Let 𝑊 ′ = 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}. 𝑊 (𝑓 (𝑘)). It is easy
to see that 𝑊 ′

is a ⟨𝐺, 𝐿′⟩-write-list. We show that 𝑊 ′
is ⟨𝐺, 𝜏⟩-consistent. Let 1 ≤ 𝑘 ≤ |𝐿′ |.

Suppose by contradiction that𝑊 ′ (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘}]). It follows
that𝑊 (𝑓 (𝑘)) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑓 (𝑗)) | 1 ≤ 𝑗 < 𝑘}]). This contradicts the fact that
𝑊 is ⟨𝐺, 𝜏⟩-consistent. □

Lemma A.2. For every trace of opSRA there is an equivalent trace of loSRA.

Proof. As described in §7, we show that ⋎−1 constitutes a backward simulation from opSRA to

loSRA. We detail here the simulation step. Suppose that𝐺
𝜏,𝑙−−→opSRA 𝐺 ′

and B′ ⋎𝐺 ′
. We construct a

state B such that B 𝜏,𝑙−−→loSRA B′
and B ⋎ 𝐺 (depicted on the right). Consider the possible cases:

• write step, 𝑙 = W (𝑥, 𝑣W):
Let𝑤 = NextEvent(𝐺.E, 𝜏, 𝑙). Since𝐺 𝜏,𝑙−−→opSRA 𝐺 ′

, we have𝐺 ′ .E = 𝐺.E∪ {𝑤},𝐺 ′ .rf = 𝐺.rf and
𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}). Since B′ ⋎ 𝐺 ′

, for every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋) there exists a
⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′

⟨𝜋,𝐿′ ⟩ . Let P be the index choice for B′
that assigns the

set of “new” positions in B′
:

P ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋). {1 ≤ 𝑘 ≤ |𝐿′ | |𝑊 ′
⟨𝜋,𝐿′ ⟩ (𝑘) = 𝑤}.

Then, we define B ≜ src(B′, 𝜏,P).
By Prop. 8.4, to show that B 𝜏,𝑙−−→loSRA B′

, it suffices to prove that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩. Thus,
we show that the following hold for every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), where 𝑃 = P(𝜋, 𝐿′) and
𝑊 ′ =𝑊 ′

⟨𝜋,𝐿′ ⟩ :

– Let 𝑘 ∈ 𝑃 . To see that 𝐿′ (𝑘) ∈ {OR (𝜏, 𝑥, 𝑣W, R), OR (𝜏, 𝑥, 𝑣W, RMW)}, note that since 𝑘 ∈ 𝑃 , we have

𝑊 ′ (𝑘) = 𝑤 , and since𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list, we must have 𝜏 = tid(𝑤) = tid(𝐿′ (𝑘)),

𝑥 = loc(𝑤) = loc(𝐿′ (𝑘)) = 𝑥 and 𝑣W = valW (𝑤) = valW (𝐿′ (𝑘)).
– Let 𝑘 ∈ {𝑚 + 1, ... ,|𝐿′ |} \ 𝑃 where 𝑚 = min(𝑃). We show that loc(𝐿′ (𝑘)) ≠ 𝑥 . Suppose

otherwise. Let 𝑤 ′ = 𝑊 ′ (𝑘). Since 𝑘 ∉ 𝑃 , we have 𝑤 ′ ≠ 𝑤 . Hence, since 𝐺 ′ .mo = 𝐺.mo ∪
(𝐺.W𝑥 × {𝑤}), we have ⟨𝑤 ′,𝑤⟩ ∈ 𝐺 ′ .mo. Thus, ⟨𝑤 ′,𝑊 ′ (𝑚)⟩ ∈ 𝐺 ′ .mo ; 𝐺 ′ .hb?. Since 𝑘 > 𝑚,

this contradicts the fact that𝑊 ′
is ⟨𝐺 ′, 𝜋⟩-consistent.

– Suppose that 𝜋 = 𝜏 and let𝑘 ∈ {1, ... ,|𝐿′ |}\𝑃 . We show that loc(𝐿′ (𝑘)) ≠ 𝑥 . Suppose otherwise.

Let 𝑤 ′ =𝑊 ′ (𝑘). Since 𝑘 ∉ 𝑃 , we have 𝑤 ′ ≠ 𝑤 . Hence, since 𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}),
we have ⟨𝑤 ′,𝑤⟩ ∈ 𝐺 ′ .mo. Thus, we have 𝑤 ′ ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜏]), which contradicts

the fact that𝑊 ′
is ⟨𝐺 ′, 𝜏⟩-consistent.

– Let 𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 , such that loc(𝐿′ (𝑘)) = 𝑥 . We show that rmw(𝐿′ (𝑘)) = R. Let 𝑤 ′ =
𝑊 ′ (𝑘). Since 𝑘 ∉ 𝑃 , we have 𝑤 ′ ≠ 𝑤 . Since 𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑤}), it follows that
⟨𝑤 ′,𝑤⟩ ∈ 𝐺 ′ .mo. However, since𝑊 ′

is a ⟨𝐺 ′, 𝐿′⟩-write-list, if rmw(𝐿′ (𝑘)) = RMW, then we must

have𝑤 ′ = max𝐺 ′ .mo𝐺
′ .W𝑥 , reaching a contradiction.

It remains to show that B ⋎ 𝐺 . Let 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋). We show that there exists a ⟨𝐺, 𝜋⟩-
consistent ⟨𝐺, 𝐿⟩-write-list𝑊 . Following the construction of B, one of the following holds:

– 𝐿 = 𝐿′ \ P(𝜋, 𝐿′) for some 𝐿′ ∈ B′ (𝜋). Let 𝑃 = P(𝜋, 𝐿′),𝑊 ′ = 𝑊 ′
⟨𝜋,𝐿′ ⟩ and 𝑓 = Map

−1
⟨𝐿′,𝑃 ⟩ .

We define𝑊 = 𝜆𝑘 ∈ {1, ... ,|𝐿 |}. 𝑊 ′ (𝑓 (𝑘)). Using the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list, it is

easy to see that𝑊 is a ⟨𝐺, 𝐿⟩-write-list. (In particular, note that rmw(𝐿(𝑘)) ≠ RMW whenever
loc(𝐿(𝑘)) = 𝑥 .)

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:44 Ori Lahav and Udi Boker

It remains to show that𝑊 is ⟨𝐺, 𝜋⟩-consistent, namely to prove that for every 𝑘 , we have

𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜋 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). Indeed, in case that we have𝑊 (𝑘) ∈
dom(𝐺.mo ;𝐺.hb? ; [E𝜋]), since 𝐺.mo ⊆ 𝐺 ′ .mo and 𝐺.hb ⊆ 𝐺 ′ .hb, it follows that𝑊 ′ (𝑓 (𝑘)) ∈
dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜋]), which contradicts the ⟨𝐺 ′, 𝜋⟩-consistency of𝑊 ′

. Analogously, if

𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}) then since 𝑓 is an increasing function, we

have𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; {𝑊 ′ (𝑓 (𝑗)) | 1 ≤ 𝑗 < 𝑘}), which contradicts the ⟨𝐺 ′, 𝜋⟩-
consistency of𝑊 ′

.

– 𝜋 = 𝜏 and 𝐿 = 𝐿′ \\ P(𝜂, 𝐿′) for some 𝜂 ∈ Tid and 𝐿′ ∈ B′ (𝜂) such that P(𝜂, 𝐿′) ≠ ∅.
Let 𝑃 = P(𝜂, 𝐿′), 𝑚 = min(𝑃),𝑊 ′ = 𝑊 ′

⟨𝜂,𝐿′ ⟩ and 𝑓 = MMap
−1
⟨𝐿′,𝑃 ⟩ . We define𝑊 = 𝜆𝑘 ∈

{1, ... ,|𝐿 |}. 𝑊 ′ (𝑓 (𝑘)). Using the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list, it is easy to see that𝑊

is a ⟨𝐺, 𝐿⟩-write-list. (In particular, note that rmw(𝐿(𝑘)) ≠ RMW whenever loc(𝐿(𝑘)) = 𝑥 .)

It remains to show that𝑊 is ⟨𝐺, 𝜏⟩-consistent, namely that for every 𝑘 we have𝑊 (𝑘) ∉

dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). Indeed, since 𝑓 is increasing, if we have𝑊 (𝑘) ∈
dom(𝐺.mo ;𝐺.hb? ; [{𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]) for some 𝑘 , then we also have that 𝑊 ′ (𝑓 (𝑘)) ∈
dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), which contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of

𝑊 ′
. Now, if𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), then since 𝑤 = max𝐺 ′ .po𝐺

′ .E𝜏 , we have that
⟨𝑊 ′ (𝑓 (𝑘)),𝑤⟩ ∈ 𝐺 ′ .mo ;𝐺 ′ .hb?. However, we have𝑊 ′ (𝑚) = 𝑤 and 𝑓 (𝑘) > 𝑚, from which it

follows that𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), which contradicts

the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
.

• read step, 𝑙 = R (𝑥, 𝑣R):
Let 𝑟 = NextEvent(𝐺.E, 𝜏, 𝑙). Since 𝐺 𝜏,𝑙−−→opSRA 𝐺 ′

, we have 𝐺 ′ .E = 𝐺.E ∪ {𝑟 }, 𝐺 ′ .rf = 𝐺.rf ∪
{⟨𝑤, 𝑟 ⟩} and 𝐺 ′ .mo = 𝐺.mo, for some write event 𝑤 ∈ 𝐺.W𝑥 such that valW (𝑤) = 𝑣R and

𝑤 ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]).
Let 𝑜 be the read option given by 𝑜 ≜ OR (tid(𝑤), 𝑥, 𝑣R, R). We define B by:

B ≜ 𝜆𝜋 ∈ Tid.

{
𝑜 · B′ (𝜏) 𝜋 = 𝜏

B′ (𝜋) 𝜋 ≠ 𝜏

By definition, B 𝜏,𝑙−−→loSRA B′
.

We show next thatB⋎𝐺 . For a thread 𝜋 ≠ 𝜏 and an option list 𝐿 ∈ B(𝜋), observe that 𝐿 ∈ B′ (𝜋),
and since B′ ⋎ 𝐺 ′

, there is a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿⟩-write-list𝑊 ′
. Since 𝐺.mo ⊆ 𝐺 ′ .mo and

𝐺.hb ⊆ 𝐺 ′ .hb,𝑊 ′
is also ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿⟩-write-list.

Consider an option list 𝐿 ∈ B(𝜏). Let 𝐿′ ∈ B′ (𝜏) such that 𝐿 = 𝑜 · 𝐿′. Since B′ ⋎ 𝐺 ′
, there is a

⟨𝐺 ′, 𝜏⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
. Define𝑊 ≜ 𝑤 ·𝑊 ′

. Using the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-

write-list, it is easy to see that𝑊 is a ⟨𝐺, 𝐿⟩-write-list. It is left to show that𝑊 is ⟨𝐺, 𝜏⟩-consistent.
For thismatter, let 1 ≤ 𝑘 ≤ |𝐿 |.We prove that𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]).
Suppose otherwise. Consider the two possible cases:

– 𝑘 = 1. Then 𝑤 ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), which contradicts the properties of 𝑤 as stated

above.

– 𝑘 > 1. Observe that𝑊 (𝑘) =𝑊 ′ (𝑘−1). If𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 2 ≤ 𝑗 < 𝑘}])
then 𝑊 ′ (𝑘 − 1) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜏 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘 − 1}]), contradicting the

⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
. Thus, ⟨𝑊 (𝑘),𝑊 (1)⟩ ∈ 𝐺.mo ; 𝐺.hb?. Yet,𝑊 (1) = 𝑤 , 𝑟 ∈ E

𝜏
and

⟨𝑤, 𝑟 ⟩ ∈ 𝐺 ′ .rf. Hence, 𝑊 ′ (𝑘 − 1) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜏]), contradicting the ⟨𝐺 ′, 𝜏⟩-
consistency of𝑊 ′

.

• rmw step, 𝑙 = RMW (𝑥, 𝑣R, 𝑣W):
This case combines the proofs given for the read and write cases. Let 𝑒 = NextEvent(𝐺.E, 𝜏, 𝑙).
Since 𝐺

𝜏,𝑙−−→opSRA 𝐺 ′
, we have 𝐺 ′ .E = 𝐺.E ∪ {𝑒}, 𝐺 ′ .mo = 𝐺.mo ∪ (𝐺.W𝑥 × {𝑒}), 𝐺 ′ .rf = 𝐺.rf ∪

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:45

{⟨𝑤, 𝑒⟩} and valW (𝑤) = 𝑣R, where 𝑤 = max𝐺.moW𝑥 . Since B′ ⋎ 𝐺 ′
, for every 𝜋 ∈ Tid and

𝐿′ ∈ B′ (𝜋) there exists a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′⟩-write-list𝑊 ′
⟨𝜋,𝐿′ ⟩ .

Let P be the index choice for B′
that assigns the set of “new” positions in B′

:

P ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋). {1 ≤ 𝑘 ≤ |𝐿′ | |𝑊 ′
⟨𝜋,𝐿′ ⟩ (𝑘) = 𝑒}.

Then, we define:

B ≜ 𝜆𝜋 ∈ Tid.

{
𝑜 · src(B′, 𝜏,P)(𝜏) 𝜋 = 𝜏

src(B′, 𝜏,P)(𝜋) 𝜋 ≠ 𝜏

where 𝑜 is the read option given by 𝑜 ≜ OR (tid(𝑤), 𝑥, 𝑣R, RMW).
The arguments for why B 𝜏,𝑙−−→loSRA B′

are analogous to those of the write case. Using Prop. 8.4,

to show that B 𝜏,𝑙−−→loSRA B′
, it suffices to prove that P |=SRA ⟨𝜏, W (𝑥, 𝑣W)⟩. This is done exactly as

in the write case.

It remains to show that B ⋎ 𝐺 . Let 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋). We show that there exists a ⟨𝐺, 𝜋⟩-
consistent ⟨𝐺, 𝐿⟩-write-list𝑊 . Following the construction of B, one of the following holds:

– 𝐿 = 𝐿′ \ P(𝜋, 𝐿′) for some 𝐿′ ∈ B′ (𝜋). This case is exactly the same as the analogous case in

the write step.

– 𝜋 = 𝜏 and 𝐿 = 𝑜 · (𝐿′ \ P(𝜏, 𝐿′)) for some 𝐿′ ∈ B′ (𝜏). Let 𝑃 = P(𝜏, 𝐿′),𝑊 ′ = 𝑊 ′
⟨𝜏,𝐿′ ⟩ and

𝑓 = 𝜆𝑘 ∈ {2, ... ,|𝐿 |}. Map
−1
⟨𝐿′,𝑃 ⟩ (𝑘 − 1). We define

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.
{
𝑤 𝑘 = 1

𝑊 ′ (𝑓 (𝑘)) 𝑘 > 1

Using the fact that 𝑊 ′
is a ⟨𝐺 ′, 𝐿′⟩-write-list and that 𝑤 = max𝐺.moW𝑥 , it is easy to see

that𝑊 is a ⟨𝐺, 𝐿⟩-write-list. (In particular, note that for 𝑘 > 1, rmw(𝐿(𝑘)) ≠ RMW whenever

loc(𝐿(𝑘)) = 𝑥 .) It remains to show that𝑊 is ⟨𝐺, 𝜏⟩-consistent, namely to prove that for every

𝑘 ∈ {1, ... ,|𝐿 |}, we have𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]). For𝑘 = 1, this

is trivial since𝑊 (1) = 𝑤 = max𝐺.mo W𝑥 . Let𝑘 ∈ {2, ... ,|𝐿 |}. If𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏])
then since 𝐺.mo ⊆ 𝐺 ′ .mo and 𝐺.hb ⊆ 𝐺 ′ .hb, we have𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [E𝜏]),
which contradicts the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

. Analogously, if ⟨𝑊 (𝑘),𝑊 (𝑗)⟩ ∈ 𝐺.mo ;𝐺.hb?

for 2 ≤ 𝑗 < 𝑘 then ⟨𝑊 ′ (𝑓 (𝑘)),𝑊 ′ (𝑓 (𝑗))⟩ ∈ 𝐺 ′ .mo ; 𝐺 ′ .hb?, and since 𝑓 is an increasing

function this contradicts the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
. Now, if ⟨𝑊 (𝑘),𝑊 (1)⟩ ∈ 𝐺.mo ;𝐺.hb?,

then since𝑊 (1) = 𝑤 , 𝐺 ′ .E = 𝐺.E ∪ {𝑒} and 𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}, we have𝑊 ′ (𝑓 (𝑘)) ∈
dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [𝐺 ′ .E𝜏]), which contradicts the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

.

– 𝜋 = 𝜏 and 𝐿 = 𝑜 · (𝐿′ \\ P(𝜂, 𝐿′)) for some 𝜂 ∈ Tid and 𝐿′ ∈ B′ (𝜂). Let 𝑃 = P(𝜂, 𝐿′),
𝑚 = min(𝑃),𝑊 ′ =𝑊 ′

⟨𝜂,𝐿′ ⟩ and 𝑓 = 𝜆𝑘 ∈ {2, ... ,|𝐿 |}. MMap
−1
⟨𝐿′,𝑃 ⟩ (𝑘 − 1).

We define

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.
{
𝑤 𝑘 = 1

𝑊 ′ (𝑓 (𝑘)) 𝑘 > 1

As above,𝑊 is a ⟨𝐺, 𝐿⟩-write-list, and we show that it is ⟨𝐺, 𝜏⟩-consistent. Namely, we prove

that𝑊 (𝑘) ∉ dom(𝐺.mo ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}]) for every 𝑘 ∈ {1, ... ,|𝐿 |}. Again,
for 𝑘 = 1, this is trivial since𝑊 (1) = 𝑤 = max𝐺.moW𝑥 . Let 𝑘 ∈ {2, ... ,|𝐿 |}. If ⟨𝑊 (𝑘),𝑊 (𝑗)⟩ ∈
𝐺.mo ; 𝐺.hb? for 2 ≤ 𝑗 < 𝑘 , then ⟨𝑊 ′ (𝑓 (𝑘)),𝑊 ′ (𝑓 (𝑗))⟩ ∈ 𝐺 ′ .mo ; 𝐺 ′ .hb?, and since 𝑓 is an

increasing function this contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
. Now, if ⟨𝑊 (𝑘),𝑊 (1)⟩ ∈

𝐺.mo ; 𝐺.hb?, then since 𝑊 (1) = 𝑤 and ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf, we have ⟨𝑊 ′ (𝑓 (𝑘)), 𝑒⟩ ∈ 𝐺 ′ .mo ;

𝐺 ′ .hb?. However, 𝑊 ′ (𝑚) = 𝑒 and 𝑓 (𝑘) > 𝑚 together imply that we have 𝑊 ′ (𝑓 (𝑘)) ∈

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:46 Ori Lahav and Udi Boker

dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), which contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of

𝑊 ′
.

Lastly, if𝑊 (𝑘) ∈ dom(𝐺.mo ;𝐺.hb? ; [E𝜏]), then ⟨𝑊 ′ (𝑓 (𝑘)), 𝑒⟩ ∈ 𝐺 ′ .mo ; 𝐺 ′ .hb? (since 𝑒 =

max𝐺 ′ .po𝐺
′ .E𝜏). However,𝑊 ′ (𝑚) = 𝑒 and 𝑓 (𝑘) > 𝑚, implying that

𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .mo ;𝐺 ′ .hb? ; [{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]),

which contradicts the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
. □

A.2 Equivalence of loWRA and opWRA

Lemma A.3. For every trace of loWRA there is an equivalent trace of opWRA.

Proof. As described in §7, we show that ⋎ constitutes a forward simulation relation from

loWRA to opWRA. We detail here the simulation step. Suppose that B ⋎𝐺 and B 𝜏,𝑙−−→loWRA B′
. Let

tidRMW : W → Tid that satisfies the conditions of Def. 7.4. We show that there exists 𝐺 ′
such that

B′ ⋎ 𝐺 ′
and 𝐺

𝜏,𝑙−−→opWRA 𝐺 ′
. Consider the possible cases:

11

• 𝑙 = W (𝑥, 𝑣W): Let 𝑤 = NextEvent(𝐺.E, 𝜏, 𝑙). Let 𝐺 ′
be the execution graph defined by 𝐺 ′ .E =

𝐺.E ∪ {𝑤} and 𝐺 ′ .rf = 𝐺.rf. By definition, we have 𝐺
𝜏,𝑙−−→opWRA 𝐺 ′

.

We show that B′ ⋎ 𝐺 ′
. First, since B 𝜏,𝑙−−→loWRA B′

, by Prop. 8.4, there exists an index choice P
for B′

such that P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩, src(B′, 𝜏,P)(𝜋) ⊆ B(𝜋) for every 𝜋 ∈ Tid \ {𝜏} and
OW (𝑥) · src(B′, 𝜏,P)(𝜏) ⊆ B(𝜏). Since P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩, there exists 𝜋RMW ∈ Tid, such that

𝐿′ (𝑘) = OR (𝜏, 𝑥, 𝑣W, 𝜋RMW) for every 𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋) and 𝑘 ∈ P(𝜋, 𝐿′). (If P(𝜋, 𝐿′) = ∅ for

every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), then 𝜋RMW is arbitrary.)

Let tid′RMW = tidRMW [𝑤 ↦→ 𝜋RMW]. Since 𝑤 ∉ 𝐺 ′ .rf, we vacuously have tid(𝑒) = tid′RMW (𝑤) for
every ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf ; [RMW]. It follows that for every ⟨𝑤 ′, 𝑒⟩ ∈ 𝐺 ′ .rf ; [RMW], we have

tid(𝑒) = tid′RMW (𝑤).
We show that for every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), there exists a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tid′RMW⟩-
write-list. Let 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). We construct a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tid′RMW⟩-write-list
𝑊 ′

. Let 𝑃 ≜ P(𝜋, 𝐿′) and (𝐿𝜏 and 𝑓𝜏 are only defined if 𝑃 ≠ ∅):

𝐿 ≜

{
𝐿′ \ 𝑃 𝜋 ≠ 𝜏

OW (𝑥) · (𝐿′ \ 𝑃) 𝜋 = 𝜏
𝑓 ≜

{
Map⟨𝐿′,𝑃 ⟩ 𝜋 ≠ 𝜏

𝜆𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 . Map⟨𝐿′,𝑃 ⟩ (𝑘) + 1 𝜋 = 𝜏

𝐿𝜏 ≜ OW (𝑥) · 𝐿′ \\ 𝑃 𝑓𝜏 ≜ 𝜆𝑘 ∈ {min(𝑃), ... ,|𝐿′ |} \ 𝑃 . MMap⟨𝐿′,𝑃 ⟩ (𝑘) + 1

Then, by definition, we have 𝐿 ∈ B(𝜋) and 𝐿𝜏 ∈ B(𝜏). Let𝑊 be a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-
write-list, and𝑊𝜏 be a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿𝜏 , tidRMW⟩-write-list. Note that for every 𝑘 > min(𝑃)
with 𝑘 ∉ 𝑃 and typ(𝐿′ (𝑘)) = R, we have tid(𝑊 (𝑓 (𝑘))) = tid(𝐿(𝑓 (𝑘))) = tid(𝐿𝜏 (𝑓𝜏 (𝑘))) =
tid(𝑊𝜏 (𝑓𝜏 (𝑘)), and so 𝐺.hb must order the two write events,𝑊 (𝑓 (𝑘)) and𝑊𝜏 (𝑓𝜏 (𝑘)).
We define𝑊 ′

as follows:

𝑊 ′ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}.


𝐿′ (𝑘) typ(𝐿′ (𝑘)) = W

𝑤 typ(𝐿′ (𝑘)) = R ∧ 𝑘 ∈ 𝑃

𝑊 (𝑓 (𝑘)) typ(𝐿′ (𝑘)) = R ∧ 𝑘 < min(𝑃)
max𝐺.hb{𝑊 (𝑓 (𝑘)),𝑊𝜏 (𝑓𝜏 (𝑘))} otherwise

11
InWRA, the mo-component is immaterial and can be defined arbitrarily, so we ignore this component in this proof. To

reduce the amount of duplication, when possible we refer to the corresponding case in the proof for SRA. To do that one

should replace mo in the proof for SRA with [W] ; hb |loc ; [W] in the current proof.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:47

It is easy to see that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tid′RMW⟩-write-list. We show that𝑊 ′

is ⟨𝐺 ′, 𝜋⟩-consistent. Let
1 ≤ 𝑘 ≤ |𝐿′ | such that𝑊 ′ (𝑘) ∈ E. Let 𝑦 = loc(𝑊 ′ (𝑘)),𝑤𝜋 =𝑊 (𝑓 (𝑘)) and𝑤𝜏 =𝑊𝜏 (𝑓𝜏 (𝑘)) (the
latter is only defined if 𝑘 > min(𝑃)). We prove that each of the conditions in Def. 7.3 holds:

C1) The proof is exactly as for SRA. We note that if 𝜋 = 𝜏 , then we cannot have ⟨𝑤𝜋 ,𝑤⟩ ∈ 𝐺 ′ .hb|loc.
Indeed, otherwise, we have 𝑤𝜋 ∈ dom(𝐺.hb? ; [E𝜏]), and since 𝑊 (1) = 𝐿(1) = OW (𝑥) =

OW (loc(𝑤𝜋)), this contradicts the fact that𝑊 is ⟨𝐺, 𝜏⟩-consistent. Similarly, we cannot have

⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′ .hb|loc. Indeed, otherwise, we have 𝑤𝜏 ∈ dom(𝐺.hb? ; [E𝜏]), and since𝑊𝜏 (1) =
𝐿𝜏 (1) = OW (𝑥) = OW (loc(𝑤𝜏)), this contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

C2) Suppose by contradiction that there exists 𝑖 < 𝑘 with𝑊 ′ (𝑖) = OW (𝑦) but𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .hb? ; [E𝜋]).
Note that the definition of𝑊 ′

ensures that𝑊 ′ (𝑖) = 𝐿′ (𝑖) = OW (𝑦), and since𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-
write-list, it follows that𝑊 (𝑓 (𝑖)) = OW (𝑦). Consider the two possible cases:

∗ 𝑊 ′ (𝑘) = 𝑤 : In this case, we must have 𝑦 = 𝑥 , 𝜋 = 𝜏 and 𝑖 < max(P(𝜏, 𝐿′)). Since P |=WRA

⟨𝜏, W (𝑥, 𝑣W)⟩, we cannot have 𝐿′ (𝑖) = OW (𝑥).
∗ 𝑊 ′ (𝑘) ≠ 𝑤 : In this case, the definition of 𝑊 ′

ensures that ⟨𝑤𝜋 ,𝑊
′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc,

and so 𝑤𝜋 ∈ dom(𝐺 ′ .hb? ; [E𝜋]). Since 𝑤𝜋 ≠ 𝑤 (as 𝑤𝜋 ∈ 𝐺.E), it follows that 𝑤𝜋 ∈
dom(𝐺.hb? ; [E𝜋]). Since𝑊 (𝑓 (𝑖)) = OW (𝑦), this contradicts the fact that𝑊 is ⟨𝐺, 𝜋⟩-consistent.

C3) Suppose by contradiction that there exists 𝑗 < 𝑖 < 𝑘 with𝑊 ′ (𝑖) = OW (𝑦) but ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈
𝐺 ′ .hb?. Note that the definition of𝑊 ′

ensures that𝑊 ′ (𝑖) = 𝐿′ (𝑖) = OW (𝑦), and since𝑊 is a

⟨𝐺, 𝐿, tidRMW⟩-write-list, it follows that𝑊 (𝑓 (𝑖)) = OW (𝑦). In addition, since𝑊𝜏 is ⟨𝐺, 𝐿𝜏 , tidRMW⟩-
write-list, it follows that𝑊𝜏 (𝑓𝜏 (𝑖)) = OW (𝑦) if 𝑖 > min(𝑃). Consider the possible cases:
∗ 𝑊 ′ (𝑘) = 𝑤 : In this case, we must have 𝑦 = 𝑥 and𝑊 ′ (𝑗) = 𝑤 . It follows that 𝑘, 𝑗 ∈ 𝑃 , and

since P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩, we cannot have 𝐿′ (𝑖) = OW (𝑥).
∗ 𝑊 ′ (𝑘) ≠ 𝑤 and𝑊 ′ (𝑗) = 𝑤 : In this case we must have 𝑖, 𝑘 > min(𝑃), and so𝑊 ′ (𝑘) =

max𝐺.hb{𝑤𝜋 ,𝑤𝜏 } and𝑊𝜏 (𝑓𝜏 (𝑖)) = OW (𝑦). Hence, we have ⟨𝑤𝜏 ,𝑊
′ (𝑘)⟩ ∈ 𝐺.hb|?loc, and so

⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺 ′ .hb?. Since𝑤𝜏 ≠ 𝑤 (as𝑤𝜏 ∈ 𝐺.E), it follows that𝑤𝜏 ∈ dom(𝐺.hb? ; [E𝜏]). Since
𝑊𝜏 (𝑓𝜏 (𝑖)) = OW (𝑦), this contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

∗ 𝑊 ′ (𝑘) ≠ 𝑤 and𝑊 ′ (𝑗) ≠ 𝑤 : In this case, we must have ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺.hb?. Let 𝑤 𝑗
𝜋 =

𝑊 (𝑓 (𝑗)) and 𝑤 𝑗
𝜏 =𝑊𝜏 (𝑓𝜏 (𝑗)) (the latter is only defined if 𝑗 > min(𝑃)). Our construction

ensures that one of the following holds:

· 𝑊 ′ (𝑗) = 𝑤
𝑗
𝜋 : Since𝑊

′ (𝑘) ≠ 𝑤 , the definition of𝑊 ′
ensures that ⟨𝑤𝜋 ,𝑊

′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc,
and so ⟨𝑤𝜋 ,𝑤

𝑗
𝜋 ⟩ ∈ 𝐺.hb?. This contradicts the fact that𝑊 is ⟨𝐺, 𝜋⟩-consistent.

· 𝑊 ′ (𝑗) = 𝑤
𝑗
𝜏 : In this case we have 𝑗 > min(𝑃), and so 𝑘 > min(𝑃). Since𝑊 ′ (𝑘) ≠ 𝑤 ,

the definition of𝑊 ′
ensures that ⟨𝑤𝜏 ,𝑊

′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc, and so ⟨𝑤𝜏 ,𝑤
𝑗
𝜏 ⟩ ∈ 𝐺.hb?. This

contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.
• 𝑙 = R (𝑥, 𝑣R):
By definition, since B 𝜏,𝑙−−→loWRA B′

, there exists a read option 𝑜 with loc(𝑜) = 𝑥 and val(𝑜) = 𝑣R
such that B(𝜏) = 𝑜 · B′ (𝜏). For every 𝐿 ∈ B(𝜏), let𝑊𝐿 be a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-
write-list. Let 𝐴 = {𝑊𝐿 (1) | 𝐿 ∈ B(𝜏)}. Since B(𝜏) is non-empty, we know that 𝐴 is not empty.

Since each𝑊𝐿 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list, we have that tid(𝑤) = tid(𝑜) for every 𝑤 ∈ 𝐴.

Hence, 𝐺.po totally orders 𝐴. Let 𝑤 = min𝐺.po𝐴 and let 𝐿min ∈ B(𝜏) such that 𝑤 = 𝑊𝐿min
(1).

Let 𝑟 = NextEvent(𝐺.E, 𝜏, 𝑙) and let 𝐺 ′
be the execution graph given by 𝐺 ′ .E = 𝐺.E ∪ {𝑟 } and

𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑟 ⟩}.
Now, 𝐺

𝜏,𝑙−−→opWRA 𝐺 ′
follows exactly as in the proof for SRA. It remains to show that B′ ⋎ 𝐺 ′

.

We use the same tidRMW mapping and show that for every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), there
exists a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list. Let 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). We define a

⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list. Consider two cases:

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:48 Ori Lahav and Udi Boker

– 𝜋 ≠ 𝜏 : By definition, since B 𝜏,𝑙−−→loWRA B′
, we have 𝐿′ ∈ B(𝜋). Let𝑊 be a ⟨𝐺, 𝜋⟩-consistent

⟨𝐺, 𝐿′, tidRMW⟩-write-list. It is easy to see that𝑊 is also a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list. It remains to

show that 𝑊 is ⟨𝐺 ′, 𝜋⟩-consistent. Condition C1 follows exactly as for SRA. To see that

conditions C2 and C3 hold as well, note that if we have 𝑊 (𝑘) ∈ dom(𝐺 ′ .hb? ; [E𝜋]) or
⟨𝑊 (𝑘),𝑊 (𝑗)⟩ ∈ 𝐺 ′ .hb?, then the same holds in 𝐺 . Therefore, the ⟨𝐺 ′, 𝜋⟩-consistency of

𝑊 directly follows from its ⟨𝐺, 𝜋⟩-consistency.
– 𝜋 = 𝜏 : Let 𝐿 = 𝑜 · 𝐿′. Then, 𝐿 ∈ B(𝜏). Let𝑊 ′ = 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}. 𝑊𝐿 (1 + 𝑘). It is easy to see

that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list. We show that𝑊 ′

is ⟨𝐺 ′, 𝜏⟩-consistent. Let 1 ≤ 𝑘 ≤ |𝑊 ′ |
such that𝑊 ′ (𝑘) ∈ E. Condition C1 follows exactly as for SRA. We prove conditions C2 and

C3.

C2) Suppose by contradiction that there exists 𝑖 < 𝑘 with𝑊 ′ (𝑖) = OW (loc(𝑊 ′ (𝑘))) (and so,

𝑊𝐿 (1+𝑖) = OW (loc(𝑊𝐿 (1 + 𝑘)))) but𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .hb? ; [E𝜏]). If𝑊 ′ (𝑘) ∈ dom(𝐺.hb? ; [E𝜏]),
then𝑊𝐿 (1 + 𝑘) ∈ dom(𝐺.hb? ; [E𝜏]), which contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent.
Hence, we must have ⟨𝑊 ′ (𝑘),𝑤⟩ ∈ 𝐺.hb?. Since 𝐿(1) = 𝑜 , the definition of 𝑤 ensures

that ⟨𝑤,𝑊𝐿 (1)⟩ ∈ 𝐺.po?. It follows that ⟨𝑊𝐿 (1 + 𝑘),𝑊𝐿 (1)⟩ ∈ 𝐺.hb while 𝑊𝐿 (1 + 𝑖) =

OW (loc(𝑊𝐿 (1 + 𝑘))) where 𝑖 < 𝑘 . Again, this contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent.
C3) Suppose by contradiction that there exists 𝑗 < 𝑖 < 𝑘 with𝑊 ′ (𝑖) = OW (loc(𝑊 ′ (𝑘))) (and so,

𝑊𝐿 (1+𝑖) = OW (loc(𝑊𝐿 (1 + 𝑘)))) but ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺 ′ .hb?. In this case, since𝑊 ′ (𝑗) ∈ W,

we must have ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺.hb?. Hence, ⟨𝑊𝐿 (1 + 𝑘)),𝑊𝐿 (1 + 𝑗)⟩ ∈ 𝐺.hb? which

contradicts the fact that𝑊𝐿 is ⟨𝐺, 𝜏⟩-consistent.
• 𝑙 = RMW (𝑥, 𝑣R, 𝑣W):
First, B 𝜏,𝑙−−→loWRA B′

provides us with the following:

(1) There exists a read option 𝑜 with loc(𝑜) = 𝑥 , val(𝑜) = 𝑣R and rmw-tid(𝑜) = 𝜏 such that

𝐿(1) = 𝑜 for every 𝐿 ∈ B(𝜏).
(2) By Prop. 8.4, there exists an index choiceP forB′

such thatP |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩, src(B′, 𝜏,P)(𝜋) ⊆
B(𝜋) for every 𝜋 ∈ Tid \ {𝜏} and 𝑜 · OW (𝑥) · src(B′, 𝜏,P)(𝜏) ⊆ B(𝜏).

For every𝐿 ∈ B(𝜏), let𝑊𝐿 be a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list. Let𝐴 = {𝑊𝐿 (1) | 𝐿 ∈ B(𝜏)}.
Since B(𝜏) is non-empty, we know that𝐴 is not empty. Since each𝑊𝐿 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list,
we have that tid(𝑤) = tid(𝑜) for every𝑤 ∈ 𝐴. Hence,𝐺.po totally orders𝐴. Let𝑤 = min𝐺.po𝐴

and let 𝐿min ∈ B(𝜏) such that 𝑤 = 𝑊𝐿min
(1). Let 𝑒 = NextEvent(𝐺.E, 𝜏, 𝑙) and let 𝐺 ′

be the

execution graph given by 𝐺 ′ .E = 𝐺.E ∪ {𝑒} and 𝐺 ′ .rf = 𝐺.rf ∪ {⟨𝑤, 𝑒⟩}.
Note that𝑤 =𝑊𝐿min

(1), and since𝑊𝐿min
is a ⟨𝐺, 𝐿min, tidRMW⟩-write-list, we have that:

– 𝑤 ∈ 𝐺.W.

– loc(𝑤) = loc(𝑊𝐿min
(1)) = loc(𝐿min (1)) = loc(𝑜) = 𝑥 .

– valW (𝑤) = valW (𝑊𝐿min
(1)) = val(𝐿min (1)) = val(𝑜) = 𝑣R.

– tidRMW (𝑤) = tidRMW (𝑊𝐿min
(1)) = rmw-tid(𝐿min (1)) = 𝜏 .

Then, to show that 𝐺
𝜏,𝑙−−→opWRA 𝐺 ′

, it suffices, by definition, to show the following:

– 𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]): Since𝑊𝐿min
is ⟨𝐺, 𝜏⟩-consistent and𝑤 =𝑊𝐿min

(1), we
cannot have𝑤 ∈ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]).

– 𝑤 ∉ dom(𝐺.rf ; [RMW]): Suppose otherwise, and let 𝑒′ ∈ RMW such that ⟨𝑤, 𝑒′⟩ ∈ 𝐺.rf.
Then, since tidRMW (𝑤) = 𝜏 , the second condition forWRA in Def. 7.4 ensures that tid(𝑒) = 𝜏 .

Hence, 𝑤 ∈ dom(𝐺.rf ; [RMW ∩ E
𝜏]) ⊆ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]), which contra-

dicts the previous item.

It remains to show that B′ ⋎ 𝐺 ′
. Since P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩, there exists 𝜋RMW ∈ Tid, such that

𝐿′ (𝑘) = OR (𝜏, 𝑥, 𝑣W, 𝜋RMW) for every 𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋) and 𝑘 ∈ P(𝜋, 𝐿′).
Let tid′RMW = tidRMW [𝑤 ↦→ 𝜋RMW]. Since 𝑒 ∉ 𝐺 ′ .rf, we vacuously have tid(𝑒′) = tid′RMW (𝑒) for every
⟨𝑒, 𝑒′⟩ ∈ 𝐺 ′ .rf ; [RMW]. In addition, we have tid(𝑒) = 𝜏 = tidRMW (𝑤) = tid′RMW (𝑤). Since 𝑤 is

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:49

the unique event such that ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf, it follows that for every ⟨𝑤 ′, 𝑒′⟩ ∈ 𝐺 ′ .rf ; [RMW],
we have tid(𝑒′) = tid′RMW (𝑤 ′).
We show that for every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋), there exists a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tid′RMW⟩-
write-list. Let 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋). We construct a ⟨𝐺 ′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tid′RMW⟩-write-list
𝑊 ′

. Let 𝑃 ≜ P(𝜋, 𝐿′) and (𝐿𝜏 and 𝑓𝜏 are only defined if 𝑃 ≠ ∅):

𝐿 ≜

{
𝐿′ \ 𝑃 𝜋 ≠ 𝜏

𝑜 · OW (𝑥) · (𝐿′ \ 𝑃) 𝜋 = 𝜏
𝑓 ≜

{
Map⟨𝐿′,𝑃 ⟩ 𝜋 ≠ 𝜏

𝜆𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 . Map⟨𝐿′,𝑃 ⟩ (𝑘) + 2 𝜋 = 𝜏

𝐿𝜏 ≜ 𝑜 · OW (𝑥) · 𝐿′ \\ 𝑃 𝑓𝜏 ≜ 𝜆𝑘 ∈ {min(𝑃), ... ,|𝐿′ |} \ 𝑃 . MMap⟨𝐿′,𝑃 ⟩ (𝑘) + 2

Then, by definition, we have 𝐿 ∈ B(𝜋) and 𝐿𝜏 ∈ B(𝜏). Let𝑊 be a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-
write-list, and𝑊𝜏 be a ⟨𝐺, 𝜏⟩-consistent ⟨𝐺, 𝐿𝜏 , tidRMW⟩-write-list. Note that for every 𝑘 > min(𝑃)
with 𝑘 ∉ 𝑃 and typ(𝐿′ (𝑘)) = R, we have tid(𝑊 (𝑓 (𝑘))) = tid(𝐿(𝑓 (𝑘))) = tid(𝐿𝜏 (𝑓𝜏 (𝑘))) =
tid(𝑊𝜏 (𝑓𝜏 (𝑘)), and so𝐺.hbmust order the two write events,𝑊 (𝑓 (𝑘)) and𝑊𝜏 (𝑓𝜏 (𝑘)). We define

𝑊 ′
as follows:

𝑊 ′ ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿′ |}.


𝐿′ (𝑘) typ(𝐿′ (𝑘)) = W

𝑒 typ(𝐿′ (𝑘)) = R ∧ 𝑘 ∈ 𝑃

𝑊 (𝑓 (𝑘)) typ(𝐿′ (𝑘)) = R ∧ 𝑘 < min(𝑃)
max𝐺.hb{𝑊 (𝑓 (𝑘)),𝑊𝜏 (𝑓𝜏 (𝑘))} otherwise

It is easy to see that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tid′RMW⟩-write-list. We show that𝑊 ′

is ⟨𝐺 ′, 𝜋⟩-consistent. Let
1 ≤ 𝑘 ≤ |𝐿′ | such that𝑊 ′ (𝑘) ∈ E. Let 𝑦 = loc(𝑊 ′ (𝑘)),𝑤𝜋 =𝑊 (𝑓 (𝑘)) and𝑤𝜏 =𝑊𝜏 (𝑓𝜏 (𝑘)) (the
latter is only defined if 𝑘 > min(𝑃)). We prove that each of the conditions in Def. 7.3 holds:

C1) We prove that 𝑊 ′ (𝑘) ∉ dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [E𝜋 ∪ {𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑘}]). Suppose
otherwise. First, note that we cannot have 𝑘 ∈ 𝑃 , since 𝑒 is a maximal element in𝐺 ′ .hb. Consider
the two possible cases:

– 𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [E𝜋]): The definition of 𝑊 ′
ensures that we have

⟨𝑤𝜋 ,𝑊
′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc, and so𝑤𝜋 ∈ dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [E𝜋]). Since𝑊 is ⟨𝐺, 𝜋⟩-

consistent, we have that𝑤𝜋 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜋]), and therefore it must be the

case that ⟨𝑤𝜋 , 𝑒⟩ ∈ 𝐺 ′ .hb|loc ; [W] ; (𝐺.hb ;𝐺 ′ .rf)? and 𝜋 = 𝜏 . Now, if𝑤𝜋 ∈ dom(𝐺.hb? ; [E𝜏]),
then since 𝜋 = 𝜏 , we have𝑊 (2) = 𝐿(2) = OW (𝑥) = OW (loc(𝑤𝜋)), and we obtain a contradiction

to the fact that𝑊 is ⟨𝐺, 𝜏⟩-consistent. Otherwise, we have ⟨𝑤𝜋 ,𝑤⟩ ∈ 𝐺 ′ .hb|loc ; [W] ;𝐺.hb.
Since 𝜋 = 𝜏 , we have 𝐿(1) = 𝑜 , and the definition of 𝑤 ensures that ⟨𝑤,𝑊 (1)⟩ ∈ 𝐺.po?. It
follows that ⟨𝑤𝜋 ,𝑊 (1)⟩ ∈ 𝐺.hb|loc ; [W] ;𝐺.hb?, which again contradicts the fact that𝑊 is

⟨𝐺, 𝜏⟩-consistent.
– ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? for some 1 ≤ 𝑗 < 𝑘 . Consider the two possible cases:

∗ 𝑊 ′ (𝑗) = 𝑒 : In this case we must have 𝑘 > min(𝑃), and so𝑊 ′ (𝑘) = max𝐺.hb{𝑤𝜋 ,𝑤𝜏 }. Hence,
we have ⟨𝑤𝜏 ,𝑊

′ (𝑘)⟩ ∈ 𝐺.hb|?loc. There are four possibilities:
· 𝑊 ′ (𝑘) = 𝑤 : In this case we have ⟨𝑤𝜏 ,𝑤⟩ ∈ 𝐺.hb|?loc. Since 𝐿𝜏 (1) = 𝑜 , the definition of

𝑤 ensures that ⟨𝑤,𝑊𝜏 (1)⟩ ∈ 𝐺.po?. Hence, ⟨𝑤𝜏 ,𝑊𝜏 (1)⟩ ∈ 𝐺.hb?. Since 𝐿𝜏 (2) = OW (𝑥) =
OW (loc(𝑊𝜏 (𝑓𝜏 (𝑘)))), we obtain a contradiction to the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

· ⟨𝑊 ′ (𝑘),𝑤⟩ ∈ 𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb?: This contradicts the ⟨𝐺, 𝜏⟩-consistency of𝑊𝜏 , as

⟨𝑤,𝑊𝜏 (1)⟩ ∈ 𝐺.po? and ⟨𝑤𝜏 ,𝑊
′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc, implying that ⟨𝑤𝜏 ,𝑊𝜏 (1)⟩ ∈ 𝐺.hb|loc ;

[W] ;𝐺.hb?.
· ⟨𝑊 ′ (𝑘), 𝑒⟩ ∈ 𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ;𝐺 ′ .po: This also contradicts the ⟨𝐺, 𝜏⟩-consistency
of𝑊𝜏 , as we get that𝑤𝜏 ∈ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]).

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:50 Ori Lahav and Udi Boker

· 𝑦 = 𝑥 and ⟨𝑊 ′ (𝑘), 𝑒⟩ ∈ 𝐺 ′ .hb ;𝐺 ′ .po: In this case we have ⟨𝑤𝜏 , 𝑒⟩ ∈ 𝐺 ′ .hb|?loc ;𝐺
′ .hb ;𝐺 ′ .po,

and so 𝑤𝜏 ∈ dom(𝐺.hb? ; [E𝜏]). But, since𝑊𝜏 (2) = 𝐿𝜏 (2) = OW (𝑥) = OW (loc(𝑤𝜏)), we
obtain a contradiction to the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

∗ 𝑊 ′ (𝑗) ≠ 𝑒: This case is proved exactly as the corresponding case in the proof for SRA.

C2) Suppose by contradiction that there exists 𝑖 < 𝑘 with𝑊 ′ (𝑖) = OW (𝑦) but𝑊 ′ (𝑘) ∈ dom(𝐺 ′ .hb? ; [E𝜋]).
Note that the definition of𝑊 ′

ensures that𝑊 ′ (𝑖) = 𝐿′ (𝑖) = OW (𝑦), and since𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-
write-list, it follows that𝑊 (𝑓 (𝑖)) = OW (𝑦). Consider the two possible cases:

– 𝑊 ′ (𝑘) = 𝑒: In this case, we must have 𝑦 = 𝑥 , 𝜋 = 𝜏 and 𝑖 < max(P(𝜏, 𝐿′)). Since P |=WRA

⟨𝜏, W (𝑥, 𝑣W)⟩, we cannot have 𝐿′ (𝑖) = OW (𝑥).
– 𝑊 ′ (𝑘) ≠ 𝑒: In this case, the definition of𝑊 ′

ensures that ⟨𝑤𝜋 ,𝑊
′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc, and so

𝑤𝜋 ∈ dom(𝐺 ′ .hb? ; [E𝜋]). Since𝑤𝜋 ≠ 𝑒 (as𝑤𝜋 ∈ 𝐺.E), it follows that𝑤𝜋 ∈ dom(𝐺.hb? ; [E𝜋]).
Since𝑊 (𝑓 (𝑖)) = OW (𝑦), this contradicts the fact that𝑊 is ⟨𝐺, 𝜋⟩-consistent.

C3) Suppose by contradiction that there exists 𝑗 < 𝑖 < 𝑘 with𝑊 ′ (𝑖) = OW (𝑦) but ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈
𝐺 ′ .hb?. Note that the definition of𝑊 ′

ensures that𝑊 ′ (𝑖) = 𝐿′ (𝑖) = OW (𝑦), and since𝑊 is a

⟨𝐺, 𝐿, tidRMW⟩-write-list, it follows that𝑊 (𝑓 (𝑖)) = OW (𝑦). In addition, since𝑊𝜏 is ⟨𝐺, 𝐿𝜏 , tidRMW⟩-
write-list, it follows that𝑊𝜏 (𝑓𝜏 (𝑖)) = OW (𝑦) if 𝑖 > min(𝑃). Consider the possible cases:
– 𝑊 ′ (𝑘) = 𝑒: In this case, we must have 𝑦 = 𝑥 and𝑊 ′ (𝑗) = 𝑒 . It follows that 𝑘, 𝑗 ∈ 𝑃 , and since

P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩, we cannot have 𝐿′ (𝑖) = OW (𝑥).
– 𝑊 ′ (𝑘) ≠ 𝑒 and 𝑊 ′ (𝑗) = 𝑒: In this case we must have 𝑖, 𝑘 > min(𝑃), and so 𝑊 ′ (𝑘) =

max𝐺.hb{𝑤𝜋 ,𝑤𝜏 } and 𝑊𝜏 (𝑓𝜏 (𝑖)) = OW (𝑦). Hence, we have ⟨𝑤𝜏 ,𝑊
′ (𝑘)⟩ ∈ 𝐺.hb|?loc, and so

⟨𝑤𝜏 , 𝑒⟩ ∈ 𝐺 ′ .hb?. Since 𝑤𝜏 ≠ 𝑒 (as 𝑤𝜏 ∈ 𝐺.E), it follows that 𝑤𝜏 ∈ dom(𝐺.hb? ; [E𝜏]). Since
𝑊𝜏 (𝑓𝜏 (𝑖)) = OW (𝑦), this contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.

– 𝑊 ′ (𝑘) ≠ 𝑒 and𝑊 ′ (𝑗) ≠ 𝑒: In this case, we must have ⟨𝑊 ′ (𝑘),𝑊 ′ (𝑗)⟩ ∈ 𝐺.hb?. Let 𝑤 𝑗
𝜋 =

𝑊 (𝑓 (𝑗)) and 𝑤
𝑗
𝜏 = 𝑊𝜏 (𝑓𝜏 (𝑗)) (the latter is only defined if 𝑗 > min(𝑃)). Our construction

ensures that one of the following holds:

∗ 𝑊 ′ (𝑗) = 𝑤
𝑗
𝜋 : Since𝑊

′ (𝑘) ≠ 𝑒 , the definition of𝑊 ′
ensures that ⟨𝑤𝜋 ,𝑊

′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc,
and so ⟨𝑤𝜋 ,𝑤

𝑗
𝜋 ⟩ ∈ 𝐺.hb?. This contradicts the fact that𝑊 is ⟨𝐺, 𝜋⟩-consistent.

∗ 𝑊 ′ (𝑗) = 𝑤
𝑗
𝜏 : In this case we have 𝑗 > min(𝑃), and so 𝑘 > min(𝑃). Since 𝑊 ′ (𝑘) ≠ 𝑒 ,

the definition of𝑊 ′
ensures that ⟨𝑤𝜏 ,𝑊

′ (𝑘)⟩ ∈ 𝐺 ′ .hb|?loc, and so ⟨𝑤𝜏 ,𝑤
𝑗
𝜏 ⟩ ∈ 𝐺.hb?. This

contradicts the fact that𝑊𝜏 is ⟨𝐺, 𝜏⟩-consistent.
Finally, the lower step is handled exactly as for SRA. □

Lemma A.4. For every trace of opWRA there is an equivalent trace of loWRA.

Proof. As described in §7, we show that ⋎−1 constitutes a backward simulation from opWRA

to loWRA. We detail here the simulation step. Suppose that 𝐺
𝜏,𝑙−−→opWRA 𝐺 ′

and B′ ⋎ 𝐺 ′
. Let

tidRMW : W → Tid be a function satisfying the conditions of Def. 7.4, and for every 𝜋 ∈ Tid and

𝐿′ ∈ B′ (𝜋), we let𝑊 ′
⟨𝜋,𝐿′ ⟩ be a ⟨𝐺

′, 𝜋⟩-consistent ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list. We construct a state B

such that B 𝜏,𝑙−−→loWRA B′
and B ⋎ 𝐺 . Consider the possible cases:

• 𝑙 = W (𝑥, 𝑣W):
Let 𝑤 = NextEvent(𝐺.E, 𝜏, 𝑙). Since 𝐺 𝜏,𝑙−−→opWRA 𝐺 ′

, we have 𝐺 ′ .E = 𝐺.E ∪ {𝑤} and 𝐺 ′ .rf =

𝐺.rf.12 Let P be the index choice for B′
that assigns the set of “new” positions in B′

:

P ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋). {1 ≤ 𝑘 ≤ |𝐿′ | |𝑊 ′
⟨𝜋,𝐿′ ⟩ (𝑘) = 𝑤}.

12
As before, since the mo-component is immaterial in WRA, we ignore mo in this proof.

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:51

Then, we define

B ≜ 𝜆𝜋 ∈ Tid.

{
OW (𝑥) · src(B′, 𝜏,P)(𝜏) 𝜋 = 𝜏

src(B′, 𝜏,P)(𝜋) 𝜋 ≠ 𝜏

By Prop. 8.4, to show that B 𝜏,𝑙−−→loWRA B′
, it suffices to prove that P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩. Let

𝜋RMW = tidRMW (𝑤). Thus, we show that the following hold for every 𝜋 ∈ Tid and 𝐿′ ∈ B′ (𝜋),
where 𝑃 = P(𝜋, 𝐿′) and𝑊 ′ =𝑊 ′

⟨𝜏,𝐿′ ⟩ :

– Let 𝑘 ∈ 𝑃 . Then, we have𝑊 ′ (𝑘) = 𝑤 , and thus 𝐿′ (𝑘) = OR (𝜏, 𝑥, 𝑣W, 𝜋RMW).
– Let 𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 such that 𝑝1 < 𝑘 < 𝑝2 for some 𝑝1, 𝑝2 ∈ 𝑃 . We show that 𝐿′ (𝑘) ≠ OW (𝑥).
Since 𝑝1, 𝑝2 ∈ 𝑃 , we have𝑊 ′ (𝑝1) =𝑊 ′ (𝑝2) = 𝑤 , and so ⟨𝑊 ′ (𝑝1),𝑊 ′ (𝑝2)⟩ ∈ 𝐺 ′ .hb?. Since𝑊 ′

is ⟨𝐺 ′, 𝜏⟩-consistent (by C3), we cannot have𝑊 ′ (𝑘) = OW (loc(𝑊 ′ (𝑝2))), and so 𝐿′ (𝑘) ≠ OW (𝑥).
– Suppose that 𝜋 = 𝜏 and let 𝑘 ∈ {1, ... ,|𝐿′ |} \ 𝑃 such that 𝑘 < 𝑝 for some 𝑝 ∈ 𝑃 . We show that

𝐿′ (𝑘) ≠ OW (𝑥). Since 𝑝 ∈ 𝑃 , we have𝑊 ′ (𝑝) = 𝑤 , and so𝑊 ′ (𝑝) ∈ dom(𝐺 ′ .hb? ; [E𝜏]). Since𝑊 ′

is ⟨𝐺 ′, 𝜏⟩-consistent (by C2), we cannot have𝑊 ′ (𝑘) = OW (loc(𝑊 ′ (𝑝))), and so 𝐿′ (𝑘) ≠ OW (𝑥).
Next, we prove that B ⋎ 𝐺 , by showing that for every 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋), there exists a
⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list. (Since 𝐺.rf ⊆ 𝐺 ′ .rf, the second condition of ⋎ for

WRA (Def. 7.4), namely that for every ⟨𝑤, 𝑒⟩ ∈ 𝐺.rf ; [RMW], we have tid(𝑒) = tidRMW (𝑤),
trivially holds.) Let 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋). Following the construction of B, one of the following

holds:

– 𝜋 ≠ 𝜏 and 𝐿 = 𝐿′ \ P(𝜋, 𝐿′) for some 𝐿′ ∈ B′ (𝜋). Let 𝑃 = P(𝜋, 𝐿′), 𝑊 ′ = 𝑊 ′
⟨𝜋,𝐿′ ⟩ and

𝑓 = Map
−1
⟨𝐿′,𝑃 ⟩ . We define 𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}. 𝑊 ′ (𝑓 (𝑘)). Using the fact that 𝑊 ′

is a

⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list, it is easy to see that𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list.
It remains to show that𝑊 is ⟨𝐺, 𝜋⟩-consistent, namely to prove that for every 𝑘 , such that

𝑊 (𝑘) ∈ E, the conditions of Def. 7.3 hold. Indeed, the construction of𝑊 and the fact that

𝐺.hb ⊆ 𝐺 ′ .hb directly ensure that these conditions follows from the ⟨𝐺 ′, 𝜋⟩-consistency of

𝑊 ′
.

– 𝜋 = 𝜏 and 𝐿 = OW (𝑥) · (𝐿′ \ P(𝜏, 𝐿′)) for some 𝐿′ ∈ B′ (𝜏). Let 𝑃 = P(𝜏, 𝐿′),𝑊 ′ =𝑊 ′
⟨𝜏,𝐿′ ⟩ and

𝑓 = 𝜆𝑘 ∈ {2, ... ,|𝐿 |}. Map
−1
⟨𝐿′,𝑃 ⟩ (𝑘 − 1). We define:

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.
{
OW (𝑥) 𝑘 = 1

𝑊 ′ (𝑓 (𝑘)) 𝑘 > 1

By the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list, we get that𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list.

It remains to show that it is ⟨𝐺, 𝜏⟩-consistent. Conditions C1 and C3 in Def. 7.3 follow di-

rectly from the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
. Condition C2, however, deserves more attention,

as we added OW (𝑥) at the start of the list. Assume toward contradiction some 𝑘 , such that

𝑊 (𝑘) ∈ E, loc(𝑊 (𝑘)) = 𝑥 and𝑊 (𝑘) ∈ dom(𝐺.hb? ; [E𝜏]). Then since𝑊 ′ (𝑓 (𝑘)) =𝑊 (𝑘),𝑤 =

max𝐺 ′ .po𝐺
′ .E𝜏 and loc(𝑊 (𝑘)) = loc(𝑤), we have ⟨𝑊 ′ (𝑓 (𝑘)),𝑤⟩ ∈ 𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb?,

contradicting (C1 in) the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
.

– 𝜋 = 𝜏 and 𝐿 = OW (𝑥) · (𝐿′ \\ P(𝜂, 𝐿′)) for some 𝜂 ∈ Tid and 𝐿′ ∈ B′ (𝜂).
Let 𝑃 = P(𝜂, 𝐿′),𝑚 = min(𝑃),𝑊 ′ =𝑊 ′

⟨𝜂,𝐿′ ⟩ and 𝑓 = 𝜆𝑘 ∈ {2, ... ,|𝐿 |}. MMap
−1
⟨𝐿′,𝑃 ⟩ (𝑘 − 1). We

define:

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.
{
OW (𝑥) 𝑘 = 1

𝑊 ′ (𝑓 (𝑘)) 𝑘 > 1

By the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list, we get that𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list. It

remains to show that it is ⟨𝐺, 𝜏⟩-consistent. Condition C3 follows directly from the ⟨𝐺 ′, 𝜂⟩-
consistency of𝑊 ′

. We prove the other two conditions:

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:52 Ori Lahav and Udi Boker

C1) The existence of some𝑘 , such that𝑊 (𝑘) ∈ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [{𝑊 (𝑗) | 1 ≤ 𝑗 < 𝑘}])
directly contradicts the same condition in the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′

. Now, assume to-

ward contradiction some 𝑘 , such that 𝑊 (𝑘) ∈ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]). Then,
since 𝑊 ′ (𝑓 (𝑘)) = 𝑊 (𝑘), 𝑓 (𝑘) > 𝑚, 𝑊 ′ (𝑚) = 𝑤 and 𝑤 = max𝐺 ′ .po𝐺

′ .E𝜏 , we have

𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), contradicting (C1 in)
the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′

.

C2) Assume toward contradiction the existence of some 𝑖 < 𝑘 , such that𝑊 (𝑖) = OW (loc(𝑊 (𝑘)))
and𝑊 (𝑘) ∈ dom(𝐺.hb? ; [E𝜏]). First if 𝑖 = 1, then loc(𝑊 (𝑘)) = 𝑥 , and as above, since

𝑊 ′ (𝑓 (𝑘)) = 𝑊 (𝑘), 𝑓 (𝑘) > 𝑚,𝑊 ′ (𝑚) = 𝑤 and 𝑤 = max𝐺 ′ .po𝐺
′ .E𝜏 , we have𝑊 ′ (𝑓 (𝑘)) ∈

dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), contradicting (C1 in) the ⟨𝐺 ′, 𝜂⟩-
consistency of𝑊 ′

. Now, suppose that 𝑖 > 1. Then, again, since𝑊 ′ (𝑓 (𝑘)) =𝑊 (𝑘), 𝑓 (𝑘) >
𝑓 (𝑖) > 𝑚,𝑊 ′ (𝑚) = 𝑤 and 𝑤 = max𝐺 ′ .po𝐺

′ .E𝜏 , we have ⟨𝑊 ′ (𝑓 (𝑘)),𝑊 ′ (𝑚)⟩ ∈ 𝐺 ′ .hb?,
contradicting (C3 in) the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′

.

• 𝑙 = R (𝑥, 𝑣R):
Let 𝑟 = NextEvent(𝐺.E, 𝜏, 𝑙). Since 𝐺 𝜏,𝑙−−→opWRA 𝐺 ′

, we have that 𝐺 ′ .E = 𝐺.E ∪ {𝑟 } and 𝐺 ′ .rf =

𝐺.rf ∪ {⟨𝑤, 𝑟 ⟩} for some write event 𝑤 ∈ 𝐺.W𝑥 \ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]) with

valW (𝑤) = 𝑣R.

Let 𝑜 = ⟨tid(𝑤), 𝑥, 𝑣R, tidRMW (𝑤)⟩. We define B by:

B ≜ 𝜆𝜋 ∈ Tid.

{
𝑜 · B′ (𝜏) 𝜋 = 𝜏

B′ (𝜋) 𝜋 ≠ 𝜏

By definition, we have B 𝜏,𝑙−−→loWRA B′
. We show that B ⋎ 𝐺 . Note that the second condition of

⋎ for WRA (Def. 7.4) trivially holds, and we need to show that for every 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋),
there exists a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list.
For 𝜋 ≠ 𝜏 and 𝐿 ∈ B(𝜋), observe that 𝐿 ∈ B′ (𝜋), and since 𝐺.hb ⊆ 𝐺 ′ .hb, we have that𝑊 ′

⟨𝜋,𝐿′ ⟩
is also a ⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list.
Consider an option list 𝐿 ∈ B(𝜏). Let 𝐿′ ∈ B′ (𝜏) such that 𝐿 = 𝑜 ·𝐿′. Let𝑊 ′ =𝑊 ′

⟨𝜏,𝐿′ ⟩ . We define

𝑊 ≜ 𝑤 ·𝑊 ′
. By the fact that𝑊 ′

is a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list, we get that𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-
write-list. It remains to show that it is ⟨𝐺, 𝜏⟩-consistent. Given the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

, for

C1, we only need to show that𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]), which is guaranteed by

the properties of𝑤 as stated above (it follows from the preconditions of the read step in opWRA).

Condition C2 directly follows from the𝑊 is ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
. For C3, given the ⟨𝐺 ′, 𝜏⟩-

consistency of𝑊 ′
, it suffices to handle the case that 𝑗 = 1. Thus, assume toward contradiction

some 1 < 𝑘 ≤ |𝐿 | and 1 < 𝑖 < 𝑘 , such that𝑊 (𝑖) = OW (loc(𝑊 (𝑘))) and ⟨𝑊 (𝑘),𝑤⟩ ∈ 𝐺.hb?.
Then, since 𝑟 ∈ 𝐺 ′ .E𝜏 and ⟨𝑤, 𝑟 ⟩ ∈ 𝐺 ′ .rf, we get that𝑊 ′ (𝑘 − 1) ∈ dom(𝐺 ′ .hb? ; [E𝜏]), while
𝑊 ′ (𝑖 − 1) = OW (loc(𝑊 ′ (𝑘 − 1))), contradicting (C2 in) the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

.

• 𝑙 = RMW (𝑥, 𝑣R, 𝑣W):
Let 𝑒 = NextEvent(𝐺.E, 𝜏, 𝑙). Since 𝐺 𝜏,𝑙−−→opWRA 𝐺 ′

, we have 𝐺 ′ .E = 𝐺.E ∪ {𝑒}, 𝐺 ′ .rf = 𝐺.rf ∪
{⟨𝑤, 𝑒⟩} and valW (𝑤) = 𝑣R, for some𝑤 ∈ W𝑥 , such that𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏])
and𝑤 ∉ dom(𝐺.rf ; [RMW]).
Let P be the index choice for B′

that assigns the set of “new” positions in B′
:

P ≜ 𝜆𝜋 ∈ Tid, 𝐿′ ∈ B′ (𝜋). {1 ≤ 𝑘 ≤ |𝐿′ | |𝑊 ′
⟨𝜋,𝐿′ ⟩ (𝑘) = 𝑒}.

Then, we define:

B ≜ 𝜆𝜋 ∈ Tid.

{
𝑜 · OW (𝑥) · src(B′, 𝜏,P)(𝜏) 𝜋 = 𝜏

src(B′, 𝜏,P)(𝜋) 𝜋 ≠ 𝜏

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

What’s Decidable about Causally Consistent Shared Memory? 0:53

where 𝑜 is the read option given by 𝑜 ≜ OR (tid(𝑤), 𝑥, 𝑣R, 𝜏).
Using Prop. 8.4, to show that B 𝜏,𝑙−−→loWRA B′

, it suffices to prove that P |=WRA ⟨𝜏, W (𝑥, 𝑣W)⟩. This
is done as in the write case, together with the following observation: Since 𝑒 ∈ 𝐺 ′ .E𝜏 , 𝑒 ∈ RMW

and ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf, the fact that tidRMW witnesses B′ ⋎ 𝐺 ′
, guarantees that tidRMW (𝑤) = 𝜏 .

It remains to show that B ⋎ 𝐺 . We show that for every 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋), there exists a
⟨𝐺, 𝜋⟩-consistent ⟨𝐺, 𝐿, tidRMW⟩-write-list. (The second condition of ⋎ forWRA (Def. 7.4) trivially

holds.) Let 𝜋 ∈ Tid and 𝐿 ∈ B(𝜋). Following the construction of B, one of the following holds:

– 𝜋 ≠ 𝜏 and 𝐿 = 𝐿′ \P(𝜋, 𝐿′) for some 𝐿′ ∈ B′ (𝜋). This case is exactly the same as the analogous

case in the write step.

– 𝜋 = 𝜏 and 𝐿 = 𝑜 · OW (𝑥) · (𝐿′ \ P(𝜏, 𝐿′)) for some 𝐿′ ∈ B′ (𝜏). Let 𝑃 = P(𝜏, 𝐿′),𝑊 ′ =𝑊 ′
⟨𝜏,𝐿′ ⟩

and 𝑓 = 𝜆𝑘 ∈ {3, ... ,|𝐿 |}. Map
−1
⟨𝐿′,𝑃 ⟩ (𝑘 − 2). We define:

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.


𝑤 𝑘 = 1

OW (𝑥) 𝑘 = 2

𝑊 ′ (𝑓 (𝑘)) 𝑘 > 2

By the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list, we get that𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list,

and we show that it is ⟨𝐺, 𝜏⟩-consistent:
C1) Observe first that𝑊 (1) = 𝑤 and 𝑤 ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]) is guaranteed by

the properties of 𝑤 as stated above (it follows from the preconditions of the rmw step in

opWRA). Now, consider some 2 < 𝑘 ≤ |𝐿 |. By the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
, we have𝑊 (𝑘) ∉

dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏 ∪ {𝑊 (𝑗) | 3 ≤ 𝑗 < 𝑘}]). It is left to show that ⟨𝑊 (𝑘),𝑤⟩ ∉
𝐺.hb|loc ; [W] ; 𝐺.hb?. Indeed, were it not the case, since ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf and 𝑒 ∈ E

𝜏
, we

would have had𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .hb|loc ; [W] ;𝐺.hb? ; [E𝜏]), contradicting (C1 in) the

⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′
.

C2) Due to adding𝑊 (2) = OW (𝑥), which is not present in𝑊 ′
, we should ensure that𝑊 (𝑘) ∉

dom(𝐺.hb? ; [E𝜏]) for every 2 < 𝑘 ≤ |𝐿 |. Indeed, this is guaranteed by (C1 in) the ⟨𝐺 ′, 𝜏⟩-
consistency of𝑊 ′

, as 𝑒 = max𝐺 ′ .po𝐺
′ .E𝜏 , loc(𝑊 (𝑘)) = loc(𝑒), 𝑒 ∈ W,𝑊 ′ (𝑓 (𝑘)) =𝑊 (𝑘),

and𝑊 ′ (𝑓 (𝑘)) ∉ dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [E𝜏]).
C3) Due to adding𝑊 (1) = 𝑤 and𝑊 (2) = OW (𝑥), we should ensure that for every 2 < 𝑘 ≤ |𝐿 |,

if loc(𝑊 (𝑘)) = 𝑥 then ⟨𝑊 (𝑘),𝑤⟩ ∉ 𝐺.hb?. First observe that𝑊 (𝑘) ≠ 𝑤 , as otherwise

we would have had 𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb? ; [E𝜏]), since 𝑊 ′ (𝑓 (𝑘)) =

𝑊 (𝑘) = 𝑤 , ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf and 𝑒 ∈ W, which contradicts (C1 in) the ⟨𝐺 ′, 𝜏⟩-consistency of

𝑊 ′
. Then, observe that ⟨𝑊 (𝑘),𝑤⟩ ∉ 𝐺.hb, as 𝑤 ∈ W, and we showed while handling C1

that ⟨𝑊 (𝑘),𝑤⟩ ∉ 𝐺.hb|loc ; [W] ;𝐺.hb?.
– 𝜋 = 𝜏 and 𝐿 = 𝑜 · OW (𝑥) · (𝐿′ \\ P(𝜂, 𝐿′)) for some 𝜂 ∈ Tid and 𝐿′ ∈ B′ (𝜂).
Let 𝑃 = P(𝜂, 𝐿′),𝑊 ′ =𝑊 ′

⟨𝜂,𝐿′ ⟩ ,𝑚 = min(𝑃) and 𝑓 = 𝜆𝑘 ∈ {3, ... ,|𝐿 |}. MMap
−1
⟨𝐿′,𝑃 ⟩ (𝑘 − 2). We

define:

𝑊 ≜ 𝜆𝑘 ∈ {1, ... ,|𝐿 |}.


𝑤 𝑘 = 1

OW (𝑥) 𝑘 = 2

𝑊 ′ (𝑓 (𝑘)) 𝑘 > 2

By the fact that𝑊 ′
is a ⟨𝐺 ′, 𝐿′, tidRMW⟩-write-list, we get that𝑊 is a ⟨𝐺, 𝐿, tidRMW⟩-write-list,

and we show that it is ⟨𝐺, 𝜏⟩-consistent:
C1) The difference from the previous case is that we have the ⟨𝐺 ′, 𝜏⟩-consistency of𝑊 ′

⟨𝜂,𝐿′ ⟩
rather than of𝑊 ′

⟨𝜏,𝐿′ ⟩ . Hence, we should show that for every 2 < 𝑘 ≤ |𝐿 |, we still have
𝑊 (𝑘) ∉ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏 ∪ {𝑤}]). Assume first toward contradiction some

𝑘 such that𝑊 (𝑘) ∈ dom(𝐺.hb|loc ; [W] ;𝐺.hb? ; [E𝜏]). Since𝑊 ′ (𝑓 (𝑘)) =𝑊 (𝑘), 𝑓 (𝑘) > 𝑚,

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

0:54 Ori Lahav and Udi Boker

𝑊 ′ (𝑚) = 𝑒 and 𝑒 = max𝐺 ′ .po𝐺
′ .E𝜏 , we have𝑊 ′ (𝑓 (𝑘)) ∈ dom(𝐺 ′ .hb|loc ; [W] ; 𝐺 ′ .hb?;

[{𝑊 ′ (𝑗) | 1 ≤ 𝑗 < 𝑓 (𝑘)}]), contradicting (C1 in) the ⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
. Next, assume

toward contradiction some 𝑘 , such that ⟨𝑊 (𝑘),𝑤⟩ ∈ 𝐺.hb|loc ; [W] ;𝐺.hb?. Then, we reach
an analogous contradiction, since ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf.

C2) Handled exactly as in the analogous case of the write step (referring to 𝑒 instead of𝑤).

C3) Due to adding𝑊 (1) = 𝑤 and𝑊 (2) = OW (𝑥), we should ensure that for every 2 < 𝑘 ≤ |𝐿 |,
if loc(𝑊 (𝑘)) = 𝑥 then ⟨𝑊 (𝑘),𝑤⟩ ∉ 𝐺.hb?. Indeed, assume toward contradiction that

⟨𝑊 (𝑘),𝑤⟩ ∈ 𝐺.hb?. Then, since ⟨𝑤, 𝑒⟩ ∈ 𝐺 ′ .rf, 𝑊 ′ (𝑚) = 𝑒 and 𝑒 ∈ W, we get that

⟨𝑊 ′ (𝑓 (𝑘)),𝑊 ′ (𝑚)⟩ ∈ 𝐺 ′ .hb|loc ; [W] ;𝐺 ′ .hb?. Since 𝑓 (𝑘) > 𝑚, this contradicts (C1 in) the

⟨𝐺 ′, 𝜂⟩-consistency of𝑊 ′
. □

ACM Trans. Program. Lang. Syst., Vol. 0, No. 0, Article 0. Publication date: 2021.

	Abstract
	1 Introduction
	2 Preliminaries: Safety Verification Under Declarative Models
	2.1 Programming Language
	2.2 Declarative Memory Models and their Reachability Problem

	3 Declarative Causally Consistent Memory Models
	3.1 Alternative Formulations
	3.2 Write/Write-Race Freedom Guarantee

	4 An Operational Look at Causal Consistency and its Induced Reachability Problem
	4.1 The Reachability Problem for Memory Systems

	5 Making Strong Release/Acquire Lossy: The loSRA memory system
	6 Making Weak Release/Acquire Lossy: The loWRA memory system
	7 Equivalence of loSRA and opSRA and of loWRA and opWRA
	8 Decidability of the Reachability Problems under SRA and WRA
	8.1 Preliminaries on well-structured transition systems
	8.2 Backwards formulation of the write step
	8.3 loXRA as a WSTS

	9 Related Work
	10 Conclusion and Future Work
	References
	A Full Equivalence Proofs
	A.1 Equivalence of loSRA and opSRA
	A.2 Equivalence of loWRA and opWRA

