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Main Contribution

m A semantic characterization of syntactic properties of
single-conclusion canonical sequent systems.

m A link between invertibility, axiom-expansion and determinism
of Kripke-style semantics for such systems.

m A matrix-based presentation of non-deterministic Kripke-style
semantics, allowing for a decision procedure for checking
determinism.



Invertibility

A rule is invertible in a calculus G if each of its premises is derivable
in G from its conclusion.

N=¢ LyY=E o=1
Me>y=E = ¢pDv

The left rule is not invertible, while the right rule is:

= =19
Le=¢ TFeyv=19

[=¢D79y Lo,pD=19
No=1




Axiom-Expansion

An n-ary connective ¢ admits axiom-expansion in G, if
o(p1y..-,pn) = o(p1,...,pn) has a cut-free proof in G that does

not contain non-atomic axioms.

prL= p1 p2= p2
p1,P1 O p2 = p2

N=¢ Ly=E Meo=1
oo0—E r=>oo9 PoPRR=PoR
MN=v Tp=E = p1 = p1,p2 = p2 i/

M ~@=E =~ p1 ~ P2 = p1 ~ P2



What is a Canonical Rule?

m An “ideal” logical rule: an introduction rule for exactly one
connective, on exactly one side of a sequent.

m In its formulation: exactly one occurrence of the introduced
connective, no other occurrences of other connectives.

m Its active formulas: immediate subformulas of its principal
formula.



Multiple-Conclusion Canonical Rules

Stage 1:
My, p=A Fr=A¢ I'=Ap
NLyYyAe=A FN=AYAp
Stage 2:
v, o= =Y =9
YANp= = YN
Stage 3:

{pi.p2=}/pApp= {=p;=>p}/ =>pAp



Multiple-Conclusion Canonical Systems ([Avron,Lev 2001])

m Multiple-conclusion sequent calculi consist of identity axioms,
cut, weakening and multiple-conclusion canonical rules.

m Have a semantic characterization using non-deterministic
two-valued matrices (2Nmatrices).

m Remarkable correspondence: Invertibility of rules -
Axiom-expansion - Determinism of the corresponding 2Nmatrix



Intuitition for Introducing Non-determinism

Standard rules for classical negation and disjunction:

M= A My=A
=)= A = A,

Ny=A Te=A T =AYy
NLyYyVve=A =AYV




Intuition for Introducing Non-determinism

Written in the canonical notation:

=p p=

-p= = p
p1 = p2= = P1, P2
p1V p2 = = p1Vp2



Intuition for Introducing Non-determinism

Correponding to the classical semantics:

=p p=
-p= = -p

- t tyt
t| f t |t
fl t f t]t
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Intuition for Introducing Non-determinism

Correponding to the classical semantics:

= p

= P1, P2

= p1Vp2

v
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Intuition for Introducing Non-determinism

Correponding to the classical semantics:

= p




Single-Conclusion Canonical Systems

m Single-conclusion canonical systems were defined in
[Avron,Lahav 2010], and used to proof-theoretically
characterize basic constructive connectives.

m Have a semantic characterization using non-deterministic
Kripke-style semantics.

m A gap to be filled: Deterministic semantics? Invertibility?
Axiom-expansion?



Single-conclusion Right Canonical Rules

m A canonical right rule:

{I_I,' = Ei}lgigm/ = <>(p17 e 7pf7)

m An application of the rule:

{ro(Ni) = o(Ei)}i<ic<m
= o(e(p1,---,pn))

Implication: Semi-implication:
{p1=p}/ =pDOp {=p}/ =p~p
Le=1v M=

MN=¢D>vy =@~



Single-conclusion Left Canonical Rules

m A canonical left rule:

({Ni = Eiti<i<m, {Xi = hi<i<k)/ (P15 Pn) =

m An application of the rule:

{ro(M) = o(Eh<icm  {T0(X) = Ehici<k
Fo(o(pt,....pn)) = E

Implication: Weak affirmation:
{=pmtip=}H /D= {pr=}40)/ »p1=
Fr=¢ NLy=E Me=

Ne>y=E > p=F



Single-Conclusion Canonical Systems

m Identity axioms (the sequents of the form ¢ = 1))
m Cut rule
m Weakening

m Single-conclusion canonical rules:

m Right rules
m Left rules



Semantics for Single-conclusion Canonical Systems

m Let F be a set of formulas closed under subformulas. An
F-semiframe is a triple W = (W, <, v) such that:

(W, <) is a nonempty partially ordered set.
v is a persistent function from W x F to {t, f}: if
v(a, 1)) = t, then for all b > a, v(b,9) = t.

m When F is the set of all wffs of the language, we call W a
(full) frame.

m Each canonical rule imposes a semantic condition on v.
Combining the conditions imposed by all rules of a canonical
system G, we obtain the set of G-/egal frames, for which G is
sound and complete.



Example 1: Implication

l=¢ T@LYv=E Me=1
Ne>yYy=E =>4y




Example 1: Implication

Nr=¢ TLy=E Mo=1
Ne>yYy=E =Dy

The right rule imposes the condition v(a, ¢ D 1) = t whenever for
every b > a, either v(b,p) = f or v(b, ) = t.



Example 1: Implication

F=¢ T@LYv=E Me=1
Ne>yYy=E =Dy

The right rule imposes the condition v(a, ¢ D 1) = t whenever for
every b > a, either v(b,p) = f or v(b, ) = t.

The left rule imposes the condition v(a, ¢ D 1) = f whenever
v(b,p) =t for every b > a and v(a, ) = f.



Example 2: Semi-Implication ([Gurevich, Neeman 2009])

FN=¢ T@LYv=E =
Me~v=E = o~




Example 2: Semi-Implication ([Gurevich, Neeman 2009])

N=¢ y=E M=
Mp~~1=E = o~

The right rule imposes the condition v(a, ¢ ~» 1) = t whenever for
every b > a, v(b,¢)) = t.

The left rule imposes the condition v(a, ¢ ~~ 1) = f whenever
v(b,p) =t for every b > a and v(a, ) = f.

If v(a,v) = f and there is no b > a such that v(b, ) =t and
v(b,v) = f, then v(a, ¢ ~~ 1) is not restricted —
non-determinism!



A Note on the Importance of Analycity

m Analycity: to determine whether a sequent s follows from a set
S of sequents, it should be sufficient to consider only partial
valuations, related to the relevant set of subformulas of
SuU{s}.

m The semantics of G-legal non-deterministic frames is analytic
in this sense: each G-legal F-semi-frame can be extended to a
full G-legal frame.



What is a Deterministic Connective?

m © is deterministic in G if every G-legal

SF(#1, ...,%n)-semiframe has a unique extension to a G-legal
SF(o(¢1, - .., 1n))-semiframe.

m Implication is deterministic (in G with standard implication
rules).

m Semi-Implication is non-deterministic (in G with the two
semi-implication rules). For instance, define a simple
{p1, p2}-semiframe W with one world w, in which
v(w, p1) = v(w, p2) = f. Then there are two different G-legal
{p1, P2, p1 ~> p2}-semiframes extending W!



Semantic Characterization of Axiom-Expansion

A connective ¢ admits axiom-expansion in a canonical system G iff
© is deterministic in G.




Semantic Characterization of Invertibility

If G contains exactly one right rule for o, then this rule is invertible
in G iff ¢ is deterministic in G.




Deciding Determinism

m The current formulation of Kripke-style semantics does not
induce a straightforward algorithm for checking determinism of
connectives.

m We have nice non-deterministic matrix-based semantics for
multiple-conclusioned canonical systems, in which
non-determinism is immediately detectable:

| o | v
t t| {t,f} t t| {t}
t f| {t} t f| {t}
fot| {t} f ot {t}
f f| {t,f} f f|{f}



Matrix-based Approach to Kripke-style Semantics: Intuition

m In standard Nmatrices the truth-value of o(4)1,...,1,)
depends on (although is not necessarily uniquely determined
by) the truth-values assigned to 1, ..., 1,.

m In Kripke-style semantics the interpretation is more complex:
the truth-value assigned to o(%1,...,%,) in a world a
depends, in addition to the truth-values assigned to v1,..., 9,
in a, also on the truth-values assigned to these formulas in all
worlds b > a.

m However, which truth-values are assigned to 1, ...,%, in
which world is immaterial, what matters is their distribution:

Ds = {(v(b,¢1),...,v(b,¥n)) | b= a}



Distribution Examples

% ¢ ¢
Yoo o

<ff> {<ff><tf>} <ff> {<f,f><tf>} <f,f> {<f,f>}
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The simplest canonical calculus with no canonical rules for O:
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Add the rule {p1 = p2}/ = p1 D p2:
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Add the rule ({= p1},{p2=})/p1 D p2 =

—~ o YY)

et Y Tacelace Tacn tateiacels i acal Wil SRy Vi
R I R e DS
B e i i e i S
— e

—~

—

-

A - s

—_- —_ e lae
—~ Y —~

T eETEEET
e N atn T s Tt N S NS N )

.T-.; t?\h[l?\h 7\h\h\ht7 ..L.; t’\h
~ N — Nl\f.l e S

R i N T S N N
——~ =
2 LRI

— v e e -

P N g e e e e T e

T T S Y - ~— ~— ~— ~— ~— ~—— ~—




0
<2
>
o
“@
O
c
(@)
(e
(qv]
)
£
(©)
s
G
(V5]
O
)
c
T
S
()
V)]
()
-
4+
o
o=
@)
oY)
o=
S
(gv]
(]
o

e i e S T T S PSP NN

P N e e e e T

— T T N S - ~— ~— ~— ~— ~— ~—— ~—




0
<2
>
o
“@
O
c
(@)
(e
(qv]
)
£
(©)
s
G
(V5]
O
)
c
T
S
(]
V)]
()
-
4+
o
o=
@)
oY)
o=
S
(gv]
(]
o



An Algorithm for Removing Illegal Options

Let 3:V, — Pt ({t,f}) be an interpretation of an n-ary
connective ¢. The reduced interpretation R(&) is obtained by the
following algorithm:
- Lo« 3 and i<« 0.
Repeat
mi<+i+1land ;< Li_q.
m Let V = (X, D), such that L;_1(V) = {t,f}. If
there is some y € D, such that for every
D' C D, such that (y,D’') € V,:
Li1({y, D)) = {f}, then Li(V) « {f}.
Until L;=1L;_4



Determinism in Canonical Calculi is Decidable

Theorem

A connective ¢ is deterministic in G iff its truth-table read off the

canonical rules of G for ¢ and updated by the algorithm above, has
no non-deterministic lines.



Conclusions and Future Work

m Defined in precise terms determinism of Kripke-style semantics
for canonical single-conclusion systems.

m Used it to semantically characterize (right) invertibility and
axiom-expansion in these systems.

m Introduced a matrix-based presentation of Kripke-style
non-deterministic semantics, which allows to decide
determinism of connectives.

m Future work:

m General theory of matrix-based Kripke-style semantics.

m Characterization of further properties of canonical calculi.
m Extending the results to more general systems.



