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Abstract. We present SLR, the first expressive program logic for reason-
ing about concurrent programs under a weak memory model addressing
the out-of-thin-air problem. Our logic includes the standard features
from existing logics, such as RSL and GPS, that were previously known
to be sound only under stronger memory models: (1) separation, (2)
per-location invariants, and (3) ownership transfer via release-acquire
synchronisation—as well as novel features for reasoning about (4) the
absence of out-of-thin-air behaviours and (5) coherence. The logic is
proved sound over the recent “promising” memory model of Kang et al.,
using a substantially different argument to soundness proofs of logics for
simpler memory models.

1 Introduction

Recent years have seen the emergence of several program logics [2, 6, 8, 16, 23,
24, 26–28] for reasoning about programs under weak memory models. These
program logics are valuable tools for structuring program correctness proofs,
and enabling programmers to reason about the correctness of their programs
without necessarily knowing the formal semantics of the programming language.
So far, however, they have only been applied to relatively strong memory models
(such as TSO [19] or release/acquire consistency [15] that can be expressed as a
constraint on individual candidate program executions) and provide little to no
reasoning principles to deal with C/C++ “relaxed” accesses.

The main reason for this gap is that the behaviour of relaxed accesses is
notoriously hard to specify [3, 5]. Up until recently, memory models have either
been too strong (e.g., [5, 14, 17]), forbidding some behaviours observed with
modern hardware and compilers, or they have been too weak (e.g., [4]), allowing
so-called out-of-thin-air (OOTA) behaviour even though it does not occur in
practice and is highly problematic.

One observable behaviour forbidden by the strong models is the load buffering
behaviour illustrated by the example below, which, when started with both
locations x and y containing 0, can end with both r1 and r2 containing 1. This
behaviour is observable on certain ARMv7 processors after the compiler optimises
r2 + 1− r2 to 1.

r1 := [x]rlx; // reads 1
[y]rlx := r1

r2 := [y]rlx; // reads 1
[x]rlx := r2 + 1− r2

(LB+data+fakedep)
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However, one OOTA behaviour they should not allow is the following example by
Boehm and Demsky [5]. When started with two completely disjoint lists a and b,
by updating them separately in parallel, it should not be allowed to end with
a and b pointing to each other, as that would violate physical separation (for
simplicity, in these lists, a location just holds the address of the next element):

r1 := [a]rlx; // reads b
[r1]rlx := a

r2 := [b]rlx; // reads a
[r2]rlx := b

(Disjoint-Lists)

Because of this specification gap, program logics either do not reason about
relaxed accesses, or they assume overly strengthened models that disallow some
behaviours that occur in practice (as discussed in Sect. 5).

Recently, there have been several proposals of programming language memory
models that allow load buffering behaviour, but forbid obvious out-of-thin-air
behaviours [10,13,20]. This development has enabled us to develop a program
logic that provides expressive reasoning principles for relaxed accesses, without
relying on overly strong models.

In this paper, we present SLR, a separation logic based on RSL [27], extended
with strong reasoning principles for relaxed accesses, which we prove sound over
the recent “promising” semantics of Kang et al. [13]. SLR features per-location
invariants [27] and physical separation [22], as well as novel assertions that we use
to show the absence of OOTA behaviours and to reason about various coherence
examples. (Coherence is a property of memory models that requires the existence
of a per-location total order on writes that reads respect.)

There are two main contributions of this work.

First, SLR is the first logic which can prove absence of OOTA in all the
standard litmus tests. As such, it provides more evidence to the claim that the
promising semantics solves the out-of-thin-air problem in a satisfactory way.
The paper that introduced the promising semantics [13] comes with three DRF
theorems and a simplistic value logic. These reasoning principles are enough to
show absence of some simple out-of-thin-air behaviours, but it is still very easy
to end up beyond the reasoning power of these two techniques. For instance, they
cannot be used to prove that r1 = 0 in the following “random number generator”
litmus test4, where both the x and y locations initially hold 0.

r1 := [x]rlx;
[y]rlx := r1 + 1

r2 := [y]rlx;
[x]rlx := r2

(RNG)

The subtlety of this litmus test is the following: if the first thread reads a certain
value v from x, then it writes v + 1 to y, which the second thread can read, and
write to x; this, however, does not enable the first thread to read v + 1. SLR
features novel assertions that allow it to handle those and other examples, as
shown in the following section.

4 The litmus test is called this way because some early attempts to solve the OOTA
problem allowed this example to return arbitrary values for x and y.
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The second major contribution is the proof of soundness of SLR over the
promising semantics [13]5. The promising semantics is an operational model
that represents memory as a collection of timestamped write messages. Besides
the usual steps that execute the next command of a thread, the model has a
non-standard step that allows a thread to promise to perform a write in the
future, provided that it can guarantee to be able to fulfil its promise. After a
write is promised, other threads may read from that write as if it had already
happened. Promises allow the load-store reordering needed to exhibit the load
buffering behaviour above, and yet seem, from a series of litmus tests, constrained
enough so as to not introduce out-of-thin-air behaviour.

Since the promising model is rather different from all other (operational and
axiomatic) memory models for which a program logic has been developed, none
of the existing approaches for proving soundness of concurrent program logics
are applicable to our setting. Two key difficulties in the soundness proof come
from dealing with promise steps.

1. Promises are very non-modular, as they can occur at every execution point
and can affect locations that may only be accessed much later in the program.

2. Since promised writes can be immediately read by other threads, the sound-
ness proof has to impose the same invariants on promised writes as the ones
it imposes on ordinary writes (e.g., that only values satisfying the location’s
protocol are written). In a logic supporting ownership transfer,6 however,
establishing those invariants is challenging, because a thread may promise to
write to x even without having permission to write to x.

To deal with the first challenge, our proof decouples promising steps from
ordinary execution steps. We define two semantics of Hoare triples—one “promis-
ing”, with respect to the full promising semantics, and one “non-promising”, with
respect to the promising semantics without promising steps—and prove that every
Hoare triple that is correct with respect to its non-promising interpretation is
also correct with respect to its promising interpretation. This way, we modularise
reasoning about promise steps. Even in the non-promising semantics, however,
we do allow threads to have outstanding promises. The main difference in the
non-promising semantics is that threads are not allowed to issue new promises.

To resolve the second challenge, we observe that in programs verified by SLR,
a thread may promise to write to x only if it is able to acquire the necessary
write permission before performing the actual write. This follows from promise
certification: the promising semantics requires all promises to be certifiable; that
is, for every state of the promising machine, there must exist a non-promising
execution of the machine that fulfils all outstanding promises.

We present the SLR assertions and rules informally in Sect. 2. We then give
an overview of the promising semantics of Kang et al. [13] in Sect. 3, and use it

5 As the promising semantics comes with formal proofs of correctness of all the expected
local program transformations and of compilation schemes to the x86-TSO, Power,
and ARMv8-POP architectures [21], SLR is sound for these architectures too.

6 Supporting ownership transfer is necessary to provide useful rules for C11 release
and acquire accesses.
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e ∈ Expr ::= n integer
| r register
| e1 op e2 arithmetic

s ∈ Stm ::= skip | s1; s2 | if e then s1 else s2
| while e do s | r := e | r := [e]rlx
| r := [e]acq | [e1]rlx := e2 | [e1]rel := e2

Fig. 1. Syntax of the programming language.

in Sect. 4 to explain the proof of soundness of SLR. We discuss related work in
Sect. 5. Details of the rules of SLR and its soundness proof can be found in our
technical appendix [1].

2 Our logic

The novelty of our program logic is to allow non-trivial reasoning about relaxed
accesses. Unlike release/acquire accesses, relaxed accesses do not induce syn-
chronisation between threads, so the usual approach of program logics, which
relies on ownership transfer, does not apply. Therefore, in addition to reasoning
about ownership transfer like a standard separation logic, our logic supports
reasoning about relaxed accesses by collecting information about what reads
have been observed, and in which order. When combined with information about
which writes have been performed, we can deduce that certain executions are
impossible.

For concreteness, we consider a minimal “WHILE” programming language
with expressions, e ∈ Expr, and statements, s ∈ Stm, whose syntax is given in
Fig. 1. Besides local register assignments, statements also include memory reads
with relaxed or acquire mode, and memory writes with relaxed or release mode.

2.1 The assertions of the logic

The SLR assertion language is generated by the following grammar, where N ,
l, v, t, π and X all range over a simply-typed term language which we assume
includes booleans, locations, values and expressions of the programming language,
fractional permissions, and timestamps, and is closed under pairing, finite sets,
and sequences. By convention, we assume that l, v, t, π and X range over terms
of type location, value, timestamp, permission and sets of pairs of values, and
timestamps, respectively.

P,Q ∈ Assn ::= ⊥ | > | P ∨Q | P ∧Q | P ⇒ Q | ∀x. P | ∃x. P | N1 = N2 | φ(N)
| P ∗Q | Rel(l, φ) | Acq(l, φ) | O(l, v, t) |Wπ(l,X) | ∇P

φ ∈ Pred ::= λx. P

The grammar contains the standard operators from first order logic and separation
logic, the Rel and Acq assertions from RSL [27], and a few novel constructs.

Rel(l, φ) grants permission to perform a release write to location l and transfer
away the invariant φ(v), where v is the value written to that location. Conversely,
Acq(l, φ) grants permission to perform an acquire read from location l and gain
access to the invarant φ(v), where v is the value returned by the read.
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The first novel assertion form, O(l, v, t), records the fact that location l was
observed to have value v at timestamp t. The timestamp is used to order it with
other reads from the same location. The information this assertion provides is
very weak: it merely says that the owner of the assertion has observed that value,
it does not imply that any other thread has ever observed it.

The other novel assertion form, Wπ(l,X), asserts ownership of location l
and records a set of writes X to that location. The fractional permission π ∈ Q
indicates whether ownership is shared or exclusive. Full permission, π = 1, confers
exclusive ownership of location l and ensures that X is the set of all writes to
location l; any fraction, 0 < π < 1, confers shared ownership and enforces that
X is a lower-bound on the set of writes to location l. The order of writes to l is
tracked through timestamps; the set X is thus a set of pairs consisting of the
value and the timestamp of the write.

In examples where we only need to refer to the order of writes and not the
exact timestamps, we write Wπ(x, `), where ` = [v1, ..., vn] is a list of values, as
shorthand for ∃t1, ..., tn. t1 > t2 > · · · > tn ∗Wπ(x, {(v1, t1), ..., (vn, tn)}). The
Wπ(x, `) assertion thus expresses ownership of location x with permission π, and
that the writes to x are given by the list ` in order, with the most recent write
at the front of the list.

Relation between reads and writes. Records of reads and writes can be confronted
by the thread owning the exclusive write assertion: all reads must have read
values that were written. This is captured formally by the following property:

W1(x,X) ∗ O(x, a, t) V W1(x,X) ∗ O(x, a, t) ∗ (a, t) ∈ X (Reads-from-Write)

Random number generator. These assertions allow us to reason about the “random
number generator” litmus test from the Introduction, and to show that it cannot
read arbitrarily large values. As discussed in the Introduction, capturing the set
of values that are written to x, as made possible by the “invariant-based program
logic” of Kang et al. [13, §5.5] and of Jeffrey and Riley [10, §6], is not enough,
and we make use of our stronger reasoning principles. We use O(x, a, t) to record
what values reads read from each location, and W1(x, `) to record what sequences
of values were written to each location, and then confront these records at the
end of the execution. The proof sketch is then as follows:{

W1(y, [0]) ∗ . . .
}

r1 := [x]rlx;{
W1(y, [0]) ∗ O(x, r1, ) ∗ . . .

}
[y]rlx := r1 + 1{
W1(y, [r1 + 1; 0]) ∗ O(x, r1, ) ∗ . . .

}

{
W1(x, [0]) ∗ . . .

}
r2 := [y]rlx;{
W1(x, [0]) ∗ O(y, r2, ) ∗ . . .

}
[x]rlx := r2{
W1(x, [r2; 0]) ∗ O(y, r2, ) ∗ . . .

}
At the end of the execution, we are able to draw conclusions about the values

of the registers. From W1(x, [r2; 0]) and O(x, r1, ), we know that r1 ∈ {r2, 0} by
rule Reads-from-Write. Similarly, we know that r2 ∈ {r1 + 1, 0}, and so we can
conclude that r1 = 0. We discuss the distribution of resources at the beginning
of a program, and their collection at the end of a program, in Theorem 2. Note
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that we are unable to establish what values the reads read before the end of the
litmus test. Indeed, before the end of the execution, nothing enforces that there
are no further writes that reads could read from.

2.2 The rules of the logic for relaxed accesses

We now introduce the rules of our logic by focusing on the rules for relaxed accesses.
In addition, we support the standard rules from separation logic and Hoare logic,
rules for release/acquire accesses (§2.4), and the following consequence rule:

P V P ′
{
P ′

}
c
{
Q′

}
Q′ V Q

`
{
P
}
c
{
Q
} (conseq)

which allows one to use “view shifting” implications to strengthen the precondition
and weaken the postcondition.

The rules for relaxed accesses are adapted from the rules of RSL [27] for
release/acquire accesses, but use our novel resources to track the more subtle
behaviour of relaxed accesses. Since relaxed accesses do not introduce synchroni-
sation, they cannot be used to transfer ownership; they can, however, be used to
transfer information. For this reason, as in RSL [27], we associate a predicate φ on
values to a location x using paired Rel(x, φ) and Acq(x, φ) resources, for writers
and readers, respectively. To write v to x, a writer has to provide φ(v), and in
exchange, when reading v from x, a reader obtains φ(v). However, here, relaxed
writes can only send pure predicates (i.e., ones which do not assert ownership of
any resources), and relaxed reads can only obtain the assertion from the predicate
guarded by a modality ∇7 that only pure assertions filter through: if P is pure,
then ∇P =⇒ P . All assertions expressible in first-order logic are pure.

Relaxed write rule. To write value v (to which the value expression e2 evaluates) to
location x (to which the location expression e1 evaluates), the thread needs to own
a write permission Wπ(x,X). Moreover, it needs to provide φ(v), the assertion
associated to the written value, v, to location x by the Rel(x, φ) assertion. Because
the write is a relaxed write, and therefore does not induce synchronisation, φ(v)
has to be a pure predicate. The write rule updates the record of writes with the
value written, timestamped with a timestamp newer than any timestamp for
that location that the thread has observed so far; this is expressed by relating
it to a previous timestamp that the thread has to provide through an O(x, , t)
assertion in the precondition.

φ(v) is pure

`
{
e1 = x ∗ e2 = v ∗Wπ(x,X)
∗ Rel(x, φ) ∗ φ(v) ∗ O(x, , t)

}
[e1]rlx := e2

{
∃t′ > t.
Wπ(x, {(v, t′)} ∪X)

} (w-rlx)

The Rel(x, φ) assertion is duplicable, so there is no need for the rule to keep it.

7 This ∇ modality is similar in spirit, but weaker than that of FSL [8].
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In practice, O(x, , t) is taken to be that of the last read from x if it was the
last operation on x, and O(x, fst(max(X)), snd(max(X))) if the last operation
on x was a write, including the initial write. The latter can be obtained by

Wπ(x,X) ∗ (v, t) ∈ X V Wπ(x,X) ∗ O(x, v, t) (Write-Observed)

Relaxed read rule. To read from location x (to which the location expression e
evaluates), the thread needs to own an Acq(x, φ) assertion, which gives it the
right to (almost) obtain assertion φ(v) upon reading value v from location x.
The thread then keeps its Acq(x, φ), and obtains an assertion O(x, r, t′) stating
that it has read the value now in register r from location x, timestamped with t′.
This timestamp is no older than any timestamp for that location that the thread
has observed so far, expressed again by relating it to an O(x, , t) assertion in the
precondition. Moreover, it obtains the pure portion ∇φ(r) of the assertion φ(r)
corresponding to the value read in register r

`
{
e = x ∗ Acq(x, φ) ∗ O(x, , t)

}
r := [e]rlx{
∃t′ ≥ t. Acq(x, φ) ∗ O(x, r, t′) ∗ ∇φ(r)

} (r-rlx)

Again, we can obtain O(x, vx0 , 0), where vx0 is the initial value of x, from the
initial write permission for x, and distribute it to all the threads that will read
from x, expressing the fact that the initial value is available to all threads, and
use it as the required O(x, , t) in the precondition of the read rule.

Moreover, if a thread owns the exclusive write permission for a location x,
then it can take advantage of the fact that it is the only writer at that location
to obtain more precise information about its reads from that location: they will
read the last value it has written to that location.

`
{
e = x ∗ Acq(x, φ) ∗W1(x,X)

}
r := [e]rlx{
∃t. (r, t) = max(X) ∗ Acq(x, φ) ∗W1(x,X) ∗ O(x, r, t) ∗ ∇φ(r)

} (r-rlx*)

Separation. With these assertions, we can straightforwardly specify and verify
the Disjoint-Lists example. Ownership of an element of a list is simply expressed
using a full write permission, W1(x,X). This allows including the Disjoint-Lists
as a snippet in a larger program where the lists can be shared before or after, and
still enforce the separation property we want to establish. While this reasoning
sounds underwhelming (and we elide the details), we remark that it is unsound
in models that allow OOTA behaviours.

2.3 Reasoning about coherence

An important feature of many memory models is coherence, that is, the existence
of a per-location total order on writes that reads respect. Coherence becomes
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interesting where there are multiple simultaneous writers to the same location
(write/write races). In our logic, write assertions can be split and combined as
follows: if π1 + π2 ≤ 1, 0 < π1 and 0 < π2 then

Wπ1+π2(x,X1 ∪X2)⇔Wπ1(x,X1) ∗Wπ2(x,X2) (Combine-Writes)

To reason about coherence, the following rules capture the fact that the
timestamps of the writes at a given location are all distinct, and totally ordered:

Wπ(x,X) ∗ (v, t) ∈ X ∗ (v′, t′) ∈ X ∗ v 6= v′ V Wπ(x,X) ∗ t 6= t′

(Different-Writes)

Wπ(x,X) ∗ ( , t) ∈ X ∗ ( , t′) ∈ X V Wπ(x,X) ∗ (t < t′ ∨ t = t′ ∨ t′ < t)
(Writes-Ordered)

CoRR2. One of the basic tests of coherence is the CoRR2 litmus test, which
tests whether two threads can disagree on the order of two writes to the same
location. The following program, starting with location x holding 0, should not
be allowed to finish with r1 = 1 ∗ r2 = 2 ∗ r3 = 2 ∗ r4 = 1, as that would mean
that the third thread sees the write of 1 to x before the write of 2 to x, but that
the fourth thread sees the write of 2 before the write of 1:

[x]rlx := 1 [x]rlx := 2
r1 := [x]rlx;
r2 := [x]rlx

r3 := [x]rlx;
r4 := [x]rlx

(CoRR2)

Coherence enforces a total order on the writes to x that is respected by the reads,
so if the third thread reads 1 then 2, then the fourth cannot read 2 then 1.

We use the timestamps in the O(x, a, t) assertions to record the order in which
reads read values, and then link the timestamps of the reads with those of the
writes. Because we do not transfer anything, the predicate for x is λv.> again,
and we elide the associated clutter below.

The proof outline for the writers just records what values have been written:{
W1/2(x, {(0, 0)}) ∗ . . .

}
[x]rlx := 1{
∃t1.W1/2(x, {(1, t1), (0, 0)}) ∗ . . .

}
{
W1/2(x, {(0, 0)}) ∗ . . .

}
[x]rlx := 2{
∃t2.W1/2(x, {(2, t2), (0, 0)}) ∗ . . .

}
The proof outline for the readers just records what values have been read,

and — crucially — in which order.{
Acq(x, λv.>) ∗ O(x, 0, 0)

}
r1 := [x]rlx;{
∃ta.Acq(x, λv.>) ∗ O(x, r1, ta) ∗ 0 ≤ ta ∗ . . .

}
r2 := [x]rlx{
∃ta, tb.O(x, r1, ta) ∗ O(x, r2, tb) ∗ 0 ≤ ta ∗ ta ≤ tb

}
r3 := [x]rlx;
r4 := [x]rlx

At the end of the program, by combining the two write permissions using rule
Combine-Writes, we obtain W1(x, {(1, t1), (2, t2), (0, 0)}). From this, we have
t1 < t2 or t2 < t1 by rules Different-Writes and Writes-Ordered. Now, assuming
r1 = 1 and r2 = 2, we have ta < tb, and so t1 < t2 by rule Reads-from-Write.
Similarly, assuming r3 = 2 and r4 = 1, we have t2 < t1. Therefore, we cannot
have r1 = 1 ∗ r2 = 2 ∗ r3 = 2 ∗ r4 = 1, so coherence is respected, as desired.
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2.4 Handling release and acquire accesses

Next, consider release and acquire accesses, which, in addition to coherence,
provide synchronisation and enable the message passing idiom.

[x]rlx := 1;
[y]rel := 1

r1 := [y]acq;

if r1 = 1 then r2 := [x]rlx
(MP)

The first thread writes data (here, 1) to a location x, and signals that the data is
ready by writing 1 to a “flag” location y with a release write. The second thread
reads the flag location y with an acquire read, and, if it sees that the first thread
has signalled that the data has been written, reads the data. The release/acquire
pair is sufficient to ensure that the data is then visible to the second thread.

Release/acquire can be understood abstractly in terms of views [15]: a release
write contains the view of the writing thread at the time of the writing, and an
acquire read updates the view of the reading thread with that of the release write
it is reading from. This allows one-way synchronisation of views between threads.

To handle release/acquire accesses in SLR, we can adapt the rules for relaxed
accesses by enabling ownership transfer according to predicate associated with
the Rel and Acq permissions. The resulting rules are strictly more powerful than
the corresponding RSL [27] rules, as they also allow us to reason about coherence.

Release write rule. The release write rule is the same as for relaxed writes, but
does not require the predicate to be a pure predicate, thereby allowing sending
of actual resources, rather than just information:

`
{
e1 = x ∗ e2 = v ∗Wπ(x,X) ∗ Rel(x, φ) ∗ φ(v) ∗ O(x, , t)

}
[e1]rel := e2{
∃t′ ≥ t. Wπ(x, {(v, t′)} ∪X)

} (w-rel)

Acquire read rule. Symmetrically, the acquire read rule is the same as for relaxed
reads, but allows the actual resource to be obtained, not just its pure portion:

`
{
e = x ∗ Acq(x, φ) ∗ O(x, , t)

}
r := [e]acq{
∃t′ ≥ t. Acq(x, φ[r 7→ >]) ∗ O(x, r, t′) ∗ φ(r)

} (r-acq)

We have to update φ to record the fact that we have obtained the resource
associated with reading that value, so that we do not erroneously obtain that
resource twice; φ[v′ 7→ P ] stands for λv. if v = v′ then P else φ(v).

As for relaxed accesses, we can strengthen the read rule when the reader is
also the exclusive writer to that location:

`
{
Acq(x, φ) ∗W1(x,X)

}
r := [x]acq{
∃t. (r, t) = max(X) ∗ Acq(x, φ[r 7→ >])

∗W1(x,X) ∗ O(x, r, t) ∗ φ(r)

} (r-acq*)
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Additionally, we allow duplicating of release assertions and splitting of acquire
assertions, as expressed by the following two rules.

Rel(x, φ)⇔ Rel(x, φ) ∗ Rel(x, φ) (Release-Duplicate)

Acq(x, λv. φ1(v) ∗ φ2(v)) V Acq(x, φ1) ∗ Acq(x, φ2) (Acquire-Split)

Message passing. With these rules, we can easify verify the message passing
example. Here, we want to transfer a resource from the writer to the reader,
namely the state of the data, x. By transferring the write permission for the data
to the reader over the “flag” location, y, we allow the reader to use it to read the
data precisely. We do that by picking the predicate

φy = λv. v = 1 ∧W1(x, [1; 0]) ∨ v 6= 1

for y. Since we do not transfer any resource using x, the predicate for x is λv.>.

The writer transfers the write permissions for x away on y using φy:{
W1(x, [0]) ∗ Rel(x, λv.>) ∗W1(y, [0]) ∗ Rel(y, φy)

}
[x]rlx := 1;{
W1(x, [1; 0]) ∗W1(y, [0]) ∗ Rel(y, φy)

}{
W1(y, {(0, 0)}) ∗ Rel(y, φy) ∗ φy(1) ∗ O(x, 0, 0)

}
[y]rel := 1{
∃t1.W1(y, {(1, t1)} ∪ {(0, 0)}) ∗ 0 < t1

}{
W1(y, [1; 0]) ∗ Rel(y, φy)

}
The proof outline for the reader uses the acquire permission φy for y to obtain
W1(x, [1; 0]), which it then uses to know that it reads 1 from x.{

Acq(y, φy)) ∗ O(y, 0, 0) ∗ Acq(x, λv.>)
}

r1 := [y]acq;{
∃ty1 ≥ 0.Acq(y, φy[r1 7→ >]) ∗ O(y, r1, t

y
1) ∗ φy(r1) ∗ Acq(x, λv.>)

}{
φy(r1) ∗ Acq(x, λv.>)

}
if r1 = 1 then{

W1(x, [1; 0]) ∗ Acq(x, λv.>)
}

r2 := [x]rlx{
Acq(x, λv.>) ∗W1(x, [1; 0]) ∗ (r2 = 1)

}{
r1 = 1 =⇒ r2 = 1

}
2.5 Plain accesses

Our formal development (in the technical appendix) also features the usual

“partial ownership” x
π7→ v assertion for “plain” (non-atomic) locations, and the

usual corresponding rules.
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3 The promising semantics

In this section, we provide an overview of the promising semantics [13], the model
for which we prove SLR sound. Formal details can be found in [1, 13].

The promising semantics is an operational semantics that interleaves execution
of the threads of a program. Relaxed behaviour is introduced in two ways:

– As in the “strong release/acquire” model [15], the memory is a pool of
timestamped messages, and each thread maintains a “view” thereof. A thread
may read any value that is not older than the latest value observed by
the thread for the given location; in particular, this may well not be the
latest value written to that particular location. Timestamps and views model
non-multi-copy-atomicity: writes performed by one thread do not become
simultaneously visible by all other threads.

– The operational semantics contains a non-standard step: at any point a thread
can nondeterministically promise a write, provided that, at every point before
the write is actually performed, the thread can certify the promise, that is,
execute the write by running on its own from the current state. Promises are
used to enable load-store reordering.

The behaviour of promising steps can be illustrated on the LB+data+fakedep
litmus test from the Introduction. The second thread can, at the very start of
the execution, promise a write of 1 to x, because it can, by running on its own
from the current state, read from y (it will read 0), then write 1 to x (because
0 + 1− 0 = 1), thereby fulfilling its promise. On the other hand, the first thread
cannot promise a write of 1 to y at the beginning of the execution, because, by
running on its own, it can only read 0 from x, and therefore only write 0 to y.

3.1 Storage subsystem

Formally, the semantics keeps track of writes and promises in a global configuration,
gconf = 〈M,P 〉, where M is a memory and P ⊆M is the promise memory. We
denote by gconf .M and gconf .P the components of gconf . Both memories are
finite sets of messages, where a message is a tuple 〈x :oi v,R@t]〉, where x ∈ Loc
is the location of the message, v ∈ Val its value, i ∈ Tid its originating thread,
t ∈ Time its timestamp, R its message view, and o ∈ {rlx, rel} its message
mode, where Time is an infinite set of timestamps, densely totally ordered by
≤, with a minimum element, 0. (We return to views later.) We denote m.loc,
m.val, m.time, m.view and m.mod the components of a message m. We use the
following notation to restrict memories:

M(i)
def
= {m ∈M | m.tid = i} M(rel)

def
= {m ∈M | m.mod = rel}

M(x)
def
= {m ∈M | m.loc = x} M(rlx)

def
= {m ∈M | m.mod = rlx}

M(i, x)
def
= M(i) ∩M(x)

A global configuration gconf evolves in two ways. First, a message can be
“promised” and be added both to gconf.M and gconf.P. Second, a message can be
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written, in which case it is either added to gconf.M, or removed from gconf.P (if
it was promised before).

3.2 Thread subsystem

A thread state is a pair TS = 〈σ, V 〉, where σ is the internal state of the thread
and V is a view. We denote by TS .σ and TS .V the components of TS .

Thread internal state. The internal state σ consists of a thread store (denoted
σ.µ) that assigns values to local registers and a statement to execute (denoted
σ.s). The transitions of the thread internal state are labeled with memory actions
and are given by an ordinary sequential semantics. As these are routine, we leave
their description to the technical appendix.

Views. Thread views are used to enforce coherence, that is, the existence of
a per-location total order on writes that reads respect. A view is a function
V : Loc→ Time, which records how far the thread has seen in the history of each
location. To ensure that a thread does not read stale messages, its view restricts
the messages the thread may read, and is increased whenever a thread observes
a new message. Messages themselves also carry a view (the thread’s view when
the message comes from a release write, and the bottom view otherwise) which
is incorporated in the thread view when the message is read by an acquire read.

Additional notations. The order on timestamps, ≤, is extended pointwise to
views. ⊥ and t denote the natural bottom elements and join operations for views.
{x@t} denotes the view assigning t to x and 0 to other locations.

3.3 Interaction between a thread and the storage subsystem

The interaction between a thread and the storage subsystem is given in terms of
transitions of thread configurations. Thread configurations are tuples 〈TS , 〈M,P 〉〉,
where TS is a thread state, and 〈M,P 〉 is a global configuration. These transitions
are labelled with β ∈ {NP,prom} in order to distinguish whether they involve
promises or not. A thread can:

– Make an internal transition with no effect on the storage subsystem.
– Read the value v from location x, when there is a matching message in

memory that is not outdated according to the thread’s view. It then updates
its view accordingly: it updates the timestamp for location x and, in addition,
incorporates the message view if the read is an acquire read.

– Write the value v to location x. Here, the thread picks a timestamp greater
than the one of its current view for the message it adds to memory (or
removes from the promise set). If the write is a release write, the message
carries the view of the writing thread. Moreover, a release write to x can only
be performed when the thread has already fulfilled all its promises to x.

– Non-deterministically promise a relaxed write by adding a message to both
M and P .
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3.4 Constraining promises

Now that we have described how threads and promises interact with memory, we
can present the certification condition for promises, which is essential to avoid out-
of-thin-air behaviours. Accordingly, we define another transition system, =⇒, on
top of the previous one, which enforces that the memory remains “consistent”, that
is, all the promises that have been made can be certified. A thread configuration
〈TS , 〈M,P 〉〉 is called consistent w.r.t. i ∈ Tid if thread i can fulfil its promises

by executing on its own, or more formally if 〈TS , 〈M,P 〉〉 NP−→
∗
i 〈TS ′, 〈M ′, P ′〉〉

for some TS ′,M ′, P ′ such that P ′(i) = ∅. Certification is local, that is, only
thread i is executing during its certification; this is crucial to avoid out-of-thin-air.
Further, the certification itself cannot make additional promises, as it is restricted
to NP-steps. Here is a visual representation of a promise machine run, together
with certifications.

· · · i j i k · · ·

NP
i

NP
i

NP
i

NP

j
NP

i

NP
i

NP
k

NP
k

NP
k

The thread configuration =⇒-transitions allow a thread to (1) take any
number of non-promising steps, provided its thread configuration at the end
of the sequence of step (intuitively speaking, when it gives control back to the
scheduler) is consistent, or (2) take a promising step, again provided that its
thread configuration after the step is consistent.

3.5 Full machine

Finally, the full machine transitions simply lift the thread configuration =⇒-
transitions to the machine level. A machine state is a tuple MS = 〈TS, 〈M,P 〉〉,
where TS is a function assigning a thread state TS to every thread, and 〈M,P 〉
is a global configuration. The initial state MS0 (for a given program) consists of
the function TS0 mapping each thread i to its initial state 〈σ0

i ,⊥〉, where σ0
i is

the thread’s initial local state and ⊥ is the zero view (all timestamps in views
are 0); the initial memory M0 consisting of one message 〈x :rlx0 0,⊥@0]〉 for each
location x; and the empty set of promises.

4 Semantics and soundness

In this section, we present the semantics of SLR, and give a short overview of
the soundness proof. Our focus is not on the technical details of the proof, but
on the two main challenges in defining the semantics and proving soundness:
1. Reasoning about promises. This difficulty arises because promise steps can

be nondeterministically performed by the promise machine at any time.
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2. Reasoning about release-acquire ownership transfer in the presence of promises.
The problem is that writes may be promised before the thread has acquired
enough resources to allow it to actually perform the write.

4.1 The intuition

SLR assertions are interpreted by (sets of) resources, which represent permissions
to write to a certain location and/or to obtain further resources by reading a
certain message from memory. As is common in semantics of separation logics, the
resources form a partial commutative monoid, and SLR’s separating conjunction
is interpreted as the composition operation of the monoid.

When defining the meaning of a Hoare triple {P} s {Q}, we think of the
promise machine as if it were manipulating resources: each thread owns some
resources and operates using them. The intuitive description of the Hoare triple
semantics is that every run of the program s starting from a state containing the
resources described by the precondition, P , will be “correct” and, if it terminates,
will finish in a state containing the resources described by the postcondition, Q.
The notion of a program running correctly can be described in terms of threads
“respecting” the resources they own; for example, if a thread is executing a write
or fulfilling a promise, it should own a resource representing the write permission.

4.2 A closer look at the resources and the assertion semantics

We now take a closer look at the structure of resources and the semantics of
assertions, whose formal definitions can be found in Figs. 2 and 3.

The idea is to interpret assertions as predicates over triples consisting of
memory, a view, and a resource. We use the resource component to model
assertions involving ownership (i.e., write assertions and acquire assertions), and
model other assertions using the memory and view components. Once a resource
is no longer needed, SLR allows us to drop these from assertions: P ∗ Q ⇒ P .
To model this we interpret assertions as upwards-closed predicates, that may
own more than explicitly asserted. The ordering on memories and views is given
by the promising semantics, and the ordering on resources is induced by the
composition operation in the resource monoid. For now, we leave the resource
composition unspecified, and return to it later.

In addition, however, we have to deal with assertions that are parametrised by
predicates (in our case, Rel(x, φ) and Acq(x, φ)). Doing so is not straightforward
because näıve attempts of giving semantics to such assertions result in circular
definitions. A common technique for avoiding this circularity is to treat predicates
stored in assertions syntactically, and to interpret assertions relative to a world,
which is used to interpret those syntactic predicates. In our case, worlds consist
of two components: the WrPerm component associates a syntactic SLR predicate
with every location (this component is used to interpret release permissions), while
the AcqPerm component associates a syntactic predicate with a finite number
of currently allocated predicate identifiers (this component is used to interpret
acquire permissions). The reason for the more complex structure for acquire
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ι ∈ PredId
def
= N (predicate identifiers)

Perm
def
= {π ∈ Q | 0 ≤ π ≤ 1} (fractional permissions)

Write
def
= P(Val× Time)

WrPerm
def
= Loc→ {(π,X) ∈ Perm×Write | π = 0⇒ X = ∅}

AcqPerm
def
= Loc→ P(PredId)

r = (r.wr, r.acq) ∈ Res
def
= WrPerm×AcqPerm (resources)

W = (W.rel,W.acq) ∈World
def
= (Loc→ Pred)× (PredId⇀fin Pred) (worlds)

Prop
def
= World→mon P↑(Mem×View× Res)

Fig. 2. Semantic domains used in this section.

permissions is that they can be split (see (Acquire-Split)). Therefore, we allow
multiple predicate identifiers associated with a single location. When acquire
permissions are divided and split between threads, new predicate identifiers
are allocated and associated with predicates in the world. The world ordering,
W1 ≤ W2, expresses that world W2 is an extension of W1 in which new predicate
identifiers may have been allocated, but all existing predicate identifiers are
associated with the same predicates.

Let us now focus our attention on the assertion semantics. The semantics of
assertions, JP Kηµ, is relative to a thread store µ that assigns values to registers,
and an environment η that assigns values to logical variables.

The standard logical connectives and quantifiers are interpreted following
their usual intuitionistic semantics. The semantics of our novel assertions is given
in Fig. 3 and can be explained as follows:

– The observed assertion O(x, v, t) says that the memory contains a message
at location x with value v and timestamp t, and the current thread knows
about it (i.e., the thread view contains it).

– The write assertion Wπ(x,X) asserts ownership of a (partial, with fraction π)
write resource at location x, and requires that the largest timestamp recorded
in X does not exceed the view of the current thread.

– The acquire assertion, Acq(x, φ), asserts that location x has some predicate
identifier ι associated with the φ predicate in the current world W.

– The release assertion, Rel(x, φ), asserts that location x is associated with
some predicate φ′ in the current world such that there exists a syntactic
proof of the entailment, ` ∀v. φ(v) ⇒ φ′(v). The implication allows us to
strengthen the predicate in release assertions.

– Finally, ∇P states that P is satisfiable in the current world.

Note that Wπ(x,X), Acq(x, φ), and Rel(x, φ) only talk about owning certain
resources, and do not constrain the memory itself at all. In the next subsection,
we explain how we relate the abstract resources with the concrete machine state.
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JO(x, v, t)Kηµ(W)
def
= {(M,V, r) |
∃j, R, o. 〈JxKηµ :oj JvKηµ, R@JtKηµ]〉 ∈M ∧ JtKηµ ≤ V (x)}

JWπ(x,X)Kηµ(W)
def
= {(M,V, r) | ∃π′ ≥ JπKηµ. r.wr(JxKηµ) = (π′, JXKηµ)

∧ snd(max(JXKηµ)) ≤ V (JxKηµ)}
JAcq(x, φ)Kηµ(W)

def
= {(M,V, r) | ∃ι ∈ r.acq(JxKηµ).W.acq(ι) = φ}

JRel(x, φ)Kηµ(W)
def
= {(M,V, r) | ` ∀v. φ(v)⇒W.rel(JxKηµ)(v)}

J∇P Kηµ(W)
def
= {(M,V, r) | JP Kηµ(W) 6= ∅}

Fig. 3. Interpretation of SLR assertions, J Kηµ : Assn→ Prop

4.3 Relating concrete state and resources

Before giving a formal description of the relationship between abstract resources
and concrete machine states, we return to the intuition of threads manipulating
resources presented in Section 4.1.

Consider what happens when a thread executes a release write to a location x.
At that point, the thread has to own a release resource represented by Rel(x, φ),
and to store the value v, it has to own the resources represented by φ(v). As the
write is executed, the thread gives up the ownership of the resources corresponding
to φ(v). Conversely, when a thread that owns the resource represented by Acq(x, φ)
performs an acquire read of a value v from location x, it will gain ownership
of resources satisfying φ(v). However, this picture does not account for what
happens to the resources that are “in flight”, i.e., the resources that have been
released, but not yet acquired.

Our approach is to associate in-flight resources to messages in the memory.
When a thread does a release write, it attaches the resources it released to
the message it just added to the memory. That way, a thread performing an
acquire read from that message can easily take ownership of the resources that
are associated to the message. Formally, as the execution progresses, we update
the assignment of resources to messages,

u : M(rel)→ (PredId→ Res) .

For every release message in memory M , the message resource assignment u
gives us a mapping from predicate identifiers to resources. Here, we again use
predicate identifiers to be able to track which acquire predicate is being satisfied
by which resource. The intended reading of u(m)(ι) = r is that the resource r
attached to the message m satisfies the predicate with the identifier ι.

We also require that the resources attached to a message (i.e., the resources
released by the thread that wrote the message) suffice to satisfy all the acquire
predicates associated with that particular location. Together, these two properties
of our message resource assignment, as formalised in Fig. 4, allow us to describe
the release/acquire ownership transfer.

The last condition in the message resource satisfaction relation has to do
with relaxed accesses. Since relaxed accesses do not provide synchronisation, we
disallow ownership transfer through them. Therefore, we require that the release
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M |= r, u,W def
=

∀m ∈M(rel). r.acq(m.loc) = dom(u(m))
∧ ∀ι ∈ dom(u(m)).

(M,m.view, u(m)(ι)) ∈ JW.acq(ι)(m.val)K[][](W)

 attached resources
satisfy predicates

they are supposed to

∧ ∀x, v. ` W.rel(x)(v)⇒ ~ι∈r.acq(x)W.acq(ι)(v)
∧ ∀m ∈ dom(u). dom(u(m)) ⊆ dom(W.acq)

}
released resources are

enough to satisfy acquires

∧ ∀m ∈M(rlx).

(〈∅, ∅〉, λx. 0, ε) ∈ JW.rel(m.loc)(m.val)K[][](W.rel, [])

}
no ownership transfer
via relaxed accesses

Fig. 4. Message resource satisfaction.

predicates connected with the relaxed messages are satisfiable with the empty
resource. This condition, together with the requirement that the released resources
satisfy acquire predicates, forbids ownership transfer via relaxed accesses.

The resource missing from the discussion so far is the write resource (modelling
the Wπ(x,X) assertion). Intuitively, we would like to have the following property:
whenever a thread adds a message to the memory, it has to own the corresponding
write resource. Recall there are two ways a thread can produce a new message:
1. A thread performs a write. This is the straightforward case: we simply require

the thread to own the write resource and to update the set of value-timestamp
pairs recorded in the resource accordingly.

2. A thread promises a write. Here the situation is more subtle, because the
thread might not own the write resource at the time it is issuing the promise,
but will acquire the appropriate resource by the time it fulfils the promise.
So, in order to assert that the promise step respects the resources owned
by the thread, we also need to be able to talk about the resources that the
thread can acquire in the future.

When dealing with the promises, the saving grace comes from the fact that
all promises have to be certifiable, i.e., when issuing a promise a thread has to
be able to fulfil it without help from other threads.

Intuitively, the existence of a certification run tells us that even though at
the moment a thread issues a promise, it might not have the resources necessary
to actually perform the corresponding write, the thread should, by running
uninterrupted, still be able to obtain the needed resources before it fulfils the
promise. This, in turn, tells us that the needed resources have to be already
released by the other threads by the time the promise is made: only resources
attached to messages in the memory are available to be acquired, and only the
thread that made the promise is allowed to run during the certification; therefore
all the available resources have already been released.

The above reasoning shows what it means for the promise steps to “respect
resources”: when promises are issued, the resources currently owned by a thread,
together with all the resources it is able to acquire according to the resources it
owns and the current assignment of resources to messages, have to contain the
appropriate write resource for the write being promised. The notion of “resources
a thread is able to acquire” is expressed through the canAcq(r, u) predicate.
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r1 • r2
def
= (r1.wr •wr r2.wr, r1.acq •acq r2.acq) ε

def
= ([], λ . ∅)

f1 •wr f2
def
=


λx. (f1(x).perm + f2(x).perm, f1(x).msgs ∪ f2(x).msgs)

if f1(x).perm + f2(x).perm ≤ 1 for all locations x

undefined otherwise

g1 •acq g2
def
= if ∀x. g1(x) ∩ g2(x) = ∅ then λx. g1(x) ∪ g2(x) else undefined

Fig. 5. Resource composition.

brF , u,WcT
def
= {〈M,P 〉 | let r =

∏
i∈TId rF (i) •

∏
m∈M

∏
ι∈dom(u(m)) u(m)(ι) in

(1) M |= r, u,W ∧
(2) ∀x. {(m.val,m.time) | m ∈M(x) \ P} = r.wr(x).msgs ∧
(3) ∀m ∈ P. m.tid 6∈ T ⇒

(rF (m.tid) • canAcq(rF (m.tid), u)).wr(m.loc).perm > 0}
rF : ThreadId→ Res maps threads to the resources they own.
r is the sum of all the resources distributed among the threads and messages.

Fig. 6. Erasure.

canAcq(r, u) performs a fixpoint calculation: the resources we have (r) allow us
to acquire some more resources from the messages in memory (assignment of
resources to messages is given by u), which allows us to acquire some more, and
so on. Its formal definition can be found in the technical appendix, and hinges
on the fact that u precisely tracks which resources satisfy which predicates.

An important element that was omitted from the discussion so far is the defi-
nition of the composition in the resource monoid Res . The resource composition,
defined in Fig. 5, follows the expected notion of per-component composition. The
most important feature is in the composition of write resources: a full permission
write resource is only composable with the empty write resource.

At this point, we are equipped with all the necessary ingredients to relate
abstract states represented by resources to concrete states 〈M,P 〉 (where M is
memory, and P is the set of promised messages). We define a function, called
erasure, that given an assignment of resources to threads, rF : ThreadId→ Res,
an assignment of resources to messages, u, and a world, W, gives us a set of
concrete states satisfying the following conditions:

1. Memory M is consistent with respect to the total resource r and the message
resource assignment u at world W.

2. The set of fulfilled writes to each location x in 〈M,P 〉 must match the set of
writes of all write permissions owned by any thread or associated with any
messages, when combined.

3. For all unfulfilled promises to a location x by thread i, thread i must currently
own or be able to acquire from u at least a shared write permission for x.

Our formal notion of erasure, defined in Fig. 6, has an additional parameter, a
set of thread identifiers T . This set allows us to exclude promises of threads T from
the requirement of respecting the resources. As we will see in the following subsec-
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tion, this additional parameter plays a subtle, but key, role in the soundness proof.
(The notion of erasure described above corresponds to the case when T = ∅.)

Note also that the arguments of erasure very precisely account for who
owns which part of the total resource. This diverges from the usual approach
in separation logic, where we just give the total resource as the argument to
the erasure. Our approach is motivated by Lemma 1, which states that a reader
that owns the full write resource for location x knows which value it is going to
read from x. This is the key lemma in the soundness proof of the (r-rlx*) and
(r-acq*) rules.

Lemma 1. If (M,V, rF (i)) ∈
q
W1(x,X)

yη
µ
(W), and 〈M,P 〉 ∈ brF , u,Wc{i}

then for all messages m ∈ M(x) \ P (i) such that V (x) ≤ m.time, we have
m.val = fst(max(X)).

Lemma 1 is looking from the perspective of thread i that owns the full write
resource for the location x. This is expressed by (M,V, rF (i)) ∈

q
W1(x,X)

yη
µ
(W)

(recall that rF (i) are the resources owned by the thread i). Furthermore, the
lemma assumes that the concrete state respects the abstract resources, expressed
by 〈M,P 〉 ∈ brF , u,Wc{i}. Under these assumptions, the lemma intuitively tells
us that the current thread knows which value it will read from x. Formally, the
lemma says that all the messages thread i is allowed to read (i.e., messages in
the memory that are not outstanding promises of thread i and whose timestamp
is greater or equal to the view of thread i) have the value that appears as the
maximal element in the set X.

To see why this lemma holds, consider a message m ∈ M(x) \ P (i). If m
is an unfulfilled promise by a different thread j, then, by erasure, it follows
that j currently owns or can acquire at least a shared write permission for x.
However, this is a contradiction, since thread i currently owns the exclusive
write permission, and, by erasure, rF (i) is disjoint from the resources of all other
threads and all resources currently associated with messages by u. Hence, m
must be a fulfilled write. By erasure, it follows that the set of fulfilled writes
to x is given by the combination of all write permissions. Since rF (i) owns the
exclusive write permission, this is just rF (i).wr. Hence, the set of fulfilled writes
is X, and the value of the last fulfilled write is fst(max(X)).

Note that in the reasoning above, it is crucial to know which thread and
which message owns which resource. Without precisely tracking this information,
we would be unable to prove Lemma 1.

4.4 Soundness

Now that we have our notion of erasure, we can proceed to formalise the meaning
of triples, and present the key points of the soundness proof.

Recall our intuitive view of Hoare triples saying that the program only makes
steps which respect the resources it owns. This notion is formalised using the
safety predicate: safety (somewhat simplified; we give its formal definition in
Fig. 7) states that it is always safe to perform zero steps, and performing n+ 1
steps is safe if the following two conditions hold:
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safe0(σ,B)(W1)
def
= Mem×View× Res

safen+1(σ,B)(W1)
def
= {(M1, V1, r1) | ∀(M,V, r) ≥ (M1, V1, r1).∀W ≥ W1.

(σ.s = skip⇒ (M,V, r) ∈ vs(B(σ.µ))(W))

∧ (∀P, rF , σ′,M ′, P ′, V ′, u, i. 〈M,P 〉 ∈ brF [i 7→ r], u,Wc∅ ∧
〈〈σ, V 〉, 〈M,P 〉〉 =⇒i 〈〈σ′, V ′〉, 〈M ′, P ′〉〉

⇒ ∃r′, u′,W ′ ≥ W. 〈M ′, P ′〉 ∈ brF [i 7→ r′], u′,W ′c∅ ∧
(〈M ′, P ′〉, V ′, r′) ∈ safen(σ′, B)(W ′))}

Fig. 7. Safety.

1. If no more steps can be taken, the current state and resources have to satisfy
the postcondition B.

2. If we can take a step which takes us from the state 〈M,P 〉 (which respects our
current resources r, the assignment of resources to messages u, and world W)
to the state 〈M ′, P ′〉, then
(a) there exist resources r′, an assignment of resources to messages u′, and a

future world W ′, such that 〈M ′, P ′〉 respects r′, u′, and W ′, and
(b) we are safe for n more steps starting in the state 〈M ′, P ′〉 with resources

given by r′, u′ and W ′.
Note the following:

– Upon termination, we are not required to satisfy exactly the postcondition B,
but its view shift. A view shift is a standard notion in concurrent separation
logics, which allows updates of the abstract resources which do not affect the
concrete state. In our case, this means that resource r can be view-shifted
into r′ satisfying B as long as the erasure is unchanged. The formal definition
of view shifts is given in the appendix.

– Again as is standard in separation logics, safety requires framed resources to
be preserved. This is the role of rF in the safety definition. Frame preservation
allows us to compose safety of threads that own compatible resources. However,
departing from the standard notion of frame preservation, we precisely track
who owns which resource in the frame, because this is important for erasure.

The semantics of Hoare triples is simply defined in terms of the safety predicate.
The triple {P} s {Q} holds if every logical state satisfying the precondition is
safe for any number of steps:

J` {P} s {Q}K def
= ∀n, µ, η,W. JP Kηµ(W) ⊆ safen((µ, s), λµ′. JQKηµ′)(W)

To establish soundness of the SLR proof rules, we have to prove that the
safety predicate holds for arbitrary number of steps, including promise steps. The
trouble with reasoning about promise steps is that they can nondeterministically
appear at any point of the execution. Therefore, we have to account for them in
the soundness proof of every rule of our logic. To make this task manageable, we
encapsulate reasoning about the promise steps in a theorem, thus enabling the
proofs of soundness for proof rules to consider only the non-promise steps.
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To do so, once again certification runs for promises play a pivotal role. Recall
that whenever a thread makes a step, it has to be able to fulfil its promises
without help from other threads (Section 3.4). Since there will be no interference
by other threads, performing promise steps during certification is of no use
(because promises can only be used by other threads). Therefore, we can assume
that the certification runs are always promise-free.

Now that we have noted that certifications are promise-free, the key idea
behind encapsulating the reasoning about promises is as follows. If we know that
all executions of our program are safe for arbitrarily many non-promising steps,
we can use this to conclude that they are safe for promising steps too. Here, we
use the fact that certification runs are possible runs of the program, and the fact
that certifications are promise-free.

Let us now formalise our key idea. First, we need a way to state that executions
are safe for non-promising steps. This is expressed by the non-promising safety
predicate defined in Fig. 8. What we want to conclude is that non-promising
safety is enough to establish safety, as expressed by Theorem 1:

Theorem 1 (Non-promising safety implies safety).

∀n, σ,B,W. npsafe(n+1,0)(σ,B)(W) ⊆ safen(σ,B)(W)

We now discuss several important points in the definition of non-promising safety
which enable us to prove this theorem.

Non-promising safety is indexed by pairs of natural numbers. When proving
Theorem 1, we use promise-free certification runs to establish the safety of the
promise steps. A problem we face here is that the length of certification runs is
unbounded. Somehow, we have to know that whenever the thread makes a step,
it is npsafe for arbitrarily many steps. Our solution is to have npsafe transfinitely
indexed over pairs of natural numbers ordered lexicographically. That way, if we
are npsafe at index (n+ 1, 0) and we take a step, we know that we are npsafe
at index (n,m) for every m. We are then free to choose a sufficiently large m
depending on the length of the certification run we are considering.

Non-promising safety considers configurations that may contain promises. It is
important to note that the definition of non-promising safety does not require
that there are no promises in the starting configuration. The only thing that is
required is that no more promises are going to be issued. This is very important
for Theorem 1, since safety considers all possible starting configurations (including
the ones with existing promises), and if we want the lemma to hold, non-promising
safety has to consider all possible starting configurations too.

Erasure used in the non-promising safety does not constrain promises of the
current thread. Non-promising safety does not require promises by the thread
being reduced (i.e., thread i) to respect resources. Thus, when reasoning about
non-promising safety of thread i, we cannot assume that existing promises by
thread i respect resources, but crucially we also do not have to worry about
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npsafe(0,m)(σ,B)(W)
def
= Mem×View× Res

npsafe(n+1,0)(σ,B)(W)
def
=
⋂
m∈N npsafe(n,m)(σ,B)(W)

npsafe(n+1,m+1)(σ,B)(W1)
def
= {(M1, V1, r1) | ∀(M,V, r) ≥ (M1, V1, r1). ∀W ≥ W1.

(σ.s = skip⇒ (M,V, r) ∈ vs(B(σ.µ))(W))

∧ (∀P, rF , f, σ′,M ′, P ′, V ′, u, i.

〈M,P 〉 ∈ brF [i 7→ r • f ], u,Wc{i} (weak erasure)

∧ 〈〈σ, V 〉, 〈M,P 〉〉 NP−→i 〈〈σ′, V ′〉, 〈M ′, P ′〉〉 (only non-promising steps allowed)

∧ wfprom(P (i), V ) ∧ wfprom(P ′(i), V ′) (promises well formed)

⇒ ∃r′, u′,W ′ ≥ W.M ′ ∈ brF [i 7→ r′ • f ], u′,W ′c{i} (weak erasure)

∧ (M ′, V ′, r′) ∈ npsafe(n+1,m)(σ
′, B)(W ′)

∧ r′ • canAcq(r′, u′) ≤o r • canAcq(r, u) (no new res. acquirable after taking a step)

∧ ∀m ∈ (M ′ \ P ′) \ (M \ P ). r.wr(m.loc).perm > 0} (when performing a write

or fulfiling a promise

the thread has to own

the appropriate write res.)

r1 ≤o r2
def
= ∀x. r1.wr(x).perm ≤ r2.wr(x).perm

wfprom(P, V )
def
= ∀m ∈ P. V (m.loc) < m.time

Fig. 8. Non-promising safety.

recertifying thread i’s promises. However, since the
NP−→ reduction does not

recertify promises, we explicitly require that the promises are well formed (via
wfprom predicate) in order to ensure that we still only consider executions where
threads do not read from their own promises.

Additional constraints by the non-promising safety. Non-promising safety also
imposes additional constraints on the reducing thread i. In particular, any write
permissions owned or acquirable by i after the reduction were already owned or
acquirable by i before the reduction step. Intuitively, this holds because thread i
can only transfer away resources and take ownership of resources it was already
allowed to acquire before reducing. Lastly, non-promising safety requires that if
the reduction of i performs any new writes or fulfils any old promises, it must own
the write permission for the location of the given message. Together, these two
conditions ensure that if a promise is fulfilled during a thread-local certification
and the thread satisfies non-promising safety, then the thread already owned
or could acquire the write permission for the location of the promise. This is
expressed formally in Lemma 2.

Lemma 2. Assuming that (〈M,P 〉, V, r) ∈ npsafe(n+1,k)(σ,B)(W ) and 〈M,P 〉 ∈

brF [i 7→ r • f ], u,W c{i} and 〈〈σ, V 〉, 〈M,P 〉〉 NP−→
k

i 〈〈σ′, V ′〉, 〈M ′, P ′〉〉 and m ∈
(M ′ \ P ′) \ (M \ P ), we have (r • canAcq(r, u)).wr(m.loc).perm > 0.
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The intuition for why Lemma 2 holds is that since only thread i executes, we know
by the definition of non-promising safety that any write permission owned or
acquirable by i when the promise is fulfilled, it already owns or can acquire in the
initial state. Furthermore, whenever a promise is fulfilled, the non-promising safety
definition explicitly requires ownership of the corresponding write permission. It
follows that the thread already owns or can acquire the write permission for the
location of the given promise in the initial state.

Lemma 2 gives us exactly the property that we need to reestablish erasure
after the operational semantics introduces a new promise. This makes Lemma 2
the key step in the proof of Theorem 1, which allows us to disentangle reasoning
about promising steps and normal reduction steps. Theorem 1 tells us that, in
order to prove a proof rule sound, it is enough to prove that the non-promising
safety holds for arbitrary indices. This liberates us of the cumbersome reasoning
about promise steps and allows us to focus on non-promising reduction steps
when proving the proof rules sound.

We can now state our top-level correctness theorem, Theorem 2. Since our
language only has top-level parallel composition, we need a way to distribute
initial resources to the various threads, and to collect all the resources once all
the threads have finished. The correctness theorem gives us precisely that:

Theorem 2 (Correctness). If A is a finite set of locations and
1. ` ∀x ∈ A. φx(0)
2. ` ~x∈ARel(x, φx) ∗ Acq(x, φx) ∗W1(x, {(0, 0)}) V ~i∈Tid Pi
3. ` {Pi} si {Qi} for all i
4. 〈λi. 〈(µi, si),⊥〉, 〈M0, ∅〉〉 =⇒∗ 〈TS, gconf 〉 and TS(i).σ = skip for all i
5. ` ~i∈TidQi V Q
6. FRV (Qi) ∩ FRV (Qj) = ∅ for all distinct i, j ∈ Tid

then there exist µ, r, and W such that (gconf.M,tiTS(i).V, r) ∈ JQK[]
µ(W) and

∀i ∈ Tid.∀a ∈ FRV(Qi). µ(a) = TS(i).µ(a), where FRV(P ) denotes the set of
free register variables in P .

5 Related work

There are a number of techniques for reasoning under relaxed memory models,
but besides the DRF theorems and some simple invariant logics [10,13], no other
techniques have been proved sound for a model allowing the weak behaviour of
LB+data+fakedep from the introduction. The “invariant-based program logics”
are by design unable to reason about programs like the random number generator,
where having a bound on the set of values written to a location is not enough,
let alone reasoning about functional correctness of a program.

Relaxed separation logic (RSL). Among program logics for relaxed memory, the
most closely related is RSL [27]. There are two versions of RSL: a weak one
that is sound with respect to the C/C++11 memory model, which features
out-of-thin-air reads, and a stronger one that is sound with respect to a variant
of the C/C++11 memory that forbids load buffering.
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The weak version of RSL forbids relaxed writes completely, and does not
constrain the value returned by a relaxed read. The stronger version provides
single-location invariants for relaxed accesses, but its soundness proof relies
strongly on a strengthened version of C/C++11 without po ∪ rf cycles (where po
is program order, and rf is the reads-from relation), which forbids load buffering.

When it comes to reasoning about coherence properties, even the strong
version of RSL is surprisingly weak: it cannot be used to verify any of the
coherence examples in this paper. In fact, RSL can be shown sound with respect
to much weaker coherence axioms than what C/C++11 relaxed accesses provide.

One notable feature of RSL which we do not support is read-modify-write
(RMW) instructions (such as compare-and-swap and fetch-and-add). However, the
soundness proof of SLR makes no simplifying assumptions about the promising
semantics which would affect the semantics of RMW instructions. Therefore, we
are confident that enhancing SLR with rules for RMW instructions would not
substantially affect the structure of the soundness proof, presented in Section 4.

Other program logics. FSL [8] extends (the strong version of) RSL with stronger
rules for relaxed accesses in the presence of release/acquire fences. In FSL, a
release fence can be used to package an assertion with a modality, which a relaxed
write can then transfer. Conversely, the ownership obtained by a relaxed read is
guarded by a symmetric modality than needs an acquire fence to be unpacked.
The soundness proof of FSL also relies on po∪rf acyclicity. Moreover, it is known
to be unsound in models where load buffering is allowed [9, §5.2].

A number of other logics—GPS [26], iGPS [12], OGRA [16], iCAP-TSO [24],
the rely-guarantee proof system for TSO of Ridge [23], and the program logic
for TSO of Wehrman and Berdine [28]—have been developed for even stronger
memory models (release/acquire or TSO), and also rely quite strongly on—and
try to expose—the stronger consistency guarantees provided by those models.

The framework of Alglave and Cousot [2] for reasoning about relaxed con-
current programs is parametric with respect to an axiomatic “per-execution”
memory model. By construction, as argued by Batty et al. [3], such models
cannot be used to define a language-level model allowing the weak behaviour
of LB+data+fakedep and similar litmus tests while forbidding out-of-thin-air
behaviours. Moreover, their framework does not provide the usual abstraction
facilities of program logics.

The lace logic of Bornat et al. [6] targets hardware memory models, in
particular Power. It relies on annotating the program with “per-execution” con-
straints, and on syntactic features of the program. For example, it distinguishes
LB+data+fakedep from LB+data+po, its variant where the write of second
thread is [x]rlx := 1, and is thus unsuitable to address out-of-thin-air behaviours.

Other approaches. Besides program logics, another way to reason about programs
under weak memory models is to reduce the act of reasoning under a memory
model M to reasoning under a stronger model M ′—typically, but not necessarily,
sequential consistency [7,18]. One can often establish DRF theorems stating that
a program without any races when executed under M ′ has the same behaviours
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when executed under M as when executed under M ′. For the promising semantics,
Kang et al. [13, §5.4] have established such theorems for M ′ being release-acquire
consistency, sequential consistency, and the promise-free promising semantics,
for suitable notions of races. The last one, the “Promise-Free DRF” theorem,
is applicable to the Disjoint-Lists program from the introduction, but none of
these theorems can be applied to any of the other examples of this paper, as
they are racy. Moreover, these theorems are not compositional, as they do not
state anything about the Disjoint-Lists program when put inside a larger, racy
program—for example, just an extra read of a from another thread.

6 Conclusion

In this paper, we have presented the first expressive logic that is sound under the
promising semantics, and have demonstrated its expressiveness with a number of
examples. Our logic can be seen both as a general proof technique for reasoning
about concurrent programs, and also as tool for proving the absence of out-of-
thin-air behaviour for challenging examples, and reasoning about coherence. In
the future, we would like to extend the logic to cover more of relaxed memory,
more advanced reasoning principles, such as those available in GPS [26], and
mechanise its soundness proof.

Interesting aspects of relaxed memory we would like to also cover are read-
modify-writes and fences. These would allow us to consider concurrent algorithms
like circular buffers and the atomic reference counter verified in FSL++ [9]. This
could be done by adapting the corresponding rules of RSL and GPS; moreover,
we could adapt them with our new approach to reason about coherence.

To mechanise the soundness proof, we intend to use the Iris framework [11],
which has already been used to prove the soundness of iGPS [12], a variant of
the GPS program logic. To do this, however, we have to overcome one technical
limitation of Iris. Namely, the current version of Iris is step-indexed over N, while
our semantics uses transfinite step-indexing over N× N to define non-promising
safety and allow us to reason about certifications of arbitrary length for each
reduction step. Progress has been made towards transfinitely step-indexed logical
relations that may be applicable to a transfinitely step-indexed version of Iris [25].
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