The Future of Weak Memory 2024

A case against semantic dependencies

Ori Lahav, Tel Aviv University
Based on joint discussions with Minki Cho, Chung-Kil Hur, Sung-Hwan Lee, Ben Simner

Imagine a new model for C/C++ that works in three steps:

o Step 1: “calculate” a set S of candidate program execution graphs

o Step 2: given S, derive semantic dependency (sdep) for each graph

o Step 3: apply the consistency predicate from the C/C++ standard

Definition 1. An execution G is called RC11-consistent if it
1s complete and the following hold:

* hb: eco’ is irreflexive. (COHERENCE)
* rmw N (rb;mo) = (. (ATOMICITY)
* psc 1s acyclic. (SC)
* po U rf is acyclic. (NO-THIN-AIR) |:> sdep U rf 18 acyclic.

Y (rlx) RW-reorder X

b (rlx) —

d

Imagine a new model for C/C++ that works in three steps:

o Step 1: “calculate” a set S of candidate program execution graphs

o Step 2: given S, derive semantic dependency (sdep) for each graph

o Step 3: apply the consistency predicate from the C/C++ standard

| believe this approach can’t work. | argue via example that:
e Step 2 cannot be thread-local

o Step 2 has to be aware of the consistency predicate in step 3

Can “foo” be printed?

Thread 1 Thread 2
ra=X

F (3 = 1) {
Aali

print ("foo")
) etse A
=

¥

sdep approach R X 0 RY 0 R X 0 RY 1
WY 1 mwxe WY 1 W X 1
R X1 RY 0 R X1 RY 1
Thread 1 Thread 2 l . < l l (l
- WY 1 mwxe WY1 W X 1
if (a == 1) {
Y = a
print ("foo")
} else { RIln ﬂg[l
wyi o wxi

Main example

Thread 1 Thread 2 Thread 3
a = X

if (a == 1) {
Y = a

print ("foo")
} else {

Thread 1

if (a ==

1) {

print ("foo")
} else {
= /

1
N €&—
Q)
By
N €&—
(Y
sdep
72
1
X<
N P

Thread 2

=

Thread 3

RY©O RY1
l (l

W X 0

W7Z1

l 4 l fwz1
e T @
WY1 ‘WX1
RX1p ARY1
gl x| Jawea
0 ¢t TEN 0
WY1’ ‘WX1

Thread 1 Thread 2 Thread 3

sdep

RX1p 4RY1
Jow:s

L S 4
\Y4
A
¢ S

,rf\

WY1 ‘WX1

* Printing “foo” has to be allowed, assuming we allow compilers to:

* Introduce redundant loads Both are performed by LLVM/GCC on non-atomics

. can be easily made non-atomic
» Forward load across atomics: (2 y)

Cc=7;a=X;b=7—->c=7; a=X;b=c

Thread 1 Thread 1 Thread 1 Thread 1

cC =/ cC =/

i (e == 1) ¢ i (e == 1) ¢

a = X a = X a = X
if (a ==1) { if (a ==1) { if (a ==1) {

= X
if (a ==1) {
Y = a

Y = 3 Y = a Y =1
print ("foo") print ("foo") print ("foo")
} else { } else { } else {

b = 7 o =11}

Y=b Y=b Y = 1

print ("foo")

Thread 1 Thread 2 Thread 3

sdep

RX1p 4RY1
Jow:s

L S 4
\Y4
A
¢ S

,rf\

WY1 ‘WX1

* Printing “foo” has to be allowed, assuming we allow compilers to:

* Introduce redundant loads Both are performed by LLVM/GCC on non-atomics

. can be easily made non-atomic
» Forward load across atomics: (2 y)

Cc=7;a=X;b=7—->c=7; a=X;b=c

Thread 1

Thread 2 Thread 3

a = X
if (a == 1) {
Y = a

print ("foo")
} else {

b = Z

Y =b
}

RX1p 4RY1

L S 4
\ Y4
A
¢ S

,rf\

WY1 ‘WX1

)nge

 With new Thread 3, printing “foo” has to be disallowed (thin-air!)

Thread 1

if (a == 1) {

print ("foo")
} else {
= /

1
N €&—
Q)
By
N €&—
(Y
sdep
72
1
X<
N P

Thread 2

=

Thread 3

RY©O RY1
l (l

W X 0

W 7 0/1

W70

sdep

RXlk ﬂRYl
LA)

WY1 “WX1

Step 2 (sdep calculation)
cannot be thread local!

Thread 1 Thread 2 Thread 3

a = X
if (a == 1) {
Y = a
r=Y
print ("foo")
X =7
} else {
b = 7/
Y = b
}

Step 2 (sdep calculation) depends on
Step 3 (the consistency predicate)!

/ = your favorite litmus text()

1
FAA(V,1) acg
U

return(d==1 && e==0 && f==1 && g==2)

Thread 1 Thread 2 Thread 3

a = X
if (a == 1) {
Y = a .
print ("foo") Y« = = your favorite litmus test()
} else {
b =
Y =Db
}

Substitution of Equivalents — “sanity condition” for weak memory models:

e |f £() always returns o in a memory model M, then f() and e should be a

equivalent in M
(assuming () uses a disjoint set of locations wrt rest of the program).

Reasoning-aware sdep? i(

 sdep calculation has to take intro account our reasoning principles.

* No thin air values: f() never returns 1 in some (possibly inconsistent) execution
—> sdep Mmust exist

* A new (sound) program logic can prove that f() never returns 1
—> sdep Mmust exist

 We have a memory model for reasoning (weaker than the “real” model).

e For reasoning to be potentially precise, sdep needs take into account the full
consistency predicate.

The source of the problem

e Semantic dependencies are “dynamic” rather than “static”:

sdep <= the model allows a thread to read some value at a certain
program point.

Event-structure-based / pomset models / “Promising Semantics” capture

such dynamic dependencies.
(MACHINE: NORMAL)

(T (1), PG, M) =" (T",Pg",M")
<T,’PG,3 AI,> - <<_’_a 0>’_’_>

The approach we discussed fails to do so. (T, P, M) = (T [t T'],Pg",M")

see our PLDI’23 paper 3~ ')}

A fresh look on the out-of-thin-air problem

* The discussion about the OOTA problem in C/C++ revolves around memory order relaxed

e |s it Indeed expensive to forbid RW reordering of relaxed accesses?
* More provocatively: do we really need relaxed writes?

v

NA RLX RA SC

* A (more practical?) challenging problem arises with:
e Strong accesses (SC) or mutexes that allow races

* Weak accesses (non-atomic) that allow optimizations, including load introduction

