
Ori Lahav, Tel Aviv University
Based on joint discussions with Minki Cho, Chung-Kil Hur, Sung-Hwan Lee, Ben Simner

A case against semantic dependencies

The Future of Weak Memory 2024

Imagine a new model for C/C++ that works in three steps:

• Step 1: “calculate” a set S of candidate program execution graphs

• Step 2: given S, derive semantic dependency (sdep) for each graph

• Step 3: apply the consistency predicate from the C/C++ standard

a = Y (rlx)

X = b (rlx)

X = b (rlx)

a = Y (rlx)
RW-reorder

I believe this approach can’t work. I argue via example that:

• Step 2 cannot be thread-local

• Step 2 has to be aware of the consistency predicate in step 3

Imagine a new model for C/C++ that works in three steps:

• Step 1: “calculate” a set S of candidate program execution graphs

• Step 2: given S, derive semantic dependency (sdep) for each graph

• Step 3: apply the consistency predicate from the C/C++ standard

Can “foo” be printed?

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

 Y = 1

}

r = Y

X = r

Thread 1 Thread 2

1

Y = 1

sdep approach R X 0 R Y 0

W X 0W Y 1

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

 Y = 1

}

r = Y

X = r

Thread 1 Thread 2

R X 0 R Y 1

W X 1W Y 1

R X 1 R Y 0

W X 0W Y 1

R X 1 R Y 1

W X 1W Y 1

s
d
e
p

s
d
e
p

s
d
e
p

s
d
e
p

R X 1 R Y 1

W X 1W Y 1

s
d
e
p

rf

Main example

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = 1

Thread 3

R X 0

R Z 0

W Y 0

R X 0

R Z 1

W Y 1

R X 1

W Y 1

R Y 1

W X 1

W Z 1

R Y 0

W X 0

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = 1

Thread 3

s
d
e
p

s
d
e
p

R X 1 R Y 1

W X 1

W Z 1

W Y 1
rfs

d
e
p

s
d
e
p

R X 1 R Y 1

W X 1

W Z 1

W Y 1
rf s

d
e
p

s
d
e
p ?

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = 1

Thread 3

• Printing “foo” has to be allowed, assuming we allow compilers to:

• Introduce redundant loads

• Forward load across atomics:

c = Z; a = X; b = Z c = Z; a = X; b = c→

Both are performed by LLVM/GCC on non-atomics
(Z can be easily made non-atomic)

R X 1 R Y 1

W X 1

W Z 1

W Y 1
rf s

d
e
p

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

Thread 1 Thread 1
c = Z

if (c == 1) {

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = c

Y = b

}

} else {

...

}

Thread 1
c = Z

if (c == 1) {

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

} else {

...

}

c = Z

if (c == 1) {

a = X

if (a == 1) {

 Y = 1

 print ("foo")

} else {

b = 1

Y = 1

}

} else {

...

}

Thread 1

→ → → . . .

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = 1

Thread 3

• Printing “foo” has to be allowed, assuming we allow compilers to:

• Introduce redundant loads

• Forward load across atomics:

c = Z; a = X; b = Z c = Z; a = X; b = c→

Both are performed by LLVM/GCC on non-atomics
(Z can be easily made non-atomic)

R X 1 R Y 1

W X 1

W Z 1

W Y 1
rf s

d
e
p

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = 0

Thread 3

• With new Thread 3, printing “foo” has to be disallowed (thin-air!)

R X 1 R Y 1

W X 1

W Z 0

W Y 1
rf s

d
e
p

R X 0

R Z 0

W Y 0

R X 0

R Z 1

W Y 1

R X 1

W Y 1

R Y 1

W X 1

W Z 0/1

R Y 0

W X 0

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = 0/1

Thread 3

s
d
e
p

s
d
e
p

R X 1 R Y 1

W X 1

W Z 1

W Y 1
rfs

d
e
p

s
d
e
p

R X 1 R Y 1

W X 1

W Z 0

W Y 1
rf s

d
e
p

s
d
e
p ? Step 2 (sdep calculation)

cannot be thread local!

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = your_favorite_litmus_text()

Thread 3

V = 1

d = FAA(V,1) acq

e = U

return(d==1 && e==0 && f==1 && g==2)

U = 1

f = V

V = f rel

g = V

Step 2 (sdep calculation) depends on
Step 3 (the consistency predicate)!

Substitution of Equivalents — “sanity condition” for weak memory models:

• If f() always returns 0 in a memory model M, then f() and 0 should be a
equivalent in M

(assuming f() uses a disjoint set of locations wrt rest of the program).

a = X

if (a == 1) {

 Y = a

 print ("foo")

} else {

b = Z

Y = b

}

r = Y

X = r

Thread 1 Thread 2

Z = your_favorite_litmus_test()

Thread 3

Reasoning-aware sdep? :(

• sdep calculation has to take intro account our reasoning principles.

• No thin air values: f() never returns 1 in some (possibly inconsistent) execution
 sdep must exist

• A new (sound) program logic can prove that f() never returns 1
 sdep must exist

• We have a memory model for reasoning (weaker than the “real” model).

• For reasoning to be potentially precise, sdep needs take into account the full
consistency predicate.

⟹

⟹

The source of the problem
• Semantic dependencies are “dynamic” rather than “static”:

• sdep the model allows a thread to read some value at a certain
program point.

• Event-structure-based / pomset models / “Promising Semantics” capture
such dynamic dependencies.

• The approach we discussed fails to do so.

⟺

A fresh look on the out-of-thin-air problem
•The discussion about the OOTA problem in C/C++ revolves around memory_order_relaxed

• Is it indeed expensive to forbid RW reordering of relaxed accesses?

•More provocatively: do we really need relaxed writes?

•A (more practical?) challenging problem arises with:

•Strong accesses (SC) or mutexes that allow races

•Weak accesses (non-atomic) that allow optimizations, including load introduction

RARLXNA

see our PLDI’23 paper

SC

