Max

Taming Release-Acquire Consustency

Ori Lahav Nick Giannarakis Viktor Vafeiadis Q' Planc
Max Planck Institute for Software Systems (MPI-SWS) for

Software Systems

C11’s release/acquire declarative memory model

Store buffering z =y =0 RA model: C11 model where all reads are acquire, all writes are release,
/ \n ; and all atomic updates are acquire/release
rx=1y=0
v =1 y =1 Wz, 1 Wy, Good balance between performance and programmability:
print y

e Supports intended hardware/compiler optimizations:

print x l l

both threads may print 0 Ry, 0 Rz, (— Elimination of redundant adjacent accesses
— Store-load reordering: Wwz—Ry ~~ Ry—Wz (unlike SC)
: DRF theorem:

Message passin ° |

gep g z=m =0 No data races under SC ensures no weak behaviors

r=0 /M \ e Monotonicity:
m = 42, whiklle :z: =0 Wim, A2 Rz, 1 Adding synchronization does not introduce behaviors (unlike TSO)
xr =1 SreR l e \Verified compilation schemes for x86-TSO and Power

print m

Wr. 1 e Program logics: RSL, GPS, OGRA

only 42 may be printed

Strong release/acquire SC-fences

Problem: Some behaviors allowed by RA are never observed. Problem: SC-fences are overly weak.

r=1y=0

print zi;
print 29;

print vy

print x;
fence();

print y;
fence();
print x

print x;
print vy

C11 allows both threads to print 1, 0.

C11 allows printing 1,1, 1, 1.

Proposed solution: Model SC-fences as atomic updates of a dis-
tinguished fence location.

Proposed solution: Rule out hb U mo cycles.
¢ RA semantics enforces all fence events to be ordered by hb.

e Compilation schemes are not affected.
e Adding fences to guarantee SC:

— Between every two racy accesses
— Between racy writes and racy reads for client-server programs

e No additional cost:

— Compilation schemes are not affected.
— Same compiler optimizations are sound.

e No better deal for Power:
Power model restricted to RA accesses = strong RA

Operational semantics

e Processing a message updates the local memory and adds the
message to the outgoing buffer.
e Global timestamps are used to ensure coherence properties:

— Every write obtains a new timestamp, larger than all previous ones.

— When processing a message, the local memory is updated only if
the message’s timestamp is larger than the stored one.

e Based on point-to-point communication.
e Each processor has a local memory and an outgoing message buffer.

e Processors non-deterministically choose between performing their
own commands and processing incoming messages.

e Messages are processed in the order they were issued.

m = 1 — () x =1 x =38;
m = 42; whilex =0 > printx | B printx
r =1 skip; If the first thread prints 8,
> ... » print m the second thread cannot print 7
Global CPU | m=42al CPU II m=42al Global CPUI |z=T7@l CPU Il |z=8@2
timestamp r=101 r=101 timestamp K
table m =42 Q] m =42 Q] table r="TQl r=8Q2
r Q1 r=1Q1 r=1Q1 z @2
m Q1

