
Taming Release-Acquire Consistency
Ori Lahav Nick Giannarakis Viktor Vafeiadis
Max Planck Institute for Software Systems (MPI-SWS)

C11’s release/acquire declarative memory model

Store buffering

x = y = 0
x := 1;
print y

y := 1;
print x

both threads may print 0

[x = y = 0]

Wx, 1

Ry, 0

Wy, 1

Rx, 0

momo

rf rf

Message passing

x = 0

m := 42;
x := 1

while x = 0
skip;

print m

only 42 may be printed

[x = m = 0]

Wm, 42

Wx, 1

Rx, 1

Rm, 42

mo
mo

rfrf

hb

RA model: C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Good balance between performance and programmability:

• Supports intended hardware/compiler optimizations:
– Elimination of redundant adjacent accesses
– Store-load reordering: Wx→Ry  Ry→Wx (unlike SC)

•DRF theorem:
No data races under SC ensures no weak behaviors

•Monotonicity:
Adding synchronization does not introduce behaviors (unlike TSO)

• Verified compilation schemes for x86-TSO and Power

• Program logics: RSL, GPS, OGRA

Strong release/acquire

Problem: Some behaviors allowed by RA are never observed.

x := 1;
y := 2;
z1 := 1

print z1;
print z2;
print x;
print y

y := 1;
x := 2;
z2 := 1

C11 allows printing 1, 1, 1, 1.

Wx, 1

Wy, 2

Wz1, 1

Rz1, 1

Rz2, 1

Rx, 1

Ry, 1

Wy, 1

Wx, 2

Wz2, 1rf
rf

rf

rf

mox moy

Proposed solution: Rule out hb ∪mo cycles.

•No additional cost:
– Compilation schemes are not affected.
– Same compiler optimizations are sound.
•No better deal for Power:

Power model restricted to RA accesses = strong RA

SC-fences

Problem: SC-fences are overly weak.

x = y = 0

x := 1
print x;
fence();
print y

print y;
fence();
print x

y := 1

C11 allows both threads to print 1, 0.

[x = y = 0]

Wx, 1

Rx, 1

F

Ry, 0

Ry, 1

F

Rx, 0

Wy, 1

mox moy

rbyrbx

Proposed solution: Model SC-fences as atomic updates of a dis-
tinguished fence location.

•RA semantics enforces all fence events to be ordered by hb.
•Compilation schemes are not affected.
• Adding fences to guarantee SC:

– Between every two racy accesses
– Between racy writes and racy reads for client-server programs

Operational semantics

• Based on point-to-point communication.
• Each processor has a local memory and an outgoing message buffer.
• Processors non-deterministically choose between performing their

own commands and processing incoming messages.
•Messages are processed in the order they were issued.

m = x = 0
m := 42;
x := 1;

I ...

while x = 0
skip;

I print m

CPU I
m=42@1
x=1@1

m=42@1

x=1@1

CPU II
m=42@1
x=1@1

m=42@1

x=1@1

Global
timestamp

table

x@1

m@1

• Processing a message updates the local memory and adds the
message to the outgoing buffer.
•Global timestamps are used to ensure coherence properties:

– Every write obtains a new timestamp, larger than all previous ones.
– When processing a message, the local memory is updated only if

the message’s timestamp is larger than the stored one.

x := 7;
I print x

x := 8;
I print x

If the first thread prints 8,
the second thread cannot print 7

CPU I x=7@1

x=7@1

CPU II x=8@2

x=8@2

Global
timestamp

table

x@2


