
53

An Operational Approach to Library Abstraction under

Relaxed Memory Concurrency

ABHISHEK KR SINGH, Tel Aviv University, Israel

ORI LAHAV, Tel Aviv University, Israel

Concurrent data structures and synchronization mechanisms implemented by expert developers are indis-

pensable for modular software development. In this paper, we address the fundamental problem of library

abstraction under weak memory concurrency, and identify a general library correctness condition allowing

clients of the library to reason about program behaviors using the speci�cation code, which is often much

simpler than the concrete implementation. We target (a fragment of) the RC11 memory model, and develop an

equivalent operational presentation that exposes knowledge propagation between threads, and is su�ciently

expressive to capture library behaviors as totally ordered operational execution traces. We further introduce

novel access modes to the language that allow intricate speci�cations accounting for library internal synchro-

nization that is not exposed to the client, as well as the library’s demands on external synchronization by the

client. We illustrate applications of our approach in several examples of di�erent natures.

CCS Concepts: •Theory of computation→Concurrency;Operational semantics;Programveri�cation;

• Software and its engineering → Semantics; Software veri�cation; Abstraction, modeling and

modularity.

Additional Key Words and Phrases: Relaxed memory consistency, Concurrent objects, Linearizability, Library

abstraction

ACM Reference Format:

Abhishek Kr Singh and Ori Lahav. 2023. An Operational Approach to Library Abstraction under Relaxed

Memory Concurrency. Proc. ACM Program. Lang. 7, POPL, Article 53 (January 2023), 31 pages. https://doi.org/

10.1145/3571246

1 INTRODUCTION

Library abstraction constitutes a powerful means to achieve modularity in software development. It
allows expert library developers to write optimized implementations of common programming tasks,
and “once and for all” establish that these implementations admit their corresponding speci�cations.
In turn, users of these implementations, called clients of the library, may reason about program
behaviors assuming only the libraries’ speci�cations, with no understanding, or even no access, to
the implementations. From a formal standpoint, a perquisite for applying library abstraction is to
identify a condition that provably allows library developers to abstract away from a particular client
program when verifying their implementations, while ensuring the soundness of client reasoning
using the speci�cations in any (valid) client program.
In the case of sequential programs, library abstraction is straightforward: speci�cations may

be given using pre- and post-conditions, and it is easy to establish the soundness of client rea-
soning that is based on them. Concurrent programs, however, require more attention. Assuming

Authors’ addresses: Abhishek Kr Singh, Tel Aviv University, Israel, abhishek.uor@gmail.com; Ori Lahav, Tel Aviv University,

Israel, orilahav@tau.ac.il.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART53

https://doi.org/10.1145/3571246

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-2760-5419
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/3571246
https://doi.org/10.1145/3571246
https://orcid.org/0000-0002-2760-5419
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/3571246

53:2 Abhishek Kr Singh and Ori Lahav

an underlying sequentially consistent (SC) memory system [Lamport 1979], classical lineariz-
ability (w.r.t. some sequential speci�cation) [Herlihy and Wing 1990] ensures re�nement w.r.t. a
sequential object [Filipović et al. 2010], and can be seen as a library abstraction condition. More
recent approaches employ “code as speci�cation” (see, e.g., [Gotsman and Yang 2011]), where
implementations are speci�ed using (simple) code, and library abstraction amounts to contextual
re�nement between two pieces of code. Linearizability can be seen as a particular instance of this
approach, where speci�cations are obtained by wrapping a sequential implementation within a
global lock [Bouajjani et al. 2015]. Furthermore, to make such speci�cation formalism more useful,
one often enriches the given programming language with special speci�cation constructs, that are
employed only in the speci�cation code and are relatively easy to reason about (e.g., atomic blocks
in concurrent programs).

The current paper studies library abstraction under relaxed (a.k.a. weak) shared-memory concur-
rency. In particular, we consider a C11-style weak memory model with several kinds of memory-
access modes (a.k.a. memory orderings), placed di�erently on the spectrum between e�cient
implementation (with an optimizing compiler targeting a modern multicore hardware) and strong
consistency guarantees. The infamous complexity of programming under such a model makes
library abstraction indispensable. In particular, library abstraction allows clients to use the program-
ming guarantees supplied by the model, e.g., clients should be able to rely on the synchronization
induced by a library (such as a lock library) for ensuring data-race freedom in their programs, and
then apply the model’s guarantee that data-race free programs have strong semantics.

Remark 1. Like many formal veri�cation frameworks for C11, we are unable to work with the
original model, which allows unrestricted cycles in the union of ‘program order’ and ‘reads-from’,
and thus exhibits “out-of-thin-air” behaviors and fails to provide the most basic data-race-freedom
guarantee. We follow [Boehm and Demsky 2014] and its formalization in the RC11 model in [Lahav
et al. 2017] to conservatively disallow all such cycles. This entails a certain performance penalty for
maintaining the load-store order between relaxed accesses [Ou and Demsky 2018]. We also note
that the fragment of the RC11 handled in this paper lacks release/acquire fences and sequentially
consistent accesses, which are left to future work.

Our main contribution is a correctness condition for libraries that provably ensures (contextual)
re�nement between implementations and their respective speci�cations under the weak memory
model, with several distinctive properties:

• Our proposed condition is based on totally ordered execution traces of the library in question (a
decision motivated below). Accordingly, we present a novel equivalent operational version of the
(originally) declarative memory model, and use it in the correctness condition.

• To account for various restrictions that libraries may impose on their clients (e.g., refrain from
data races between two speci�c methods), our result supports rich library calling policies, and
re�nement is conditioned on the client’s adherence to the calling policy. Importantly, whether a
program adheres to the policy or not is checked against the library speci�cation, which allows the
application of the abstraction theorem by the client without any knowledge of the implementation.

• Our speci�cation language allows simple lock-based speci�cations of libraries that do not provide
synchronization guarantees for their clients, and dually of libraries that rely on the client for
performing the synchronization between library calls. For that matter, we introduce a novel
access mode to the programming language (and memory model).

We illustrate the application of our approach for an RCU synchronization mechanism which we
specify by relying solely on locks (§8.1), as well as for a relaxed concurrent queue object that does not
expose its internal synchronization to its clients (§8.2). We also derive a (local) data-race-freedom
guarantee for the memory model as an instance of library abstraction (§8.3).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:3

Outline. This paper is organized as follows. In §2 we present an informal overview of the
challenges we address and our solutions. In §3 we de�ne concurrent programs and their semantics
independent of a memory model. In §4 we present the memory model semantics, which we call
dRC11 (d for ‘declarative’), as a fragment of RC11 extended with novel constraints for the new
access modes. In §5 we present an operational version of the memory model, which we call pRC11
(p for ‘propagation’), that is needed for de�ning the library correctness condition. In §6 we introduce
the notions required to formulate the library abstraction theorem. In §7 we state and prove the
main theorem. In §8 we demonstrate applications of the abstraction theorem (which can assist in
understanding the crux of the abstraction theorem even before reading the more technical material
in Section 3 to 7). We discuss the relation to other work in §9 and conclude in §10. The full version
of this paper available in [Singh and Lahav 2022] contains additional detailed proofs.

2 KEY CHALLENGES AND IDEAS

We outline the main challenges and the key ideas in our solutions. We keep the discussion and
examples informal, leaving the formal development to later sections.

2.1 Library Correctness Criterion

The main challenge lies in establishing a library correctness condition that will ensure contextual
re�nement between a library speci�cation !# (given as code) and its implementation ! under weak
memory semantics. Naturally, such condition should consider each object in isolation and avoid
quanti�cation over all possible clients. Moreover, we opt for an operational condition that, like
standard linearizability, is based on totally ordered histories generated by the object in question.
The latter desideratum is in contrast with previous work on library speci�cations in (R)C11 [Batty
et al. 2013; Raad et al. 2019] and adaptations of linearizability to weak memory concurrency (see,
e.g., [Dongol et al. 2018]), which employ multiple partial orders in their correctness criteria. We
believe that an operational approach, based on one total timeline, may be more intuitive for users
(also considering informal arguments), and will allow easier adoption of standard techniques and
tools that were applied before to verify re�nement between transition systems (see e.g., our initial
experiment with the FDR re�nement checker in §8.1).
While having an operational correctness criterion may seem contradicting to the fact that

standard weak memory formulations, e.g., (R)C11, are declarative (a.k.a. axiomatic memory models),
unlike previous work (e.g., [Batty et al. 2013]), we consider this to be only a super�cial matter.
Indeed, declarative speci�cations of models that forbid “reads from the future“ (i.e., impose acyclicity
of the union of the ‘program order’ and the ‘read-from’ relations; called an ‘in-order’ semantics
in [Cho et al. 2021]) can be equally characterized as operational memory models: the states consist
of the current execution trace ordered by multiple partial order relations as needed, and transitions
are only between consistent states as speci�ed by the consistency condition of the declarative
model (see, e.g., the RAG transition system for the release/acquire fragment of C11 in [Lahav and
Margalit 2019]). More concise (and possibly more intuitive) formulations of such semantics may use
timestamps and views, and the equivalence to the “operationalized” declarative model is witnessed
by a standard forward simulation relation (see, e.g., [Kaiser et al. 2017; Kang et al. 2017]).

Now, operational semantics (in particular, operationalized versions of declarative models), natu-
rally give rise to a set of library histories, and allow the application of standard linearizability. For
that matter, one considers a “most general client” program that invokes the library methods in the
most general way expected by the library. Then, the set of library histories consists of all sequences
of invocations (with the values of the arguments) and responses (with the returned values) of the
library methods by di�erent threads that are obtained in operational traces of that client. Under SC,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:4 Abhishek Kr Singh and Ori Lahav

inclusion of the sets of histories between two libraries may serve as a library abstraction condition
(i.e., if every history of a library ! is also a history of !#, then ! re�nes !#).

Aiming to apply a similar condition, following previous work on abstraction under TSO [Burck-
hardt et al. 2012] and under non-volatile memory [Khyzha and Lahav 2022], we observe that under
weak memory semantics, inclusion of sets of histories is generally unsound as a library correctness
condition.1 Next, we provide a simple (contrived) example of this issue.

Example 2.1. Consider a library ! with two methods foo and bar and the following speci�cation
(here and henceforth we assume that all variables are initialized to 0):

foo() : store(x, 1, rel) ; return() ; bar() : a := load(x, acq) ; return(a) ;

Suppose that the library enforces a policy on its clients: (1) foo and bar must be called exactly

once in di�erent threads; and (2) bar must be called after foo in the execution order. For example,
the following program adheres to this call policy:

foo() ;

store(y, 1, rlx) ;

b := load(y, rlx) ;

if b = 1 then

c := bar() ;

The accesses to y ensure that in the generated traces the call to bar indeed appears only after foo
returns. Nevertheless, speaking in C11 terminology, since these accesses are relaxed (as annotated
by rlx mode), they do not induce a happens-before order between the calls, and thus, following
the speci�cation, the read from x inside bar may return 0 (the initial value) or 1. Accordingly, a
“naive” library developer may attempt to e�ciently implement ! as follows (where ⊕ denotes a
non-deterministic choice):

foo() : return() ; bar() : return(0) ⊕ return(1) ;

Is this implementation correct? In histories of the most general client of ! that respects the library’s
calling policy (i.e., in histories generated by executing the above program) one cannot observe
a di�erence between the implementation and the speci�cation. But, nevertheless, contextual
re�nement does not hold (so the implementation cannot be considered correct) for two di�erent
reasons illustrated by the following client programs:

store(z, 1, rlx) ;

foo() ;

store(y, 1, rlx) ;

b := load(y, rlx) ; //1

if b = 1 then

c := bar() ; //1

d := load(z, rlx) ; //0

foo() ;

store(y, 1, rel) ;

b := load(y, acq) ; //1

if b = 1 then

c := bar() ; //0

The annotated behaviors in both examples are allowed when the suggested implementation of foo
and bar is used, but disallowed when the speci�cation is used. Indeed, in the example on the left,
since the speci�cation ensures release/acquire synchronization when bar returns 1 (via the rel
and acq annotations in the accesses to x), the write to z happens-before the read from z, and in this
case the model disallows the read from z to observe the overwritten initial value. In turn, in the
example on the right, since the client uses release/acquire accesses, the write in foo happens-before
the read in bar, which similarly ensures that the read from x cannot observe the initial value.

To address this challenge, we need to make library histories more expressive, so we can avoid
the (SC) pitfall that identi�es the execution order and the synchronization order. Concretely, in the

1Interestingly, it follows from our result that for a language that employs only RC11-style relaxed accesses, inclusion of sets

of histories is a sound condition (like it is for SC). Such a language is, however, too weak to be considered useful.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:5

example above, we need to expose the facts that: (1) bar returning 1 entails a happens-before relation
from the call of foo to the return of bar; and (2) bar returning 0 forbids a happens-before relation
from the return of foo to the call of bar. What does that mean in operational terms without talking
about the happens-before partial order between call and return actions? Our solution consists of
the following:

• We introduce a novel operational semantics of the memory model and show that it is equivalent to
the original declarative model. The operational semantics makes knowledge propagation between
threads explicit. Roughly speaking, an access that is executed by one thread is �rst unknown
to the other threads, and later non-deterministically propagates to each other threads. Access
modes impose certain constraints on the propagation order and the ability to read from (locally)
unknown events. In the simplest case—for programs with only release/acquire accesses—the
propagation order has to follow the program order and reads can only read from known writes.

• We include propagation of method invocations and responses in the memory trace and, in turn,
in library histories. These steps have no e�ect on the outcomes of the operational semantics
(i.e., what values can be read and when), but they serve as crucial “markers” in library history,
making histories expressive enough for validating contextual re�nement given the inclusion
of the sets of histories. In other words, we keep the inclusion of the sets of library histories as
the correctness criterion, and recover its soundness by including appropriate markers (call and
return propagation among di�erent threads) in the histories.

In particular, revisiting the example above, the proposed implementation will have a history in
which the propagation of the call marker of foo is after the return of bar but bar returns 1; as well
as a history in which the propagation of the return marker of foo is before the call of bar but bar
returns 0. Both histories are impossible for the speci�cation, so library correctness does not hold.

2.2 Specification under Relaxed Memory Concurrency

A second challenge that we address is related to speci�cation of libraries that expose weak behaviors.
A straightforward approach to specifying concurrent data structures is to take a simple sequential
implementation of the data structure, and wrap every operation inside a per-object lock. In fact,
correctness according to the classical linearizability criterion [Herlihy and Wing 1990] is equivalent
to re�nement with respect to such lock-based speci�cations [Bouajjani et al. 2015; Filipović et al.
2010]. Since a lock entails a total order on all operations, the resulting speci�cation is typically easy
to understand and enables reasoning similar to reasoning about sequential programs.
This approach, however, has major shortcomings under relaxed memory concurrency, as it

identi�es the execution order with the synchronization order, which is only justi�ed assuming SC.
For instance, consider the following program that uses a concurrent queue (inspired by [Mével and
Jourdan 2021]):

x := 1;

q.enqueue(1) ;

a := q.dequeue; //1

b := x; //0

Assuming a lock-based speci�cation of the queue, the client may easily conclude that the annotated
behavior (0 = 1 and 1 = 0, where 0 is the initial value of x and the queue is initially empty) is
impossible. Indeed, the fact that the dequeue operation returned the enqueued value entails that
the lock of the dequeue operation must have been acquired after the lock of the enqueue operation
was released. In turn, since locks necessarily provide release/acquire synchronization, the write
to x happens-before the read from x, and thus the read cannot observe the overwritten initial
value. Now, while the implementation of a queue may provide such synchronization guarantees
for its client, it is also possible that the queue is implemented using e�cient C11 relaxed accesses,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:6 Abhishek Kr Singh and Ori Lahav

and thus comes with weaker guarantees that do not allow the client to rely on library-induced
synchronization (so the accesses to x above are racy and 0 = 1 but 1 = 0 is possible). In that case
the lock-based speci�cation would be too strong.

We note that such weak guarantees do not imply that the queue is not “linearizable”: there may
still exist a total order on all queue operations that agrees with the execution order (which can be
any total order extending the union of the program order and the reads-from relation), and the
queue exhibits FIFO behavior w.r.t. that order. A weak queue may be useful transferring elements
of base types, whereas, in order to be used for transferring ownership via pointers, the client is
responsible to appropriately place fences before and after invoking the weak queue methods.

Remark 2. While release/acquire synchronization may seem natural between enqueue and
dequeue of the same element, the lock-based speci�cation implies synchronization also in other
cases, which may or may not be supplied (the queue studied in [Mével and Jourdan 2021] provides
a case in point). For example, a client relying on a lock-based speci�cation can deduce that the
following annotated outcomes are all disallowed (where ⊥ denotes an empty queue):

x := 1;

q.enqueue(1) ;

q.enqueue(2) ;

a := x; //0

b := q.dequeue; //1

c := q.dequeue; //2

x := 1;

a := q.dequeue; //⊥

q.enqueue(1) ;

b := x; //0

Accordingly, the challenge lies in identifying speci�cation constructs that can be used instead
of standard locks and be su�ciently �exible to account for di�erent synchronization guarantees
for the client. Ideally, like locks, they should allow straightforward reasoning about the library
behaviors. We observe that existing concurrency models, C11 in particular, lack such constructs.

To address this challenge, we propose to extend the language with specialized instructions. Con-
cretely, we identify that there is a range of possible guarantees that lie between C11’s release/acquire
accesses (which provide synchronization) and relaxed accesses (which do not), and introduce a
novel type of memory accesses that lies on this spectrum. Roughly speaking, these memory accesses,
which we call partial release/acquire, ensure synchronization only for certain variables (see §4
for the formal de�nition).2 C11’s release/acquire accesses can be seen as partial release/acquire
accesses that ensure synchronization for all variables, whereas C11’s relaxed accesses can be seen
as partial release/acquire accesses that do not ensure synchronization for any variable.
Partial release/acquire accesses can be used to construct locks that provide synchronization

only for library variables, and these special locks can be used to specify libraries with weak
synchronization guarantees. In particular, in the queue example above, locks implemented by
partial release/acquire accesses would behave just like standard locks from library perspective, but
will not allow the clients to rely on their induced synchronization. More generally, these accesses
allow a library-internal release/acquire synchronization, which is needed for correct behaviors of
the library, but is considered invisible from the point of view of the client.

3 CONCURRENT PROGRAMS: SYNTAX AND MEMORY-INDEPENDENT SEMANTICS

In this section we begin to present the formal preliminaries for our results. As standard in memory
models, it is convenient to break the semantics into: a program semantics (a.k.a. thread subsystem)
and a memory semantics. Next, we focus on the program part, presenting syntax (§3.1), semantics
(§3.2), and the synchronization with a (parametric) memory system (§3.3).

2We generally require libraries and clients to operate on di�erent “address spaces” and never access the same shared variable.

Lifting this simplifying assumption (e.g., as was done for SC in [Gotsman and Yang 2013]) is beyond our current scope.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:7

3.1 Program Syntax

We employ a simple programming language, which supports the distinction between clients and
libraries variable spaces.3 We use the following domains (and metavariables ranging over them):

(variable) spaces -,. ∈ Space ≜ {X, Y, ...} variables G,~ ∈ Loc ≜ {x, y, ...}

thread identi�ers g, c ∈ Tid = {T1, T2, ... ,TN} registers A ∈ Reg = {a, b, ...}

read modes >R ∈ ModR ≜ {na, rlx, pacq, acq} values E ∈ Val ≜ {0, 1, 2, ...}

write modes >W ∈ ModW ≜ {na, rlx, prel, rel} method names f ∈ F main ∉ F

In particular, as we will see below, every memory access is to a particular variable in a particular
variable space (like address spaces in operating systems); registers are thread-local variables; and
the name main is reserved for non-library operations. Memory instructions have access modes
(a.k.a. memory orderings), which determine their “strength” (na for non-atomics, rlx for relaxed,
prel/pacq for partial release/acquire, and rel/acq for release/acquire). We also assume a relation
⊏ that orders modes according to their strength (following the left-to-right enumeration of the sets
ModR and ModW above).
The language provides the following constructs, inspired by C11 atomics:

• Expressions are constructed with arithmetic and boolean operations over registers and values.
We use 4 to range over expressions, and leave the exact expression grammar parametric.

• Thread local instructions (which do not interact with the shared-memory system):
– Assignments of the form A := 4 , used for storing an expression 4 in a register A .
– Conditionals of the form if 4 goto =1 p ... p =< (where =1, ... ,=< ∈ N), used to non-
deterministically jump to some program counter among {=1, ... ,=<} when 4 evaluates to
non-zero or, otherwise, skipping.

– Additional local instructions (standard loop constructs, unconditional non-deterministic choice,
etc.). Below, we will use such instructions in our examples, and their semantics should be clear.

• Shared-memory single accesses:
– Write (a.k.a. store) instructions to memory of the form store(-, G, 4, >W) for storing into a
shared variable G in space - the value that 4 evaluates to with access mode >W.

– Read (a.k.a. load) instructions from memory of the form A := load(-, G, >R) for loading the
value from a shared variable G in space - into a register A with access mode >R.

• Read-modify-write (RMW) instructions:
– Fetch-and-add (FAA) instructions of the form A := FADD(-, G, 4, >R, >W) for atomically incre-
menting a variable G in space - by the value of 4 with read mode >R and write mode >W.

– Compare-and-swap (CAS) instructions of the form A := CAS(-, G, 4R, 4W, >R, >W, >
fail
R

). This
instruction atomically loads the value from G in space - into A , compares it to the value 4R,
and overwrites it by the value of 4W in case if the loaded value coincides with the value 4R. The
load part will have mode >R if comparison succeeds and >fail

R
otherwise; and the store part (if

it happens) has mode >W.
• Library interaction: call(f) for calling a method f and return for returning to the caller. For
simplicity, we do not provide any argument passing mechanism and we will use the full register
store for that matter. (If needed, each component may store the values it needs in the memory,
and reload them later on.)

To construct programs we introduce three syntactic categories, each of which builds on the
previous one:

3The partition to variable spaces is only needed to support the “partial release/acquire” access mode in library speci�cations,

and can be completely ignored for speci�cations without such accesses.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:8 Abhishek Kr Singh and Ori Lahav

• Instruction sequences represent the (sequential) implementation of each method (including main).
Formally, an instruction sequence � is a function from a non-empty �nite domain of the form
{0, ... ,=} (representing the possible program counters) to the set of instructions. We say that an
instruction sequence is �at if it does not include call(_) instructions.

• Sequential programs consist of a “main” method accompanied with implementations of every
method f ∈ F. Formally, a sequential program sPr is a function assigning an instruction sequence
to every f ∈ {main} ∪ F. To avoid modeling a call stack and simplify the framework, we require
that sPr (f) is a �at instruction sequence for every f ∈ F.

• Concurrent programs, which we often call programs, are top-level parallel compositions of sequen-
tial programs, all accompanied by the samemethod implementations. Formally, a (concurrent) pro-
gram Pr is a mapping assigning a sequential program to every g ∈ Tid, with Pr (g) (f) = Pr (c) (f)

for every g, c ∈ Tid and f ∈ F.

In our examples, we often write instruction sequences as sequences of instructions delimited by
“;”, and concurrent programs using ‘∥’ between the main method of each thread. We also refer to
the program threads as T1, T2, ... following their left-to-right order in the program listing.

3.2 Program Semantics

We give semantics to the syntactic objects above using labeled transition systems.

De�nition 3.1. A labeled transition system (LTS) is a tuple � = ⟨Σ, &, @0,) ⟩, where Σ is a set of
transition labels,& is a set of states, @0 ∈ & is the initial state, and) ⊆ & ×Σ×& is a set of transitions.

We denote by �.Σ, �.Q, �.q0, and �.T the components of an LTS �. We write @
f
−→ @′ to denote a

transition ⟨@, f, @′⟩,
f
−→� for the relation {⟨@, @′⟩ | @

f
−→ @′ ∈ �.T}, and −→� for

⋃
f∈Σ

f
−→� . For a

sequence C ∈ �.Σ∗, we write
C
−→� for the composition

C (1)
−−−→� ; ... ;

C (|C |)
−−−−→� . A sequence C ∈ �.Σ∗

such that �.q0
C
−→� @ for some @ ∈ �.Q is called a trace of �. We denote by traces(�) the set of all

traces of �. A state @ ∈ �.Q is called reachable in � if �.q0
C
−→� @ for some C ∈ traces(�). For a trace

C and a set Θ ⊆ Σ of transition labels, we write C |Θ for the longest subsequence of C over Θ.

Next, we de�ne the LTSs induced by instruction sequences, sequential programs, and concurrent
programs. We often identify the syntactic objects with the LTS they induce (e.g., when writing
expressions like sPr .Q for a sequential program sPr). The transition labels of these LTSs feature
action labels, which represent the interactions that a program may have with the memory.

De�nition 3.2. An action label ; takes one of the following forms: a read R(-, G, ER, >R), a write
W(-, G, EW, >W), a read-modify-write RMW(-, G, ER, EW, >R, >W), a call CALL(f , q), and a return RET(q),
where - ∈ Space, G ∈ Loc, ER, EW, ∈ Val, >R ∈ ModR, >W ∈ ModW, f ∈ F, and q : Reg → Val. We
denote by Lab the set of all action labels. The functions typ, sp, loc, valR, valW, modR, modW, callee,
and store respectively retrieve (when applicable) the type (R/W/...), space (-), variable (G), read
value (ER), written value (EW), read mode (>R), write mode (>W), callee method name (f), and store (q)
of an action label.

Next, we de�ne the LTS induced by an instruction sequence.

De�nition 3.3. An instruction sequence state is a pair ⟨pc, q⟩, where pc ∈ N, called program counter,
stores the current instruction pointer inside the sequence, and q : Reg → Val, called local store,
records the values of the registers. Local stores are extended to apply on expressions in the standard
way. The LTS induced by an instruction sequence � is an LTS over instruction sequence states with:
Labn ≜ Lab ∪ {n} as the set of transition labels (that is, the set of all action labels extended with n
for silent transitions); ⟨0, qInit⟩ where qInit ≜ _A . 0 as the initial state; and the transitions as given
in Fig. 1 (additional thread local instructions can be standardly added).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:9

� (pc) = A := 4

q ′
= q [A ↦→ q (4)]

⟨pc, q ⟩
n
−→� ⟨pc + 1, q ′ ⟩

� (pc) = if 4 goto =1 p ... p =<
q (4) ≠ 0 =⇒ pc′ ∈ {=1, ... ,=< }

q (4) = 0 =⇒ pc′ = pc + 1

⟨pc, q ⟩
n
−→� ⟨pc′, q ⟩

� (pc) = A := load(-, G, >R)

; = R(-, G, E, >R)

q ′
= q [A ↦→ E]

⟨pc, q ⟩
;
−→� ⟨pc + 1, q ′ ⟩

� (pc) = store(-, G, 4, >W)

; = W(-, G,q (4), >W)

⟨pc, q ⟩
;
−→� ⟨pc + 1, q ⟩

� (pc) = A := FADD(-, G, 4, >R, >W)

; = RMW(-, G, E, E + q (4), >R, >W)

q ′
= q [A ↦→ E]

⟨pc, q ⟩
;
−→� ⟨pc + 1, q ′ ⟩

� (pc) = A := CAS(-, G, 4R, 4W, >R, >W, >
fail
R)

E = q (4R) =⇒ ; = RMW(-, G, E, q (4W), >R, >W)

E ≠ q (4R) =⇒ ; = R(-, G, E, >failR)

q ′
= q [A ↦→ E]

⟨pc, q ⟩
;
−→� ⟨pc + 1, q ′ ⟩

Fig. 1. Transitions of LTS induced by an instruction sequence

Recall that program semantics is separate from memory semantics, which is why the read
and RMW transitions in Fig. 1 can observe any value. It is only important that each transition
that interacts with the memory announces itself in the transition label. The call(_) and return
instructions are not handled at the level of instruction sequences, but receive special semantics at
the level of sequential programs, as de�ned next.

De�nition 3.4. A sequential program state is a tuple @ = ⟨pc, q, pcs, f ⟩, where: ⟨pc, q⟩ is an
instruction sequence state storing the state of the sequence currently running; pcs ∈ N ∪ {⊥},
called the stored program counter, is used to remember the program position to jump to when the
current instruction sequence returns (pcs = ⊥ means that the main method is currently running);
and f ∈ F ∪ {main}, called the active method, tracks the method that is currently running. We
denote by @.pc, @.q , @.pcs, and @.f the components of a sequential program state @.

De�nition 3.5. The LTS induced by a sequential program sPr is given by:

• The set of transition labels is Labn × (F ∪ {main}). The functions lab and method respectively
retrieve the action label (or n) and method name of a transition label. All functions on action
labels (typ, sp, loc, ...) are lifted to sequential program transition labels in the obvious way.

• The states are sequential program states, as de�ned in Def. 3.4.
• The initial state is ⟨0, qInit,⊥, main⟩.
• The transitions are given by:

f ∈ {main} ∪ F ⟨pc, q⟩
;n
−→sPr (f) ⟨pc

′, q ′⟩

⟨pc, q, pcs, f ⟩
;n ,f
−−−→sPr ⟨pc

′, q ′, pcs, f ⟩

sPr (main) (pc) = call(f)

; = CALL(f , q)

⟨pc, q,⊥, main⟩
;,main
−−−−−→sPr ⟨0, q, pc + 1, f ⟩

sPr (f) (pc) = return

; = RET(q)

⟨pc, q, pcs, f ⟩
;,f
−−→sPr ⟨pcs, q,⊥, main⟩

The �rst transition, which applies for any method (main or other), lifts the instruction-sequence
transition to the level of sequential programs. The second transition passes control from the main
method to some other method, jumping the program counter to the �rst instruction and storing
the return point (pc + 1). Finally, the third transition passes control back using the stored return
point. (We do not need to record a call stack since we assume that sPr (f) is �at for every f ∈ F.)

Finally, the LTS induced by a concurrent program interleaves the thread transitions.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:10 Abhishek Kr Singh and Ori Lahav

De�nition 3.6. A (concurrent) program state ? is a mapping assigning a sequential program
state to every g ∈ Tid. The LTS induced by a program Pr is an LTS over program states, with:
ProgLab ≜ Tid × Labn × (F∪ {main}) as the set of transition labels; ? Init ≜ _g . ⟨0, qInit,⊥, main⟩ as
the initial state; and the following transitions:

? (g)
;n ,f
−−−→Pr (g) @

′

?
g,;n ,f
−−−−→Pr ? [g ↦→ @′]

Below, for a program transition label U ∈ ProgLab, the functions tid, lab, and method respectively
retrieve the thread identi�er (g), the action label (or n) (;n), and the method name (f) of U . Functions
on action labels (typ, sp, loc, ...) are lifted to program transition labels in the obvious way.

3.3 Synchronizing Programs and Memories

To give semantics to programs running under a particular memory model, we synchronize the
transitions of a program Pr with amemory system. For now,we leave thememory system parametric,
and assume it is represented by some LTS M whose set of transition labels consists of non-silent
program transition labels (elements of Tid × Lab × (F ∪ {main})) as well as a (disjoint) setM .Θ

of internal memory actions (which we use later for non-deterministic propagation of knowledge
between threads).

De�nition 3.7. The composition of a program Pr and a memory systemM, denoted by PrZM,
is the LTS whose transition labels are the elements of ProgLab ∪M .Θ; states are pairs ⟨?,"⟩ ∈

Pr .Q ×M .Q; initial state is ⟨? Init,M .q0⟩; and transitions are given by:

U ∈ Tid × Lab × (F ∪ {main})

?
U
−→Pr ?

′ "
U
−→M "′

⟨?,"⟩
U
−→PrZM ⟨?′, "′⟩

U ∈ Tid × {n} × (F ∪ {main})

?
U
−→Pr ?

′

⟨?,"⟩
U
−→PrZM ⟨?′, "⟩

U ∈ M .Θ

"
U
−→M "′

⟨?,"⟩
U
−→PrZM ⟨?,"′⟩

The above transitions are “synchronized transitions” of Pr andM, using the labels to decide what
to synchronize on. Both the program and the memory take the same step for transition labels that
are common to both LTSs, only the program steps for transition labels that are program internal
(i.e., with lab(U) = n) and only the memory steps for transition labels that are memory internal.

Example 3.8. The most well-known memory system is the one of sequential consistency, denoted
here by SC. This memory system simply tracks the most recent value written to each variable,
and has no internal transitions (SC.Θ = ∅). Formally, it is de�ned by SC.Q ≜ (Space × Loc) → Val,
SC.q0 ≜ _-, G . 0, and −→SC is given by:

; = R(-, G, ER, _)

<(-, G) = ER

<
g,;,f
−−−→SC <

; = W(-, G, EW, _)

<′
=<[⟨-, G⟩ ↦→ EW]

<
g,;,f
−−−→SC <

′

; = RMW(-, G, ER, EW, _, _)

<(-, G) = ER
<′

=<[⟨-, G⟩ ↦→ EW]

<
g,;,f
−−−→SC <

′

typ(;) ∈ {CALL, RET}

<
g,;,f
−−−→SC <

4 THE dRC11MEMORY MODEL

In this section we introduce the weak memory model that we assume in this paper. This model,
which we call dRC11, is a declarative (a.k.a. axiomatic) model forming an extension of (a fragment
of) the RC11 model [Lahav et al. 2017] with specialized semantics for the novel prel/pacq accesses.

Notation 4.1 (Relational notations). Given a (binary) relation ', dom(') and codom(')

denote its domain and codomain, and '?, '+, and '∗ denote its re�exive, transitive, and re�exive-

transitive closures. The inverse of a relation ' is denoted by '−1, and the (left) composition of two

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:11

relations '1 and '2 is denoted by '1 ;'2. We denote by [�] the identity relation on a set�. In particular,

[�] ; ' ; [�] = ' ∩ (� × �). When � is �nite, we write [01, ... ,0=] instead of [{01, ... ,0=}].

We start by de�ning execution graphs. Their nodes, called events, represent memory accesses,
and their directed edges are of di�erent kinds: program order represents the order imposed by the
program; reads-from mapping maps each read event to the write event it obtains its value from;
and modi�cation order (a.k.a. coherence order) provides a total order on the writes to every variable.
The precise de�nitions are given next.

De�nition 4.2. An event 4 is a tuple ⟨g, B, ;, f ⟩, where g ∈ Tid ⊎ {⊥}, called the event’s thread
identi�er (⊥ is used for initialization events); B ∈ N, called the event’s serial identi�er; ; ∈ Lab,
called the event’s label (as de�ned in Def. 3.2), and f ∈ F ∪ {main}, called the event’s method. The
functions tid, sn, lab, and method return the thread identi�er (g), identi�er (B), action label (;),
and method of an event (f). All functions on action labels (typ, sp, loc, ...) are lifted to events in
the obvious way. We denote by E the set of all events, and de�ne the following subsets:

R ≜ {4 ∈ E | typ(4) ∈ {R, RMW}} W ≜ {4 ∈ E | typ(4) ∈ {W, RMW}} RMW ≜ R ∩W

CALL ≜ {4 ∈ E | typ(4) = CALL} RET ≜ {4 ∈ E | typ(4) = RET} CR ≜ CALL ∪ RET

We employ subscripts and superscripts to restrict sets of events to certain properties, e.g.,W- =

{F ∈ W | sp(F) = - }, R⊒pacq
-,G

= {A ∈ R | sp(A) = - ∧ loc(A) = G ∧ modW (A) ⊒ pacq}, CALLF =

{4 ∈ CALL | callee(4) ∈ F}, RETF = {4 ∈ RET | method(4) ∈ F}, CRF = CALLF ∪ RETF , and
�g = {4 ∈ � | tid(4) = g} for any � ⊆ E. The set Init of initialization events is given by:

Init ≜ {⟨⊥, 0, W(-, G, 0, rlx), main⟩ | - ∈ Space, G ∈ Loc}.

De�nition 4.3. An execution graph � is a tuple ⟨�, po, rf ,mo⟩, where:

• � is a �nite set of events, such that Init ⊆ � and tid(4) ≠ ⊥ for every 4 ∈ � \ Init.
• po is a program order for �, that is: po = (

⊎
g∈Tid pog) ⊎ (Init × (� \ Init)), for some relations pog ,

such that each pog is a strict total order on �
g .

• rf is a reads-from relation for �, that is a relation on � satisfying:
– If ⟨F, A ⟩ ∈ rf , thenF ∈ W and A ∈ R.
– If ⟨F, A ⟩ ∈ rf , then sp(F) = sp(A), loc(F) = loc(A), and valW (F) = valR (A).
– F1 = F2 whenever ⟨F1, A ⟩, ⟨F2, A ⟩ ∈ rf (each read reads from at most one write).
– � ∩ R ⊆ codom(rf) (each read reads from some write).

• mo is a modi�cation order for �, that is: mo =
⊎

- ∈Space,G∈Loc mo-,G , for some relations mo-,G ,
such that each mo-,G is a strict total order on � ∩W-,G .

We denote the components of � by �.E, �.po, �.rf, and �.mo. For any set �′ ⊆ E, we write �.�′

for �.E ∩ �′ (e.g., �.W = �.E ∩W).

To formally associate execution graphs with programs we use a memory system called FG

(for “free graphs”), whose states are execution graphs. This system allows all possible program
transitions, while recording them in its state, which is the current execution graph with (almost)
arbitrary reads-from and modi�cation order relations.

De�nition 4.4. The memory system FG is the LTS whose transition labels are program transition
labels (i.e., there are not any internal memory actions); states are execution graphs; initial state is
�Init, de�ned by �Init.E ≜ Init and �Init.X ≜ ∅ for every other component of � ; and transitions are
given in Fig. 2.

The transitions of FG are based on helper notations used to extend an execution graph� with a
fresh event 4 at the end of the executing thread. For memory accesses, it requires to pick a write

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:12 Abhishek Kr Singh and Ori Lahav

write/read/rmw
typ(;) ∈ {W, R, RMW} 4 = NextEvent(�.E, g, ;, f)

F ∈ �.Wsp(4),loc(4) 4 ∈ R =⇒ valW (F) = valR (4)

� ′
= Add(�, 4,F)

�
g,;,f
−−−→FG �

′

call/return
typ(;) ∈ {CALL, RET}

4 = NextEvent(�.E, g, ;, f)

� ′
= Add(�, 4)

�
g,;,f
−−−→FG �

′

Fig. 2. Transitions of FG system for generating all candidate execution graphs

event F in � , called the write-predecessor of 4 , that is: (1) the rf-source of 4 if 4 is a read; (2) the
mo-immediate predecessor of 4 if 4 is a write; and (3) both the rf-source and the mo-immediate
predecessor of 4 if 4 is an RMW. For that matter, we employ the following notations:

Notation 4.5. Given a set � of events, g ∈ Tid, ; ∈ Lab, and f ∈ F, NextEvent(�, g, ;, f) denotes

the event with thread identi�er g , label ; , method f , and a minimal fresh serial identi�er w.r.t. �, that

is: NextEvent(�, g, ;, f) ≜ ⟨g, B, ;, f ⟩, where B = min{= ∈ N | ⟨g, =, ;, f ⟩ ∉ �}.

Notation 4.6. For an execution graph � and events 4 and F , Add(�, 4,F) denotes the tuple

⟨�′, po′, rf ′,mo′⟩, where:

�′ = �.E ∪ {4} po′ ≜ �.po ∪ ((�.Etid(4) ∪ Init) × {4})

rf ′ =

{
�.rf ∪ {⟨F, 4⟩} 4 ∈ R

�.rf otherwise
mo′ =





�.mo ∪ dom(�.mo? ; [F]) × {4}

∪ {4} × codom([F] ;�.mo)
4 ∈ W

�.mo otherwise

Similarly, for an execution graph � and event 4 , Add(�, 4) denotes the tuple ⟨�′, po′,� .rf,� .mo⟩,

where �′ and po′ are de�ned as above.

In the sequel, it will be useful to note that all execution graphs generated by FG when synchro-
nized with a given program satisfy the following well-formedness property:

De�nition 4.7. An execution graph � is well-formed if the following hold for every f ∈ F:

• [{4 ∈ E | method(4) ≠ f }] ;�.po ; [{4 ∈ E | method(4) = f }] ⊆ �.po? ; [CALL{f }] ;�.po.

• [{4 ∈ E | method(4) = f }] ;�.po ; [{4 ∈ E | method(4) ≠ f }] ⊆ �.po? ; [RET{f }] ;�.po.

Proposition 4.8. If ⟨?,�⟩ is reachable in PrZFG for some program Pr , then � is well-formed.

Now, to �lter for consistent graphs among all candidate execution graphs generated by FG for a
given program, we de�ne several derived relations (some parametrized by - ∈ Space):

�.fr ≜ (�.rf−1 ;�.mo) \ [E] (from-read, a.k.a. read-before)

�.swbase ≜ [Wrel] ;�.rf+ ; [Racq] (global synchronization)

�.sw- ≜ [W
⊒prel
-

] ;�.rf+ ; [R
⊒pacq
-

] (per-space synchronization)

�.hb- ≜ (�.po ∪�.swbase ∪�.sw-)
+ (per-space happens-before)

The fr relation is standard in weak memory models [Alglave et al. 2014], relating every read (or
RMW) to subsequent writes (or RMWs) as dictated by rf and mo (every writeF that is mo-after the
rf-source of a read A is fr-after A). The swbase and sw- relations formally capture synchronization:
swbase is for “global” synchronization which is formed by reads-from edges between rel and acq

accesses (just like in C11 [Lahav et al. 2017]), whereas sw- is for “space-internal” synchronization
that a�ects only accesses to space - and is formed by reads-from edges in space - between prel

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:13

1 2 3

0 : R-

rf?

rf hb-

mo

read coherence

1 2

0 : W-

rf?

hb-mo

write coherence

1

0 : RMW

mo rf

rmw1

2 1

0 : RMW

rf mo

mo

rmw2

E

(po ∪ rf)+

po-rf

Fig. 3. Illustration of forbidden pa�erns in dRC11

and pacq. The use of rf+ (rather than just rf) is for supporting release sequences as in C11, which
ensures the synchronization between a release write F and an acquire read A also if there is
chain of reads-from edges between them (⟨F,D1⟩, ⟨D1, D2⟩, ... ,⟨D=−1, D=⟩, ⟨D=, A ⟩ ∈ rf where D1, ... ,D=
are RMWs, which can be relaxed).4 Finally, paths composed of the program order (po) and the
swbase and sw- relations form the per-space happens-before relation, which again re�nes the C11
happens-before relation (de�ned as (�.po ∪�.swbase)

+).
Using the above de�nitions, the consistency of an execution graph is de�ned as follows.

De�nition 4.9. An execution graph � is dRC11-consistent if the following hold:

• For every - ∈ Space, [R-] ;�.fr ;�.rf
? ;�.hb- is irre�exive. (read coherence)

• For every - ∈ Space, [W-] ;�.mo ;�.rf
? ;�.hb- is irre�exive. (write coherence)

• �.mo ;�.rf is irre�exive. (rmw1)

• �.fr ;�.mo is irre�exive. (rmw2)

• �.po ∪�.rf is acyclic. (po-rf)

These constraints, depicted in Fig. 3, are variants of the ones in (R)C11, where the only essential
di�erence is in the coherence constraints that here use �.hb- for restricting accesses to - .5 The
rmw1 and rmw2 constraints are needed for ensuring the right behavior of RMWs including their
atomicity. The po-rf constraint is an addition of RC11 on top of C11, which is a conservative
solution to the “out-of-thin-air” problem that arises if po ∪ rf-cycles are allowed [Batty et al. 2015;
Kang et al. 2017].

The next example demonstrates the role of the coherence constraints:

Example 4.10. Consider the following standard “message-passing” litmus test (parametric in the
space . and the access modes >W, >R):

store(X, x, 1, rlx) ;

store(., y, 1, >W) ;

a := load(., y, >R) ; //1

b := load(X, x, rlx) ; //0

8=8C : W (X, x, 0, rlx)

0 : W (X, x, 1, rlx)

1 : W (., y, 1, >W)

2 : R (., y, 1, >R)

3 : R (X, x, 0, rlx)

rffr

mo

The annotated behavior is disallowed only if the synchronization on y (in space .) is visible for
the read of x (in space X). This will be the case only if (1) >W = rel and >R = acq; or (2) >W ⊒ prel,
>R ⊒ pacq, and . = X (i.e., the four accesses are to the same space). (In particular, if . ≠ X, then
only >W = rel and >R = acq would forbid the annotated behavior.) To see how this follows from

4Another component of C11’s release sequence, which allows forming synchronization using a relaxed write po-after a

release write to the same location, was omitted from the standard in C++20. (See https://en.cppreference.com/w/cpp/atomic/

memory_order [Accessed July 2022].)
5There are some presentational di�erences w.r.t. the model in [Lahav et al. 2017]: (1) RC11 uses two events related by an

rmw-edge to represent RMWs, so rmw1 is not needed and rmw2 has a di�erent formulation (called atomicity in [Lahav

et al. 2017]); and (2) RC11 uses the “extended coherence order” (eco) which allows it to merge both coherence constraints.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order

53:14 Abhishek Kr Singh and Ori Lahav

the coherence constraints, note that these conditions are needed to ensure ⟨1, 2⟩ ∈ swbase ∪ swX,
which in turn implies ⟨0, 3⟩ ∈ hbX. Now, since ⟨8=8C, 0⟩ ∈ po ⊆ hbX, write coherence ensures that
⟨8=8C, 0⟩ ∈ mo, and so ⟨3, 0⟩ ∈ fr. In turn, read coherence disallows hbX from 0 to 3 .

By connecting the de�nition of candidate execution graphs for a given program (using the FG
system) and dRC11-consistency, we de�ne the allowed program behaviors under dRC11 (more
precisely, possible reachable program states).

De�nition 4.11. A program state ? is reachable for a program Pr under dRC11 if ⟨?,�⟩ is reachable
in PrZFG for some dRC11-consistent execution graph � .

Finally, again following (R)C11, data races on non-atomics are considered as programming errors
(so non-atomic accesses can be heavily optimized by the hardware and the compiler). Accordingly,
we de�ne racy execution graphs and racy programs.

De�nition 4.12. Two events 41 and 42 form a race in an execution graph � , if 41, 42 ∈ �.W ∪�.R,
41 ≠ 42, sp(41) = sp(42), loc(41) = loc(42), |{41, 42} ∩W| ≥ 1, |{41, 42} ∩ Ena | ≥ 1, and ⟨41, 42⟩ ∉

�.hbsp(41) ∪�.hb
−1
sp(41)

. An execution graph � is racy if some two events form a race in � .

De�nition 4.13. A program Pr is racy under dRC11 if ⟨?,�⟩ is reachable in PrZFG for some
program state ? and racy dRC11-consistent execution graph � .

5 THE OPERATIONAL MEMORY SYSTEM: pRC11

In this section we introduce an operational version of the dRC11 memory model, called pRC11,
which exposes knowledge propagation steps as internal memory steps, and is particularly suitable
for library abstraction.

Since dRC11-consistency is pre�x-closed w.r.t. po∪rf [Kokologiannakis et al. 2017], dRC11 can be
easily made operational by adapting the LTS FG (Def. 4.4) to require dRC11-consistency after each
step of the execution graph generation (rather than one time at the end). However, following §2.1,
we opt for a more elaborate model with explicit point-to-point propagation transitions marking
the steps in which some event of thread g becomes visible to another thread c . In particular, this
allows us to observe the propagation of the call/return events in memory traces, which is essential
in our de�nition of the library correctness condition in §7. We expose propagation transitions in
traces of pRC11 as internal memory steps labeled with propagation labels as de�ned next.

De�nition 5.1. A propagation label is a triple, denoted by ? = EP(4, g, -), where 4 ∈ E (propagated
event), g ∈ Tid \ {tid(4)} (destination thread identi�er), and - ∈ Space (destination space). We
use E, ptid and psp to retrieve the components (4 , g , and - , respectively) of a propagation label ? .
All functions on events and action labels (tid, typ...) are lifted to propagation labels in the obvious
way. We denote by PLab the set of all propagation labels.

Then, the pRC11 memory system is de�ned as follows.

De�nition 5.2. The pRC11 memory system is an LTS whose set of transition labels is ProgLab ∪
PLab (i.e., pRC11.Θ = PLab); states are pairs of the form " = ⟨�, ⟩, where � is an execution
graph and is a knowledge mapping for � , that is a function in Tid → Space → P(�.E); initial
state is"Init ≜ ⟨�Init, Init⟩, where Init ≜ _g . _- . Init (�Init is de�ned in Def. 4.4); and transitions
are as given in Fig. 4.

In addition to the current execution graph � , pRC11’s states record a knowledge mapping that
records for each thread g and space - all events that have already propagated to g for space - (as
well as all events associated with actions executed by g itself). We refer to the set (g) (-) as the
- -knowledge of thread g .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:15

write/read/rmw
typ(;) ∈ {W, R, RMW} 4 = NextEvent(�.E, g, ;, f) - = sp(4)

F ∈ �.W-,loc(4) 4 ∈ R =⇒ valW (F) = valR (4)

F ∉ dom(�.mo ;�.rf? ; [(g) (-)]) 4 ∈ W =⇒ F ∉ dom(�.rf ; [RMW])

4 ∈ Rpacq =⇒ dom(�.rf∗ ; [F]) ⊆ (g) (-) 4 ∈ Racq =⇒ ∀. . dom(�.rf∗ ; [F]) ⊆ (g) (.)

� ′
= Add(�, 4,F) :′ = _. . (g) (.) ∪ {4} ′

= [g ↦→ :′]

⟨�, ⟩
g,;,f
−−−→pRC11 ⟨� ′, ′⟩

call/return
typ(;) ∈ {CALL, RET} 4 = NextEvent(�.E, g, ;, f)

� ′
= Add(�, 4) :′ = _. . (g) (.) ∪ {4} ′

= [g ↦→ :′]

⟨�, ⟩
g,;,f
−−−→pRC11 ⟨� ′, ′⟩

propagate
4 ∈ �.E \ (g) (-)

4 ∈ W
prel

-
∪Wrel ∪ CR =⇒ (E- ∪ CR) ∩ dom(�.hb- ; [4]) ⊆ (g) (-)

:′ = (g) [- ↦→ (g) (-) ∪ {4}] ′
= [g ↦→ :′]

⟨�, ⟩
EP(4,g,-)
−−−−−−−−→pRC11 ⟨�, ′⟩

Fig. 4. Transitions of pRC11.

The write/read/rmw transition in Fig. 4 executes a memory access by thread g , by adding a
corresponding event 4 to the current execution graph while imposing certain conditions onF , the
write-predecessor of 4 . Intuitively, the main imposed condition,F ∉ dom(�.mo ;�.rf? ; [(g) (-)]),
requires thatF is not overwritten by any other write that g is already aware of for the space of 4 .
More precisely, if 4 is an access in space - , then g should not have in its - -knowledge any write
that is mo-later thanF or any read that reads from a write that is mo-later thanF . In addition:

• If 4 is a write (or RMW), thenF should not be already read by an RMW. This condition is needed
to ensure the atomicity of RMWs (corresponds to rmw2 in Def. 4.9).

• If 4 is a read (or RMW) with acq or pacq mode, then F (the write that 4 reads from) has to be
already present in the thread’s knowledge: in its - -knowledge if 4 is pacq, or in . -knowledge
for all . if 4 is acq. (Moreover, ifF is an RMW, to account for release sequences, this should hold
not only forF , but also for every event on the rf-chain enteringF .)

Finally, every thread certainly knows about its own actions, so in addition to extending� , this step
also extends the knowledge of g by adding the event 4 to all spaces.

The call/return transition is simple: it adds a corresponding event 4 to the current execution
graph and extends the knowledge of the executing thread to include 4 .

The propagate transition is a non-deterministic internal memory step that extends the threads’
knowledge. It picks some event 4 that is not in g ’s - -knowledge and adds 4 to (g) (-). When 4 is a
prel-write to space - , a rel-write (to any space), or a call or return marker, then the propagation
of 4 to the - -knowledge of thread g can be done only after all accesses to - , as well as all call and
return markers, that are �.hb- -before 4 have propagated to the - -knowledge of thread g . What is
not constrained is equally important: for instance, relaxed writes can propagate “out-of-order”.

Example 5.3. pRC11’s transitions are best understood via the “message-passing” litmus test
presented in Example 4.10. Consider �rst the case that >W = rel and >R = acq. Then, due to the
constraints on acquire reads and release writes: (1) since the read of y is acquire, it has to read

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:16 Abhishek Kr Singh and Ori Lahav

from a write that is in T2’s - -knowledge hold for every space - : and (2) since the write of y is
release, this write can only propagate to the - -knowledge of T2 (for every -) after the po-earlier
write to x has propagated there. This means that if the read of y retrieves 1, then T2 already has
the write to x in its X-knowledge, so when later reading x it cannot read from the overwritten
initial value. Similarly, if >W = prel, >R = pacq, and . = X, then, (i) and (ii) apply for - = X, and the
same reasoning holds. Nevertheless, in every other case, T2 can read the overwritten initial value:
because either (1) the read from y is too weak and it allows to read from an event that has not yet
propagated to the thread’s X-knowledge; or (2) the write to y is too weak and it can propagate to
the thread’s X-knowledge before the po-earlier write to X has propagated.

Example 5.4. Being equivalent to dRC11, pRC11 provides “per-location-SC” (a.k.a. coherence).
As a concrete example, a = 1 ∧ b = 0 in the following program on the right is disallowed.

To see this in pRC11, note that read events are also in-
cluded in the threads’ knowledge. Concretely, after exe-
cuting the �rst read, the second thread has its own read
in its X-knowledge. Then, reading later from the (implicit)
initialization write is forbidden by pRC11 since that write
and the �rst read will be have �.mo ;�.rf between them.

store(X, x, 1, rlx) ;
a := load(X, x, rlx) ;

b := load(X, x, rlx) ;

Remark 3. It is also instructive to consider a simpli�ed fragment with only one variable space
and without na/rlx accesses. In this fragment, we can simply talk about the knowledge of each
thread (instead of the - -knowledge for each -), and observe that: reads by thread g can only read
from writes that thread g already knows about; and the propagation order respects hb (in particular,
it follows the program order). This actually makes the reads deterministic: they have to read-from
the mo-latest write among all known writes to the relevant variable. The resulting model is similar
to message passing models for causal consistency [Beillahi et al. 2021].

Based on the pRC11 memory system, we de�ne reachable program states and racy programs.

De�nition 5.5. A program state ? is reachable for a program Pr under pRC11 if ⟨?, ⟨�, ⟩⟩ is reach-
able in PrZpRC11 for some ⟨�, ⟩ ∈ pRC11.Q. A program Pr is racy under pRC11 if ⟨?, ⟨�, ⟩⟩
is reachable in PrZpRC11 for some program state ? and ⟨�, ⟩ ∈ pRC11.Q such that � is a racy
execution graph (see Def. 4.12).

5.1 Equivalence of pRC11 and dRC11

We state our equivalence result between pRC11 and dRC11, relating Def. 5.5 to De�nitions 4.11
and 4.13.

Theorem 5.6 (Eqivalence of the Models). A program state ? is reachable for a program Pr

under dRC11 i� it is reachable for Pr under pRC11. Furthermore, Pr is racy under dRC11 i� it is racy

under pRC11.

Next, we describe the main steps in the proof (the full proof is given in [Singh and Lahav 2022]).
First, for the right-to-left directions, it su�ces to establish the following invariants on reachable
pRC11-states.

De�nition 5.7. A knowledge mapping is well-formed for an execution graph � if the following
hold for every g ∈ Tid and - ∈ Space:

(1) �.Eg ⊆ (g) (-).

(2) (E- ∪ CR) ∩ dom(�.hb- ; [(W
prel

-
∪Wrel) ∩ (g) (-)]) ⊆ (g) (-).

(3) (E- ∪ CR) ∩ dom(�.hb- ; [Eg]) ⊆ (g) (-).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:17

Proposition 5.8. If ⟨�, ⟩ is reachable in pRC11, then is well-formed for � .

Lemma 5.9. If ⟨�, ⟩ is reachable in pRC11, then � is dRC11-consistent.

For the converse, one starts with an dRC11-consistent execution graph� , and has to traverse its
events (following the program order, so it can be syncronized with the program), and intersperse
propagation actions to make it a valid trace of pRC11. To construct this traversal, we de�ne the
following relations, where % ≜ {? ∈ PLab | E(?) ∈ �.E}:

'prop ≜ {⟨4, ?⟩ ∈ �.E × % | E(?) = 4}

) ≜ {⟨?, ?′⟩ ∈ % × % |
ptid(?) = ptid(?′) ∧ psp(?) = psp(?′) ∧

⟨E(?), E(?′)⟩ ∈ [Epsp(?) ∪ CR] ;�.hbpsp(?) ; [W
prel

psp(?)
∪Wrel ∪ CR]

}

'rfp ≜ {⟨?, 4⟩ ∈ % ×�.E | ⟨E(?), 4⟩ ∈ �.rf+ ∧ ptid(?) = tid(4) ∧ 4 ∈ R
pacq

psp(?)
}

'rf ≜ {⟨?, 4⟩ ∈ % ×�.E | ⟨E(?), 4⟩ ∈ �.rf+ ∧ ptid(?) = tid(4) ∧ 4 ∈ Racq}

'fr ≜ {⟨A, ?⟩ ∈ �.E × % | ⟨A, E(?)⟩ ∈ �.fr ;�.rf? ∧ ptid(?) = tid(A) ∧ psp(?) = sp(A)}

'mo ≜ {⟨F, ?⟩ ∈ �.E × % | ⟨F, E(?)⟩ ∈ �.mo ;�.rf? ∧ ptid(?) = tid(F) ∧ psp(?) = sp(F)}

' ≜ �.po ∪�.rf ∪ 'prop ∪) ∪ 'rfp ∪ 'rf ∪ 'fr ∪ 'mo

Then, the proof proceeds by showing that ' is acyclic, and that every total order of �.E ∪ %

extending ' induces a trace of pRC11. Indeed, the relations above are in one-to-one correspondence
with the conditions in the steps of pRC11.

6 LIBRARIES AND THEIR CLIENTS

In this section we list the necessary de�nitions for the library abstraction theorem, and state the
key properties that are used in its proof.

Client-library composition. A library ! is a function mapping a set dom(!) ⊆ F of method
names to �at instruction sequences representing the method bodies. We only consider the case
where libraries and their clients never access the same variable space. To formally de�ne this
syntactic restriction, we use the following notations for spaces used by libraries and their clients:

• Space(�) denotes the set of variable spaces mentioned in an instruction sequence � .
• For a library !, Space(!) ≜

⋃
f ∈dom(!) Space(!(f)).

• For a program Pr and a set F ⊆ F, Space(Pr \ F) ≜
⋃

g∈Tid,f ∈ (F∪{main})\F Space(Pr (g) (f)).

Then, client-library composition is de�ned as follows.

De�nition 6.1. A library ! is safe for a program Pr if Space(!) ∩ Space(Pr \ dom(!)) = ∅. When
! is safe for Pr , we write Pr [!] for the program obtained from Pr by setting Pr (g) (f) = !(f) for
every g ∈ Tid and f ∈ dom(!).

Next, we observe that the safety condition above ensures that execution graphs generated by
Pr [!] satisfy the following conditions relating the location spaces and the invoked methods of the
graph events.

Proposition 6.2. Let ! be a library that is safe for a program Pr . Suppose that ⟨?,�⟩ is reachable

in Pr [!]ZFG. Then, the following hold for every 4 ∈ �.R ∪�.W:

• If sp(4) ∈ Space(!), then method(4) ∈ dom(!).

• If sp(4) ∈ Space(Pr \ dom(!)), then method(4) ∉ dom(!).

De�nition 6.3. A set F ⊆ F is encapsulated in an execution graph� if for every 41, 42 ∈ �.R∪�.W

with method(41) ∈ F and method(42) ∉ F , we have sp(41) ≠ sp(42).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:18 Abhishek Kr Singh and Ori Lahav

From Prop. 6.2, we obtain the following.

Proposition 6.4. Let ! be a library that is safe for a program Pr . If ⟨?,�⟩ is reachable in Pr [!]ZFG,

then dom(!) is encapsulated in � .

The notions of well-formedness and encapsulated set of methods are lifted to memory states in
the obvious way:

De�nition 6.5. Let" = ⟨�, ⟩ be a memory state.

• " = ⟨�, ⟩ is well-formed if � is well-formed (Def. 4.7) and is well-formed for � (Def. 5.7).
• F is encapsulated in" if it is encapsulated in � (Def. 6.3).

Since every reachable state in Pr [!]ZpRC11 is also reachable in Pr [!]ZFG, the following is an
immediate consequence of Propositions 4.8, 5.8 and 6.4.

Proposition 6.6. Let ! be a library that is safe for a program Pr . If ⟨?,"⟩ is reachable in

Pr [!]ZpRC11, then" is well-formed and dom(!) is encapsulated in" .

Client-library program states. We de�ne the composition of a program state ?cl representing
a client state and a program state ? lib representing a library state as follows.

De�nition 6.7. The composition of two program states ?cl and ? lib w.r.t. a set F ⊆ F, denoted by
?cl [F ↦→ ? lib], is given by:

?cl [F ↦→ ? lib] ≜ _g .

{
⟨? lib (g).pc, ? lib (g).q, ?cl (g).pcs, ?cl (g).f⟩ ?cl (g).f ∈ F

?cl (g) otherwise

This de�nition uses ?cl for threads that are not currently inside a method in F , and ? lib, but with
the stored program counter and active method of ?cl, for threads that are inside a method in F .

Histories. Histories record the interactions between libraries and clients. Formally, a history ℎ
of a library ! is a sequence of transition labels representing a call to a method of !, a return from
a method of !, or propagation of these call and return events. To de�ne the history induced by a
program, we employ the following notations (for every F ⊆ F):

CallF ≜ {U ∈ ProgLab | typ(U) = CALL ∧ callee(U) ∈ F} CPF ≜ {? ∈ PLab | E(?) ∈ CALLF }

RetF ≜ {U ∈ ProgLab | typ(U) = RET ∧ method(U) ∈ F} RPF ≜ {? ∈ PLab | E(?) ∈ RETF }

HLabF ≜ CallF ∪ RetF ∪ CPF ∪ RPF

De�nition 6.8. Let F ⊆ F. The F-history induced by a trace C of PrZpRC11 for some program
Pr , denoted by HF (C), is given by HF (C) ≜ C |HLabF . This notion is extended to sets of traces in the
obvious way. The set of F-histories of a program Pr , denoted by HF (Pr), is given by HF (Pr) ≜

HF (traces(PrZpRC11)).

Client-library trace restrictions. We extract library and client transitions from a given trace
as follows.

De�nition 6.9. For F ⊆ F, the F-restriction and the F-restriction of a trace C of PrZpRC11, denoted
by C |F and C |F (respectively), are given by:

C |F ≜ C |{U∈ProgLab∪PLab | method(U) ∈F }∪CallF∪CPF C |F ≜ C |{U∈ProgLab∪PLab | method(U)∉F }∪RetF∪RPF

Note that both the F-restriction and the F-restriction of a trace C contain the F-history induced
by C as a subsequence.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:19

Restricting memory states. Similarly, we will need to restrict memory states to client/library,
as de�ned next.

De�nition 6.10. The restriction of an execution graph � w.r.t. a set � ⊆ E, denoted by � |� , is
de�ned by: � |� .E ≜ � ∪ Init and � |� .X ≜ [� |� .E] ;�.X ; [� |� .E] for every other component (i.e.,
X ∈ {po, rf, mo}).

De�nition 6.11. The restriction of a memory state " = ⟨�, ⟩ w.r.t. a set � ⊆ E, denoted by" |� ,
is given by" |� ≜ ⟨� |�, |�⟩, where |� ≜ _g . _- . (g) (-) ∩ �.

De�nition 6.12. Let F ⊆ F. The F-events and the F-events denoted by EF and EF (respectively), are
given by:

EF ≜ {4 ∈ E | method(4) ∈ F} ∪ CALLF EF ≜ {4 ∈ E | method(4) ∉ F} ∪ RETF

The F-restriction and the F-restriction of a memory state " = ⟨�, ⟩, denoted by " |F and " |F
(respectively), are given by" |F ≜ " |EF and" |F ≜ " |EF .

Again, we note that both the F-restriction and the F-restriction of a memory" contain the call
events invoking methods in F and the return events that complete these invocations.

Restriction and merge properties. The following lemmas summarize the critical properties of
the pRC11 memory system that allow us to compose memory traces of clients and libraries. In the
proof of the abstraction theorem below we rely only on these properties of pRC11.

Lemma 6.13 (Restriction-1). Suppose that"
U
−→pRC11 "

′ and let F ⊆ F that is encapsulated in

" ′. Then, the following hold:

(1) If method(U) ∈ F or U ∈ HLabF , then" |F
U
−→pRC11 "

′ |F .

(2) If method(U) ∉ F or U ∈ HLabF , then" |F
U
−→pRC11 "

′ |F .

Lemma 6.14 (Restriction-2). Suppose that"
U
−→pRC11 "

′ and let F ⊆ F. Then, the following hold:

(1) If method(U) ∉ F and U ∉ HLabF , then" |F = " ′ |F .

(2) If method(U) ∈ F and U ∉ HLabF , then" |F = " ′ |F .

Lemma 6.15 (Merge). Suppose that F ⊆ F is encapsulated in a well-formed memory state " =

⟨�, ⟩. Then, the following hold:

(1) Let U be an pRC11 transition label with method(U) ∈ F . Suppose that if U ∈ ProgLab and typ(U) ∈

{W, R, RMW}, then method(4) ∈ F for every 4 ∈ �.E with sp(4) = sp(U). Then, " |F
U
−→pRC11 "

′
F

implies that"
U
−→pRC11 "

′ for some" ′ such that" ′ |F = " ′
F .

(2) Let U be an pRC11 transition label with method(U) ∉ F . Suppose that if U ∈ ProgLab and typ(U) ∈

{W, R, RMW}, then method(4) ∉ F for every 4 ∈ �.E with sp(4) = sp(U). Then, " |F
U
−→pRC11 "

′

F

implies that"
U
−→pRC11 "

′ for some" ′ such that" ′ |F = " ′

F
.

7 THE LIBRARY ABSTRACTION THEOREM

In this section we state and prove the library abstraction theorem. This theorem assumes two
libraries implementing the same set of methods, an implementation ! and a speci�cation !# with
F = dom(!) = dom(!#), and two programs, a client Pr and a most general client MGC. The latter is
representing the library’s calling policy.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:20 Abhishek Kr Singh and Ori Lahav

Example 7.1. For a library with no restrictions whatsoever on its
clients (beyond the separation of variable spaces) one can use a most
general client that repeatedly invokes arbitrary library methods
with arbitrary stores. We denote this client by MGCfree. On the
right we present the code of the main method in each thread g
in MGCfree for dom(!) = {f1, ... ,f=}. We use havoc for arbitrarily
modifying all registers.

BEGIN : havoc; goto f1 p ... p fn ;

f1 : call(f1) ; goto BEGIN;

...

fn : call(f=) ; goto BEGIN;

Example 7.2. Alternatively, a policy that requires to call the
library methods in a race-free fashion is captured by a most general
client that uses for each thread the code on the right. Here, we hold
a lock L while executing every method. We assume a standard lock
implementation using release/acquire accesses (see §8).

BEGIN : havoc; goto f1 p ... p fn ;

f1 : acquire(L) ; call(f1) ;

release(L) ; goto BEGIN;

...

fn : acquire(L) ; call(f=) ;

release(L) ; goto BEGIN;

Beyond syntactic separation of variable spaces between libraries and their clients (see Def. 6.1),
the library abstraction theorem has two conditions:

• ! should re�ne !# w.r.t. MGC, denoted by ! ⊑MGC !
#, and formally de�ned by:

! ⊑MGC !
△

⇐⇒ HF (MGC [!]) ⊆ HF (MGC [!#]) ∧MGC [!] is not racy under pRC11

• Pr should adhere to MGC w.r.t. !#, denoted by Pr ⊑!# MGC, and formally de�ned by:

Pr ⊑!# MGC
△

⇐⇒ HF (Pr [!
#]) ⊆ HF (MGC [!#]) ∧ Pr [!#] is not racy under pRC11

The �rst condition is an obligation of the library developer. It requires that all histories generated
for the most general client using the implementation are also generated with the speci�cation.
Additionally, the implementation should not have data races when run by the most general client.
Importantly, both conditions do not mention Pr : library developers have to be able to verify their
implementations “once and for all” without access to a particular client program.
Dually, the second condition is an obligation of the client. It requires that the client adheres to

the library policy (otherwise, the blame is on the client), which means that all histories generated
by the client program should be also generated by the most general client, which expresses that
policy. Additionally, the client program should not have data races. Importantly, both conditions do
not mention !: clients should be able to apply the abstraction theorem without access to the library
implementation. In fact, it su�ces to assume that Pr uses !# both when checking for adherence to
the library’s calling policy and for checking for data-race freedom (this can be important for both
checks if the calling policy relies on the values returned by the library).
Now, what should the theorem guarantee? Intuitively, we want all client behaviors observable

when using ! to be observable when using !#. Thus, for every trace C generated by Pr [!] that reaches
a program state ? and a memory state" , there should exist a corresponding trace C# generated by

Pr [!#] that reaches a program state ?# and a memory state"#, and a client should not be able to

observe the di�erence between C and C#, ? and ?#, and" and"#. This, however, does not mean
that there is not any di�erence between these objects: ! and !# may perform di�erent operations
(leading to di�erent traces), use di�erent variables (leading to di�erent memories), and internally
use di�erent registers (leading to di�erent program states). We capture “client-equivalence” by

requiring that: (1) the F-parts of C and C# coincide (using Def. 6.9); (2) the state ?# is obtained from
? by only changing the instruction sequence state for threads that are currently inside a method in

F (using Def. 6.7); and (3) the F-restriction of" and"# coincide (using Def. 6.12). Finally, we also
want to ensure that Pr [!] is not racy.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:21

All in all, we reach the following statement of the abstraction theorem.

Theorem 7.3 (Library Abstraction). Let ! and !# be libraries implementing the same set F

of methods. Let MGC and Pr be programs, such that both ! and !# are safe for both MGC and Pr .

Suppose that ! ⊑MGC !
and Pr ⊑!# MGC. Then, the following hold:

• If ⟨? Init, "Init⟩
C
−→Pr [!]ZpRC11 ⟨?,"⟩, then there exist C# and ⟨?

#
, "#⟩ such that the following hold:

(1) ⟨? Init, "Init⟩
C#

−→Pr [!#]ZpRC11 ⟨?
#
, "#⟩; (2) C# |F = C |F ; (3) ?

#
= ? [F ↦→ ? lib] for some ? lib (in

particular, ?
#
(g) = ? (g) whenever ? (g).f ∉ F); and (4)"# |F = " |F .

• Pr [!] is not racy under pRC11.

In particular, the conditions of Thm. 7.3 ensure that ! ⊑Pr !
#. The following property, which

allows compositional veri�cation of a library consisting of several (non-interacting) libraries, is
obtained as a corollary of the abstraction theorem as in [Khyzha and Lahav 2021].

Corollary 7.4 (Compositionality). Let !1, ... ,!= be libraries implementing pairwise disjoint

sets of methods, such that Space(!1), ... ,Space(!=), Space(!
#

1
), ... ,Space(!#=), and Space(MGC \

dom(!1⊎ ...⊎!=)) are pairwise disjoint. Suppose that for every 1 ≤ 8 ≤ =, we have !8 ⊑MGC8
!#8

for MGC8 = MGC [!#
1
⊎ ...⊎!#8−1 ⊎ !

#

8+1⊎ ...⊎!
#

=]. Then, !1⊎ ...⊎!= ⊑MGC !
#

1
⊎ ...⊎!#= .

The rest of this section is devoted to sketch the main steps in the proof of the abstraction theorem.
First, we prove a general “composition lemma” which allows us to take a client’s portion from one
trace and glue it together with a library’s portion from another trace, provided that the two traces
induce the same history. The proof of this lemma is by induction on the length of the traces, where
Lemmas 6.13 to 6.15 provide the main tools for the induction step.

Lemma 7.5 (Composition). Let ! and !′ be libraries implementing the same set F of meth-

ods such that both are safe for a program Pr , and ! is also safe for a program Pr′. Suppose that

⟨? Init, "Init⟩
Ccl
−→Pr [!′]ZpRC11 ⟨?cl, "cl⟩ and ⟨? Init, "Init⟩

Clib
−−→Pr′ [!]ZpRC11 ⟨? lib, "lib⟩, with HF (Ccl) =

HF (Clib). Then, ⟨? Init, "Init⟩
C
−→Pr [!]ZpRC11 ⟨?cl [F ↦→ ? lib], "⟩ for some trace C and memory state "

such that C |F = Ccl |F , C |F = Clib |F ," |F = "cl |F , and" |F = "lib |F .

Now, using the composition lemma, we are able to show the following key property.

Lemma 7.6. Under the conditions of Thm. 7.3, HF (Pr [!]) ⊆ HF (MGC [!#]).

Proof (outline). Assume otherwise, and letℎ be a shortest history inHF (Pr [!])\HF (MGC [!#]).
Let C be a shortest trace of Pr [!]ZpRC11 with HF (C) = ℎ. Since Y (the empty history) is clearly
in HF (MGC [!#]), we know that C is non-empty. Consider the last transition label U in C , and let
C ′ such that C = C ′ · U . The minimality of C ensures that U must be an element of HLabF (i.e.,
call, return, call propagation or return propagation of some method in F). Let ℎ′ = HF (C

′). The
minimality of ℎ further ensures that ℎ′ ∈ HF (MGC [!#]). Let C ′# and ⟨?

′
#, "

′
#⟩ such that HF (C

′
#) = ℎ

′

and ⟨? Init, "Init⟩
C ′#
−→MGC [!#]ZpRC11 ⟨?

′
#, "

′
#⟩. Let ⟨?

′
, " ′⟩ be such that ⟨? Init, "Init⟩

C ′

−→Pr [!]ZpRC11

⟨?
′
, " ′⟩

U
−→Pr [!]ZpRC11 ⟨?,"⟩. We consider the following cases:

(1) U ∈ CallF ∪ CPF : Using Lemma 7.5 (applied with ! := !#, !′ := !, Pr := Pr , and Pr′ := MGC),

there exist C ′′# and" ′′
such that ⟨? Init, "Init⟩

C ′′#
−−→Pr [!#]ZpRC11 ⟨?

′
[F ↦→ ?

′
#], "

′′
⟩, HF (C

′′
) = ℎ

′, and
" ′′

|F = " ′ |F . Then, using Lemmas 6.13 and 6.15, it is straightforward to show that U is enabled

in ⟨?
′
[F ↦→ ?

′
#], "

′′
⟩, and it follows that ℎ = ℎ′ ·U = HF (C

′′
) ·U ∈ HF (Pr [!

#]). Since Pr ⊑!# MGC,
we obtain ℎ ∈ HF (MGC [!#]), which contradicts our assumption.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:22 Abhishek Kr Singh and Ori Lahav

(2) U ∈ RetF ∪ RPF : Using Lemma 7.5 (applied with ! := !, !′ := !#, Pr := MGC, and Pr′ := Pr),

there exist C ′′ and " ′′ such that ⟨? Init, "Init⟩
C ′′

−−→MGC [!]ZpRC11 ⟨?
′
[F ↦→ ?

′
], " ′′⟩, HF (C

′′) = ℎ′,
and " ′′ |F = " ′ |F . Then, using Lemmas 6.13 and 6.15, it is straightforward to show that U is
enabled in ⟨?

′
[F ↦→ ?

′
], " ′′⟩, and it follows that ℎ = ℎ′ · U = HF (C

′′) · U ∈ HF (MGC [!]). Since
! ⊑MGC !

#, we obtain ℎ ∈ HF (MGC [!#]), which contradicts our assumption. □

Then, to prove the abstraction theorem we need one additional lemma.

Lemma 7.7. Suppose that"Init
C
−→pRC11 ⟨�, ⟩. Then, there exist a trace C

′ and a knowledge mapping

 ′ for � such that the following hold:

• "Init
C ′

−→pRC11 ⟨�,
′⟩.

• C ′ |ProgLab = C |ProgLab.

• ′ (g, -) ∩ (W
prel

-
∪Wrel ∪ CR) ⊆ dom(�.hb?

-
; [Eg]) for every g ∈ Tid and - ∈ Space.

The abstraction theorem is proved as follows.

Proof of Thm. 7.3 (sketch). By Lemma 7.6, we have HF (Pr [!]) ⊆ HF (MGC [!#]). Then, the
�rst part of the claim directly follows using Lemma 7.5 by letting ! := !#, !′ := !, Pr := Pr , and
Pr′ := MGC. For the second part, suppose that Pr [!] is racy under pRC11. Let ⟨?, ⟨�, ⟩⟩ be a
reachable state in Pr [!]ZpRC11 such that� is racy, and let 41, 42 be two events that form a race in
� . Let � = dom((�.po ∪�.rf)∗ ; [41, 42]) and �

′
= � |� . Clearly, 41 and 42 form a race in � ′. It is

also easy to see that there exist ?′ and ′ such that ⟨?′, ⟨� ′, ′⟩⟩ is reachable in Pr [!]ZpRC11. By
Lemma 7.7, there exists a knowledge mapping ′′ for � ′ such that ⟨?′, ⟨� ′, ′′⟩⟩ is reachable in
Pr [!]ZpRC11 as well and ′′ (g, -) ∩ CR ⊆ dom(� ′ .hb?

-
; [Eg]) for every g ∈ Tid and - ∈ Space.

By Prop. 6.6, F is encapsulated in ⟨� ′, ′′⟩. Thus, since sp(41) = sp(42), either (8) 41 ∈ EF ∧ 42 ∈ EF
or (88) 41 ∈ EF ∧ 42 ∈ EF . If (8) holds, we obtain a contradiction by obtaining a reachable state in
Pr [!#]ZpRC11 in which 41 and 42 form a race. If (88) holds, we obtain a contradiction by obtaining
a reachable state in MGC [!]ZpRC11 in which 41 and 42 form a race. □

8 ILLUSTRATIVE APPLICATIONS

In this section we present three examples of applications of library abstraction of di�erent kinds.
To simplify the presentation, we use an extended programming language with standard loops
and conditionals, mechanisms for passing arguments in method calls/returns, arrays, etc. While
these are not directly supported in our development above, the intention should be clear and the
translation to programs as de�ned in §3 is straightforward (but tedious). Each of the libraries below
has its own private variable space denoted by XL. For simplicity, we use macros for lock operations:

acquire(G) ≜ LOCK : l := CAS(XL, G, 0, 1, acq, rlx, rlx) ; if l ≠ 0 goto LOCK

release(G) ≜ store(XL, G, 0, rel)

pacquire(G) ≜ LOCK : l := CAS(XL, G, 0, 1, pacq, rlx, rlx) ; if l ≠ 0 goto LOCK

prelease(G) ≜ store(XL, G, 0, prel)

8.1 Read-Copy-Update Synchronization

Read-copy-update (RCU) is a synchronization mechanism, heavily used in the Linux kernel, that
allows a (single) writer to safely manipulate a data structure while multiple readers are concur-
rently accessing it [Mckenney 2004]. For that matter, it provides RCU critical sections for the
readers (delimited by rcu_read_lock and rcu_read_unlock) and a synchronization method
(synchronize_rcu) for the writer that waits for all readers currently in critical sections to exit

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:23

them. Readers should access the structure inside a critical section and the writer should not perform
destructive updates before calling the synchronization method [Desnoyers et al. 2012].

Intuitively, every invocation of synchronize_rcu begins another ‘grace period’, and the imple-
mentation ensures that “read-side critical sections cannot span grace periods”.6 Following various
long-lasting informal discussions among developers, Alglave et al. [2018] formalized this guarantee
in the context of their proposed Linux Kernel memory model. They provided specialized ad hoc
semantics to the RCU primitives in the form of declarative consistency constraints.

Next, we use our framework to demonstrate a simple speci�cation of RCU under weak memory
that is based on standard locks. We believe that our speci�cation has the advantage of being
more parsimonious and amenable to formal veri�cation of client programs using RCU: it can be
understood by relying solely on the semantics of locks, and allows veri�cation using techniques
and tools that already support reasoning about locks.

Our speci�cation is given below. It assumes an MGC in which a particular thread (the writer) is
repeatedly calling synchronize_rcu, and each other thread is a reader that interleaves invocations
of rcu_read_lock and rcu_read_unlock with its own thread identi�er, thus acquiring and
releasing a per-reader lock l[g]. The set '4034AB consist of all thread identi�ers except for the
writer’s identi�er, and the foreach loop iterates over this set in an arbitrary order (which may
vary between invocations).

rcu_read_lock(g) :

acquire(l[g]) ;

return() ;

rcu_read_unlock(g) :

release(l[g]) ;

return() ;

synchronize_rcu :

foreach g ∈ '4034AB

acquire(l[g]) ;

release(l[g]) ;

return() ;

Each RCU critical section is protected by a per-reader lock. For synchronization, the writer acquires
and immediately releases each of the reader locks. This ensures that RCU critical sections do not
span grace periods. For example, using the speci�cation, it is easy to conclude that the following
behavior of the client program is disallowed (as usual, 0 is the initial value of all variables):

store(X, x, 1, rlx) ;

synchronize_rcu() ;

store(X, y, 1, rlx) ;

rcu_read_lock(T2) ;

a := load(X, x, rlx) ; //0

b := load(X, y, rlx) ; //1

rcu_read_unlock(T2) ;

Indeed, roughly speaking, since the read of x returns 0, we know that the writer must have acquired
the reader’s lock after the reader has released it. In turn, the value 1 has been written to y only
after the reader exited its critical section.

Remark 4. Gotsman et al. [2013] introduced a veri�cation technique assuming SC that is based
on a simpler RCU speci�cation. In their speci�cation each reader thread g sets a �ag rcs[g] to 1

when entering the critical section, and resets it to 0 when exiting the critical section. The writer
waits for all reader �ags to be 0, which directly means that a critical section cannot span over more
than one grace period. Using release/acquire accesses, their speci�cation is as follows:

6See https://lwn.net/Articles/573497/ [Accessed July 2022].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

https://lwn.net/Articles/573497/

53:24 Abhishek Kr Singh and Ori Lahav

rcu_read_lock(g) :

store(XL, rcs[g], 1, rel) ;

return() ;

rcu_read_unlock(g) :

store(XL, rcs[g], 0, rel) ;

return() ;

synchronize_rcu :

foreach g ∈ '4034AB

repeat

a := load(XL, rcs[g], acq)

until a = 0;

return() ;

Interestingly, this speci�cation generates the same invocation-response sequences (i.e., same
histories as employed in standard linearizability) as the one we propose. Nevertheless, it is too weak
under weak memory concurrency, and, in fact, it allows the annotated behavior of the client above.

Following [Alglave et al. 2018; Desnoyers et al. 2012], we present a simpli�ed implementation
of the RCU library with weak memory constructs. It uses a global and per-reader ‘phase bits’,
phase and rphase[g], as well as per-reader �ags, rcs[g]. For correctness, it employs barriers
(smp_mb in Linux or atomic_thread_fence(memory_order_seq_cst) in C11). While these are
not included in the model we consider, they can be implemented here by acquire-release RMWs
to an otherwise unused variable [Lahav et al. 2016]. Thus, fence() below is syntactic sugar for
r := FADD(XL, f, 0, acq, rel).

rcu_read_lock(g) :

a := load(XL, phase, acq) ;

store(XL, rphase[g], a, rel) ;

store(XL, rcs[g], 1, rel) ;

fence() ;

return() ;

rcu_read_unlock(g) :

store(XL, rcs[g], 0, rel) ;

return() ;

synchronize_rcu :

fence() ;

store(XL, phase, 1, rel) ;

foreach g ∈ '4034AB

repeat

a := load(XL, rcs[g], acq) ;

b := load(XL, rphase[g], acq)

until a = 0 ∨ b = 1;

store(XL, phase, 0, rel) ;

foreach g ∈ '4034AB

repeat

a := load(XL, rcs[g], acq) ;

b := load(XL, rphase[g], acq)

until a = 0 ∨ b = 0;

return() ;

In this implementation, for entering the critical section each reader g stores phase in rphase[g]

and announces it enters the critical section by setting rcs[g] to 1. When exiting the critical section,
the reader resets rcs[g] to 0. For the writer synchronization, the writer switches phase from 0 to
1, waits for each reader until it sees rcs[g] = 0 or rphase[g] = 1, switches phase back to 0, and
waits again for each reader until it sees rcs[g] = 0 or rphase[g] = 0.

To verify re�nement (i.e., to show HF (MGC [!]) ⊆ HF (MGC [!#])) we used the FDR re�nement
checker [Gibson-Robinson et al. 2014], which has been used before for automatic linearizability
checking [Lowe 2017], and gives us guarantees up to a certain bound. Concretely, we managed
to complete the automatic check for two readers with at most four unpropagated events between
every two threads and for three readers with at most one unpropagated event. Nevertheless, we
note that the length of the traces being checked is unbounded. A standard limitation here is the
modeling gap between the paper de�nitions and FDR’s encoding, which uses communicating
sequential processes (CSP). Using the fact that the library speci�cation and implementation employ
solely rel/acq accesses, which implies that propagation has to follow the program order and reads
only read from propagated writes (see Remark 3), we can model pRC11’s memory state using FIFO
bu�ers, which are supported by FDR. (But, using Thm. 7.3, re�nement is guaranteed also when

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:25

non-rel/acq accesses are used by clients as in the example above.) We leave a systematic FDR
encoding, and possibly the veri�cation of more e�cient variants of the above implementation that
use rlx accesses to future work.
Finally, we note that while every history of the implementation is also a history of the speci-

�cation, the implementation has important advantages over the speci�cation. For instance, con-
sider a scenario where a reader is repeatedly entering critical sections and the writer invokes
synchronize_rcu. With the speci�cation, to complete its invocation, the writer has to be “lucky”
and catch a free lock between two reader’s sections. In turn, with the implementation, the writer is
able to complete its invocation using the phase bit, without any particular “lucky” scheduling.

8.2 A Relaxed Concurrent�eue

Our second example continues the discussion in §2.2 and presents a speci�cation and an imple-
mentation of a weak concurrent queue. The queue object is speci�ed as follows:

enqueue(E) :

pacquire(LT) ;

tp := load(XL, T, rlx) ;

store(XL, q[tp], E, rlx) ;

store(XL, T, tp + 1, rlx) ;

prelease(LT) ;

return() ;

dequeue :

pacquire(LH) ;

hp := load(XL, H, rlx) ;

hc := load(XL, q[hp], rlx) ;

if hc ≠ ⊥ then

store(XL, H, hp + 1, rlx) ;

prelease(LH) ;

return(hc) ;

The speci�cation code uses an unbounded array q (represented by in�nitely many variables
q[0], q[1], ...) for the queue elements that initially contains only ⊥. The variables H and T store the
index of the current head and tail of the queue. Then, the speci�cation wraps a sequential imple-
mentation inside locks, making three choices (aiming to demonstrate the framework’s �exibility):

• Except for the locks, all accesses are relaxed, so synchronization is only induced by the locks.
• The locks are accessed using partial acquire/release. This means that the queue does not expose
its internal synchronization to the client, thus allowing all behaviors demonstrated in §2.2.

• The enqueue and dequeue methods use two di�erent locks, which allows for certain “non-
linearizable” behaviors. For example, after enqueue returns in one thread, a dequeue by another
thread can retrieve ⊥ (that signi�es an empty queue). Indeed, a relaxed read from q[:] may
return either the value that was written to q[:] or the initial value. To avoid these behaviors,
clients, if they want, may form their own synchronization between enqueues and dequeues (and
analyze possible behaviors of the queue using the above speci�cation).

A possible implementation that avoids the locks and uses only relaxed accesses is shown next.

enqueue(E) :

BEGIN : tp := load(XL, T, rlx) ;

if tp ≠ 0 then

tc := load(XL, q[tp − 1], rlx) ;

if tc = ⊥ goto BEGIN;

tp′ := CAS(XL, T, tp, tp + 1, rlx, rlx, rlx) ;

if tp′ ≠ tp goto BEGIN;

store(XL, q[tp
′], E, rlx) ;

return() ;

dequeue :

BEGIN : hp := load(XL, H, rlx) ;

hc := load(XL, q[hp], rlx) ;

if hc = ⊥ then

return(⊥) ;

else

hp′ := CAS(XL, H, hp, hp + 1, rlx, rlx, rlx) ;

if hp′ ≠ hp goto BEGIN;

return(hc) ;

This implementation uses CAS instructions to update H and T. It exploits the freedom allowed
by the speci�cation: no synchronization is ever induced between queue operations, and certain
“non-linearizable” behaviors are allowed (when the read of q[hp] returns the overwritten ⊥ value).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:26 Abhishek Kr Singh and Ori Lahav

We note that it is important that enqueuewaits for the previous cell being �lled, which corresponds
to all enqueue’s being totally ordered in the speci�cation. In [Singh and Lahav 2022] we provide
a sketch of the re�nement proof, which generally follows a standard simulation argument albeit
assuming non-SC memory and considering call/return propagation as observable transitions.

8.3 Local Data-Race-Freedom as an Instance of Library Abstraction

Our third application relies on the library policy component (MGC) of the abstraction theorem
to derive a local data-race-freedom guarantee (LDRF, for short) for the underlying memory model
(a fragment of RC11).7 Local data-race-freedom guarantees, introduced in [Dolan et al. 2018]
and further developed in [Cho et al. 2021], generalize the more well-known (global) data-race-
freedom guarantee, by ensuring strong semantics for locations accessed by non-racy executions.
Crucially, the premise of these guarantees (i.e., what locations are racy) is checked assuming the
strong semantics for the speci�ed locations, which makes LDRF particularly useful for modular
reasoning [Cho et al. 2021].

In our case, in the role of the strong semantics we have release/acquire (RA, for short) semantics
(thus we establish what is called LDRF-RA in [Cho et al. 2021]), and we want to show that if a
program avoids races on a set (of variables, then it is safe to assume that the accesses to (have
RA semantics (as if they have rel/acq access modes). Moreover, it su�ces to establish the premise,
namely the avoidance of races on (, assuming the accesses to (have RA semantics.
To formulate this intricate property in terms of re�nement, consider a library implementing

methods writeG and readG for every variable G ∈ (. The library speci�cation (!#) is as follows:

writeG (E) : store(XL, G, E, rel) ; return() ; readG : a := load(XL, G, acq) ; return(a) ;

The implementation (!) employs non-atomic accesses (it could use any access mode):

writeG (E) : store(XL, G, E, na) ; return() ; readG : a := load(XL, G, na) ; return(a) ;

Then, the assurance provided by LDRF is precisely (conditioned) contextual re�nement between
! and !#. Now, to express the data-race-freedom premise we take MGCdrf to be a program that
repeatedly and non-deterministically calls the library methods with arbitrary arguments, but
avoids races by properly using standard per-variable readers-writer lock (which allows concurrent
read operations but write operations require exclusive access). That is, before calling writeG
(respectively, readG) MGCdrf takes a lock on G with a write-mode (respectively, read-mode).

Adherence to the calling policy as speci�ed byMGCdrf (i.e., Pr ⊑!# MGCdrf) is equivalent to the
LDRF premise. In particular, Hdom(!) (Pr [!

#]) ⊆ Hdom(!) (MGCdrf [!#]) means that in histories in
Hdom(!) (Pr [!

#]) for every variable G ∈ (: (1) before calling writeG by thread g , the return markers
of all previous invocations of writeG and readG have propagated to thread g ; and (2) before calling
readG by thread g , the return markers of all previous invocations of writeG have propagated to
thread g . In addition, adherence to the policy in our abstraction theorem assumes !# (rather than
!) just like LDRF’s premise assuming RA semantics for accesses to (.
Accordingly, by applying the abstraction theorem we can establish LDRF-RA by proving our

library correctness criterion ! ⊑MGCdrf !
for the libraries above. This is straightforward: the

conditions on propagation events of calls and returns that arise by !# are already covered by
MGCdrf. For instance, if an invocation of readG reads from an invocation of writeG in an execution
of MGCdrf [!#], then due to the rel/acq accesses by !#, the call writeG has to propagate before
readG returns, but this already holds in traces of MGCdrf [!#] due to MGCdrf.

7To the best of our knowledge, we are the �rst to observe that (local) data-race-freedom guarantee is an instance of library

abstraction.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:27

9 RELATED WORK

We have adopted several key instruments proposed in earlier work to achieve library abstraction.
Concretely, Burckhardt et al. [2012] addressed this challenge for the x86-TSO architecture [Owens
et al. 2009], and achieved library abstraction by including call/return markers in the thread-local
store bu�ers, and exposing the propagation of these markers to the main memory in library histories.
We adapt this idea to allow point-to-point communication and apply it in a much weaker memory
model. (Moreover, [Burckhardt et al. 2012] does not consider libraries that rely on synchronization
by the client or not meant to expose their internal synchronization to the client, since these issues
do not arise on x86-TSO.) In turn, from [Khyzha and Lahav 2022], which studied library abstraction
under non-volatile memory, we adopt the general formalism, the proof strategy of the abstraction
theorem by relying on a general composition lemma (Lemma 7.5), and the modeling of a library’s
calling policy as a client program (MGC).
Another closely related work is [Batty et al. 2013], which provides the �rst library abstraction

result for C11. For having simple speci�cations (which they want, like us, to be pieces of code)
Batty et al. [2013] extended (a fragment of) C11 with specialized “atomic block” constructs, whose
semantics is similar to the semantics of software transactions. In contrast, we use locks with “partial
release/acquire” semantics, and have no need in including transactional features, which may be
harder for client reasoning. Other crucial di�erences is that [Batty et al. 2013] does not support
library’s calling policies, and their correctness condition is based on partially ordered execution
traces (with ‘guarantee’ and ‘deny’ relations), while we opt for considering only totally ordered
histories, which, we believe, are easier to grasp. We also note that the relaxed atomics employed in
[Batty et al. 2013] have the original C11 semantics (without the po-rf constraint, and thus with
“out-of-thin-air” behaviors), which, as they show, does not allow fully compositional reasoning.

Library abstraction under weak memory was also studied from a declarative point of view
in [Dongol et al. 2018; Raad et al. 2019], using partial orders for exposing the externally visible
synchronization induced by concurrent objects. Concretely, in the framework of [Raad et al. 2019],
libraries are speci�ed as collections of execution graphs, and the abstraction condition relates
the graphs produced by the implementation to those in the speci�cation. Their speci�cation
framework does not depend on the language constructs, and it is su�ciently expressive for having
direct speci�cations of non-standard non-linearizable objects (e.g., queues with certain non-FIFO
behaviors). We believe that there is a price for the generality: rich declarative speci�cations are often
hard to understand and informally apply, and require non-standard methods for client reasoning.
In addition, [Raad et al. 2019]’s ‘well-formedness’ requirement (which corresponds to our “policy
adherence”) is de�ned in terms of the implementation library (unlike in our abstraction theorem).
Smith et al. [2020] studied linearizability on a general hardware memory model, and related

it to a certain re�nement notion, which they call “object re�nement”. In contrast, we are aiming
for standard contextual re�nement between an implementation and its speci�cation code. Other
works developed correctness conditions for concurrent objects under weakly consistent memory,
but were not formally related to a re�nement notion (e.g., [Doherty et al. 2018]).

Weakly consistent objects were also studied by Emmi and Enea [2019] who proposed a speci�ca-
tion framework based on extending standard histories with a visibility relation that is subject to
varying constraints. Their approach was applied to non-linearizable Java concurrent objects, and
allows veri�cation by a generalization of the concept of linearization points [Krishna et al. 2020].
Other recent works propose logical approaches to library speci�cation and veri�cation under

weak memory [Dalvandi and Dongol 2021a,b; Dang et al. 2022; Mével and Jourdan 2021]. In contrast
to our work, their speci�cations are given as Hoare triples and re�nement is understood from a
program logic perspective. Speci�cally, for a fragment of the model we study (without non-atomics),

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

53:28 Abhishek Kr Singh and Ori Lahav

Dalvandi and Dongol [2021a,b] propose an Owicki-Gries-style Hoare logic and specify libraries
with view-based object semantics. Their approach is, however, limited to clients who synchronize
only through the library operations. In turn, Mével and Jourdan [2021] and Dang et al. [2022] are
based on the idea of logical atomicity [Birkedal et al. 2021; Jung 2019], and provide mechanized
veri�cation of certain library implementations in the Iris framework [Jung et al. 2015]. The weak
memory model in [Dang et al. 2022] is similar to the one we study (RC11), while the model in
[Mével and Jourdan 2021] is Multicore OCaml, which provides much stronger accesses than RC11.
The library studied in [Mével and Jourdan 2021] is a queue that is stronger than our example in §8.2.
It exposes synchronization to the client between from an enqueue of some element to the dequeue
of that speci�c element, but still, unlike a lock-based queue, does not expose synchronization in all
other cases (e.g., between two di�erent enqueues).
Finally, the idea of having explicit steps for propagating knowledge between threads appeared

before in semantics of relaxed memory concurrency, particularly in an operational model for the
POWER architecture [Sarkar et al. 2011], but we are not aware of a similar existing model for RC11.

10 CONCLUSION

We established a library abstraction for (a fragment of) the RC11 model extended with specialized
partial release/acquire accesses. The latter are used to have simple lock-based speci�cations of
libraries that do not expose internal synchronization to their clients or libraries that rely on
synchronization by the client. The condition for library abstraction is based on inclusion of sets of
totally ordered library histories. To achieve this, we developed an operational version of the model
with explicit steps for propagation of knowledge between threads, and included the propagation of
method invocation and responses in library histories.
Our work has several limitations, which are interesting to lift and address in future work. In

particular: (1) The fragment of RC11 that we consider excludes fences and SC-atomics; (2) We only
consider partial correctness and �nite histories ignoring liveness issues and thus our re�nement
notion is not termination preserving (see [Gotsman and Yang 2011] for a possible approach to lift
this limitation); (3) We disallow nested method calls (in particular, recursion), as common in works
relating linearizability to re�nement (also under SC); and (4) We disallow libraries and their clients
to transfer ownership of data structures among themselves or to run in a shared address space
(see [Gotsman and Yang 2013] for a possible approach to lift this limitation).

Veri�cation techniques for both library development and client reasoning are beyond the scope
of the current work. In particular, it is interesting to see how our speci�cation constructs can be
supported by a program logic, which will pave the way to foundational mechanized re�nement
proofs as in [Dang et al. 2022], as well as by model checking tools, such as GenMC [Kokologiannakis
et al. 2019] and C11Tester [Luo and Demsky 2021], that can be used for client reasoning.
Finally, we are interested in developing a view-based operational model (see, e.g., [Kaiser et al.

2017; Kang et al. 2017]) with explicit propagation steps that will be equivalent to pRC11, but possibly
more intuitive. We also believe that pRC11 (in particular, its rel/acq fragment, see Remark 3)
may be of independent interest for developing veri�cation techniques, by relying on the analogy
between pRC11’s knowledge propagation and well-studied x86-TSO store propagation steps (see
e.g., [Bouajjani et al. 2018; Enea and Farzan 2016]).

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. This work was supported by
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 851811) and the Israel Science Foundation (grant
numbers 1566/18 and 814/22).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:29

REFERENCES

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan Stern. 2018. Frightening Small Children and

Disconcerting Grown-ups: Concurrency in the Linux Kernel. In ASPLOS. ACM, New York, NY, USA, 405–418. https:

//doi.org/10.1145/3173162.3177156

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty, Mike Dodds, and Alexey Gotsman. 2013. Library Abstraction for C/C++ Concurrency. In POPL. ACM, New

York, NY, USA, 235–248. https://doi.org/10.1145/2429069.2429099

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of

Programming Language Concurrency Semantics. In ESOP. Springer, Berlin, Heidelberg, 283–307. http://dx.doi.org/10.

1007/978-3-662-46669-8_12

Sidi Mohamed Beillahi, Ahmed Bouajjani, and Constantin Enea. 2021. Robustness Against Transactional Causal Consistency.

Logical Methods in Computer Science Volume 17, Issue 1 (Feb. 2021). https://doi.org/10.23638/LMCS-17(1:12)2021

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021.

Theorems for Free from Separation Logic Speci�cations. Proc. ACM Program. Lang. 5, ICFP, Article 81 (Aug. 2021),

29 pages. https://doi.org/10.1145/3473586

Hans-Juergen Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding Out-of-thin-air Results. In MSPC. ACM, New

York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Jad Hamza. 2015. Tractable Re�nement Checking for Concurrent

Objects. In POPL. ACM, New York, NY, USA, 651–662. https://doi.org/10.1145/2676726.2677002

Ahmed Bouajjani, Constantin Enea, Suha Orhun Mutluergil, and Serdar Tasiran. 2018. Reasoning About TSO Programs

Using Reduction and Abstraction. In CAV. Springer International Publishing, Cham, 336–353. https://doi.org/10.1007/978-

3-319-96142-2_21

Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. 2012. Concurrent Library Correctness

on the TSO Memory Model. In ESOP. Springer, Berlin, Heidelberg, 87–107. https://doi.org/10.1007/978-3-642-28869-2_5

Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular Data-Race-Freedom Guarantees in the Promising

Semantics. In PLDI. ACM, New York, NY, USA, 867–882. https://doi.org/10.1145/3453483.3454082

Sadegh Dalvandi and Brijesh Dongol. 2021a. Verifying C11-Style Weak Memory Libraries. In PPoPP. ACM, New York, NY,

USA, 451–453. https://doi.org/10.1145/3437801.3441619

Sadegh Dalvandi and Brijesh Dongol. 2021b. Verifying C11-Style Weak Memory Libraries via Re�nement. CoRR

abs/2108.06944 (2021). arXiv:2108.06944 https://arxiv.org/abs/2108.06944

Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer. 2022.

Compass: Strong and Compositional Library Speci�cations in Relaxed Memory Separation Logic. In PLDI. ACM, New

York, NY, USA, 792–808. https://doi.org/10.1145/3519939.3523451

Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and Jonathan Walpole. 2012. User-Level

Implementations of Read-Copy Update. IEEE Trans. Parallel Distrib. Syst. 23, 2 (2012), 375–382. https://doi.org/10.1109/

TPDS.2011.159

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2018. Making Linearizability Compositional for

Partially Ordered Executions. In iFM. Springer International Publishing, Cham, 110–129. https://doi.org/10.1007/978-3-

319-98938-9_7

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. 2018. Bounding Data Races in Space and Time. In PLDI.

ACM, New York, NY, USA, 242–255. https://doi.org/10.1145/3192366.3192421

Brijesh Dongol, Radha Jagadeesan, James Riely, and Alasdair Armstrong. 2018. On Abstraction and Compositionality for

Weak-Memory Linearisability. In VMCAI. Springer International Publishing, Cham, 183–204. https://doi.org/10.1007/978-

3-319-73721-8_9

Michael Emmi and Constantin Enea. 2019. Weak-Consistency Speci�cation via Visibility Relaxation. Proc. ACM Program.

Lang. 3, POPL, Article 60 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290373

Constantin Enea and Azadeh Farzan. 2016. On Atomicity in Presence of Non-atomic Writes. In TACAS. Springer, Berlin,

Heidelberg, 497–514. https://doi.org/10.1007/978-3-662-49674-9_29

Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. 2010. Abstraction for concurrent objects. Theoretical

Computer Science 411, 51 (2010), 4379–4398. https://www.sciencedirect.com/science/article/pii/S0304397510005001

Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and Andrew W. Roscoe. 2014. FDR3 — A Modern

Re�nement Checker for CSP. In TACAS. Springer, Berlin, Heidelberg, 187–201. https://doi.org/10.1007/978-3-642-54862-

8_13

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory Reclamation Algorithms with

Grace. In ESOP. Springer, Berlin, Heidelberg, 249–269. https://doi.org/10.1007/978-3-642-37036-6_15

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2429069.2429099
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.23638/LMCS-17(1:12)2021
https://doi.org/10.1145/3473586
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1145/2676726.2677002
https://doi.org/10.1007/978-3-319-96142-2_21
https://doi.org/10.1007/978-3-319-96142-2_21
https://doi.org/10.1007/978-3-642-28869-2_5
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3437801.3441619
https://arxiv.org/abs/2108.06944
https://arxiv.org/abs/2108.06944
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1007/978-3-319-98938-9_7
https://doi.org/10.1145/3192366.3192421
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1007/978-3-319-73721-8_9
https://doi.org/10.1145/3290373
https://doi.org/10.1007/978-3-662-49674-9_29
https://www.sciencedirect.com/science/article/pii/S0304397510005001
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-37036-6_15

53:30 Abhishek Kr Singh and Ori Lahav

Alexey Gotsman and Hongseok Yang. 2011. Liveness-Preserving Atomicity Abstraction. In ICALP. Springer, Berlin,

Heidelberg, 453–465. https://doi.org/10.1007/978-3-642-22012-8_36

Alexey Gotsman and Hongseok Yang. 2013. Linearizability with Ownership Transfer. Logical Methods in Computer Science

Volume 9, Issue 3 (Sept. 2013). https://lmcs.episciences.org/931

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM

Trans. Program. Lang. Syst. 12, 3 (July 1990), 463–492. https://doi.org/10.1145/78969.78972

Ralf Jung. 2019. Logical atomicity in Iris: The good, the bad, and the ugly. In Iris Workshop. https://people.mpi-sws.org/

~jung/iris/talk-iris2019.pdf

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, New York, NY, USA, 637–650.

https://doi.org/10.1145/2676726.2676980

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris. In ECOOP. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. In POPL. ACM, New York, NY, USA, 175–189. https://doi.org/10.1145/3009837.3009850

Artem Khyzha and Ori Lahav. 2021. Taming x86-TSO Persistency. Proc. ACM Program. Lang. 5, POPL, Article 47 (Jan. 2021),

29 pages. https://doi.org/10.1145/3434328

Artem Khyzha and Ori Lahav. 2022. Abstraction for Crash-Resilient Objects. In ESOP. Springer International Publishing,

Cham, 262–289. https://doi.org/10.1007/978-3-030-99336-8_10

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. E�ective Stateless Model Checking

for C/C++ Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017), 32 pages. https://doi.org/10.1145/

3158105

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries. In

PLDI. ACM, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.3314609

Siddharth Krishna, Michael Emmi, Constantin Enea, and Dejan Jovanović. 2020. Verifying Visibility-BasedWeak Consistency.

In ESOP. Springer International Publishing, Cham, 280–307. https://doi.org/10.1007/978-3-030-44914-8_11

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. In POPL. ACM, New York,

NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

Ori Lahav and Roy Margalit. 2019. Robustness Against Release/Acquire Semantics. In PLDI. ACM, New York, NY, USA,

126–141. https://doi.org/10.1145/3314221.3314604

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In PLDI. ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE

Trans. Computers 28, 9 (Sept. 1979), 690–691. https://doi.org/10.1109/TC.1979.1675439

Gavin Lowe. 2017. Analysing Lock-Free Linearizable Datatypes Using CSP. In Concurrency, Security, and Puzzles - Essays

Dedicated to Andrew William Roscoe on the Occasion of His 60th Birthday. Springer, 162–184. https://doi.org/10.1007/978-

3-319-51046-0_9

Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++ Atomics. In ASPLOS. ACM, New York, NY, USA,

630–646. https://doi.org/10.1145/3445814.3446711

Paul E. Mckenney. 2004. Exploiting Deferred Destruction: An Analysis of Read-Copy-Update Techniques in Operating System

Kernels. Ph. D. Dissertation. Oregon Health & Science University.

Glen Mével and Jacques-Henri Jourdan. 2021. Formal Veri�cation of a Concurrent Bounded Queue in a Weak Memory

Model. Proc. ACM Program. Lang. 5, ICFP, Article 66 (Aug. 2021), 29 pages. https://doi.org/10.1145/3473571

Peizhao Ou and Brian Demsky. 2018. Towards Understanding the Costs of Avoiding Out-of-Thin-Air Results. Proc. ACM

Program. Lang. 2, OOPSLA, Article 136 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276506

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs. Springer, Berlin,

Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. On Library Correctness under Weak Memory

Consistency: Specifying and Verifying Concurrent Libraries under Declarative Consistency Models. Proc. ACM Program.

Lang. 3, POPL, Article 68 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290381

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER Multiprocessors.

In PLDI. ACM, New York, NY, USA, 175–186. https://doi.org/10.1145/1993498.1993520

Abhishek Kr Singh and Ori Lahav. 2022. An Operational Approach to Library Abstraction under Relaxed Memory

Concurrency (Extended Version). https://www.cs.tau.ac.il/~orilahav/papers/popl23_lib_full.pdf

Graeme Smith, Kirsten Winter, and Robert J. Colvin. 2020. Linearizability on Hardware Weak Memory Models. Form. Asp.

Comput. 32, 1 (Feb. 2020), 1–32. https://doi.org/10.1007/s00165-019-00499-8

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

https://doi.org/10.1007/978-3-642-22012-8_36
https://lmcs.episciences.org/931
https://doi.org/10.1145/78969.78972
https://people.mpi-sws.org/~jung/iris/talk-iris2019.pdf
https://people.mpi-sws.org/~jung/iris/talk-iris2019.pdf
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3434328
https://doi.org/10.1007/978-3-030-99336-8_10
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-44914-8_11
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1007/978-3-319-51046-0_9
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/3473571
https://doi.org/10.1145/3276506
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/3290381
https://doi.org/10.1145/1993498.1993520
https://www.cs.tau.ac.il/~orilahav/papers/popl23_lib_full.pdf
https://doi.org/10.1007/s00165-019-00499-8

An Operational Approach to Library Abstraction under Relaxed Memory Concurrency 53:31

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 53. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Key Challenges and Ideas
	2.1 Library Correctness Criterion
	2.2 Specification under Relaxed Memory Concurrency

	3 Concurrent Programs: Syntax and Memory-Independent Semantics
	3.1 Program Syntax
	3.2 Program Semantics
	3.3 Synchronizing Programs and Memories

	4 The dRC11 Memory Model
	5 The Operational Memory System: pRC11
	5.1 Equivalence of pRC11 and dRC11

	6 Libraries and Their Clients
	7 The Library Abstraction Theorem
	8 Illustrative Applications
	8.1 Read-Copy-Update Synchronization
	8.2 A Relaxed Concurrent Queue
	8.3 Local Data-Race-Freedom as an Instance of Library Abstraction

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

