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We study the problem of verifying the robustness of concurrent programs against a C11-style memory model

that includes relaxed accesses and release/acquire accesses and fences, and show that this verification problem

can be reduced to a standard reachability problem under sequential consistency. We further observe that

existing robustness notions do not allow the verification of programs that use speculative reads as in the

sequence lock mechanism, and introduce a novel “observational robustness” property that fills this gap. In

turn, we show how to soundly check for observational robustness. We have implemented our method and

applied it to several challenging concurrent algorithms, demonstrating the applicability of our approach. To

the best of our knowledge, this is the first method for verifying robustness against a programming language

concurrency model that includes relaxed accesses and release/acquire fences.

CCS Concepts: • Theory of computation → Verification by model checking; Concurrent algorithms; Program
semantics; Program verification; Program analysis; • Software and its engineering → Software verification.

Additional Key Words and Phrases: weak memory models, C/C++11, robustness, shared-memory concurrency

ACM Reference Format:
Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness against a C11-Style Memory Model.

Proc. ACM Program. Lang. 5, POPL, Article 4 (January 2021), 33 pages. https://doi.org/10.1145/3434285

1 INTRODUCTION
Programming and reasoning about concurrent programs under memory models weaker than

sequential consistency (SC) is nutritiously hard and error-prone. When programmers manage to

avoid data races, the DRF (data-race-freedom) guarantee allows them to safely imagine a heaven of

SC multiprocessors and SC-preserving compilers [Adve and Hill 1990]. For a variety of programs,

however, avoiding races altogether is too restrictive and costly. Interestingly, often this does not

mean that the program may behave under a weak memory model differently than it would behave

under SC. Accordingly, there is a need to develop robustness criteria (i.e., conditions that ensure that
a given program has only SC behaviors), which are more precise than DRF, and accompany them

with robustness verification methods and tools. Safety verification under a weak memory model

can be then reduced to robustness verification plus safety verification assuming SC [Burckhardt

and Musuvathi 2008].

Precise robustness criteria and robustness verification tools were previously developed for hard-

ware models (x86-TSO, see, e.g., [Bouajjani et al. 2013, 2011; Owens 2010], and POWER [Derevenetc

and Meyer 2014]), and recently for the release/acquire fragment (RA) of C11 [Lahav and Margalit

2019]. In this work we are interested in a larger fragment of C11, which also includes relaxed
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accesses and release/acquire fences. These provide more fine-grained control on the required

synchronization, which allows for better performance. The price to pay is that we get much farther

than SC: relaxed accesses do not maintain basic causality as they can be reordered
1
(see, e.g., Ex. 4.2

below); release and acquire fences separate the synchronization points from the actual writes and

reads [Batty et al. 2011]; and release sequences, a special mechanism for using relaxed read-modify-

write instructions (RMWs) for synchronization, are hard to reason about [Doko and Vafeiadis

2017]. This makes programming more difficult and error-prone (see, e.g., the case of Peterson’s lock

described in §7), which, in fact, may (and, we believe, often does) cause programmers to refrain

from using relaxed accesses altogether.

In this work, we extend the results of Lahav andMargalit [2019] to a larger fragment of C11, which

also includes relaxed reads/writes/RMWs and release/acquire fences. We show that robustness

against this model is reduced to a reachability problem under an instrumented SC semantics.
2

Roughly speaking, while the generated execution histories (a.k.a. execution graphs) are unbounded
(since programs may have loops), we show that a finite collection of (rather intricate) properties of

the generated execution history suffices for (sound and precise) monitoring of states where threads

may observe (either by reading or by overwriting) values under the weak semantics that cannot

be observed under SC. Based on this reduction, we obtain a decision procedure for robustness,

which we have also implemented and experimented with, using SPIN [Holzmann 1997] for the

reachability analysis under SC. In particular, it follows that for programs with bounded data domain

robustness verification against the model studied here is PSPACE-complete (just like robustness

verification against x86-TSO or RA).

The factors that make programming with relaxed accesses to be difficult also make robustness

verification for relaxed accesses to be technically challenging. Indeed, the instrumented semantics

that we develop requires much finer distinctions maintaining multiple views for each thread, which

in turn allow us to compare the observable values under SC to those observable in the relaxed

semantics. Nevertheless, while the instrumentation is heavier than the one in [Lahav and Margalit

2019], our experiments show that this has only a minor effect on the practical verification times.

While handling relaxed accesses, we have identified a drawback of all (to the best of our knowl-

edge) existing robustness criteria, which becomesmore important for robustness against a semantics

that includes relaxed accesses. It is related to the question of what exactly constitutes a program

behavior (and, in turn, what is a robustness violation?). The simplest answer identifies program

behaviors with sets of reachable program states, where program states consist of the values of the

different program counters and local variables. However, Derevenetc [2015] observed that, while

desirable, solving the robustness verification problem for a state-based robustness notion is as

hard as full-fledged verification under the weak semantics. The latter can be extremely difficult

from a computational complexity point of view (non-primitive recursive for TSO [Atig et al. 2010,

2012] and undecidable for RA [Abdulla et al. 2019]). Thus, researchers have resorted to stronger

robustness definitions, in which program behaviors are taken to be sets of “annotated” histories of

the executions of the programs (called traces or execution graphs), and robustness requires that all

such histories generated by the program under the weak semantics can be also generated under SC.

However, we observe here that both state-based and history-based robustness notions forbid

the benign programming idiom of speculative reads as used in sequence lock algorithms. These

algorithms used in the Linux kernel were identified as a main use of relaxed accesses [Sinclair

1
Like all verification works, we are unable to work with the original C11 model, which allows unrestricted cycles in the

union of “program order” and “reads-from”, and thus exhibits “out-of-thin-air” values and even fails to provide the most

basic DRF guarantee. We follow [Boehm and Demsky 2014; Lahav et al. 2017] and disallow such cycles, which invalidates

store-after-load reordering. Section 3 discusses further technical differences between the model used here and C11.

2
Equivalently, as we do in our implementation, one can think about reachability under SC of an instrumented program.
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et al. 2017], and considered as probably “the most challenging of common programming idioms to

implement with modern programming language memory models” [Boehm 2012]. Roughly speaking,

they are locking mechanisms in which relaxed accesses are used to efficiently speculatively read

some shared data, requiring a validation mechanism (implemented with stronger accesses or fences)

before the read values are being used. If validation fails, the speculations are disposed and retried.

Observing stale speculative values under relaxed semantics (which cannot be observed under SC)

may be perfectly fine, but it does imply a reachable intermediate program state that is not reachable

under SC, resulting in a robustness violation. Nevertheless, if the validation mechanism can be

proved to throw away stale values before they are actually being used, this mechanism should be

considered as a benign temporary robustness violation that can never harm the program’s safety.

To support verification of such mechanisms, we propose a novel notion of robustness, which we

call observational robustness. It is a history-based notion (to make is computationally attainable),

but it allows the program to have some non-SC histories provided that they can be “turned” into

SC histories without affecting any value that the program used. To do so, we include a dependency

relation (akin to the one used in modern hardware models, see, e.g., [Flur et al. 2016; Podkopaev

et al. 2019]) in the program’s execution graphs, and allow observationally robust programs to read

stale values (violating SC) as long as no further operation depends on these values.

As we did for usual robustness, we show that observational robustness can be verified by

inspecting only SC executions of the program, which, again, allows the reduction to reachability

in an instrumented SC semantics. These results require certain technical novelties as we have to

carefully generate an SC execution from any execution representing an observational robustness

violation (that could have diverged from SC early on), as well as to devise a specialized taint tracking

mechanism for identifying dependencies on stale values. We note that our observational robustness

verification is sound but, unlike our result for usual (history-based) robustness, imprecise. Still, we

show that it verifies the challenging examples of [Boehm 2012] deeming them as robust and safe.

We leave the problem of developing a more precise analysis (as well as identifying the robustness

notion that our analysis is precise for) to future work.

To conclude, the main contributions of this paper are summarized as follows:

(1) We develop a sound and precise robustness verification method (by reduction to reachability

in an instrumented SC semantics) for a C11-style model that includes relaxed accesses and

release/acquire fences.

(2) We introduce a notion of observational robustness that allows one to reason about sequence-

locks-like programs using speculative reads, and provide a sound verification method for

this robustness notion.

(3) We provide an implementation of our approach and present its application on multiple

challenging examples.

Outline. The rest of this paper is organized as follows. In §2 we present the programming language

that we assume in this paper. In §3 we present the C11-style memory model that we study in

this paper and discuss its relation to (R)C11. In §4 we present our robustness notions and the key

theorems that enable their verification. In §5 we present the reduction of robustness verification to

a reachability problem under SC. In §7 we discuss the implementation and our experiments with it.

In §8 we present related work and conclude.

Additional Material. Proofs of the theorems in the paper are given in the its accompanying technical

appendix available at [Margalit and Lahav 2020]. The prototype implementation and the examples

it was tested on are available in the artifact accompanying this paper (available at https://dl.acm.

org/do/10.1145/3410267/full/).
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𝑣,𝑢 ∈ Val Values 𝑜X ∈ ModX where X ∈ {R, W, RMW, F} Access modes

𝑥, 𝑦, 𝑧 ∈ Loc ⊆ {x, y, ...} Locations sPr ∈ SProg ≜ {0, 1, ... ,𝑁 } → Inst Sequential programs

𝑟 ∈ Reg ⊆ {a, b, ...} Registers Pr : Tid → SProg (Concurrent) programs

𝜏, 𝜋 ∈ Tid ⊆ {T1, T2, ...} Thread identifiers

𝑒 ::= 𝑟 | 𝑣 | 𝑒 + 𝑒 | 𝑒 = 𝑒 | 𝑒 ≠ 𝑒 | ...

Inst ∋ inst ::= 𝑟 := 𝑒 | if 𝑒 goto pc
1
, ... ,pc𝑛 | assert(𝑒)

| 𝑥 .store(𝑒, 𝑜W) | 𝑟 := 𝑥 .load(𝑜R)
| 𝑟 := 𝑥 .FADD(𝑒, 𝑜RMW) | 𝑟 := 𝑥 .CAS(𝑒, 𝑒, 𝑜RMW, 𝑜R) | fence(𝑜F)
| wait(𝑥 = 𝑒, 𝑜R) | 𝑥 .BCAS(𝑒, 𝑒, 𝑜RMW)

Fig. 1. Domains and programming language syntax.

2 CONCURRENT PROGRAMMING LANGUAGE
In this section we formulate the syntax of our C-style toy programming language (§2.1), and present

the interpretation of concurrent programs as labeled transition systems synchronized with general

memory systems (§2.2). We start with several preliminary conventions and notations.

Relations. Given a (binary) relation 𝑅, dom(𝑅) and codom(𝑅) denote its domain and codomain,

and 𝑅?
, 𝑅+

, and 𝑅∗
denote its reflexive, transitive, and reflexive-transitive closures. The inverse of a

relation 𝑅 is denoted by 𝑅−1
, and the (left) composition of two relations 𝑅1, 𝑅2 is denoted by 𝑅1 ; 𝑅2.

We denote by [𝐴] the identity relation on a set 𝐴. In particular, [𝐴] ; 𝑅 ; [𝐵] = 𝑅 ∩ (𝐴 × 𝐵).

Labeled Transition Systems. A labeled transition system (LTS) 𝐴 is a tuple ⟨𝑄, Σ, q0,−→⟩, where 𝑄
is a set of states, Σ is an alphabet, q0 ∈ 𝑄 is the initial state, and −→⊆ 𝑄 × Σ ×𝑄 is a set of transitions.
We write

𝜎−→ for the relation {⟨𝑞, 𝑞′⟩ | ⟨𝑞, 𝜎, 𝑞′⟩ ∈ −→}, and −→ for

⋃
𝜎 ∈Σ

𝜎−→. We denote by 𝐴.Q, 𝐴.Σ,
𝐴.q0, and −→𝐴 the components of an LTS 𝐴. A state 𝑞 ∈ 𝐴.Q is called reachable in 𝐴 if 𝐴.q0 −→∗

𝐴
𝑞.

A symbol 𝜎 ∈ 𝐴.Σ is enabled in 𝑞 ∈ 𝐴.Q (alternatively, 𝑞 enables 𝜎) if 𝑞 𝜎−→𝐴 𝑞′ for some 𝑞′ ∈ 𝐴.Q.
For a finite sequence tr ∈ 𝐴.Σ∗

(i.e., a function from {1, ... ,𝑁 } to 𝐴.Σ for some 𝑁 ≥ 0), we write

tr−→𝐴 for the composition

tr (1)
−−−→𝐴 ; ... ;

tr ( |tr |)
−−−−−→𝐴. A sequence tr ∈ 𝐴.Σ∗

such that 𝐴.q0
tr−→𝐴 𝑞 for some

𝑞 ∈ 𝐴.Q is called a trace of 𝐴.

2.1 Language Syntax
We assume finite sets of values, (shared) memory locations, register names, and thread identifiers:

Val ⊆ N, Loc ⊆ {x, y, ...}, Reg ⊆ {a, b, ...}, and Tid ⊆ {T1, T2, ...}. We assume that Val contains a
distinguished value 0, used as the initial value for all locations. Memory instructions in our language

employ access modes, taken from the set Mod ≜ {rlx, rel, acq, acqrel}, which determine their

“consistency level”.
3
Its following subsets provide the possible read, write, RMW, and fence modes

respectively:

ModR ≜ {rlx, acq} ModRMW ≜ {rlx, acq, rel, acqrel}
ModW ≜ {rlx, rel} ModF ≜ {acq, rel, acqrel}

A partial order ⊑ on Mod, which intuitively orders access modes according to their strength, is

defined by (the reflexive transitive closure of):

rlx ⊑ acq ⊑ acqrel and rlx ⊑ rel ⊑ acqrel

3
In §6 we extend our results to support C11-style non-atomic accesses with na access mode.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 4. Publication date: January 2021.



Verifying Observational Robustness against a C11-Style Memory Model 4:5

Figure 1 presents our toy programming language. Its expressions are constructed from registers

(local variables) and values. Instructions include assignments, memory accesses and release/acquire

fences. SC-fences are not taken as primitives in this language but rather included as a syntac-

tic sugar; see §3.1 and Remark 1. We include non-deterministic conditional jumps instructions

(if 𝑒 goto pc
1
, ... ,pc𝑛 jumps to some program counter pc𝑘 if 𝑒 is not 0) from which usual condi-

tionals and loops can be implemented. Assertions can be used for safety verification (assert(𝑒)
fails if 𝑒 is 0). Memory accesses consist of loads, stores, and RMWs, which are either (never failing)

fetch-and-adds (FADD) or (possibly failing) compare-and-swaps (CAS). Both RMW operations

return the value that was read before its update. The language also includes two kinds of blocking

instructions: wait(𝑥 = 𝑒, 𝑜R) blocks the execution of the thread until it can read the value of 𝑒

from 𝑥 (with mode 𝑜R ∈ ModR); and 𝑥 .BCAS(𝑒, 𝑒, 𝑜RMW) is an (always successful) blocking CAS.

The blocking instructions are implementable using busy loops, but, as observed in [Lahav and

Margalit 2019], they make the robustness analysis more expressive as they allow one to mask

benign robustness violations: it often happens that stale values can be read in the busy loop, while

the use of the blocking instructions instead of the busy loops ensures robustness.

Sequential and concurrent programs are defined as follows.

Definition 2.1. A sequential program sPr is a function from a set of the form {0, 1, ... ,𝑁 } (the
possible values of the program counter) to instructions. We denote by SProg the set of all sequential
programs. A concurrent program Pr is a mapping from Tid to SProg. For simplicity, we assume that

the sets of registers mentioned in the components of concurrent programs are pairwise disjoint.

Concurrent programs (which we also shortly call programs) are top-level parallel compositions

of sequential programs. In our examples, we often write sequential programs as sequences of

instructions delimited by “;” or line breaks, and use ‘∥’ for parallel composition.

2.2 From Programs to Labeled Transition Systems
Next, we show how programs are read as labeled transition systems. At this stage, the memory

system, responsible of determining which values can be read at each point, is left parametric. To

define the alphabet of these LTSs we use event labels and sequential transition labels:

Definition 2.2. An event label 𝑙 takes one of the following forms: R(𝑜R, 𝑥, 𝑣R) (read label), W(𝑜W, 𝑥, 𝑣W)
(write label), RMW(𝑜RMW, 𝑥, 𝑣R, 𝑣W) (RMW label), R★(𝑜R, 𝑥, 𝑣R) (wait/failed CAS label), F(𝑜F) (fence label),
or CTRL (control label), where 𝑥 ∈ Loc, 𝑣R, 𝑣W ∈ Val, and 𝑜X ∈ ModX (for X ∈ {R, W, RMW, F}). The
functions typ, loc, valR, valW, and mod return (when applicable) the type (R/W/RMW/R★/F/CTRL),
location (𝑥), read value (𝑣R), written value (𝑣W), and access mode (𝑜X) of a given event label. We

denote by Lab the set of all event labels.

Definition 2.3. A sequential transition label 𝐿 is a triple of the form ⟨𝑙𝜀 , 𝑅in, 𝑅out⟩, where 𝑙𝜀 ∈
Lab ∪ {𝜀} and 𝑅in, 𝑅out ⊆ Reg. The functions lab, Rin, and Rout return the components of a given

sequential transition label. The functions typ, loc, valR, valW, and mod are lifted to sequential

transition labels in the obvious way (undefined when lab(𝐿) = 𝜀). We denote by TLab the set of all

sequential transition labels.

Event labels record the memory operation performed at each execution step. Distinguishing

normal reads and R★-reads which arise from wait and (failing) CAS instructions is instrumental in

our observational robustness notion (we will not allow “speculative” R★-reads). In turn, sequential

transition labels also include silent program steps (with lab(𝐿) = 𝜀), and further record the input

registers 𝑅in (registers that were read in each step) and the output registers 𝑅out (registers that were

written to in each step). Together with the fact that we have explicit CTRL-labels, this allows us

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 4. Publication date: January 2021.
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sPr (pc) = 𝑟 := 𝑒

𝜙′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒) ]
𝑅in = Reg(𝑒) 𝑅out = {𝑟 }

⟨pc, 𝜙 ⟩ 𝜀,𝑅in,𝑅out−−−−−−−−→sPr ⟨pc + 1, 𝜙′⟩

sPr (pc) = if 𝑒 goto pc
1
, ... ,pc𝑛

𝜙 (𝑒) ≠ 0 =⇒ pc′ ∈ {pc
1
, ... ,pc𝑛 }

𝜙 (𝑒) = 0 =⇒ pc′ = pc + 1

𝑙 = CTRL 𝑅in = Reg(𝑒)

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,∅−−−−−→sPr ⟨pc′, 𝜙 ⟩

sPr (pc) = assert(𝑒)
𝜙 (𝑒) ≠ 0 =⇒ pc′ = pc′ + 1

𝜙 (𝑒) = 0 =⇒ pc′ = ⊥
𝑙 = CTRL 𝑅in = Reg(𝑒)

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,∅−−−−−→sPr ⟨pc′, 𝜙 ⟩

sPr (pc) = 𝑥.store(𝑒, 𝑜W)
𝑙 = W(𝑜W, 𝑥, 𝜙 (𝑒))
𝑅in = Reg(𝑒)

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,∅−−−−−→sPr ⟨pc + 1, 𝜙 ⟩

sPr (pc) = 𝑟 := 𝑥.load(𝑜R)
𝑙 = R(𝑜R, 𝑥, 𝑣)

𝜙′ = 𝜙 [𝑟 ↦→ 𝑣 ] 𝑅out = {𝑟 }

⟨pc, 𝜙 ⟩ 𝑙,∅,𝑅out−−−−−−→sPr ⟨pc + 1, 𝜙′⟩

sPr (pc) = 𝑟 := 𝑥.FADD(𝑒, 𝑜RMW)
𝑙 = RMW(𝑜RMW, 𝑥, 𝑣, 𝑣 + 𝜙 (𝑒))

𝜙′ = 𝜙 [𝑟 ↦→ 𝑣 ]
𝑅in = Reg(𝑒) 𝑅out = {𝑟 }

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,𝑅out−−−−−−−−→sPr ⟨pc + 1, 𝜙′⟩

sPr (pc) = 𝑟 := 𝑥.CAS(𝑒R, 𝑒W, 𝑜RMW, 𝑜R)
𝑙 = RMW(𝑜RMW, 𝑥, 𝜙 (𝑒R), 𝜙 (𝑒W))

𝜙′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒R) ]
𝑅in = Reg(𝑒R) ∪ Reg(𝑒W) 𝑅out = {𝑟 }

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,𝑅out−−−−−−−−→sPr ⟨pc + 1, 𝜙′⟩

sPr (pc) = 𝑟 := 𝑥.CAS(𝑒R, 𝑒W, 𝑜RMW, 𝑜R)
𝑙 = R★ (𝑜R, 𝑥, 𝑣) 𝑣 ≠ 𝜙 (𝑒R)

𝜙′ = 𝜙 [𝑟 ↦→ 𝑣 ]
𝑅in = Reg(𝑒R) 𝑅out = {𝑟 }

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,𝑅out−−−−−−−−→sPr ⟨pc + 1, 𝜙′⟩

sPr (pc) = fence(𝑜F)
𝑙 = F(𝑜F)

⟨pc, 𝜙 ⟩ 𝑙,∅,∅−−−→sPr ⟨pc + 1, 𝜙 ⟩

sPr (pc) = wait(𝑥 = 𝑒, 𝑜R)
𝑙 = R★ (𝑜R, 𝑥, 𝜙 (𝑒))

𝑅in = Reg(𝑒)

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,∅−−−−−→sPr ⟨pc + 1, 𝜙 ⟩

sPr (pc) = 𝑥.BCAS(𝑒R, 𝑒W, 𝑜RMW)
𝑙 = RMW(𝑜RMW, 𝑥, 𝜙 (𝑒R), 𝜙 (𝑒W))

𝑅in = Reg(𝑒R) ∪ Reg(𝑒W)

⟨pc, 𝜙 ⟩ 𝑙,𝑅in,∅−−−−−→sPr ⟨pc + 1, 𝜙 ⟩

Fig. 2. Transitions of LTS induced by a sequential program sPr ∈ SProg.

to observe dependencies between actions in the LTS induced by a program, with no need to refer

back to the code itself. Note that for the language constructs introduced above, 𝑅out will always be

either empty or a singleton.

The next definition formally associates sequential programs with LTSs. In the sequel we identify

sequential programs with their induced LTSs (when writing, e.g., sPr .Q and −→sPr ).

Definition 2.4. The LTS (over the alphabet TLab) induced by sPr is defined as follows:

• Its states are pairs 𝑞 = ⟨pc, 𝜙⟩, where pc ∈ {0, ... ,𝑁 } ∪ {⊥} is the program counter (where
𝑁 ≥ 0 and ⊥ denotes an “error state”) and 𝜙 : Reg → Val is the local store assigning values
to registers. We assume that 𝜙 is extended to apply on expressions 𝑒 in a standard way that

reflects the (unspecified) expression semantics.

• The initial state is ⟨0, 𝜆𝑟 . 0⟩.
• The transitions are given in Fig. 2 (providing formal meaning to the descriptions above).

Example 2.5. We present the LTS induced by a simple sequential program. Let Val = {0, ... ,4},
Loc = {x} and Reg = {a}. We evaluate expressions of the form 𝑟 = 𝑒 to be 1 if 𝜙 (𝑟 ) = 𝜙 (𝑒) and 0

otherwise.

sPr ≜
0 : x.store(1, rel)
1 : a := x.load(acq)
2 : assert(a = 1)

sPr .Q = {0, 1, 2, 3,⊥} × {[a ↦→ 𝑣] | 𝑣 ∈ Val} sPr .q0 = ⟨0, [a ↦→ 0]⟩
−→sPr= {⟨0, [a ↦→ 𝑣]⟩ W(rel,x,1),∅,∅

−−−−−−−−−−−→sPr ⟨1, [a ↦→ 𝑣]⟩ | 𝑣 ∈ Val} ∪
{⟨1, [a ↦→ 𝑣]⟩ R(acq,x,𝑢),∅,{a}

−−−−−−−−−−−−−−→sPr ⟨2, [a ↦→ 𝑢]⟩ | 𝑣,𝑢 ∈ Val} ∪
{⟨2, [a ↦→ 1]⟩ CTRL,{a},∅

−−−−−−−−−→sPr ⟨3, [a ↦→ 1]⟩} ∪
{⟨2, [a ↦→ 𝑣]⟩ CTRL,{a},∅

−−−−−−−−−→sPr ⟨⊥, [a ↦→ 𝑣]⟩ | 𝑣 ∈ Val \ {1}}

The last definition is straightforwardly lifted to the concurrent setting. (Again, we will identify

concurrent programs with their induced LTSs.)

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 4. Publication date: January 2021.



Verifying Observational Robustness against a C11-Style Memory Model 4:7

Definition 2.6. The LTS induced by a (concurrent) program Pr is the LTS over the alphabet

Tid × TLab whose states are tuples 𝑞 ∈ ∏
𝜏 ∈Tid Pr (𝜏).Q; its initial state is 𝜆𝜏 . Pr (𝜏).q0; and its

transitions are interleaved transitions of Pr’s components, formally given by:

𝑞(𝜏) 𝐿−→Pr (𝜏) 𝑞
′

𝑞
𝜏,𝐿−−→Pr 𝑞 [𝜏 ↦→ 𝑞′]

On the level of programs, the values read by loads and RMWs are completely arbitrary. They are

constrained by synchronizing a program with a memory system, and obtaining a concurrent system,

as defined next.

Definition 2.7. A memory system M is an LTS over the alphabet Tid × TLab. The concurrent
system induced by a program Pr and a memory systemM, denoted by Pr qM, is the LTS over the

alphabet Tid × TLab whose states are pairs in Pr .Q ×M .Q; its initial state is ⟨Pr .q0,M .q0⟩; and its

transitions are synchronized transitions of Pr andM, formally given by:

𝑞
𝜏,𝐿−−→Pr 𝑞

′ 𝑞M
𝜏,𝐿−−→M 𝑞′M

⟨𝑞, 𝑞M⟩ 𝜏,𝐿−−→PrqM ⟨𝑞′, 𝑞′M⟩

The most well-known memory system is the one of sequential consistency, denoted here by SC.
This memory system simply tracks the most recent value written to each location. Formally, it is

defined as follows.

Definition 2.8. The memory system SC is given by: SC.Q ≜ Loc → Val, SC.q0 ≜ 𝜆𝑥 ∈ Loc. 0 and
−→SC is given by:

typ(𝐿) ∈ {R, R★}
𝑀 (loc(𝐿)) = valR (𝐿)

𝑀
𝜏,𝐿−−−→SC𝑀

typ(𝐿) = W

𝑀′ = 𝑀 [loc(𝐿) ↦→ valW (𝐿) ]

𝑀
𝜏,𝐿−−−→SC𝑀

′

typ(𝐿) = RMW
𝑀 (loc(𝐿)) = valR (𝐿)

𝑀′ = 𝑀 [loc(𝐿) ↦→ valW (𝐿) ]

𝑀
𝜏,𝐿−−−→SC𝑀

′

typ(𝐿) ∉ {R, W, RMW, R★}

𝑀
𝜏,𝐿−−−→SC𝑀

Finally, we can define what it means for a program to fail under a memory system M.

Definition 2.9. A state 𝑞 ∈ Pr .Q is failing if 𝑞(𝜏) = ⟨⊥, 𝜙⟩ for some 𝜏 ∈ Tid and local store 𝜙 .

Definition 2.10. A program Pr may fail under a memory system M if ⟨𝑞, 𝑞M⟩ is reachable in
Pr qM for some failing state 𝑞 ∈ Pr .Q and 𝑞M ∈ M .Q.

Our assumption that the program is finite-data (in particular, we assume that Val is finite)
ensures that the question whether a given program may fail under SC is decidable (it is PSPACE-

complete [Kozen 1977]). The goal of robustness analysis against a memory systemM (weaker than

SC) is to reduce the question of whether a given program Pr may fail under M to the question of

whether Pr may fail under SC.

3 DECLARATIVE CONCURRENCY SEMANTICS USING EXECUTION GRAPHS
In this section we formulate the C11-style memory model, which we call RC20, that we consider in
this paper. Like C11 [Batty et al. 2011] and its rectified version RC11 [Lahav et al. 2017], RC20 is
defined declaratively—it identifies program behaviors with partially ordered program traces, called

execution graphs, that meet certain consistency constraints. In §3.1 we formally define execution

graphs and present RC20’s consistency notion. In §3.2, we formulate the correspondence between

programs and sets of execution graphs.
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3.1 Execution Graphs and RC20-Consistency
We define execution graphs, starting from their ingredients: an underlying set of events, a labeling
function assigning an event label to each event, a dependency relation between events in the same

thread, a reads-from mapping determining the write event from which each read event reads its

value, and a modification order totally ordering the writes to each location.

Definition 3.1. An event 𝑒 is a pair ⟨𝜏, sn⟩, where 𝜏 ∈ Tid ⊎ {⊥} is a thread identifier (⊥ is used

for initialization events) and sn ∈ N is a serial numbers. The functions tid and sn return the thread

identifier and serial number of an event. We denote the set of all events by Event. Given a set

𝐸 ⊆ Event and 𝜏 ∈ Tid, we write 𝐸𝜏 for {𝑒 ∈ 𝐸 | tid(𝑒) = 𝜏}.

Definition 3.2. Let 𝐸 be a set of events and lab : 𝐸 → Lab be a labeling function (Lab is defined

in Def. 2.2).

• A relation dp is a dependency relation for 𝐸 and lab if dp ⊆ 𝐸 × 𝐸 and ⟨𝑒1, 𝑒2⟩ ∈ dp implies

tid(𝑒1) = tid(𝑒2), sn(𝑒1) < sn(𝑒2), and typ(lab(𝑒1)) ∈ {R, RMW, R★}.
• A relation rf is a reads-from relation for 𝐸 and lab if the following hold:

– If ⟨𝑤, 𝑟 ⟩ ∈ rf , then𝑤, 𝑟 ∈ 𝐸, typ(lab(𝑤)) ∈ {W, RMW}, typ(lab(𝑟 )) ∈ {R, RMW, R★},
loc(lab(𝑤)) = loc(lab(𝑟 )), and valW (lab(𝑤)) = valR (lab(𝑟 )).

– If ⟨𝑤1, 𝑟 ⟩, ⟨𝑤2, 𝑟 ⟩ ∈ rf , then𝑤1 = 𝑤2 (that is, rf −1 is functional).
– For every 𝑟 ∈ {𝑒 ∈ 𝐸 | typ(lab(𝑒)) ∈ {R, RMW, R★}}, we have ⟨𝑤, 𝑟 ⟩ ∈ rf for some𝑤 ∈ 𝐸.

• A relation mo is a modification order for 𝐸 and lab if it is a disjoint union of relations

{mo𝑥 }𝑥 ∈Loc, where each mo𝑥 is a strict total order on

{𝑤 ∈ 𝐸 | typ(lab(𝑤)) ∈ {W, RMW} ∧ loc(lab(𝑤)) = 𝑥}.

Definition 3.3. An execution graph is a tuple 𝐺 = ⟨𝐸, lab, dp, rf ,mo⟩ where 𝐸 is a finite set of

events, lab : 𝐸 → Lab is a labeling function, and dp, rf , and mo are respectively a dependency

relation, a reads-from relation, and a modification order for 𝐸 and lab. We denote by EGraph the

set of all execution graphs. The components of 𝐺 are denoted by 𝐺.E, 𝐺.lab, 𝐺.dp, 𝐺.rf, and 𝐺.mo.
We write 𝐺.typ for 𝜆𝑒 ∈ 𝐺.E. typ(𝐺.lab(𝑒)) and use similar notations for loc, valR, valW, and
mod. We use the following notations for restricted sets of events:

𝐺.R ≜ {𝑒 ∈ 𝐺.E | 𝐺.typ(𝑒) ∈ {R, RMW, R★}} 𝐺.W ≜ {𝑒 ∈ 𝐺.E | 𝐺.typ(𝑒) ∈ {W, RMW}}
For 𝛼 ∈ {RMW, F,R★,CTRL} : 𝐺.𝛼 ≜ {𝑒 ∈ 𝐺.E | 𝐺.typ(𝑒) = 𝛼}

We employ subscripts and superscripts to restrict sets of events to certain properties (e.g.,𝐺.W⊒rel
𝑥 =

{𝑤 ∈ 𝐺.W | 𝐺.loc(𝑤) = 𝑥 ∧𝐺.mod(𝑤) ⊒ rel}).

We assume that execution graphs are always initialized, as defined next.

Definition 3.4. The set of Init initialization events consists of an event 𝑤 Init
𝑥 for every 𝑥 ∈ Loc

with tid(𝑤 Init
𝑥 ) = ⊥ and sn(𝑤 Init

𝑥 ) = 0. The initial labeling function labInit is the function assigning

the label W(rlx, 𝑥, 0) to each every initialization event𝑤 Init
𝑥 ∈ Init. The initial execution graph 𝐺0

is given by 𝐺0 ≜ ⟨Init, labInit, ∅, ∅, ∅⟩. An execution graph 𝐺 is initialized if it extends 𝐺0 (that is:

Init ⊆ 𝐺.E and labInit ⊆ 𝐺.lab).

Our representation of events induces a program order, in which events of the same thread are

ordered according to their serial numbers and initialization events precede all other events (i.e.,

⟨𝜏1, sn1⟩ < ⟨𝜏2, sn2⟩ if 𝜏1 = 𝜏2 ≠ ⊥ and sn1 < sn2, or 𝜏1 = ⊥ and 𝜏2 ≠ ⊥). We denote by 𝐺.po the

restriction of this order to 𝐺.E (i.e., 𝐺.po ≜ {⟨𝑒1, 𝑒2⟩ ∈ 𝐺.E ×𝐺.E | 𝑒1 < 𝑒2}).
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To define RC20-consistent execution graphs, we need several additional derived relations. First,

we define the synchronizes with relation and the happens-before relation:

𝐺.sw ≜ [𝐺.E⊒rel] ; ( [𝐺.F] ;𝐺.po)? ;𝐺.rf+ ; (𝐺.po ; [𝐺.F])? ; [𝐺.E⊒acq] (synchronizes with)

𝐺.hb ≜ (𝐺.po ∪𝐺.sw)+ (happens-before)

Happens-before consists of all paths formed of program order edges (po) and synchronization edges

(sw). The latter contains rf-edges between release writes and acquire reads. Synchronization is

also induced by:

(1) rf-edges from relaxed writes that follow release fences;

(2) rf-edges to relaxed reads that are followed by acquire fences; and

(3) release sequences (using C11’s terminology)—sequences of rf-edges, where all internal events
in the sequence are RMWs (necessarily, as they both read and write).

We note that (R)C11’s synchronization also includes [𝐺.W⊒rel] ; (𝐺.po ∩𝐺.mo) ;𝐺.rf+ ; (𝐺.po ;
[𝐺.F])? ; [𝐺.E⊒acq]. To simplify the model, observing that this extension is rarely used, it was

recently discarded from the C/C++ memory model [Boehm et al. 2018]. Accordingly, we use here

the simpler version of sw.
Second, we use the standard from-read relation (a.k.a. reads-before), which relates reads with

subsequent writes to the same location (write events that are mo-later than the write event that the

read event reads its value from):

𝐺.fr ≜ (𝐺.rf−1 ;𝐺.mo) \ [𝐺.E] (from-read)

Now, following (R)C11, RC20-consistency is defined as the conjunction of four constraints:

Definition 3.5. An execution graph 𝐺 is RC20-consistent if the following hold:

• 𝐺.mo ;𝐺.rf? ;𝐺.hb? is irreflexive. (write coherence)

• 𝐺.fr ;𝐺.rf? ;𝐺.hb is irreflexive. (read coherence)

• 𝐺.fr ;𝐺.mo is irreflexive. (atomicity)

• 𝐺.po ∪𝐺.rf is acyclic. (po-rf)

The first two constraints ensure that the per-location order (mo ∪ fr) ; rf? agrees with hb. The
third constraint guarantees the atomicity of RMWs (in particular, it implies that two RMWs cannot

read from the same event). The last constraint is a conservative strengthening of the original C11

model employed in the RC11 model [Lahav et al. 2017] (following [Boehm and Demsky 2014]) for

avoiding the out-of-thin-air problem. To the best of our knowledge, this acyclicity condition is

assumed in all C11 verification methods and tools e.g., [Doherty et al. 2019; Kokologiannakis et al.

2017; Vafeiadis and Narayan 2013].

Example 3.6. Consider the following execution graph of the standard message passing test (MP):

x.store(1, rlx)
fence(rel)
y.store(1, rlx)

𝑆𝑇𝐴𝑅𝑇 :

a := y.load(rlx)
if a = 0 goto 𝑆𝑇𝐴𝑅𝑇

fence(acq)
b := x.load(rlx) //0
assert(b ≠ 0)

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

F(rel)

W(rlx, y, 1)

R(rlx, y, 1)

CTRL

F(acq)

R(rlx, x, 0)

sw

dp

mo

mo

rf

Due to the rf-edge from W(rlx, y, 1) to R(rlx, y, 1) we obtain synchronization (sw) from F(rel) to
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F(acq), and thus hb from W(rlx, x, 1) to R(rlx, x, 0). Since fr goes in the opposite direction, this

execution violates read coherence, and so it is not RC20-consistent. Omitting one (or both) of the

fences will remove the synchronization, making this graph RC20-consistent.

There are several differences between RC20 and RC11:

• For simplicity, RC20 does not include SC accesses, whose semantics was rectified in the RC11

model [Lahav et al. 2017]. We are aware of only a few (practical) algorithms that actually

employ SC accesses and become wrong when release/acquire accesses are used instead. In

these cases, SC-fences can be used instead of SC accesses, although this may incur a certain

cost when targeting ARMv8 that has special support for SC accesses.

• C11’s SC-fences, whose semantics was rectified in the RC11 model [Lahav et al. 2017], are not

included in RC20 as primitives. Instead, in RC20 SC-fences are syntactic sugar for sequences
of instructions: fence(acq); _ := f.FADD(0, acqrel); fence(rel) where f is a distinguished

otherwise-unused location. The two fences in the sequence ensure that SC-fences will behave

both as an acquire fence and as a release fence for inducing synchronization using the sw
relation (w.r.t. later writes and prior reads). The RMW instruction (FADD) ensures that hb will
totally order the SC-fences in the execution graph, which together with write coherence

and read coherence, provides us with the required guarantees.

• For the simplicity of the presentation, our formulation so far did not discuss C11’s non-atomic

accesses that have “catch-fire” semantics. These can be easily added (see §6).

Remark 1. Interestingly, the above encoding of SC fences results in a semantics that is strictly

stronger (i.e., allowing less behaviors) than RC11’s. Our model can be shown to be equivalent to a

model with SC fences as primitives that includes [Fsc] ; (po∪rf)+ ; [Fsc] and [Fsc] ; (po∪sw)+ ; (rf∪
mo;rf?∪fr;rf?) ; (po∪sw)+ ; [Fsc] as components of hb (together with po and sw). In turn, RC11 only
requires that [Fsc];(hb∪hb;(rf∪mo;rf?∪fr;rf?);hb); [Fsc] is acyclic.We conjecture that the existing

mapping of RC11 to hardware, as well as the compiler transformations that are sound under RC11,

can be validated for our semantics. This will provide: (𝑖) stronger guarantees to the programmers

with no additional cost; and (𝑖𝑖) a more principled and parsimonious approach for the semantics

of SC fences (they are precisely captured by fence(acq); _ := f.FADD(0, acqrel); fence(rel))
instead of their rather ad-hoc semantics in RC11. The latter is in line with other models (e.g., TSO

and the fragment of RC11 consisting of release/acquire atomics and non-atomics) in which an

RMW to a distinguished otherwise-unused location is equivalent to an SC-fence. We note that

previous work on verification under RC11 assumed a similar stronger simplified semantics for SC

fences [Dang et al. 2019].

We end this section by recalling the definition of sequential consistency in the declarative

framework. This formulation is used in our robustness notions (in §4) that are based on comparing

the set of RC20-consistent execution graphs of a given program to the set of SC-consistent execution
graphs of that program. We follow the standard definition (see, e.g., [Alglave et al. 2014]) using the

derived relation:

𝐺.hbSC ≜ (𝐺.po ∪𝐺.rf ∪𝐺.mo ∪𝐺.fr)+ (SC-happens-before)

Definition 3.7. An execution graph 𝐺 is SC-consistent if 𝐺.hbSC is irreflexive.

It is easy to see that SC-consistency implies RC20-consistency.

3.2 From Concurrent Programs to Execution Graphs
In this section we present the definitions needed for formally relating execution graphs with

concurrent programs, and use them to define what it means that a given program may fail under
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RC20. For example, we will have that the execution graph in Ex. 3.6 is indeed generated by the

program in that example and that this program may not fail under RC20. To so do, we define when

an execution graph 𝐺 is generated by a program Pr with a final state 𝑞 by using a special memory

system, called FG (for free graphs). This system sets no restrictions whatsoever in its transitions

(every sequence of pairs in Tid×TLab is a trace of FG), but rather maintains in its states the current

execution graph. Then, the execution graphs generated by a program Pr with final state 𝑞 are

defined as the execution graphs reachable by FG when FG executes a trace of Pr that reaches 𝑞.
To define FG, we use the following notation for adding a fresh event to an execution graph. It

“receives as input” the current execution graph𝐺 , the thread identifier 𝜏 of the new event, the label

𝑙 of the new event, the set 𝐷 of events on which the new event depends, and the write event𝑤 that

the new event reads from if it is a read, or placed as the mo-successor of if it is a write. When the

new event is an RMW (typ(𝑙) = RMW), its rf-source and mo-predecessor must coincide (this is in

line with write coherence and atomicity). When the new event is a fence or a control event, we

do not need the event𝑤 .

Notation 3.8. For 𝐺 ∈ EGraph and 𝜏 ∈ Tid, next(𝐺, 𝜏) denotes the “next available event” for
thread 𝜏 in 𝐺 , given by next(𝐺, 𝜏) ≜ ⟨𝜏,max{sn(𝑒) | 𝑒 ∈ 𝐺.E𝜏 } + 1⟩. For 𝐺 ∈ EGraph, 𝜏 ∈ Tid,
𝑙 ∈ Lab, 𝐷 ⊆ Event, and𝑤 ∈ Event∪ {⊥}, add(𝐺, 𝜏, 𝑙, 𝐷,𝑤) denotes the tuple ⟨𝐸 ′, lab′, dp′, rf ′,mo′⟩
defined as follows, where 𝑒 = next(𝐺, 𝜏):

𝐸 ′ = 𝐺.E ∪ {𝑒}
lab′ = 𝐺.lab ∪ {𝑒 ↦→ 𝑙}
dp′ = 𝐺.dp ∪ (𝐷 × {𝑒})

rf ′ =

{
𝐺.rf ∪ {⟨𝑤, 𝑒⟩} typ(𝑙) ∈ {R, RMW, R★}
𝐺.rf otherwise

mo′ =
{
𝐺.mo ∪ {⟨𝑤 ′, 𝑒⟩ | ⟨𝑤 ′,𝑤⟩ ∈ 𝐺.mo?} ∪ {⟨𝑒,𝑤 ′⟩ | ⟨𝑤,𝑤 ′⟩ ∈ 𝐺.mo} typ(𝑙) ∈ {W, RMW}
𝐺.mo otherwise

To properly set the dependency relation between the events of the graph, together with the

current execution graph, FG carries a dependency store in its state, which records for every register

𝑟 the graph events that correspond to the reads on which the value of 𝑟 depends.

Definition 3.9. A dependency store is a function𝜓 : Reg → P(Event). For 𝑅 ⊆ Reg, we write𝜓 (𝑅)
for the set

⋃
𝑟 ∈𝑅𝜓 (𝑟 ), and𝜓 [𝑅 ↦→ 𝐸] for the dependency store𝜓 ′

that is identical to𝜓 (possibly)

except for𝜓 ′(𝑟 ) = 𝐸 for every 𝑟 ∈ 𝑅.

Having 𝑒 ∈ 𝜓 (𝑟 ) means that the value of 𝑟 depends on the event 𝑒 . For example, after executing

a := x.load(rlx) we will have𝜓 (a) = {𝑒}, where 𝑒 is the (fresh) read event generated for this load

instruction. For a := x.load(rlx); b := x.load(rlx); c := a + b, we will have two events in 𝜓 (c).
This allows us to generate appropriate dependency edges, when, say, y.store(c, rlx) comes next.

(Our assumption that different threads use disjoint registers simplifies the definition of𝜓 .)

Now, we define the memory system FG.

Definition 3.10. The memory system FG is given by:

• Its states are pairs ⟨𝐺,𝜓 ⟩, where 𝐺 is an execution graph and𝜓 is a dependency store.

• Its initial state is ⟨𝐺0,𝜓0⟩, where𝐺0 is the initial execution graph (as defined in Def. 3.4) and

𝜓0 ≜ 𝜆𝑟 . ∅ is the initial dependency store.

• Its transitions are given by:
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typ(𝐿) ∈ {R, W, RMW, R★}
𝑤 ∈ 𝐺.Wloc(𝐿)

typ(𝐿) ∈ {R, RMW, R★} =⇒ 𝐺.valW (𝑤) = valR (𝐿)
𝐺 ′ = add(𝐺, 𝜏, lab(𝐿),𝜓 (Rin (𝐿)),𝑤)
𝜓 ′ = 𝜓 [Rout (𝐿) ↦→ {next(𝐺, 𝜏)}]

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺 ′,𝜓 ′⟩

typ(𝐿) ∈ {F, CTRL}
𝐺 ′ = add(𝐺, 𝜏, lab(𝐿),𝜓 (Rin (𝐿)),⊥)

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺 ′,𝜓 ⟩

lab(𝐿) = 𝜀

𝜓 ′ = 𝜓 [Rout (𝐿) ↦→ 𝜓 (Rin (𝐿))]

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺,𝜓 ′⟩
We use FG to formally associate execution graphs with programs.

Definition 3.11. Let Pr be a program. An execution graph 𝐺 is:

• generated by Pr with final state 𝑞 and dependency store𝜓 if ⟨𝑞,𝐺,𝜓 ⟩ is reachable in Pr q FG.
• generated by Pr with final state 𝑞 if ⟨𝑞,𝐺,𝜓 ⟩ is reachable in Pr q FG for some 𝜓 .
• generated by Pr if ⟨𝑞,𝐺,𝜓 ⟩ is reachable in Pr q FG for some 𝑞 and𝜓 .

Using the last definition, the semantics to a program Pr under the RC20 model is taken to be the

set of RC20-consistent execution graphs that are generated by Pr . For safety under RC20, we use
the following definition, which captures when an assertion violation might arise under RC20.

Definition 3.12. A program Pr may fail under RC20 if some RC20-consistent execution graph 𝐺

is generated by Pr with a failing final state 𝑞 (see Def. 2.9).

In addition, we can now state the (well known) equivalence of the SC memory system (Def. 2.8)

and its declarative formulation (Def. 3.7) in terms of program safety.

Proposition 3.13. A program Pr may fail under SC (Def. 2.10) iff some SC-consistent execution
graph 𝐺 is generated by Pr with a failing final state 𝑞.

Finally, we will use certain receptiveness properties ensuring that the set of generated execution

graphs for a given program is closed under changes of the values read in read events with no

outgoing dependency edges. Intuitively, if nothing depends on the difference between two graphs,

then this difference cannot be observed by the program.

Definition 3.14. An event 𝑟 is a 𝐺-irrelevant read if 𝐺.typ(𝑒) = R and 𝑟 ∉ dom(𝐺.dp). We denote

by 𝐺.IR the set of all 𝐺-irrelevant read events.

Definition 3.15. Two execution graphs𝐺 and𝐺 ′
are equal up to a set𝑇 of events, denoted𝐺 ∼𝑇 𝐺 ′

,

if the following hold:

• 𝐺.E = 𝐺 ′.E, 𝐺.dp = 𝐺 ′.dp, and 𝐺.mo = 𝐺 ′.mo.
• 𝐺.typ = 𝐺 ′.typ, 𝐺.loc = 𝐺 ′.loc, 𝐺.valW = 𝐺 ′.valW, and 𝐺.mod = 𝐺 ′.mod.
• 𝐺.valR (𝑟 ) = 𝐺 ′.valR (𝑟 ) for every 𝑟 ∉ 𝑇 .
• 𝐺.rf ; [Event \𝑇 ] = 𝐺 ′.rf ; [Event \𝑇 ].

We say that 𝐺 and 𝐺 ′
are observationally equivalent if 𝐺 ∼𝐺.IR 𝐺

′
.

The following property ensures that the set of execution graphs generated by a program is closed

under observational equivalence.

Definition 3.16. Two program states 𝑞, 𝑞′ ∈ Pr .Q are equivalent up to a set 𝑅 ⊆ Reg, denoted by

𝑞 ∼𝑅 𝑞′, if 𝑞(𝜏) = ⟨pc, 𝜙⟩ implies that 𝑞′(𝜏) = ⟨pc, 𝜙 ′⟩ for some local store 𝜙 ′
satisfying 𝜙 ′(𝑟 ) = 𝜙 (𝑟 )

for every 𝑟 ∉ 𝑅.

Lemma 3.17. Suppose that 𝐺 ∼𝑇 𝐺 ′ for some 𝑇 ⊆ 𝐺.IR. If ⟨𝑞,𝐺,𝜓 ⟩ is reachable in Pr q FG,
then ⟨𝑞′,𝐺 ′,𝜓 ⟩ is reachable in Pr q FG for some program state 𝑞′ ∈ Pr .Q such that 𝑞 ∼𝑅 𝑞′ for
𝑅 = {𝑟 ∈ Reg | 𝜓 (𝑟 ) ∩𝑇 ≠ ∅}.
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4 ROBUSTNESS AGAINST RC20

In this section we introduce the two robustness notions studied in this paper: robustness against

RC20 and observational robustness against RC20. We show how they can be reduced to certain

properties of SC-consistent execution graphs that are generated by the given program. Since we

only consider robustness against RC20, we will refer to these properties simply as robustness and
observational robustness.
Robustness requires that RC20-consistency and SC-consistency coincide for execution graphs

generated by the program:

Definition 4.1. A program Pr is robust if all RC20-consistent execution graphs generated by Pr
are also SC-consistent.

Example 4.2. It is easy to see that the MP in Ex. 3.6 is robust. The same program without fences,

however, is not robust as the RC20-consistent but SC-inconsistent execution graph on the middle

demonstrates (the graph on the right is discussed in Ex. 4.15):

x.store(1, rlx)
y.store(1, rlx)

𝑆𝑇𝐴𝑅𝑇 :

a := y.load(rlx)
if a = 0 goto 𝑆𝑇𝐴𝑅𝑇

b := x.load(rlx)
assert(b ≠ 0)

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

W(rlx, y, 1)

R(rlx, y, 1)

CTRL

R(rlx, x, 0)

dp

mo

mo

rf

fr

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

W(rlx, y, 1)

R(rlx, y, 1)

CTRL

R(rlx, x, 1)

dp

mo

mo

rf

The above robustness notion (w.r.t. different weak memory models) is also known as trace-
robustness [Bouajjani et al. 2013] or execution-graph-robustness [Lahav and Margalit 2019]. It implies

state-robustness: if some RC20-consistent execution graph𝐺 is generated with a final program state

𝑞, then ⟨𝑞,𝑀⟩ is reachable in Pr q SC for some𝑀 : Loc → Val. In particular, the following property

ensures that safety verification of robust programs may assume SC semantics.

Proposition 4.3. A robust program may fail under RC20 (Def. 3.12) iff it may fail under SC
(Def. 2.10).

Our first main theorem formulates a technical property of execution graphs that holds for all

SC-consistent graphs of a given program iff that program is robust. It allows us to avoid the

universal quantification over RC20-consistent execution graphs of Def. 4.1 and paves the way for

deciding robustness via reachability analysis under SC. (The next section clarifies this reduction.)

Notation 4.4. 𝐺.𝑤max
𝑥 denotes the 𝐺.mo-maximal write to 𝑥 in 𝐺 (i.e., 𝐺.𝑤max

𝑥 ≜ max𝐺.mo𝐺.W𝑥 ).

Definition 4.5. A non-robustness witness for a program Pr is a tuple ⟨𝑞,𝐺, 𝜏, 𝐿⟩ such that the

following hold:

• 𝐺 is generated by Pr with final

state 𝑞.

• 𝐺 is SC-consistent.
• 𝑞 enables the transition ⟨𝜏, 𝐿⟩.
• typ(𝐿) ∈ {R, W, RMW, R★}.
• 𝐺.𝑤max

loc(𝐿) ∈ dom(𝐺.hb?SC ; [E𝜏 ]).

• The following hold for some𝑤 ∈ 𝐺.Wloc(𝐿) :
– 𝑤 ≠ 𝐺.𝑤max

loc(𝐿) .

– 𝑤 ∉ dom(𝐺.mo ;𝐺.rf? ;𝐺.hb? ; [E𝜏 ]).
– If typ(𝐿) ∈ {W, RMW}, then𝑤 ∉ dom(𝐺.rf ; [𝐺.RMW]).
– If typ(𝐿) ∈ {RMW, R★}, then 𝐺.valW (𝑤) = valR (𝐿).

Theorem 4.6. A program Pr is not robust iff there exists a non-robustness witness for Pr.
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A non-robustness witness forms a “borderline execution” of a given program—an execution

graph 𝐺 of the program that is still SC-consistent, but one of the possible program steps after

generating 𝐺 results in an RC20-consistent but SC-inconsistent graph. Roughly speaking, this

scenario happens when (under SC) some read/write/RMW step (labeled with 𝐿) accessing location 𝑥

by thread 𝜏 must be executed after the maximal write to 𝑥 in𝐺 (namely, there is a𝐺.hbSC-path from

𝐺.𝑤max
𝑥 to some event of thread 𝜏 ), but some other write𝑤 to 𝑥 in𝐺 has no𝐺.mo ;𝐺.rf? ;𝐺.hb?-path

to thread 𝜏 . The latter condition ensures that thread 𝜏 is not “aware” of a write that is later than𝑤 ,

implying that under RC20 we may extend 𝐺 to the execution graph 𝐺 ′ = add(𝐺, 𝜏, lab(𝐿), _,𝑤).
Since𝐺.𝑤max

loc(𝐿) ∈ dom(𝐺.hb?SC ; [E𝜏 ]), we will have that𝐺 ′
is SC-inconsistent. More care has to be

taken because of the atomicity-condition: if the enabled transition is a write (or an RMW) then

RC20 forbids placing the new generated event next(𝐺, 𝜏) as the mo-successor of writes that are
already read by RMWs, and thus we require𝑤 ∉ dom(𝐺.rf ; [𝐺.RMW]) in this case. Furthermore,

for 𝐺 ′
to be an execution of the program, we also require that 𝐺.valW (𝑤) = valR (𝐿) in case that

typ(𝐿) ∈ {RMW, R★}. The latter condition ensures that the program indeed allows a step leading

from 𝐺 to 𝐺 ′
.

Example 4.7. A non-robustness witness for the (non-fenced) MP program in Ex. 4.2 is given

by ⟨𝑞,𝐺, 𝜏, 𝐿⟩, where 𝑞 is the state of the program after the first thread is fully executed and the

second thread is just before the load of x (with a = 1); 𝐺 is the execution graph obtained from

the one presented in the example above by removing the last read event of the second thread; 𝜏

is the identifier of the second thread; and 𝐿 is any transition label with typ(𝐿) = R, loc(𝐿) = x,
mod(𝐿) = rlx, Rin (𝐿) = ∅, and Rout (𝐿) = {b}. In particular, we have 𝐺.𝑤max

x ∈ dom(𝐺.hb?SC ; [E𝜏 ])
(𝐺.𝑤max

x is the event labeled with W(rlx, x, 1)), and for𝑤 being the initial write event to 𝑥 , we have

𝑤 ∉ dom(𝐺.mo ;𝐺.rf? ;𝐺.hb? ; [E𝜏 ]).

We note that the standard DRF-theorem ensuring that there are not any weak behaviors for

programs that are race free under SC (e.g., by using locks implemented with BCAS instructions)

is a simple corollary of the above precise characterization. A non-robustness witness necessarily

implies a race under SC between 𝐺.𝑤max
loc(𝐿) and an event that can be added to 𝐺 in the next step of

thread 𝜏 .

4.1 Observational Robustness
The above robustness notion is too strict for supporting an important use case of relaxed accesses

in which the stale values observed by relaxed accesses (and cannot be observed under SC) are
in speculative reads that are never used by the program. This use case was discussed in [Sinclair

et al. 2017] and demonstrated with the sequence lock implementation (seqlock for short), a special

locking mechanism used in Linux that avoids writer starvation [Boehm 2012]. The next example

shows the challenge seqlock poses to robustness verification.

Example 4.8. Consider the litmus test in Fig. 3, extracted from an efficient implementation of

seqlock with a single writer and a single reader. The writer executes two iterations in which it

increases the version number (z) to be odd, writes the protected data (x and y), and publishes the

data by increasing the version number to be even again. The reader waits in a loop until it reads an

even version number, then (speculatively) reads the data, and reads again the version number to

check that it has not changed. If the latter read yields a different version number, the reader never

uses the data that was read and retries. Finally, if the reader reads the same version number, it

can safely use the data (modeled here as assert(a = b)). Access modes and fences were carefully

picked to ensure correctness while optimizing performance [Boehm 2012]. In particular, note that

the read of the protected data is relaxed.
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z.store(1, rlx)
fence(rel)
x.store(1, rlx)
y.store(1, rlx)
z.store(2, rel)

z.store(3, rlx)
fence(rel)
x.store(2, rlx)
y.store(2, rlx)
z.store(4, rel)

𝑆𝑇𝐴𝑅𝑇 :

c1 := z.load(rlx)
if isOdd(c1) goto 𝑆𝑇𝐴𝑅𝑇

fence(acq)
a := x.load(rlx)
b := y.load(rlx)
fence(acq)
c2 := z.load(rlx)
if c1 ≠ c2 goto 𝑆𝑇𝐴𝑅𝑇

assert(a = b)

W(rlx, x, 0) W(rlx, y, 0) W(rlx, z, 0)

W(rel, z, 1)

F(rel)

W(rlx, x, 1)

W(rlx, y, 1)

W(rel, z, 2)

W(rel, z, 3)

F(rel)

W(rlx, x, 2)

R(rlx, z, 0)

CTRL

F(acq)

R(rlx, x, 2)

R(rlx, y, 0)

dpmo

rf

rf

fr

Fig. 3. Seqlock litmus test.

A robustness violation—an execution graph of the program that is RC20-consistent but SC-
inconsistent—is presented on the right in Fig. 3 (to avoid clutter we omit some some mo and fr
edges). It is caused by the reader reading an updated value from x but an old (the initial) value

from y. After reading an updated value from x, the next acquire fence that the reader will perform
(before using the values) will synchronize with the last release fence of the writer (creating an

sw-edge), so that reading z = 0 again is forbidden (the reader can only read z ≥ 3), and the (taint)

data will be necessarily discarded. We note that standard state robustness does not hold here as

well: a program state in which the reader has a = 2 and b = 0 is reachable under RC20 but not
under SC.

To support this use case, we define a weaker robustness notion, which we refer to as observational
robustness. This notion allows non-SC execution graphs of the program, provided that nothing

depends on events that read stale values. To formally define this notion, we adapt the declarative

formulation of SC to ignore fr-edges induced by read events with no outgoing dependencies. For

that we use two additional derived relations:

𝐺.frdp ≜ [dom(𝐺.dp) ∪𝐺.R★] ;𝐺.fr 𝐺.hbdpSC ≜ (𝐺.po ∪𝐺.rf ∪𝐺.mo ∪𝐺.frdp)+

While in hbSC, via fr, a read 𝑟 is always placed before every write𝑤 ′
written mo-after the write𝑤

that 𝑟 reads from, the hbdpSC relation ignores such orders when (𝑖) 𝑟 ∉ 𝐺.R★ (that is, 𝑟 does not arise

from a wait instruction or a failed CAS) and (𝑖𝑖) no event depends on 𝑟 . We note that, atomicity

ensures that [𝐺.RMW] ;𝐺.fr ⊆ 𝐺.mo, so 𝐺.hbdpSC always contains fr-edges from RMW events.

Using hbdpSC, observational robustness is naturally defined as follows.

Definition 4.9. A program Pr is observationally robust if 𝐺.hbdpSC is irreflexive in every RC20-
consistent execution graph 𝐺 that is generated by Pr .

Example 4.10. Revisiting the examples above, note that the seqlock test (Ex. 4.8) is observationally
robust. In particular, the execution graph in Fig. 3 has no hbdpSC-cycle. A dependency edge from

a R(rlx, y, 𝑣)-event will be only added if the previous read of x is reading the same value 𝑣 . The

(non-fenced) MP program (Ex. 4.7) is not observationally robust. Without the final assert(b ≠ 0)
instruction, that program is observationally robust (but not robust).

To see that observational robustness is not overly weak, we establish the analogue of Prop. 4.3,

ensuring that verification of observationally robust programs may safely assume SC-semantics.
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This easily follows from the fact that the SC-inconsistent execution graphs allowed by observational
robustness are always observationally equivalent to SC-consistent ones (as defined in Def. 3.15),

which we prove next.

Lemma 4.11. Let 𝐺 be an RC20-consistent execution graph with 𝐺.hbdpSC being irreflexive. Then, 𝐺
is observationally equivalent to some SC-consistent execution graph 𝐺 ′.

Lemma 4.11 and the receptiveness property (Lemma 3.17) easily entail the analogue of Prop. 4.3.

Proposition 4.12. An observationally robust program may fail under RC20 (Def. 3.12) iff it may
fail under SC (Def. 2.10).

Remark 2. Using Lemma 4.11, we have that observational robustness of a program Pr implies

that every RC20-consistent execution graph generated by Pr is observationally equivalent to some

SC-consistent execution graph. We note that the converse does not hold. For example, consider the

following program:

x.store(1, rel)
y.store(1, rel)

a := y.load(acq) //1
b := z.load(acq) //0
assert(b = b)

z.store(1, rel)
c := x.load(acq) //0
assert(c = c)

The execution graph𝐺 that corresponds to the annotated outcome has a cycle in𝐺.hbdpSC (using two

𝐺.frdp-edges: from the read of z and from the read of x). Nevertheless, by changing the (irrelevant)

read of y to read 0, we obtain an SC-consistent graph that is observationally equivalent to 𝐺 .

Next, to be able to check for observational robustness of a given program, we present non-
observational-robustness witnesses which, as before, allow us to verify observational robustness

by considering only SC-executions of the program. For this definition, we use tainted versions of

several relations w.r.t. a set 𝑇 ⊆ 𝐺.IR of 𝐺-irrelevant reads (see Def. 3.14), defined as follows:

Definition 4.13. Given 𝑇 ⊆ 𝐺.IR, the 𝑇 -tainted versions of rf, sw, and hb are defined as follows:
4

𝐺.rf
𝑇
≜ 𝐺.rf ; [Event \𝑇 ]

𝐺.sw
𝑇
≜ [𝐺.E⊒rel] ; ( [𝐺.F] ;𝐺.po)? ;𝐺.rf+

𝑇
; (𝐺.po ; [𝐺.F])? ; [𝐺.E⊒acq]

𝐺.hb
𝑇
≜ (𝐺.po ∪𝐺.sw

𝑇
)+

Definition 4.14. A non-observational-robustness witness for a program Pr is a tuple ⟨𝑞,𝐺, 𝜏, 𝐿,𝜓,𝑇 ⟩
such that the following hold:

• 𝐺 is generated by Pr with final

state 𝑞 and dependency store𝜓 .

• 𝐺 is SC-consistent.
• 𝑞 enables the transition ⟨𝜏, 𝐿⟩.
• typ(𝐿) ∈ {W, RMW, R★, CTRL}.
• 𝑇 ⊆ 𝐺.IR.
• 𝐺.rf ; [𝑇 ] ⊆
𝐺.hbSC ;𝐺.po \𝐺.rf?

𝑇
;𝐺.hb

𝑇
.

• Either 𝑇 ∩𝜓 (Rin (𝐿)) ≠ ∅ or the following hold:

– typ(𝐿) ∈ {W, RMW, R★}.
– 𝐺.𝑤max

loc(𝐿) ∈ dom(𝐺.hb?SC ; [E𝜏 ]).
– The following hold for some𝑤 ∈ 𝐺.Wloc(𝐿) :
∗ 𝑤 ≠ 𝐺.𝑤max

loc(𝐿) .

∗ 𝑤 ∉ dom(𝐺.mo ;𝐺.rf?
𝑇
;𝐺.hb?

𝑇
; [E𝜏 ]).

∗ If typ(𝐿) ∈ {W, RMW}, then𝑤 ∉ dom(𝐺.rf ; [𝐺.RMW]).
∗ If typ(𝐿) ∈ {RMW, R★}, then 𝐺.valW (𝑤) = valR (𝐿).

Non-observational-robustness witnesses are similar to non-robustness witnesses (Def. 4.5), but

they also contain a dependency store 𝜓 and a set 𝑇 of “tainted” read events in 𝐺 . The events

in 𝑇 are the read events in 𝐺 that could have read from an mo-earlier write event (w.r.t. their

current rf-source) under RC20 but not under SC (i.e., 𝐺.rf ; [𝑇 ] ⊆ 𝐺.hbSC ;𝐺.po \𝐺.rf?
𝑇
;𝐺.hb

𝑇
.)

4
By definition,𝑇 cannot contain events in𝐺.RMW, so we always have𝐺.rf+

𝑇
= 𝐺.rf∗ ;𝐺.rf

𝑇
.
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The existence of such a read event would entail a robustness violation, but not an observational
robustness violation, which may be violated only if some later event (in particular, a CTRL event)
depends on an event in 𝑇 (i.e., 𝑇 ∩𝜓 (Rin (𝐿)) ≠ ∅). When typ(𝐿) ∈ {W, RMW, R★}, we have the same

conditions as in Def. 4.5, but crucially, the read-from edges in𝐺 to tainted read events should not

limit the writes that threads can observe under RC20. Hence, we use the tainted versions of rf and

hb in the𝑤 ∉ dom(𝐺.mo ;𝐺.rf?
𝑇
;𝐺.hb?

𝑇
; [E𝜏 ]) condition.

Example 4.15. A non-observational-robustness witness for the (non-fenced) MP program in

Ex. 4.2 consists of the graph depicted on the right in that example, where the set 𝑇 includes the

highlighted event reading x. The read event in 𝑇 could have read from the initial write under RC20
but not under SC; and the program enables a transition that depends on the event in 𝑇 (executing

the assert(b ≠ 0)).
Next, we establish that non-observational-robustnesswitnessesmust exist for non-observationally-

robust programs. The proof is rather intricate DRF-style argument—RC20 can deviate from SC
early on, and to construct the witness for a non-robust program we need to globally “fix” these

deviations.

Theorem 4.16. If Pr is not observationally robust, then there exists a non-observational-robustness
witness for Pr.

The following lemma is a key lemma in the proof of Thm. 4.16.

Lemma 4.17. Let 𝐺 be an RC20-consistent execution graph. Suppose that 𝐺.hbdpSC is irreflexive.
Then, there exist an SC-consistent execution graph 𝐺 ′ and a set 𝑇 ⊆ 𝐺.IR such that 𝐺 ∼𝑇 𝐺 ′ and
𝐺 ′.rf ; [𝑇 ] ⊆ 𝐺 ′.hbSC ;𝐺 ′.po \𝐺 ′.rf?

𝑇
;𝐺 ′.hb

𝑇
.

Proof (outline). Let 𝑆 be a maximal acyclic relation such that

𝐺.po ∪𝐺.rf ∪𝐺.mo ∪ [dom(𝐺.dp) ∪𝐺.R★] ;𝐺.fr ⊆ 𝑆 ⊆ 𝐺.po ∪𝐺.rf ∪𝐺.mo ∪𝐺.fr.

Define the following:

• For every 𝑟 ∈ 𝐺.R, let𝑊𝑟 = {𝑤 | ⟨𝑟,𝑤⟩ ∈ 𝐺.fr \ 𝑆+}.
• Let 𝑇 = {𝑟 ∈ 𝐺.R |𝑊𝑟 ≠ ∅}.
• For every 𝑟 ∈ 𝑇 , let𝑤𝑟 = max𝐺.mo𝑊𝑟 .

Then, one shows that the following properties hold:

• 𝑇 ⊆ 𝐺.IR.
• If ⟨𝑤, 𝑟 ⟩ ∈ 𝐺.rf ; [𝑇 ], then ⟨𝑤,𝑤𝑟 ⟩ ∈ 𝐺.mo.
• ⟨𝑤𝑟 , 𝑟 ⟩ ∈ 𝑆+ ;𝐺.po for every 𝑟 ∈ 𝑇 .

• ⟨𝑟,𝑤⟩ ∈ 𝑆+ for every 𝑟 ∈ 𝑇 and𝑤 such that ⟨𝑤𝑟 ,𝑤⟩ ∈ 𝐺.mo.

Now, we let 𝐺 ′
be the execution graph obtained from 𝐺 by modifying each event 𝑟 ∈ 𝑇 to

read from 𝑤𝑟 (and adapting read values accordingly). Our construction ensures that 𝐺 ∼𝑇 𝐺 ′
,

𝐺.rf ⊆ (𝐺 ′.mo)? ;𝐺 ′.rf, 𝐺.fr ∩ 𝑆 ⊆ 𝐺 ′.fr, and 𝑆 ⊆ 𝐺 ′.hbSC. With these properties, we can show

that the two required conditions hold. □

Next, we outline the proof of Thm. 4.16.

Proof of Thm. 4.16 (outline). Let G be the set consisting of all execution graphs 𝐺 such that

(i) 𝐺 is RC20-consistent; (ii) 𝐺 is generated by Pr; and (iii) 𝐺.hbdpSC is not irreflexive. Since Pr
is not observationally robust, G is not empty. Let 𝐺1 be a minimal element in G, in the sense

that every proper prefix of 𝐺1 is not in G. Let 𝑞
1
∈ Pr .Q and 𝜓1 : Reg → P(Event) such that

⟨𝑞
1
,𝐺1,𝜓1⟩ is reachable in Pr q FG. Let𝐺2 ∈ EGraph, 𝑞

2
∈ Pr .Q,𝜓2 : Reg → P(Event), 𝜏 ∈ Tid, and

𝐿 = ⟨𝑙, 𝑅in, 𝑅out⟩ ∈ TLab such that:
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• 𝑙 ∈ Lab.
• ⟨𝑞

2
,𝐺2,𝜓2⟩ is reachable in Pr q FG.

• 𝑞
2

𝜏,𝐿−−→Pr 𝑞 for some 𝑞 ∈ Pr .Q such that 𝑞
_, ⟨𝜖,_,_⟩
−−−−−−→

∗
Pr 𝑞1.

• ⟨𝐺2,𝜓2⟩
𝜏,𝐿−−→FG ⟨𝐺1,𝜓1⟩.

Then, by definition, there exists some𝑤𝑐 ∈ Event ∪ {⊥} such that the following hold:

• 𝐺1 = add(𝐺2, 𝜏, 𝑙,𝜓2 (𝑅in),𝑤𝑐 ).
• If typ(𝑙) ∈ {R, RMW, R★}, then 𝐺2 .valW (𝑤𝑐 ) = valR (𝑙).
• If typ(𝑙) ∉ {F, CTRL}, then𝑤𝑐 ∈ 𝐺2.Wloc(𝑙) .
• If typ(𝑙) ∈ {F, CTRL}, then𝑤𝑐 = ⊥.

Let 𝑐 = next(𝐺2, 𝜏) (i.e., the event added to𝐺2 to obtain𝐺1). Then,𝐺2 = 𝐺1 \ {𝑐} is RC20-consistent,
and the minimality of 𝐺1 ensures that 𝐺2 .hb

dp
SC is irreflexive.

By Lemma 4.17 there exist an SC-consistent execution graph 𝐺3 and a set 𝑇 ⊆ 𝐺2.IR such that

𝐺2 ∼𝑇 𝐺3 and 𝐺3.rf ; [𝑇 ] ⊆ 𝐺3.hbSC ; 𝐺3.po \ 𝐺3.rf
?

𝑇
; 𝐺3 .hb𝑇 . Since 𝑇 ⊆ 𝐺2.IR, Lemma 3.17

implies that ⟨𝑞
3
,𝐺3,𝜓2⟩ is reachable in Pr q FG for some state 𝑞

3
∈ Pr .Q such that 𝑞

2
∼𝑅 𝑞

3
for

𝑅 = {𝑟 ∈ Reg | 𝜓2 (𝑟 ) ∩𝑇 ≠ ∅}. We also have that 𝑞
3
enables the transition ⟨𝜏, 𝐿⟩ if𝜓2 (𝑅in) ∩𝑇 = ∅;

and that 𝑞
3
enables ⟨𝜏, ⟨𝑙3, 𝑅in, 𝑅out⟩⟩ for some event label 𝑙3 ∈ Lab.

Now, if 𝜓2 (𝑅in) ∩ 𝑇 ≠ ∅, then ⟨𝑞
3
,𝐺3, 𝜏, ⟨𝑙3, 𝑅in, 𝑅out⟩,𝜓2,𝑇 ⟩ is a non-observational-robustness

witness for Pr . Otherwise, we can show that typ(𝑙) ∈ {W, RMW, R★} and ⟨𝑐, 𝑐⟩ ∈ (𝐺1 .mo ∪𝐺1.fr) ;
𝐺1.hb

dp
SC ;𝐺1 .po. Let 𝐸4 = dom(𝐺3 .hbSC ; [E𝜏 ]), 𝐺4 = 𝐺3 ∩ 𝐸4 and 𝑇

′ = 𝑇 ∩ 𝐸4. Since 𝐺4 is a prefix

of 𝐺3 and 𝐺3.E
𝜏 ⊆ 𝐺4.E, there exist 𝑞

4
∈ Pr .Q and dependency store 𝜓4, such that ⟨𝑞

4
,𝐺4,𝜓4⟩

is reachable in Pr q FG and 𝑞
4
enables ⟨𝜏, 𝐿⟩. As a prefix of 𝐺3, 𝐺4 is SC-consitent, and since

𝐺3.rf ; [𝑇 ] ⊆ 𝐺3.hbSC ; 𝐺3 .po \ 𝐺3.rf
?

𝑇
; 𝐺3 .hb𝑇 , our construction ensures that 𝐺4 .rf ; [𝑇 ′] ⊆

𝐺4.hbSC;𝐺4 .po\𝐺4.rf
?

𝑇 ′ ;𝐺4.hb𝑇 ′ . It follows that ⟨𝑞4,𝐺4, 𝜏, 𝐿,𝜓4,𝑇
′⟩ is a non-observational-robustness

witness for Pr . □

Example 4.18. An important detail in the definition of a non-observational-robustness witness is

the fact that we use𝐺.rf?
𝑇
;𝐺.hb?

𝑇
rather than𝐺.rf? ;𝐺.hb? in the condition checking that thread 𝜏

is not “aware” of a later write than𝑤 . Intuitively speaking, since the execution graph in the witness

is SC-consistent, the taint reads in this graph also read the most recent values, but these reads

must not make the thread aware of more writes, since they could have read from an mo-earlier
write under RC20. The following example of a “nested” SB litmus test demonstrates this issue.

Under RC20 (or any other weak memory model), we may get the non-SC outcome b = d = 0,

which, because of the conditionals, implies that the program is not observationally robust. The

graph component of a possible non-observational-robustness witness is presented one the right

(all initialization event summarized in one event and mo-edges are omitted) where the highlighted

events are the tainted read events in the set 𝑇 .

x.store(1, rel)
y.store(1, rel)
a := w.load(acq)
b := z.load(acq)
if b = 0 goto ...

z.store(1, rel)
w.store(1, rel)
c := y.load(acq)
d := x.load(acq)
if d = 0 goto ...

Init

W(rel, x, 1)

W(rel, y, 1)

R(acq, w, 0)

W(rel, z, 1)

W(rel, w, 1)

R(acq, y, 1)

R(acq, x, 1)

rf

However, if we use the non-tainted versions of rf and hb in the definition of a non-observational-

robustness witness, we will not be able to include the read from x in 𝑇 (since we will wrongly
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have that the thread is “aware” of W(rel, x, 1) and cannot read the initial value 0). In fact, with

𝐺.rf? ;𝐺.hb? instead of𝐺.rf?
𝑇
;𝐺.hb?

𝑇
, we will not have any non-observational-robustness witness

for this non-observationally-robust example.

Example 4.19. The converse of the claim in Thm. 4.16 does not hold. The following simple

adaptation of the SB litmus test is an observationally robust program that has an non-observational-

robustness witness (whose execution graph component is presented on the right, where the

highlighted event is the only event in 𝑇 ). Developing an exact (and verifiable) characterization of

observational-robustness is challenging and is left for future work.

x.store(1, rlx)
a := y.load(rlx)
assert(a = a)

y.store(1, rlx)
b := x.load(rlx)

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

R(rlx, y, 1)

W(rlx, y, 1)

R(rlx, x, 0)

mo mo

rf

Finally, by adding (vacuous) assert instructions we can reduce robustness verification to the

existence of a non-observational-robustness witness.

Lemma 4.20. Let Pr be a program in which every read instruction 𝑟 := 𝑥 .load(𝑜R) is followed by a
(vacuous) assert instruction assert(𝑟 = 𝑟 ). Then, there exists a non-robustness witness for Pr iff there
exists a non-observational-robustness witness for Pr.

Using Lemma 4.20, we obtain a reduction from robustness verification to the problem of verifying

whether a non-observational-robustness witness exists or not. In the rest of this paper we focus on

the latter problem, and obtain a decision procedure for robustness using this reduction.

5 VERIFYING OBSERVATIONAL ROBUSTNESS
In this section we show how to automatically check for the existence of a non-observational-

robustness witness by exploring the reachable states in an instrumented SC semantics. We present

the instrumented semantics in two stages. First, §5.1 presents an “operational” version of Thm. 4.16

in the form of an (infinite) memory system that we call SCT. This system extends the standard

operational construction of SC-consistent execution graphs with instrumentation and monitoring

for non-observational-robustness witnesses. Then, in §5.2 we present SCM, a finite memory system

instrumenting the standard SC memory system, and show that it simulates SCT. Finally, we obtain

that non-observational-robustness witness exists iff certain error state is reachable under SCM.

5.1 The Memory System SCT

The memory system SCT provides an “operational” version of Thm. 4.16. It is based on an opera-

tionalized version of the declarative SC semantics (see Def. 3.7), which restricts the steps of the

graph generation system FG (Def. 3.10) so that reads only read from the last executed write (to the

relevant location) and that writes are always placed in the end of the (per-location) mo-order. In
addition, SCT includes instrumentation and monitoring that (𝑖) tracks a “taint set”𝑇 of read events

that read stale values during the execution; and (𝑖𝑖) enters an error state, denoted by ⊥, when a

non-observational-robustness witness is detected.

Definition 5.1. The memory system SCT is given by:

• Its states consists of the error state ⊥, and all tuples of the form ⟨𝐺,𝜓,𝑇 ⟩, where 𝐺 is an

execution graph,𝜓 is a dependency store, and 𝑇 ⊆ {𝑒 ∈ 𝐺.E | 𝐺.typ(𝑒) = R}.
• Its initial state is ⟨𝐺0,𝜓0, ∅⟩ (where 𝐺0 and𝜓0 are defined in Def. 3.10).

• Its transitions are given in Fig. 4.
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silent/fence/control

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺 ′,𝜓 ′⟩
lab(𝐿) = 𝜀 ∨ typ(𝐿) ∈ {F, CTRL}

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCT ⟨𝐺 ′,𝜓 ′,𝑇 ⟩

non-read

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺 ′,𝜓 ′⟩ typ(𝐿) ∈ {W, RMW, R★}
𝐺 ′ = add(𝐺, 𝜏, _, _,𝐺 .𝑤max

loc(𝐿) )

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCT ⟨𝐺 ′,𝜓 ′,𝑇 ⟩

read

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺 ′,𝜓 ′⟩ typ(𝐿) = R 𝐺 ′ = add(𝐺, 𝜏, _, _,𝐺 .𝑤max
loc(𝐿) )

𝐺.𝑤max
loc(𝐿) ∈ dom(𝐺.hbSC ; [E𝜏 ]) =⇒𝐺.𝑤max

loc(𝐿) ∈ dom(𝐺.rf?
𝑇
;𝐺.hb

𝑇
; [E𝜏 ])

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCT ⟨𝐺 ′,𝜓 ′,𝑇 ⟩

err-dep

typ(𝐿) ∈ {W, RMW, R★, CTRL}
𝜓 (Rin (𝐿)) ∩𝑇 ≠ ∅

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCT ⊥

taint-read

⟨𝐺,𝜓 ⟩ 𝜏,𝐿−−→FG ⟨𝐺 ′,𝜓 ′⟩ typ(𝐿) = R
𝐺 ′ = add(𝐺, 𝜏, _, _,𝐺 .𝑤max

loc(𝐿) )
𝑇 ′ = 𝑇 ∪ {next(𝐺, 𝜏)}

𝐺.𝑤max
loc(𝐿) ∈ dom(𝐺.hbSC ; [E𝜏 ])

𝐺.𝑤max
loc(𝐿) ∉ dom(𝐺.rf?

𝑇
;𝐺.hb

𝑇
; [E𝜏 ])

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCT ⟨𝐺 ′,𝜓 ′,𝑇 ′⟩

err-sc

typ(𝐿) ∈ {W, RMW, R★}
𝐺.𝑤max

loc(𝐿) ∈ dom(𝐺.hbSC ; [E𝜏 ]) 𝑤 ≠ 𝐺.𝑤max
loc(𝐿)

𝑤 ∈ 𝐺.Wloc(𝐿) 𝑤 ∉ dom(𝐺.mo ;𝐺.rf?
𝑇
;𝐺.hb?

𝑇
; [E𝜏 ])

typ(𝐿) ∈ {W, RMW} =⇒ 𝑤 ∉ dom(𝐺.rf ; [𝐺.RMW])
typ(𝐿) ∈ {RMW, R★} =⇒ 𝐺.valW (𝑤) = valR (𝐿)

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCT ⊥

Fig. 4. SCT transitions.

Each of the (non-error) steps of SCT extends the current graph with one event (like the FG
system in Def. 3.10) while recording in the set 𝑇 all the read events added to the graph that read

taint values, maintaining the set 𝑇 to consist of all the tainted read events in the current graph.

Exactly as in the definition of non-observational-robustness witness, the latter formally means that

there is a hbSC-path, but not an rf?
𝑇
; hb

𝑇
-path from the mo-maximal write to the relevant location

to the thread executing the read. In addition, two steps lead the system to the error state when

a non-observational-robustness witness is detected. The soundness and completeness of SCT is

established in the following theorem.

Theorem 5.2. There exists a non-observational-robustness witness for a program Pr iff some state
of the form ⟨𝑞,⊥⟩ is reachable in Pr q SCT.

5.2 The Memory System SCM

We show how to automatically check whether a state of the form ⟨_,⊥⟩ is reachable in Pr q SCT.

Since execution graphs (for programs with loops) may grow unboundedly, SCT is an infinite

state transition system whose traces cannot be naively explored. To address this, we show that

maintaining the whole execution graph that was generated so far, as done in SCT, is unnecessary.

Instead, it is possible to summarize SCT’s state and record only the properties of ⟨𝐺,𝜓,𝑇 ⟩ that are
needed for checking which transitions are enabled in each state and whether a transition to the

error state is enabled or not. To do so, we define a finite (but precise) abstraction of SCT, a memory

system which we call SCM (for SC with Monitors), that simulates SCT, so that the traces of SCT
that reach the error state coincide with those of SCM that reach the error state.

Next, we present SCM’s states and the transitions between them. We write 𝑞SCM (𝐺,𝜓,𝑇 ) for
the SCM state that abstracts the SCT state ⟨𝐺,𝜓,𝑇 ⟩. States of SCM are tuples of the form 𝑞SCM =
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⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩. We use 𝑞SCM .M, 𝑞SCM .Rtaint, 𝑞SCM .VSC, and 𝑞SCM .V to refer to the different compo-

nents. Below, we gradually present the structure and meaning of each component and describe

how it is maintained in the system’s transitions.

Memory (𝑀). Since SCT monitors SC-executions, for checking what transitions are enabled

(whether ⟨𝐺,𝜓,𝑇 ⟩ enables a transition ⟨𝜏, 𝐿⟩ in SCT), we only need to track the last value written

to every location. This Loc → Val mapping is stored in the𝑀 component. Formally, we have

𝑞SCM (𝐺,𝜓,𝑇 ).M = 𝜆𝑥 .𝐺.valW (𝐺.𝑤max
𝑥 ).

Then, ⟨𝜏, 𝐿⟩ is enabled iff typ(𝐿) ∈ {W, F, CTRL} (these are always enabled by the memory) or

typ(𝐿) ∈ {R, RMW, R★} and valR (𝐿) = 𝑞SCM .M(loc(𝐿)). (The rest of the system only instruments

and monitors the runs, so it does not affect the transitions between non-error states.) Initially, we

have𝑀0 = 𝜆𝑥. 0, since the initial execution graph contains initialization to 0 for all locations. The

maintenance of𝑀 is trivial: write and RMW steps to 𝑥 update the value of 𝑥 , while other transitions

keep the memory intact.

Tainted Registers (𝑅taint). Instead of maintaining the (unbounded) set 𝑇 of tainted events, SCM
keeps a (bounded) set 𝑅taint ⊆ Reg of tainted registers. A register is tainted if its value depends on

some event 𝑒 ∈ 𝑇 . Formally, we have

𝑞SCM (𝐺,𝜓,𝑇 ).Rtaint = {𝑟 ∈ Reg | 𝜓 (𝑟 ) ∩𝑇 ≠ ∅}.
Then, we replace the condition𝜓 (Rin (𝐿)) ∩𝑇 ≠ ∅ in SCT’s err-dep step with Rin (𝐿) ∩ 𝑅taint ≠ ∅.
Initially, we have 𝑅taint0 = ∅. Registers are added to 𝑅taint when a taint value is loaded to them (in a

read instruction), or if any expression that includes tainted registers is assigned to them. Registers

are removed from 𝑅taint when they are overwritten with a non-taint value (e.g., by another read

instruction). Whether a read transition reads a taint value or not (i.e., whether RC20 allows to read

from some other event in the graph) is detected using the components described below.

hbSC-tracker (𝑉SC). The 𝑉SC component in SCM states is used to track whether a thread is “hbSC-
aware” of the maximal write to some location. This piece of information is needed for checking

the𝐺.𝑤max
loc(𝐿) ∈ dom(𝐺.hbSC ; [E𝜏 ]) condition that appears in SCT’s read, taint-read, and err-sc

steps. The 𝑉SC component is defined and maintained exactly as in [Lahav and Margalit 2019]. To

save space, we omit the details here and simply assume transitions of the form 𝑉SC
𝜏,𝑙−−→ 𝑉 ′

SC (where

𝜏 ∈ Tid and 𝑙 ∈ Lab) for maintaining this component, and a query of the form 𝑥 ∈ 𝑉SC (𝜏) that
“returns true” iff 𝐺.𝑤max

𝑥 ∈ dom(𝐺.hb?SC ; [E𝜏 ]). Initially, we start with 𝑉SC0, where 𝑥 ∈ 𝑉SC0 (𝜏)
always “returns true”. We refer the reader to [Lahav and Margalit 2019, §5] for details.

RC20 tracker (𝑉 ). The 𝑉 component in SCM states is the most complex component in SCM’s

states. It provides the additional information required for detecting robustness violations, as well as

for differentiating between normal and taint read steps (for maintaining 𝑞SCM .𝑅taint). First, we need

to track for every thread 𝜏 and location 𝑥 , whether, besides the mo-maximal write, there exists a

write𝑤 to 𝑥 in the current execution graph that does not have an-mo ; rf?
𝑇
; hb?

𝑇
-path to some event

of thread 𝜏 (which means that𝑤 can be observed by thread 𝜏 under RC20). Indeed, this information

is needed for checking the 𝐺.𝑤max
loc(𝐿) ∈ dom(𝐺.rf?

𝑇
;𝐺.hb

𝑇
; [E𝜏 ]) condition in SCT’s read and

taint-read steps, as well as the𝑤 ∉ dom(𝐺.mo ;𝐺.rf?
𝑇
;𝐺.hb?

𝑇
; [E𝜏 ]) condition in SCT’s err-sc

step. Furthermore, for SCT’s err-sc step, we also need to know:

• whether 𝑤 is already read by some RMW event in the graph (𝑤 ∉ dom(rf ; [RMW])), in
which case we cannot add awrite placed as the mo-successor of𝑤 without violating atomicity;

and
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• whether𝑤 ’s written value is a value that can be read by the program when adding a certain

label 𝑙 , since for CAS and blocking instructions (BCAS and wait), the program only allows to

add R★ or RMW events that read certain values.

We achieve this by maintaining a tuple𝑉 = ⟨𝑉 a,𝑉 c,𝑉 r,𝑉 w,𝑉 a
RMW,𝑉

c
RMW,𝑉

r
RMW,𝑉

w
RMW⟩, where:𝑉 𝛼 ,𝑉 𝛼

RMW :

Tid × Loc → P(Val) for 𝛼 ∈ {a, c, r}, and 𝑉 w,𝑉 w
RMW : Loc × Loc → P(Val). The 𝑉 c

and 𝑉 c
RMW

components (standing for current view and current RMW-view) are the ones actually used for

tracking the information mentioned above: we have 𝑣 ∈ 𝑉 c (𝜏, 𝑥) iff the value 𝑣 is written by some

write𝑤 to 𝑥 in the current execution graph such that𝑤 ≠ 𝑤max
𝑥 and𝑤 ∉ dom(mo ; rf?

𝑇
; hb?

𝑇
; [E𝜏 ]);

and we have 𝑣 ∈ 𝑉 c
RMW (𝜏, 𝑥) iff𝑤 ∉ dom(rf ; [RMW]) in addition to the above conditions. The other

six components provide the additional instrumentation required for a faithful maintenance of 𝑉 c

and 𝑉 c
RMW. Roughly speaking:

• 𝑉 a
and 𝑉 a

RMW (acquire view and acquire RMW-view) are needed to handle acquire fences.

• 𝑉 r
and 𝑉 r

RMW (release view and release RMW-view) are needed to handle release fences.

• 𝑉 w
and 𝑉 w

RMW (location view and location RMW-view) are needed to handle reads and RMWs,

which incorporate the view of the write event they read from in the thread view. (Crucially,

since we are running under SC, we only need to record this data for mo-maximal write events.)

We use 𝑞SCM .V
𝛼
and 𝑞SCM .V

𝛼
RMW (for 𝛼 ∈ {a, c, r, w}) to directly accesses these views. Their formal

meaning is given by (𝐺.valW is lifted to sets of events in the obvious way):

𝑞SCM (𝐺,𝜓,𝑇 ) .Vc = 𝜆𝜏, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; [E𝜏 ])]

𝑞SCM (𝐺,𝜓,𝑇 ) .Vr = 𝜆𝜏, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; [E𝜏 ∩𝐺.F⊒rel])]

𝑞SCM (𝐺,𝜓,𝑇 ) .Va = 𝜆𝜏, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; ( [𝐺.E⊒rel]; ( [𝐺.F];𝐺.po)?;𝐺.rf+

𝑇
)? ; [E𝜏 ])

𝑞SCM (𝐺,𝜓,𝑇 ) .Vw = 𝜆𝑦, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; [𝐺.E⊒rel]; ( [𝐺.F];𝐺.po)?;𝐺.rf∗

𝑇
; [𝐺.𝑤max

𝑦 ])

𝑞SCM (𝐺,𝜓,𝑇 ).VcRMW = 𝜆𝜏, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; [E𝜏 ] ∪ 𝑅RMW)]

𝑞SCM (𝐺,𝜓,𝑇 ) .VrRMW = 𝜆𝜏, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; [E𝜏 ∩𝐺.F⊒rel] ∪ 𝑅RMW)]

𝑞SCM (𝐺,𝜓,𝑇 ) .VaRMW = 𝜆𝜏, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; ( [𝐺.E⊒rel]; ( [𝐺.F];𝐺.po)?;𝐺.rf+

𝑇
)? ; [E𝜏 ] ∪ 𝑅RMW)

𝑞SCM (𝐺,𝜓,𝑇 ).VwRMW = 𝜆𝑦, 𝑥 .𝐺.valW [𝐺.W≠max
𝑥 \ dom(𝑅 ; [𝐺.E⊒rel]; ( [𝐺.F];𝐺.po)?;𝐺.rf∗

𝑇
; [𝐺.𝑤max

𝑦 ] ∪ 𝑅RMW)

where 𝐺.W≠max
𝑥 = 𝐺.W𝑥 \ {𝐺.𝑤max

𝑥 }, 𝑅 ≜ 𝐺.mo ;𝐺.rf?
𝑇
;𝐺.hb?

𝑇
, and 𝑅RMW ≜ 𝐺.rf ; [𝐺.RMW].

To explain these equations (which serve as our simulation invariants), we call a value 𝑣 of

location 𝑥 non-robustly readable for thread 𝜏 if thread 𝜏 can read 𝑣 from 𝑥 under RC20 from some

write event that is not the mo-maximal write to 𝑥 in the current graph. Thus, a value 𝑣 of 𝑥 is

not non-robustly readable for thread 𝜏 if 𝜏 is already aware of some mo-later write to 𝑥 (“aware”

here means an rf?
𝑇
; hb?

𝑇
-path). Then, 𝑉 c (𝜏, 𝑥) consists of all non-robustly readable values of 𝑥 for

thread 𝜏 ; 𝑉 a (𝜏, 𝑥) consists of all non-robustly readable values of 𝑥 for thread 𝜏 that will remain

non-robustly readable for 𝜏 even after it executes an acquire fence; and 𝑉 r (𝜏, 𝑥) consists of all
values of 𝑥 that may remain non-robustly readable for any other thread even when it synchronizes

(via the sw relation) with the last release fence of thread 𝜏 . In turn, 𝑉 w (𝑦, 𝑥) consists of all values of
𝑥 that may remain non-robustly readable for any thread after it reads (the most recent value) from

𝑦 ≠ 𝑥 . The𝑉 𝛼
RMW variants are similar, but they refer to non-robustly writable values for thread 𝜏 , that

is: values of non-mo-maximal write events that thread 𝜏 may overwrite by putting the new write as

their mo-successors.
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Algorithm1 Thread viewsmaintenance for a step

of thread 𝜏 labeled with 𝑙 ∈ Lab with typ(𝑙) ∈
{R, W, RMW, R★} and loc(𝑙) = 𝑥

1: ∀𝛼 ∈ {a, c} : 𝑉𝛼 (𝜏, 𝑥) ··= ∅
2: if typ(𝑙) ∈ {W, RMW} then
3: 𝑉 r (𝜏, 𝑥) ··∪= {𝑀 (𝑥)}
4: if typ(𝑙) ∈ {R, RMW, R★} then
5: ∀𝑦 ≠ 𝑥 : 𝑉 a (𝜏,𝑦) ··∩=𝑉 w (𝑥,𝑦)
6: if mod(𝑙) ⊒ acq then
7: ∀𝑦 ≠ 𝑥 : 𝑉 c (𝜏,𝑦) ··∩=𝑉 w (𝑥,𝑦)
8: if typ(𝑙) ∈ {W, RMW} then
9: ∀𝛼 ∈ {a, c, r}, 𝜋 ≠ 𝜏 : 𝑉𝛼 (𝜋, 𝑥) ··∪= {𝑀 (𝑥)}

Algorithm 2 Thread RMW-views maintenance

for a step of thread 𝜏 labeled with 𝑙 ∈ Lab with

typ(𝑙) ∈ {R, W, RMW, R★} and loc(𝑙) = 𝑥

1: ∀𝛼 ∈ {a, c} : 𝑉𝛼
RMW (𝜏, 𝑥) ··= ∅

2: if typ(𝑙) = W then
3: 𝑉 r

RMW (𝜏, 𝑥) ··∪= {𝑀 (𝑥)}
4: if typ(𝑙) ∈ {R, RMW, R★} then
5: ∀𝑦 ≠ 𝑥 : 𝑉 a

RMW (𝜏,𝑦) ··∩=𝑉
w
RMW (𝑥, 𝑥)

6: if mod(𝑙) ⊒ acq then
7: ∀𝑦 ≠ 𝑥 : 𝑉 c

RMW (𝜏,𝑦) ··∩=𝑉
w
RMW (𝑥,𝑦)

8: if typ(𝑙) = W then
9: ∀𝛼 ∈ {a, c, r}, 𝜋 ≠ 𝜏 : 𝑉𝛼

RMW (𝜋, 𝑥) ··∪= {𝑀 (𝑥)}

Algorithm 3 Thread views maintenance for a step of thread 𝜏 labeled with F(𝑜F)

1: if 𝑜F ⊒ acq then
2: ∀𝑥 : 𝑉 c (𝜏, 𝑥) ··=𝑉 a (𝜏, 𝑥)
3: ∀𝑥 : 𝑉 c

RMW (𝜏, 𝑥) ··=𝑉
a
RMW (𝜏, 𝑥)

4: if 𝑜F ⊒ rel then
5: ∀𝑥 : 𝑉 r (𝜏, 𝑥) ··=𝑉 c (𝜏, 𝑥)
6: ∀𝑥 : 𝑉 r

RMW (𝜏, 𝑥) ··=𝑉
c
RMW (𝜏, 𝑥)

Algorithm 4
Location view maintenance for 𝑙 = W(𝑜, 𝑥, _)
1: ∀𝑦 ≠ 𝑥 : 𝑉 w (𝑦, 𝑥) ··∪= {𝑀 (𝑥)}
2: ∀𝑦 ≠ 𝑥 : 𝑉 w

RMW (𝑦, 𝑥) ··∪= {𝑀 (𝑥)}
3: if 𝑜 ⊒ rel then
4: ∀𝑦 ≠ 𝑥 : 𝑉 w (𝑥,𝑦) ··=𝑉 c (𝜏,𝑦)
5: ∀𝑦 ≠ 𝑥 : 𝑉 w

RMW (𝑥,𝑦) ··=𝑉
c
RMW (𝜏,𝑦)

6: else
7: ∀𝑦 ≠ 𝑥 : 𝑉 w (𝑥,𝑦) ··=𝑉 r (𝜏,𝑦)
8: ∀𝑦 ≠ 𝑥 : 𝑉 w

RMW (𝑥,𝑦) ··=𝑉
r
RMW (𝜏,𝑦)

Algorithm 5
Location view maintenance for 𝑙 = RMW(𝑜, 𝑥, _, _)
1: ∀𝑦 ≠ 𝑥 : 𝑉 w (𝑦, 𝑥) ··∪= {𝑀 (𝑥)}
2:

3: if 𝑜 ⊒ rel then
4: ∀𝑦 ≠ 𝑥 : 𝑉 w (𝑥,𝑦) ··∩=𝑉 c (𝜏,𝑦)
5: ∀𝑦 ≠ 𝑥 : 𝑉 w

RMW (𝑥,𝑦) ··∩=𝑉
c
RMW (𝜏,𝑦)

6: else
7: ∀𝑦 ≠ 𝑥 : 𝑉 w (𝑥,𝑦) ··∩=𝑉 r (𝜏,𝑦)
8: ∀𝑦 ≠ 𝑥 : 𝑉 w

RMW (𝑥,𝑦) ··∩=𝑉
r
RMW (𝜏,𝑦)

We note that the following invariants always hold:

𝑉 a (𝜏, 𝑥) ⊆ 𝑉 c (𝜏, 𝑥) ⊆ 𝑉 r (𝜏, 𝑥) 𝑉 a
RMW (𝜏, 𝑥) ⊆ 𝑉 c

RMW (𝜏, 𝑥) ⊆ 𝑉 r
RMW (𝜏, 𝑥)

∀𝛼 ∈ {a, c, r} : 𝑉 𝛼
RMW (𝜏, 𝑥) ⊆ 𝑉 𝛼 (𝜏, 𝑥) 𝑉 w

RMW (𝑦, 𝑥) ⊆ 𝑉 w (𝑦, 𝑥)
Initially, since each location has only one write in the initial graph, we start with 𝑉0 where

all components always return the empty set of values. To maintain 𝑉 , we define a 5-ary relation

⟨𝑀,𝑉 ⟩ 𝜏,𝑙−−→ 𝑉 ′
which ascribes how to update𝑉 when thread 𝜏 takes a step labeledwith 𝑙 starting from

memory𝑀 . We define this relation using “pseudo-code update algorithms”. For every transition, we

first “execute” Algorithm 1 and Algorithm 2 to update𝑉 𝛼
and𝑉 𝛼

RMW (for 𝛼 ∈ {a, c, r}) or Algorithm 3

for fence steps. Then,𝑉 w
and𝑉 w

RMW are updated using Algorithm 4 for write steps or Algorithm 5 for

RMW steps. In these algorithms we write 𝑋 ··∪=𝑌 for 𝑋 ··=𝑋 ∪ 𝑌 and 𝑋 ··∩=𝑌 for 𝑋 ··=𝑋 ∩ 𝑌 .

Algorithm 1 updates 𝑉 c
, 𝑉 a

, and 𝑉 r
. To understand its steps, consider an access to location 𝑥 by

thread 𝜏 . Since we are running under SC, every such access will make 𝜏 aware of the most recent

write to 𝑥 , so that there are not any non-robustly readable values of 𝑥 for thread 𝜏 . Accordingly,

Line 1 makes 𝑉 c (𝜏, 𝑥) and 𝑉 a (𝜏, 𝑥) empty. If 𝜏 writes to 𝑥 , then the previous value of 𝑥 in the

memory may be non-robustly readable for every other thread that will synchronize with the last
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silent

𝐿 = ⟨𝜀, 𝑅in, 𝑅out⟩
𝑅in ∩ 𝑅taint = ∅ =⇒ 𝑅′

taint = 𝑅taint \ 𝑅out
𝑅in ∩ 𝑅taint ≠ ∅ =⇒ 𝑅′

taint = 𝑅taint ∪ 𝑅out

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⟨𝑀,𝑅′
taint,𝑉SC,𝑉 ⟩

non-read

typ(𝐿) ∈ {W, RMW, R★} 𝑥 = loc(𝐿)
typ(𝐿) ∈ {RMW, R★} =⇒ valR (𝐿) = 𝑀 (𝑥)
typ(𝐿) ∈ {W, RMW} =⇒ 𝑀 ′ = 𝑀 [𝑥 ↦→ valW (𝐿)]

typ(𝐿) = R★ =⇒ 𝑀 ′ = 𝑀

𝑅′
taint = 𝑅taint \ Rout (𝐿)

𝑉SC
𝜏,lab(𝐿)
−−−−−−−→ 𝑉 ′

SC ⟨𝑀,𝑉 ⟩ 𝜏,lab(𝐿)
−−−−−−−→ 𝑉 ′

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⟨𝑀 ′, 𝑅′
taint,𝑉

′
SC,𝑉

′⟩

fence

typ(𝐿) = F ⟨𝑀,𝑉 ⟩ 𝜏,lab(𝐿)
−−−−−−−→ 𝑉 ′

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⟨𝑀,𝑅taint,𝑉SC,𝑉
′⟩

control

typ(𝐿) = CTRL

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩

read

typ(𝐿) = R 𝑥 = loc(𝐿) valR (𝐿) = 𝑀 (𝑥)
𝑥 ∉ 𝑉SC (𝜏) ∨𝑉 c (𝜏, 𝑥) = ∅ 𝑅′

taint = 𝑅taint \ Rout (𝐿)
𝑉SC

𝜏,lab(𝐿)
−−−−−−−→ 𝑉 ′

SC ⟨𝑀,𝑉 ⟩ 𝜏,lab(𝐿)
−−−−−−−→ 𝑉 ′

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⟨𝑀,𝑅′
taint,𝑉

′
SC,𝑉

′⟩

taint-read

typ(𝐿) = R 𝑥 = loc(𝐿)
𝑥 ∈ 𝑉SC (𝜏) 𝑉 c (𝜏, 𝑥) ≠ ∅

𝑅′
taint = 𝑅taint ∪ Rout (𝐿) 𝑉SC

𝜏,lab(𝐿)
−−−−−−−→ 𝑉 ′

SC

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⟨𝑀,𝑅′
taint,𝑉

′
SC,𝑉 ⟩

err-sc

typ(𝐿) ∈ {W, RMW, R★} 𝑥 = loc(𝐿) 𝑥 ∈ 𝑉SC (𝜏)
typ(𝐿) = W =⇒ 𝑉 c

RMW (𝜏, 𝑥) ≠ ∅
typ(𝐿) = RMW =⇒ valR (𝐿) ∈ 𝑉 c

RMW (𝜏, 𝑥)
typ(𝐿) = R★ =⇒ valR (𝐿) ∈ 𝑉 c (𝜏, 𝑥)

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⊥

err-dep

typ(𝐿) ∈ {W, RMW, R★, CTRL}
Rin (𝐿) ∩ 𝑅taint ≠ ∅

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCM ⊥

Fig. 5. SCM transitions.

release fence of thread 𝜏 (Line 3). For other locations, if 𝜏 reads from 𝑥 it is now confined as the

write event view of 𝑥 ascribes (Lines 5 and 7). A relaxed read will only affect other locations once

an acquire fence is placed (only 𝑉 a (𝜏,𝑦) is restricted). Finally, if 𝜏 writes to 𝑥 , then the previous

(overwritten) value of 𝑥 in the memory is non-robustly readable by all other threads (Line 9).

Algorithm 2 updates 𝑉 c
RMW, 𝑉

a
RMW, and 𝑉

r
RMW. Its steps are exactly the same as Algorithm 1, where

the only exceptions are in Line 3 and Line 9, which should not be preformed if the access of thread

𝜏 is an RMW. In this case, the event writing the current value𝑀 (𝑥) will be read by the RMW event

added to graph in thread 𝜏 , and so, to satisfy atomicity, it should not affect the values that are

non-robustly writable by other threads.

Algorithm 3 updates the thread views when fences are performed. For an acquire fence, this

requires to propagate the acquire views into the current views (Lines 2 and 3); and for a release

fence, we propagate the current views into the release views (Lines 5 and 6).

Algorithm 4 updates the location views when non-RMW writes are performed. Lines 1 and 2

reflect the fact that after writing to 𝑥 by thread 𝜏 , the previous value of 𝑥 in the memory may be

non-robustly readable/writable for every other thread that will read from some other location 𝑦.

In addition, after reading from 𝑥 , other threads will be confined by what thread 𝜏 “releases” in its

write: the current view for release writes or the release view for relaxed writes. Algorithm 5 is

similar. To support release sequences, Lines 4, 5, 7 and 8, “absorb” the thread view in the location

view instead of overwriting it.
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Using these algorithms, we can define the (finite) memory system SCM.

Definition 5.3. The memory system SCM is given by:

• Its states consists of the error state ⊥, and all tuples of the form ⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ (where
each of these components is of the form described above).

• Its initial state is ⟨𝑀0, 𝑅taint0,𝑉SC0,𝑉0⟩ (all as defined above).

• Its transitions are given in Fig. 5.

The transitions of SCM in Fig. 5 follow the descriptions above, using the predefined 𝑉SC −→ 𝑉 ′
SC

and ⟨𝑀,𝑉 ⟩ −→ 𝑉 ′
relations. In particular, a register is marked as taint in a read step reading from

𝑥 by thread 𝜏 iff some value of 𝑥 may be non-robustly read by thread 𝜏 (𝑉 c (𝜏, 𝑥) ≠ ∅) while the
maximal write to 𝑥 must be executed before 𝜏 ’s read step in SC-executions (𝑥 ∈ 𝑉SC (𝜏)). The
err-sc and err-dep steps detect robustness violations: either by performing a non-robust non-read

transition, or by depending on a taint read.

Example 5.4. We demonstrate how SCM simulates SCT for establishing the non-observational-

robustness of the (non-fenced) MP program in Ex. 4.2 by reaching the witness discussed in Ex. 4.15.

The following illustration depicts three program states (top part) during a run, the corresponding

execution graphs in the run of SCT (middle part; the set 𝑇 consists of the highlighted events), and

the corresponding states in the run of SCM (bottom part). To simplify the presentation, we only

present the part of SCM’s states that is relevant for detecting the robustness violation (which is

relatively small in this example).

x.store(1, rlx)
y.store(1, rlx)
▶

▶ 𝑆𝑇𝐴𝑅𝑇 :

a := y.load(rlx)
if a = 0 goto 𝑆𝑇𝐴𝑅𝑇

b := x.load(rlx)
assert(b ≠ 0)

a ↦→ 0 b ↦→ 0

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

W(rlx, y, 1)

mo

mo

𝜓 = [a ↦→ ∅ , b ↦→ ∅]

𝑀 = {x ↦→ 1, y ↦→ 1}
𝑅taint = ∅

x ∉ 𝑉SC .𝑉 (T2)
𝑉 c (T2, x) = {0}

−→+
Pr

−→+
SCT

−→+
SCM

x.store(1, rlx)
y.store(1, rlx)
▶

𝑆𝑇𝐴𝑅𝑇 :

a := y.load(rlx)
▶ if a = 0 goto 𝑆𝑇𝐴𝑅𝑇

b := x.load(rlx)
assert(b ≠ 0)

a ↦→ 1 b ↦→ 0

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

W(rlx, y, 1)

𝛼 : R(rlx, y, 1)

mo

mo

rf

𝜓 = [a ↦→ {𝛼} , b ↦→ ∅]

𝑀 = {x ↦→ 1, y ↦→ 1}
𝑅taint = ∅

x ∈ 𝑉SC.𝑉 (T2)
𝑉 c (T2, x) = {0}

−→+
Pr

−→+
SCT

−→+
SCM

x.store(1, rlx)
y.store(1, rlx)
▶

𝑆𝑇𝐴𝑅𝑇 :

a := y.load(rlx)
if a = 0 goto 𝑆𝑇𝐴𝑅𝑇

b := x.load(rlx)
▶ assert(b ≠ 0)

a ↦→ 1 b ↦→ 1

W(rlx, x, 0) W(rlx, y, 0)

W(rlx, x, 1)

W(rlx, y, 1)

𝛼 : R(rlx, y, 1)

CTRL

𝛽 : R(rlx, x, 1)

dp

mo

mo

rf

𝜓 = [a ↦→ {𝛼} , b ↦→ {𝛽}]

𝑀 = {x ↦→ 1, y ↦→ 1}
𝑅taint = {b}

x ∈ 𝑉SC.𝑉 (T2)
𝑉 c (T2, x) = {0}

To reach the first (leftmost) state, we run the first thread until it completes its execution. At this

point we have 𝑥 = 𝑦 = 1 in the memory, no tainted registers (𝑅taint = ∅), the second thread is not

“hbSC-aware” of the maximal write to x (x ∉ 𝑉SC.𝑉 (T2)), and the second thread may non-robustly

read (i.e., can read under RC20 but not under SC if we continue from this state) the value 0 from x
(𝑉 c (T2, x) = {0}). Then, since we are running under (instrumented) SC, the second thread has to

read 1 from y. This does not change the memory or the set of tainted registers, but it does make

the thread “hbSC-aware” of the maximal write to x (via the added rf-edge on y). Hence, we have
x ∈ 𝑉SC.𝑉 (T2) in the second state. Next, when the second thread reads x, it marks b as a tainted
register—the thread is “hbSC-aware” of the maximal write to x but can non-robustly read some

value of x (𝑉 c (T2, x) = {0}). Finally, when we use the value of the tainted register b (by executing

the assertion) a robustness violation is detected via SCM’s err-dep transition.
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If we include a release fence before y.store(1, rlx) in the first thread and an acquire fence before
b := x.load(rlx) in the second thread, the register b will not become tainted, and the program

will be (correctly) deemed as robust:

• After the first thread executes the release fence, we will have 𝑉 r (T1, x) = ∅;
• Then, after the first thread executes y.store(1, rlx), we will have 𝑉 w (y, x) = ∅;
• Then, after the second thread reads 1 from y, we will have 𝑉 a (T2, x) = {0} ∩ ∅ = ∅;
• Then, after the second thread executes the acquire fence, we will have 𝑉 c (T2, x) = ∅;
• Then, when the second thread reads x, it cannot non-robustly read any value of x, so the

register b remains untainted.

Next, we establish the equivalence of SCT and its finite abstraction SCM, and derive our final

results as simple corollaries of Theorems 4.16, 5.2 and 5.5 and Corollary 5.6.

Theorem 5.5. A state ⟨𝑞,⊥⟩ is reachable in Pr q SCT iff it is reachable in Pr q SCM.

Corollary 5.6. There exists a non-observational-robustness witness for Pr iff ⟨𝑞,⊥⟩ is reachable in
Pr q SCM for some 𝑞 ∈ Pr .Q,

Corollary 5.7. If ⟨𝑞,⊥⟩ is not reachable in Pr q SCM for every 𝑞 ∈ Pr .Q, then Pr is observationally
robust.

Finally, a decision procedure for robustness follows from Thm. 4.6, Lemma 4.20, and Corollary 5.6.

Corollary 5.8. A program Pr is robust iff ⟨𝑞,⊥⟩ is not reachable in Pr ′ q SCM for every 𝑞 ∈ Pr ′.Q,
where Pr ′ is the program obtained from Pr by adding a (vacuous) assert instruction assert(𝑟 = 𝑟 )
after every read instruction 𝑟 := 𝑥 .load(𝑜R).

It also follows that robustness verification against RC20 is PSPACE-complete. The upper bound

follows by reduction to reachability in an instrumented SC semantics; whereas the lower bound

directly follows from [Lahav and Margalit 2019], as the model studied there is a fragment of RC20.

6 EXTENSIONWITH NON-ATOMICS
The extension of our results to cover C11-style non-atomics with “catch-fire” semantics is straight-

forward: we can identify data-races on non-atomics while checking for robustness. Next, we

describe this extension. We refer to the extended model as RC20+NA.
First, we include “na” in the set Mod of access modes, where na is included both inModR (read

access modes) and inModW (write access modes). We assume a set Locna of non-atomic locations
disjoint from the set Loc of atomic locations, and require that all accesses to the locations in Locna
are na-accesses, and conversely, that all na-accesses are to locations in Locna. We further assume

that non-atomic accesses are used in plain loads and stores, but not in RMWs or wait instructions.

To give semantics to programs with non-atomic accesses, we define data race on non-atomics,

and consider consistent execution graphs that have such races as program failures.

Definition 6.1. Two events 𝑎 and 𝑏 are called conflicting in an execution graph 𝐺 if 𝑎, 𝑏 ∈ 𝐺.E,
𝐺.loc(𝑎) = 𝐺.loc(𝑏), and W ∈ {𝐺.typ(𝑎),𝐺 .typ(𝑏)}. A pair ⟨𝑎, 𝑏⟩ is called a race in 𝐺 if 𝑎 and 𝑏

are conflicting events in𝐺 and ⟨𝑎, 𝑏⟩ ∉ 𝐺.hb ∪𝐺.hb−1. An execution graph𝐺 is called racy if there

is some race ⟨𝑎, 𝑏⟩ in 𝐺 with na ∈ {𝐺.mod(𝑎),𝐺 .mod(𝑏)}.

Definition 6.2. A program Pr may fail under RC20+NA if either (𝑖) it may fail under RC20
(Def. 3.12) or (𝑖𝑖) some RC20-consistent execution graph 𝐺 generated by Pr is racy.

Our goal is to extend SCT, and, in turn, SCM, so that these systems can be used in order to

establish the fact that a given program may fail under RC20+NA iff it may fail under SC. We note
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that the definition of failure under SC is unchanged: for the SCmemory system non-atomic accesses

are not at all distinguished from atomic ones. To do so, we apply a simple program transformation:

(1) We split every 𝑥 ∈ Locna into |Tid| variables, 𝑥1, ... ,𝑥 |Tid | , one for each thread.

(2) We replace every (non-atomic) write to 𝑥 with a sequence of |Tid| (non-atomic) writes writing

to 𝑥1, ... ,𝑥 |Tid | the value that was written to 𝑥 .

(3) We replace every (non-atomic) read operation from 𝑥 of thread T𝑖 with a read from 𝑥𝑖 followed

by a write (of the read value that was read) to 𝑥𝑖 .

We denote by trans(Pr) the program obtained by applying this transformation on Pr .

Example 6.3. Applying the above transformation to the program on the left generates the program

on the right:

a := x.load(na)
y.store(1, rlx)

wait(y = 1, rlx)
b := x.load(na)
y.store(2, rel)

wait(y = 2, acq)
x.store(1, na)

{
a := x1 .load(na)
x1 .store(a, na)
y.store(1, rlx)

wait(y = 1, rlx)
b := x2 .load(na)
x2 .store(b, na)
y.store(2, rel)

wait(y = 2, acq)
x1 .store(1, na)
x2 .store(1, na)
x3 .store(1, na)

This program transformation essentially ensures that all races are expressed as write-write races.

We use per-thread variables to make sure that two concurrent reads to the same location in the

original program will not induce a race in the transformed program. Applying this transformation

allows us to detect races by checking that whenever a thread executes a non-atomic access it

is already aware of the latest write to the same (non-atomic) location. Since our instrumented

semantics is designed to track the set of locations of which every is aware to the latest write, this

approach requires only minimal changes in SCT and SCM. Formally, we have the following:

Lemma 6.4. The following are equivalent for every concurrent program Pr:
(𝑖) Some RC20-consistent graph generated by Pr is racy.
(𝑖𝑖) There exists some RC20-consistent execution graph 𝐺 that is generated by trans(Pr) and

a (𝐺.po ∪ 𝐺.rf)-maximal event 𝑒 ∈ 𝐺.E such that 𝐺.mod(𝑒) = na and 𝐺 ′.𝑤max
𝐺′.loc(𝑒) ∉

dom(𝐺 ′.rf? ;𝐺 ′.hb ; [Etid(𝑒) ]) for 𝐺 ′ = 𝐺 \ {𝑒}.
Condition (𝑖𝑖) above is similar to the condition that SCT (and, in turn, SCM) monitors, so that by

using the transformation above we do not need to change the instrumentation in SCT (and SCM).

Indeed, it suffices to add the following transition to SCT (we refer to the extend system as SCna
T ):

mod(𝐿) = na 𝐺.𝑤max
loc(𝐿) ∉ dom(𝐺.rf?

𝑇
;𝐺.hb

𝑇
; [E𝜏 ])

⟨𝐺,𝜓,𝑇 ⟩ 𝜏,𝐿−−→SCna
T
⊥

This additional transition allows the system to move to ⊥ when a race is detected.

Theorem 6.5. If ⟨𝑞,⊥⟩ is not reachable in trans(Pr) q SCna
T for every 𝑞 ∈ trans(Pr).Q, then Pr may

fail under RC20+NA iff Pr may fail under SC.

Finally, we extend SCM with the following step that precisely matches the step added to SCT
(we refer to the extend system as SCna

M ):

mod(𝐿) = na 𝑉 c (𝜏, loc(𝐿)) ≠ ∅

⟨𝑀,𝑅taint,𝑉SC,𝑉 ⟩ 𝜏,𝐿−−→SCna
M
⊥

The simulation argument relating SCT and SCM is easily extended to relate SCna
T and SCna

M , which

provides us with our final result:

Corollary 6.6. If ⟨𝑞,⊥⟩ is not reachable in trans(Pr) q SCna
M for every 𝑞 ∈ trans(Pr).Q, then Pr

may fail under RC20+NA iff Pr may fail under SC.
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7 IMPLEMENTATION AND EVALUATION
We have implemented our algorithm as an extension of “Rocker” [Lahav and Margalit 2019]—

a robustness checking tool against the RA model (a fragment of RC20).5 The implementation

transforms an input program in a minimal C-like language to an instrumented Promela program

that can be verified by the SPIN model checker [Holzmann 1997]. The instrumentation follows

the description above, but instead of checking reachability in an instrumented SC semantics, we

instrument the program itself, and equivalently check for reachability of a state representing an

observational robustness violation under the usual SC interleaving semantics.

Remark 3. Similarly to what was done in [Lahav and Margalit 2019], as an implementation

optimization, it is possible to group together different values, making the range of the different

views in the instrumented semantics to be the powerset of some fixed partition of Val rather than
the powerset of Val (which corresponds to the powerset of the trivial partition {{𝑣} | 𝑣 ∈ Val}).
The selected partition should be sufficiently expressive for checking whether enabled successful

CAS/BCAS/wait instructions may read a stale value. In our implementation, for every location

𝑥 , we use a partition of the form {{𝑣} | 𝑣 ∈ Crit𝑥 } ∪ {Val \ Crit𝑥 }, where Crit𝑥 are all values that

successful CAS/BCAS/wait instructions of location 𝑥 may read. (We require the user to annotate

the input program with this information.) In particular, for programs that have no CAS/BCAS/wait

instructions at all, all views are boolean predicates (rather than functions to P(Val)).

We have performed a series of experiments on litmus tests, examples from [Lahav and Margalit

2019], and additional algorithms that have been shown to be challenging-to-get-right. Figure 6 sum-

marizes our evaluation results when run on an Intel®Core™i5-6300U CPU @2.40GHz GNU/Linux

machine. In several cases, for verifying robustness, we need to replace busy-loops with wait instruc-

tions or use BCAS instead of CAS. Clearly, such transformations preserve the program semantics.

The columns “Program” and “#T” show the benchmark name and its number of threads. The column

“Rob” indicates whether the program is robust (“R”) and observationally robust (“O”). The “Time”

column presents the time that was needed to automatically verify robustness for each method

(i.e., detecting non-robustness witnesses vs. detecting non-observational-robustness witnesses),

as well as the running time of SPIN on the given program without any instrumentation (in the

column named “SC”). The latter may shed light on the size of the each verification problem and the

overhead required for robustness verification w.r.t. standard explicit model checking. The number

in parentheses indicates the percentage of the time used for compiling the verifier produced by

SPIN (using gcc -O2), which, in some cases, dominates the overall search time. We note that the

time needed for Rocker to create the instrumented program and for SPIN to create the verifier are

negligible (< 0.3s).

We interpret these results as showing that the time difference between merely checking robust-

ness vs. observational robustness is rather small. Naturally, for non-robust but observationally

robust programs, we have a significant gap.

For comparison with existing work, we have run our tool on programs that employ only re-

lease/acquire accesses from [Lahav and Margalit 2019]. Due to the more fine-grained instrumenta-

tion required to handle the full RC20 model, we obtain slightly increased runtime compared to the

RA-only robustness verifier. This can be seen in Fig. 7 (all programs there are robust against RA).
Next, we describe some of the verified examples and our findings:

arc: An implementation of Rust’s Atomic Reference Counter [Doko and Vafeiadis 2017; Rust 2020]

used by three threads repeatedly going online and offline. It relies on the synchronization induced

by relaxed RMWs inside release sequences, and our tool verified the robustness of this mechanism.

5
Our implementation and the examples it was tested on are available in the artifact accompanying this paper.
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Program #T

Rob Time (sec)

R O R O SC
arc 3 ✓ ✓ 67.1 (8%) 71.2 (8%) 3.9 (26%)

peterson 2 ✗ ✗ 1.1 (100%) 1.1 (100%) 0.9 (100%)

peterson-fix1 2 ✓ ✓ 1.1 (100%) 1.1 (100%) 0.9 (100%)

peterson-fix2 2 ✓ ✓ 1.1 (100%) 1.1 (100%) 0.9 (100%)

singleton 4 ✓ ✓ 2.8 (96%) 3.0 (97%) 1.1 (100%)

singleton-rlx 4 ✓ ✓ 2.8 (96%) 3.1 (97%) 1.1 (100%)

wait-free-ring 2 ✓ ✓ 0.9 (100%) 1.0 (100%) 0.9 (100%)

dekker-rlx 2 ✓ ✓ 1.5 (100%) 1.6 (100%) 0.9 (100%)

seqlock rdmw 3 ✗ ✓ 7.1 (100%) 59.7 (12%) 30.9 (4%)

seqlock fence 3 ✗ ✓ 8.0 (100%) 81.8 (10%) 39.9 (3%)

seqlock rdmw-rw 3 ✗ ✓ 6.4 (100%) 53.5 (13%) 31.9 (3%)

seqlock fence-rw 3 ✗ ✓ 6.7 (100%) 74.6 (9%) 41.5 (3%)

chase-lev 3 ✓ ✓ 57.7 (2%) 58.8 (3%) 27.1 (4%)

lock exchange 2 ✓ ✓ 1.0 (100%) 1.0 (100%) 0.9 (100%)

spinlock4-rlx 4 ✓ ✓ 2.5 (52%) 2.9 (48%) 1.3 (77%)

Fig. 6. Evaluation results

Program #T

Time (sec)

R O Rocker

peterson-ra 2 1.1 (100%) 1.1 (100%) 1.0 (100%)

dekker-ra 2 1.4 (100%) 1.4 (100%) 1.1 (100%)

seqlock-ra 3 62.2 (10%) 59.1 (10%) 58.3 (8%)

chase-lev-ra 3 59.8 (3%) 55.7 (3%) 39.9 (3%)

spinlock4-ra 4 2.4 (63%) 2.5 (60%) 2.3 (61%)

lamport2-3 3 102.3 (9%) 95.5 (10%) 69.9 (8%)

rcu 4 54.7 (5%) 46.1 (6%) 52.0 (4%)

rcu-offline 3 80.3 (13%) 77.5 (14%) 61.4 (12%)

ticketlock4 4 12.1 (12%) 11.8 (14%) 11.7 (13%)

Fig. 7. Comparison with Rocker [Lahav and Margalit 2019] on robust RA programs

peterson: An implementation of Peterson’s lock for C11 by V’jukov [2008]. We (automatically)

identified a robustness violation when one of the threads repeatedly tries to enter the critical

section. Previous verification efforts (including an informal argument for correctness [Williams

2008], testing [V’jukov 2013], as well as a formal proof in a dedicated program logic [Dalvandi

et al. 2020; Doherty et al. 2019]) focused on just a single attempt to enter the critical section by

each thread, and, thus, did not detect this issue. We also note that the fact that both threads cannot

simultaneously be in the critical section (which previous work established for a single critical

section by each thread) does not suffice in C11: we need locked regions to be ordered by hb. We

propose (and we verified) two fixes to the implementation: [fix1] Promoting a certain relaxed read

to acquire; and [fix2] Placing an additional acquire fence before entering the critical section (and

then we can demote an existing acquire read to be relaxed).

singleton: A double-checked locking pattern from the “boost” library [Bahmann and Blechmann

2012]. We found that robustness (and, consequently, correctness) still hold even if we demote the

read inside the lock to be relaxed (thus suggesting a possible performance improvement).

wait-free-ring: A wait-free ring buffer with a single producer and a single consumer taken from

the “boost” library [Bahmann and Blechmann 2012].

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 4. Publication date: January 2021.



4:30 Roy Margalit and Ori Lahav

dekker: An optimized (rather tricky) implementation by Williams [2010] of the classical Dekker’s

mutual exclusion algorithm that employs relaxed accesses and SC fences.

seqlocks: Optimized implementations of Seqlock (see §4.1) based on [Boehm 2012] used by three

threads (which non-deterministically write and read from the protected data structure). These

programs are observationally robust, but not robust. We verified the two implementations of Boehm

[2012]: one using “read-don’t-modify-write” instructions (“seqlock rdmw”), and one using acquire

fences (“seqlock fence”). We also tried a writer that uses efficient relaxed writes with appropriate

release fences (no “rw” suffix), as well as a less efficient writer using release writes (“rw” suffix).

chase-lev: An optimized work stealing double-ended queue that uses relaxed accesses [Chase

and Lev 2005; Kang 2018]. The queue owner inserts and removes from the bottom of the queue.

Stealers steal from the top of the queue. In this case, to prove robustness, we had to make the write

to “bot” (the bottom index) in the owner pop function to be release. We also had to add SC-fences
in the owner push function between the relaxed read of “bot” and the read acquire of “top”, as well

as before the stealer starts stealing (to allow stealing loops). In this case, these strengthenings are

due to limitations of the robustness correctness criterion, rather than bugs in the implementation.

8 RELATEDWORK AND CONCLUSIONS
We provided a sound and precise robustness verification method against RC20, a slight variant of
the RC11 memory model, which includes release/acquire and relaxed reads, writes, and RMWs, as

well as release/acquire fences. To support speculative relaxed reads as used in seqlock algorithms,

we introduced an observational robustness notion, and showed how it can be soundly verified. We

implemented our method and evaluated it on multiple examples, demonstrating the effectiveness

of this approach for detecting subtle bugs during the development of concurrent algorithms (or

migrating algorithms written for SC) for a rather complex weak memory model.

Previous work studied robustness against hardware models, e.g., [Alglave et al. 2017; Alglave

and Maranget 2011; Burckhardt et al. 2007; Derevenetc and Meyer 2014], and mostly against the

x86-TSO model, e.g., [Abdulla et al. 2015b,a; Bouajjani et al. 2013, 2018, 2011; Burckhardt and

Musuvathi 2008; Burnim et al. 2011; Gotsman et al. 2012; Linden and Wolper 2011, 2013; Liu et al.

2012; Owens 2010]. From a complexity perspective, our results show that verification of robustness

against RC20 is similar to verification of robustness against TSO—they are both PSPACE-complete.

Nevertheless, compared to TSO, the technical challenge here stems from the lack of (traditional)

operational semantics, delicate synchronization definition, and rather weak RMW operations.

A (very imprecise) robustness criteria against a programming language memory model emerges

from the well-known DRF guarantee [Adve and Hill 1990; Gharachorloo et al. 1992], and our “non-

robustness witnesses” can be viewed as a precise DRF condition. More recently, as mentioned above,

Lahav and Margalit [2019] provided a precise robustness analysis for release/acquire semantics.

Our work builds and extends this result to include relaxed accesses (with acyclic(po ∪ rf)) and
release/acquire fences. Observational robustness is, to the best of our knowledge, a novel notion,

arising when analyzing the use case of relaxed accesses as in the seqlock algorithm.

For shared memory distributed systems, robustness of transactional programs against serial-

izability was studied in [Beillahi et al. 2019a,b; Bernardi and Gotsman 2016; Brutschy et al. 2018;

Fekete et al. 2005; Nagar and Jagannathan 2018]. Except for [Beillahi et al. 2019a,b], these papers

do not provide precise verification methods, but rather practical over-approximations.
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