
1

Taming x86-TSO Persistency (Extended Version)

ARTEM KHYZHA, Tel Aviv University, Israel
ORI LAHAV, Tel Aviv University, Israel

We study the formal semantics of non-volatile memory in the x86-TSO architecture. We show that while the

explicit persist operations in the recent model of Raad et al. from POPL’20 only enforce order between writes

to the non-volatile memory, it is equivalent, in terms of reachable states, to a model whose explicit persist

operations mandate that prior writes are actually written to the non-volatile memory. The latter provides a

novel model that is much closer to common developers’ understanding of persistency semantics. We further

introduce a simpler and stronger sequentially consistent persistency model, develop a sound mapping from this

model to x86, and establish a data-race-freedom guarantee providing programmers with a safe programming

discipline. Our operational models are accompanied with equivalent declarative formulations, which facilitate

our formal arguments, and may prove useful for program verification under x86 persistency.

CCS Concepts: • Computer systems organization → Multicore architectures; • Software and its engineer-
ing → Semantics; • Theory of computation→ Concurrency; Program semantics.

Additional Key Words and Phrases: persistency, non-volatile memory, x86-TSO, weak memory models, con-

currency

ACM Reference Format:
Artem Khyzha and Ori Lahav. 2021. Taming x86-TSO Persistency (Extended Version). Proc. ACM Program.
Lang. 1, POPL, Article 1 (January 2021), 55 pages.

1 INTRODUCTION
Non-volatile memory (a.k.a. persistent memory) preserves its contents in case of a system failure

and thus allows the implementation of crash-safe systems. On new Intel machines non-volatile

memory coexists with standard (volatile) memory. Their performance are largely comparable, and

it is believed that non-volatile memory may replace standard memory in the future [Pelley et al.

2014]. Nevertheless, in all modern machines, writes are not performed directly to memory, and the

caches in between the CPU and the memory are expected to remain volatile (losing their contents

upon a crash) [Izraelevitz et al. 2016b]. Thus, writes may propagate to the non-volatile memory

later than the time they were issued by the processor, and possibly not even in the order in which

they were issued, which may easily compromise the system’s ability to recover to a consistent state

upon a failure [Bhandari et al. 2012]. This complexity, which, for concurrent programs, comes on

top of the complexity of the memory consistency model, results in counterintuitive behaviors, and

makes the programming on such machines very challenging.

As history has shown for consistency models in multicore systems, having formal semantics of

the underlying persistency model is a paramount precondition for understanding such intricate

systems, as well as for programming and reasoning about programs under such systems, and for

mapping (i.e., compiling) from one model to another.

The starting point for this paper is the recent work of Raad et al. [2020] that in extensive

collaboration with engineers at Intel formalized an extension of the x86-TSO memory model

of Owens et al. [2009] to account for Intel-x86 persistency semantics [Intel 2019]. Roughly speaking,

in order to formally justify certain outcomes that are possible after crash but can never be observed

Authors’ addresses: Artem Khyzha, Tel Aviv University, Israel, artkhyzha@mail.tau.ac.il; Ori Lahav, Tel Aviv University,

Israel, orilahav@tau.ac.il.

2021. 2475-1421/2021/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

https://doi.org/

1:2 Artem Khyzha and Ori Lahav

in normal (non-crashing) executions, their model, called Px86, employs two levels of buffers—

per thread store buffers and a global persistence buffer sitting between the store buffers and the

non-volatile memory.

There are, however, significant gaps between the Px86 model and developers and researchers’

common (often informal) understanding of persistent memory systems.

First, Px86’s explicit persist instructions are “asynchronous”. These are instructions that allow
different levels of control over how writes persist (i.e., propagate to the non-volatile memory):

flush instructions for persisting single cache lines and more efficient flush-optimal instructions
that require a following store fence (sfence) to ensure their completion. In Px86 these instructions
are asynchronous: propagating these instructions from the store buffer (making them globally

visible) does not block until certain writes persist, but rather enforces restrictions on the order

in which writes persist. For example, rather then guaranteeing that a certain cache line has to

persist when flush is propagated from the store buffer, it only ensures that prior writes to that

cache line must persist before any subsequent writes (under some appropriate definition of “prior”

and “subsequent”). Similarly, Px86’s sfence instructions provide such guarantees for flush-optimal

instructions executed before the sfence, but does not ensure that any cache line actually persisted.

In fact, for any program under Px86, it is always possible that writes do not persist at all—the

system may always crash with the contents of the very initial non-volatile memory.

We observe that Px86’s asynchronous explicit persist instructions lie in sharp contrast with a

variety of previous work and developers’ guides, ranging from theory to practice, that assumed,

sometimes implicitly, “synchronous” explicit persist instructions that allow the programmer to

assert that certain write must have persisted at certain program points (e.g., [Arulraj et al. 2018;

Chen and Jin 2015; David et al. 2018; Friedman et al. 2020, 2018; Gogte et al. 2018; Izraelevitz et al.

2016b; Kolli et al. 2017, 2016; Lersch et al. 2019; Liu et al. 2020; Oukid et al. 2016; Scargall 2020;

Venkataraman et al. 2011; Wang et al. 2018; Yang et al. 2015; Zuriel et al. 2019]). For example,

Izraelevitz et al. [2016b]’s psync instruction blocks until all previous explicit persist institutions

“have actually reached persistent memory”, but such instruction cannot be implemented in Px86.
Second, the store buffers of Px86 are not standard first-in-first-out (FIFO) buffers. In addition to

pending writes, as in usual TSO store buffers, store buffers of Px86 include pending explicit persist

instructions. While pending writes preserve their order in the store buffers, the order involving the

pending persist instructions is not necessarily maintained. For example, a pending flush-optimal

instruction may propagate from the store buffer after a pending write also in case that the flush-

optimal instruction was issued by the processor before the write. Indeed, without this (and similar)

out-of-order propagation steps, Px86 becomes too strong so it forbids certain observable behaviors.

We find the exact conditions on the store buffers propagation order to be rather intricate, making

manual reasoning about possible outcomes rather cumbersome.

Third, Px86 lacks a formal connection to an SC-basedmodel. Developers often prefer sequentially

consistent concurrency semantics (SC). They may trust a compiler to place sufficient (preferably

not excessive) barriers for ensuring SC when programming against an underlying relaxed memory

model, or rely on a data-race-freedom guarantee (DRF) ensuring that well synchronized programs

cannot expose weak memory behaviors. However, it is unclear how to derive a simpler well-behaved

SC persistency model from Px86. The straightforward solution of discarding the store buffers from

the model, thus creating direct links between the processors and the persistence buffer, is senseless

for Px86. Indeed, if applied to Px86, it would result in an overly strong semantics, which, in particular,

completely identifies the two kinds of explicit persist instructions (“flush” and “flush-optimal”),

since the difference between them in Px86 emerges solely from propagation restrictions from

the store buffers. In fact, in Px86, even certain behaviors of single threaded programs can be only

accounted for by the effect of the store buffer.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:3

Does this mean that the data structures, algorithms, and principled approaches developed before
having the formal Px86 model are futile w.r.t. Px86? The main goal of the current paper is to bridge

the gap between Px86 and developers and researchers’ common understanding, and establish a

negative answer to this question.

Our first contribution is an alternative x86-TSO operational persistency model that is provably

equivalent to Px86, and is closer, to the best of our understanding, to developers’ mental model of

x86 persistency. Our model, which we call PTSOsyn, has synchronous explicit persist instructions,
which, when they are propagated from the store buffer, do block the execution until certain writes

persist. (In the case of flush-optimal, the subsequent sfence instruction is the one blocking.) Out-of-

order propagation from the store buffers is also significantly confined in our PTSOsyn model (but

not avoided altogether, see Ex. 4.3). In addition, PTSOsyn employs per-cache-line persistence FIFO

buffers, which, we believe, are reflecting the guarantees on the persistence order of writes more

directly than the persistence (non-FIFO) buffer of Px86. (This is not a mere technicality, due to the

way explicit persist instructions are handled in Px86, its persistence buffer has to include pending

writes of all cache-lines.)

The equivalence notion we use to relate Px86 and PTSOsyn is state-based: it deems two models

equivalent if the set of reachable program states (possibly with crashes) in the models coincide.

Since a program may always start by inspecting the memory, this equivalence notion is sufficiently

strong to ensure that every content of the non-volatile memory after a crash that is observable in

one model is also observable in the other. Roughly speaking, our equivalence argument builds on

the intuition that crashing before an asynchronous flush instruction completes is observationally

indistinguishable from crashing before a synchronous flush instruction propagates from the store

buffer. Making this intuition into a proof and applying it for the full model including both kinds of

explicit persist instructions is technically challenging (we use two additional intermediate systems

between Px86 and PTSOsyn).

Our second contribution is an SC persistencymodel that is formally related to our TSO persistency

model. The SC model, which we call PSC, is naturally obtained by discarding the store buffers in

PTSOsyn. Unlike for Px86, the resulting model, to our best understanding, precisely captures the

developers’ understanding. In particular, the difficulties described above for Px86 are addressed by

PTSOsyn: even without store buffers the different kinds of explicit persist instructions (flush and

flush-optimal) have different semantics in PTSOsyn, and store buffers are never needed in single

threaded programs.

We establish two results relating PSC and PTSOsyn. The first is a sound mapping from PSC to

PTSOsyn, intended to be used as a compilation scheme that ensures simpler and more well-behaved

semantics on x86 machines. This mapping extends the standard mapping of SC to TSO: in addition

to placing a memory fence (mfence) between writes and subsequent reads to different locations,

it also places store fences (sfence) between writes and subsequent flush-optimal instructions to

different locations (the latter is only required when there is no intervening write or read operation

between the write and the flush-optimal, thus allowing a barrier-free compilation of standard uses

of flush-optimal). The second result is a DRF-guarantee for PTSOsyn w.r.t. PSC. This guarantee
ensures PSC-semantics for programs that are race-free under PSC semantics, and thus provide a

safe programming discipline against PTSOsyn that can be followed without even knowing PTSOsyn.

To achieve this, the standard notion of a data race is extend to include races between flush-optimal

instructions and writes. We note that following our precise definition of a data race, RMW (atomic

read-modify-writes) instructions do not induce races, so that with a standard lock implementation,

properly locked programs (using locks to avoid data races) are not considered racy. In fact, both

of the mapping of PSC to PTSOsyn and the DRF-guarantee are corollaries of a stronger and more

precise theorem relating PSC and PTSOsyn (see Thm. 7.8).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:4 Artem Khyzha and Ori Lahav

Finally, as a by-product of our work, we provide declarative (a.k.a. axiomatic) formulations for

PTSOsyn and PSC (which we have used for formally relating them). Our PTSOsyn declarative model

is more abstract than one in [Raad et al. 2020]. In particular, its execution graphs do not record

total persistence order on so-called “durable” events (the ‘non-volatile-order’ of [Raad et al. 2020]).

Instead, execution graphs are accompanied a mapping that assigns to every location the latest

persisted write to that location. From that mapping, we derive an additional partial order on events

that is used in our acyclicity consistency constraints. We believe that, by avoiding the existential

quantification on all possible persistence orders, our declarative presentation of the persistency

model may lend itself more easily to automatic verification using execution graphs, e.g., in the

style of [Abdulla et al. 2018; Kokologiannakis et al. 2017].

Outline. The rest of this paper is organized as follows. In §2we present our general formal framework

for operational persistency models. In §3 we present Raad et al. [2020]’s Px86 persistency model.

In §4 we introduce PTSOsyn and outline the proof of equivalence of PTSOsyn and Px86. In §5 we

present our declarative formulation of PTSOsyn and relate it to the operational semantics. In §6

we present the persistency SC-model derived from PTSOsyn, as well as its declarative formulation.

In §7 we use the declarative semantics to formally relate Px86 and PTSOsyn. In §8 we present the

related work and conclude.

Additional Material. Proofs of the theorems in this paper are given in the technical appendix

available at [Khyzha and Lahav 2020].

2 AN OPERATIONAL FRAMEWORK FOR PERSISTENCY SPECIFICATIONS
In this section we present our general framework for defining operational persistency models. As

standard in weak memory semantics, the operational semantics is obtained by synchronizing a

program (a.k.a. thread subsystem) and a memory subsystem (a.k.a. storage subsystem). The novelty

lies in the definition of persistent memory subsystems whose states have distinguished non-volatile

components. When running a program under a persistent memory subsystem, we include non-

deterministic “full system” crash transitions that initialize all volatile parts of the state.
We start with some notational preliminaries (§2.1), briefly discuss program semantics (§2.2), and

then define persistent memory subsystems and their synchronization with programs (§2.3).

2.1 Preliminaries
Sequences. For a finite alphabet Σ, we denote by Σ∗

(respectively, Σ+
) the set of all sequences

(non-empty sequences) over Σ. We use 𝜖 to denote the empty sequence. The length of a sequence 𝑠

is denoted by |𝑠 | (in particular |𝜖 | = 0). We often identify a sequence 𝑠 over Σ with its underlying

function in {1, ... ,|𝑠 |} → Σ, and write 𝑠 (𝑘) for the symbol at position 1 ≤ 𝑘 ≤ |𝑠 | in 𝑠 . We write

𝜎 ∈ 𝑠 if 𝜎 appears in 𝑠 , that is if 𝑠 (𝑘) = 𝜎 for some 1 ≤ 𝑘 ≤ |𝑠 |. We use “·” for the concatenation of

sequences, which is lifted to concatenation of sets of sequences in the obvious way. We identify

symbols with sequences of length 1 or their singletons when needed (e.g., in expressions like 𝜎 · 𝑆).

Relations. Given a relation 𝑅, dom(𝑅) denotes its domain; and 𝑅?
, 𝑅+

, and 𝑅∗
denote its reflexive,

transitive, and reflexive-transitive closures. The inverse of𝑅 is denoted by𝑅−1
. The (left) composition

of relations 𝑅1, 𝑅2 is denoted by 𝑅1 ; 𝑅2. We assume that ; binds tighter than ∪ and \. We denote by

[𝐴] the identity relation on a set 𝐴, and so [𝐴] ; 𝑅 ; [𝐵] = 𝑅 ∩ (𝐴 × 𝐵).

Labeled transition systems. A labeled transition system (LTS) 𝐴 is a tuple ⟨𝑄, Σ, 𝑄Init,𝑇 ⟩, where 𝑄
is a set of states, Σ is a finite alphabet (whose symbols are called transition labels), 𝑄Init ⊆ 𝑄 is a set

of initial states, and 𝑇 ⊆ 𝑄 × Σ ×𝑄 is a set of transitions. We denote by 𝐴.Q, 𝐴.Σ, 𝐴.QInit, and 𝐴.T

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:5

the components of an LTS 𝐴. We write

𝜎−→𝐴 for the relation {⟨𝑞, 𝑞′⟩ | ⟨𝑞, 𝜎, 𝑞′⟩ ∈ 𝐴.T}, and −→𝐴

for

⋃
𝜎 ∈Σ

𝜎−→𝐴 . For a sequence 𝑡 ∈ 𝐴.Σ∗
, we write

𝑡−→𝐴 for the composition

𝑡 (1)
−−−→𝐴 ; ... ;

𝑡 (|𝑡 |)
−−−−→𝐴 .

A sequence 𝑡 ∈ 𝐴.Σ∗
such that 𝑞Init

𝑡−→𝐴 𝑞 for some 𝑞Init ∈ 𝐴.QInit and 𝑞 ∈ 𝐴.Q is called a trace of 𝐴
(or an 𝐴-trace). We denote by traces(𝐴) the set of all traces of 𝐴. A state 𝑞 ∈ 𝐴.Q is called reachable
in 𝐴 if 𝑞Init

𝑡−→𝐴 𝑞 for some 𝑞Init ∈ 𝐴.QInit and 𝑡 ∈ traces(𝐴).

Observable traces. Given an LTS 𝐴, we usually have a distinguished symbol 𝜖 included in

𝐴.Σ. We refer to transitions labeled with 𝜖 as silent transitions, while the other transition are

called observable transitions. For a sequence 𝑡 ∈ (𝐴.Σ \ {𝜖})∗, we write

𝑡
=⇒𝐴 for the rela-

tion {⟨𝑞, 𝑞′⟩ | 𝑞 𝜖−→∗
𝐴

𝑡 (1)
−−−→𝐴

𝜖−→∗
𝐴
· ·· 𝜖−→∗

𝐴

𝑡 (|𝑡 |)
−−−−→𝐴

𝜖−→∗
𝐴
𝑞′}. A sequence 𝑡 ∈ (𝐴.Σ \ {𝜖})∗ such that

𝑞Init
𝑡
=⇒𝐴 𝑞 for some 𝑞Init ∈ 𝐴.QInit and 𝑞 ∈ 𝐴.Q is called an observable trace of 𝐴 (or an 𝐴-observable-

trace). We denote by otraces(𝐴) the set of all observable traces of 𝐴.

2.2 Concurrent Programs Representation
To keep the presentation abstract, we do not provide here a concrete programming language,

but rather represent programs as LTSs. For this matter, we let Val ⊆ N, Loc ⊆ {x, y, ...}, and
Tid ⊆ {T1, T2, ... ,T𝑁 }, be sets of values, (shared) memory locations, and thread identifiers. We assume

that Val contains a distinguished value 0, used as the initial value for all locations.

Sequential programs are identified with LTSs whose transition labels are event labels, extended
with 𝜖 for silent program transitions, as defined next.

1

Definition 2.1. An event label is either a read label R(𝑥, 𝑣R), a write label W(𝑥, 𝑣W), a read-modify-
write (RMW) label RMW(𝑥, 𝑣R, 𝑣W), a failed compare-and-swap (CAS) label R-ex(𝑥, 𝑣R), an mfence label
MF, a flush label FL(𝑥), a flush-opt label FO(𝑥), or an sfence label SF, where 𝑥 ∈ Loc and 𝑣R, 𝑣W ∈ Val.
We denote by Lab the set of all event labels. The functions typ, loc, valR, and valW retrieve (when
applicable) the type (R/W/RMW/R-ex/MF/FL/FO/SF), location (𝑥), read value (𝑣R), and written value

(𝑣W) of an event label.

Event labels correspond to the different interactions that a program may have with the persistent

memory subsystem. In particular, we have several types of barrier labels: a memory fence (MF), a
persistency per-location flush barrier (FL(𝑥)), an optimized persistency per-location flush barrier,

called “flush-optimal” (FO(𝑥)), and a store fence (SF).2 Roughly speaking, memory fences (MF) ensure
the completion of all prior instructions, while store fences (SF) ensure that prior flush-optimal

instructions have taken their effect. Memory access labels include plain reads and writes, as well as

RMWs (RMW(𝑥, 𝑣R, 𝑣W)) resulting from operations like compare-and-swap (CAS) and fetch-and-add.

For failed CAS (a CAS that did not read the expected value) we use a special read label R-ex(𝑥, 𝑣R),
which allows us to distinguish such transitions from plain reads and provide them with stronger

semantics.
3
We note that our event labels are specific for the x86 persistency, but they can be easily

extended and adapted for other models.

In turn, a (concurrent) program Pr is a top-level parallel composition of sequential programs,

defined as a mapping assigning a sequential program to every 𝜏 ∈ Tid. A program Pr is also

identified with an LTS, which is obtained by standard lifting of the LTSs representing its component

1
In our examples we use a standard program syntax and assume a standard reading of programs as LTSs. To assist the

reader, Appendix H provides a concrete example of how this can be done.

2
In [Intel 2019], flush is referred to as CLFLUSH, flush-optimal is referred to as CLFLUSHOPT. Intel’s CLWB instruction is

equivalent to CLFLUSHOPT and may improve performance in certain cases [Raad et al. 2020].

3
Some previous work, e.g., [Lahav et al. 2016; Raad et al. 2020], consider failed RMWs (arising from lock cmpxchg
instructions) as plain reads, although failed RMWs induce a memory fence in TSO.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:6 Artem Khyzha and Ori Lahav

sequential programs. The transition labels of this LTS record the thread identifier of non-silent

transitions, as defined next.

Definition 2.2. A program transition label is either ⟨𝜏, 𝑙⟩ for 𝜏 ∈ Tid and 𝑙 ∈ Lab (observable
transition) or 𝜖 (silent transition). We denote by PTLab the set of all program transition labels. We

use the function tid and lab to return the thread identifier (𝜏) and event label 𝑙 of a given transition

label (when applicable). The functions typ, loc, valR, and valW are lifted to transition labels in the

obvious way (undefined for 𝜖-transitions).

The LTS induced by a (concurrent) program Pr is over the alphabet PTLab; its states are functions,
denoted by 𝑞, assigning a state in Pr (𝜏).Q to every 𝜏 ∈ Tid; its initial states set is

∏
𝜏 Pr (𝜏).QInit; and

its transitions are “interleaved transitions” of Pr’s components, given by:

𝑙 ∈ Lab 𝑞(𝜏) 𝑙−→Pr (𝜏) 𝑞
′

𝑞
𝜏,𝑙−−→Pr 𝑞 [𝜏 ↦→ 𝑞′]

𝑞(𝜏) 𝜖−→Pr (𝜏) 𝑞
′

𝑞
𝜖−→Pr 𝑞 [𝜏 ↦→ 𝑞′]

We refer to sequences over PTLab \ {𝜖} = Tid × Lab as observable program traces. Clearly,
observable program traces are closed under “per-thread prefixes”:

Definition 2.3. We denote by 𝑡 |𝜏 the restriction of an observable program trace 𝑡 to transition

labels of the form ⟨𝜏, _⟩. An observable program trace 𝑡 ′ is per-thread equivalent to an observable

program trace 𝑡 , denoted by 𝑡 ′ ∼ 𝑡 , if 𝑡 ′ |𝜏 = 𝑡 |𝜏 for every 𝜏 ∈ Tid. In turn, 𝑡 ′ is a per-thread prefix of

𝑡 , denoted by 𝑡 ′ ≲ 𝑡 , if 𝑡 ′ is a (possibly trivial) prefix of some 𝑡 ′′ ∼ 𝑡 (equivalently, 𝑡 ′ |𝜏 is a prefix of
𝑡 |𝜏 for every 𝜏 ∈ Tid).

Proposition 2.4. If 𝑡 is a Pr-observable-trace, then so is every 𝑡 ′ ≲ 𝑡 .

2.3 Persistent Systems
At the program level, the read values are arbitrary. It is the responsibility of the memory subsystem

to specify what values can be read from each location at each point. Formally, thememory subsystem

is another LTS over PTLab, whose synchronization with the program gives us the possible behaviors

of the whole system. For persistent memory subsystems, we require that each memory state is

composed of a persistent memory Loc → Val, which survived the crash, and a volatile part, whose

exact structure varies from one system to another (e.g., TSO-based models will have store buffers

in the volatile part and SC-based systems will not).

Definition 2.5. A persistent memory subsystem is an LTS𝑀 that satisfies the following:

• 𝑀.Σ = PTLab.
• 𝑀.Q = (Loc → Val) × 𝑄̃ where 𝑄̃ is some set. We denote by𝑀.Q̃ the particular set 𝑄̃ used in

a persistent memory subsystem𝑀 . We usually denote states in𝑀.Q as 𝑞 = ⟨𝑚,𝑚̃⟩, where the
two components (𝑚 and 𝑚̃) of a state 𝑞 are respectively called the non-volatile state and the

volatile state.4

• 𝑀.QInit = (Loc → Val) × 𝑄̃Init where 𝑄̃Init is some subset of 𝑀.Q̃. We denote by 𝑀.Q̃Init the
particular set 𝑄̃Init used in a persistent memory subsystem𝑀 .

In the systems defined below, the non-volatile states in 𝑀.Q̃ consists a multiple buffers (store

buffers and persistence buffers) that lose their contents upon crash. The transition labels of a

persistent memory subsystem are pairs in Tid × Lab, representing the thread identifier and the

event label of the operation, or 𝜖 for internal (silent) memory actions (e.g., propagation from the

4
When the elements of 𝑀.Q̃ are tuples themselves, we often simplify the writing by flattening the states, e.g., ⟨𝑚,𝛼, 𝛽 ⟩
instead of ⟨𝑚, ⟨𝛼, 𝛽 ⟩⟩.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:7

store buffers). We note that, given the requirements of Def. 2.5, to define a persistent memory

subsystem𝑀 it suffices to give its sets𝑀.Q̃ and𝑀.Q̃Init of volatile states and initial volatile states,

and its transition relation.

By synchronizing a program Pr and a persistent memory subsystem 𝑀 , and including non-

deterministic crash transitions (labeled with), we obtain a persistent system, which we denote by

Pr q 𝑀 :

Definition 2.6. A program Pr and a persistent memory subsystem 𝑀 form a persistent system,

denoted by Pr q 𝑀 . It is an LTS over the alphabet PTLab∪ { } whose set of states is Pr .Q× (Loc →
Val) × 𝑀.Q̃; its initial states set is Pr .QInit × {𝑚Init} × 𝑀.Q̃Init, where𝑚Init = 𝜆𝑥 ∈ Loc. 0; and its

transitions are “synchronized transitions” of Pr and𝑀 , given by:

𝑞
𝜏,𝑙−−→Pr 𝑞

′ ⟨𝑚,𝑚̃⟩ 𝜏,𝑙−−→𝑀 ⟨𝑚′, 𝑚̃′⟩

⟨𝑞,𝑚,𝑚̃⟩ 𝜏,𝑙−−→Prq𝑀 ⟨𝑞′,𝑚′, 𝑚̃′⟩

𝑞
𝜖−→Pr 𝑞

′

⟨𝑞,𝑚,𝑚̃⟩ 𝜖−→Prq𝑀 ⟨𝑞′,𝑚, 𝑚̃⟩

⟨𝑚,𝑚̃⟩ 𝜖−→𝑀 ⟨𝑚′, 𝑚̃′⟩

⟨𝑞,𝑚,𝑚̃⟩ 𝜖−→Prq𝑀 ⟨𝑞,𝑚′, 𝑚̃′⟩

𝑞Init ∈ Pr .QInit 𝑚̃Init ∈ 𝑀.Q̃Init

⟨𝑞,𝑚,𝑚̃⟩ −→Prq𝑀 ⟨𝑞Init,𝑚, 𝑚̃Init⟩

Crash transitions reinitialize the program state 𝑞 (which corresponds to losing the program

counter and the local stores) and the volatile component of the memory state 𝑚̃. The persistent

memory𝑚 is left intact.

Given the above definition of persistent system, we can define the set of reachable program states

under a given persistent memory subsystem. Focused on safety properties, we use this notion to

define when one persistent memory subsystem observationally refines another.

Definition 2.7. A program state 𝑞 ∈ Pr .Q is reachable under a persistent memory subsystem 𝑀 if

⟨𝑞,𝑚,𝑚̃⟩ is reachable in Pr q 𝑀 for some ⟨𝑚,𝑚̃⟩ ∈ 𝑀.Q.

Definition 2.8. A persistent memory subsystem 𝑀1 observationally refines a persistent memory

subsystem𝑀2 if for every program Pr , every program state 𝑞 ∈ Pr .Q that is reachable under𝑀1 is

also reachable under𝑀2. We say that𝑀1 and𝑀2 are observationally equivalent if𝑀1 observationally

refines𝑀2 and𝑀2 observationally refines𝑀1.

While the above refinement notion refers to reachable program states, it is also applicable for

the reachable non-volatile memories. Indeed, a program may always start by asserting certain

conditions reflecting the fact that the memory is in certain consistent state (which usually vacuously

hold for the very initial memory𝑚Init), thus capturing the state of the non-volatile memory in the

program state itself.

Remark 1. Our notions of observational refinement and equivalence above are state-based. This

is standard in formalizations of weak memory models, intended to support reasoning about safety

properties (e.g., detect program assertion violations). In particular, if 𝑀1 observationally refines

𝑀2, the developer may safely assume𝑀2’s semantics when reasoning about reachable non-volatile

memories under𝑀1. We note that a more refined notion of observation in a richer language, e.g.,

with I/O side-effects, may expose behaviors of𝑀1 that are not observable in𝑀2 even when𝑀1 and

𝑀2 are observationally equivalent according to the definition above.

The following lemma allows us to establish refinements without considering all programs and
crashes.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:8 Artem Khyzha and Ori Lahav

Definition 2.9. An observable trace 𝑡 of a persistent memory subsystem𝑀 is called𝑚0-to-𝑚 if

⟨𝑚0, 𝑚̃Init⟩
𝑡
=⇒𝑀 ⟨𝑚,𝑚̃⟩ for some 𝑚̃Init ∈ 𝑀.Q̃Init and 𝑚̃ ∈ 𝑀.Q̃. Furthermore, 𝑡 is called𝑚0-initialized

if it is𝑚0-to-𝑚 for some𝑚.

Lemma 2.10. The following conditions together ensure that a persistent memory subsystem 𝑀1

observationally refines a persistent memory subsystem𝑀2:
(i) Every𝑚0-initialized𝑀1-observable-trace is also an𝑚0-initialized𝑀2-observable-trace.
(ii) For every𝑚0-to-𝑚 𝑀1-observable-trace 𝑡1, some 𝑡2 ≲ 𝑡1 is an𝑚0-to-𝑚 𝑀2-observable-trace.

Proof (outline). Consider any program state 𝑞 reachable under 𝑀1 with a trace 𝑡 = 𝑡0 · ·
𝑡1 · ... · · 𝑡𝑛 . Each crash resets the program state and the volatile state, but not the non-volatile

state. We leverage condition (ii) in showing that Pr q 𝑀2 can reach each crash having the same

non-volatile memory state as Pr q 𝑀1 (possibly with a shorter program trace). Therefore, when

Pr q 𝑀1 proceeds with in 𝑡𝑛 after the last crash, Pr q 𝑀2 is able to proceed from exactly the same

state. Then, condition (i) applied to 𝑡𝑛 immediately gives us that 𝑞 is reachable under𝑀2. □

Intuitively speaking, condition (i) ensures that after the last system crash, the client can only

observe behaviors of 𝑀1 that are allowed by 𝑀2, and condition (ii) ensures that the parts of the

state that survives crashes that are observable in 𝑀1 are also observable in𝑀2. Note that condition

(ii) allows us (and we actually rely on it in our proofs) to reach the non-volatile memory in𝑀1 with

a per-thread prefix of the program trace that reached that memory in𝑀2. Indeed, the program state

is lost after the crash, and the client cannot observe what part of the program has been actually

executed before the crash.

3 THE Px86 PERSISTENT MEMORY SUBSYSTEM
In this section we present Px86, the persistent memory subsystem by Raad et al. [2020] which

models the persistency semantics of the Intel-x86 architecture.

Remark 2. Following discussions with Intel engineers, Raad et al. [2020] introduced two models:

Px86man and Px86sim. The first formalizes the (ambiguous and under specified) reference manual

specification [Intel 2019]. The latter simplifies and strengthens the first while capturing the “behavior

intended by the Intel engineers”. The model studied here is Px86sim, which we simply call Px86.

Px86 is an extension of the standard TSO model [Owens et al. 2009] with another layer called

persistence buffer. This is a global buffer that contains writes that are pending to be persisted to the

(non-volatile) memory as well as certain markers governing the persistence order. Store buffers

are extended to include not only store instruction but also flush and sfence instructions. Both the

(per-thread) store buffers and the (global) persistence buffer are volatile.

Definition 3.1. A store buffer is a finite sequence b of event labels 𝑙 with typ(𝑙) ∈ {W, FL, FO, SF}.
A store-buffer mapping is a function B assigning a store buffer to every 𝜏 ∈ Tid. We denote by B𝜖 ,
the initial store-buffer mapping assigning the empty sequence to every 𝜏 ∈ Tid.

Definition 3.2. A persistence buffer is a finite sequence p of elements of the form W(𝑥, 𝑣) or PER(𝑥)
(where 𝑥 ∈ Loc and 𝑣 ∈ Val).

Like the memory, the persistence buffer is accessible by all threads. When thread 𝜏 reads from a

shared location 𝑥 it obtains its latest accessible value of 𝑥 , which is defined using the following get
function applied on the current persistent memory𝑚, persistence buffer p, and 𝜏 ’s store buffer b:

get(𝑚, p, b) ≜ 𝜆𝑥.


𝑣 b = b1 · W(𝑥, 𝑣) · b2 ∧ W(𝑥, _) ∉ b2
𝑣 W(𝑥, _) ∉ b ∧ p = p1 · W(𝑥, 𝑣) · p2 ∧ W(𝑥, _) ∉ p2
𝑚(𝑥) otherwise

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:9

𝑚 ∈ Loc → Val p ∈ ({W(𝑥, 𝑣) | 𝑥 ∈ Loc, 𝑣 ∈ Val} ∪ {PER(𝑥) | 𝑥 ∈ Loc})∗
B ∈ Tid → ({W(𝑥, 𝑣) | 𝑥 ∈ Loc, 𝑣 ∈ Val} ∪ {FL(𝑥) | 𝑥 ∈ Loc} ∪ {FO(𝑥) | 𝑥 ∈ Loc} ∪ {SF})∗

pInit ≜ 𝜖 BInit ≜ 𝜆𝜏 . 𝜖

write/flush/flush-opt/sfence

typ(𝑙) ∈ {W, FL, FO, SF}
B′ = B[𝜏 ↦→ B(𝜏) · 𝑙]

⟨𝑚, p, B⟩ 𝜏,𝑙−−→Px86 ⟨𝑚, p, B′⟩

read

𝑙 = R(𝑥, 𝑣)
get(𝑚, p, B(𝜏)) (𝑥) = 𝑣

⟨𝑚, p, B⟩ 𝜏,𝑙−−→Px86 ⟨𝑚, p, B⟩

rmw

𝑙 = RMW(𝑥, 𝑣R, 𝑣W)
get(𝑚, p, 𝜖) (𝑥) = 𝑣R

B(𝜏) = 𝜖

p′ = p · W(𝑥, 𝑣W)

⟨𝑚, p, B⟩ 𝜏,𝑙−−→Px86 ⟨𝑚, p′, B⟩

rmw-fail

𝑙 = R-ex(𝑥, 𝑣)
get(𝑚, p, 𝜖) (𝑥) = 𝑣

B(𝜏) = 𝜖

⟨𝑚, p, B⟩ 𝜏,𝑙−−→Px86 ⟨𝑚, p, B⟩

mfence

𝑙 = MF

B(𝜏) = 𝜖

⟨𝑚, p, B⟩ 𝜏,𝑙−−→Px86 ⟨𝑚, p, B⟩

prop-w

B(𝜏) = b1 · W(𝑥, 𝑣) · b2
W(_, _), FL(_), SF ∉ b1

B′ = B[𝜏 ↦→ b1 · b2] p′ = p · W(𝑥, 𝑣)

⟨𝑚, p, B⟩ 𝜖−→Px86 ⟨𝑚, p′, B′⟩

prop-fl

B(𝜏) = b1 · FL(𝑥) · b2
W(_, _), FL(_), FO(𝑥), SF ∉ b1

B′ = B[𝜏 ↦→ b1 · b2] p′ = p · PER(𝑥)

⟨𝑚, p, B⟩ 𝜖−→Px86 ⟨𝑚, p′, B′⟩

prop-fo

B(𝜏) = b1 · FO(𝑥) · b2
W(𝑥, _), FL(𝑥), SF ∉ b1

B′ = B[𝜏 ↦→ b1 · b2] p′ = p · PER(𝑥)

⟨𝑚, p, B⟩ 𝜖−→Px86 ⟨𝑚, p′, B′⟩

prop-sf

B(𝜏) = SF · b
B′ = B[𝜏 ↦→ b]

⟨𝑚, p, B⟩ 𝜖−→Px86 ⟨𝑚, p, B′⟩

persist-w

p = p1 · W(𝑥, 𝑣) · p2
W(𝑥, _), PER(_) ∉ p1

p′ = p1 · p2 𝑚′ =𝑚[𝑥 ↦→ 𝑣]

⟨𝑚, p, B⟩ 𝜖−→Px86 ⟨𝑚′, p′, B⟩

persist-per

p = p1 · PER(𝑥) · p2
W(𝑥, _), PER(_) ∉ p1

p′ = p1 · p2
⟨𝑚, p, B⟩ 𝜖−→Px86 ⟨𝑚, p′, B⟩

Fig. 1. The Px86 Persistent Memory Subsystem

Using these definitions, Px86 is presented in Fig. 1. Its set of volatile states, Px86.Q̃, consists of all
pairs ⟨p, B⟩, where p is a persistence buffer and B is a store-buffer mapping. Initially, all buffers are

empty (Px86.Q̃Init = {⟨𝜖, B𝜖⟩}).
The system’s transitions are of three kinds: “issuing steps”, “propagation steps”, and “persistence

steps”. Steps of the first kind are defined as in standard TSO semantics, with the only extension

being the fact that flush, flush-optimals and sfences instructions emit entries in the store buffer.

Propagation of writes from the store buffer (prop-w) is both making the writes visible to other

threads, and propagating them to the persistence buffer. Note that a write may propagate even when

flush-optimals precede it in the store buffer (which means that they were issued before the write by

the thread). Propagation of flushes and flush-optimals (prop-fl and prop-fo) adds a “PER-marker”

to the persistence buffer, which later restricts the order in which writes persist. The difference

between the two kinds of flushes is reflected in the conditions on their propagation. In particular, a

flush-optimal may propagate even when writes to different locations precede it in the store buffer

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:10 Artem Khyzha and Ori Lahav

(which means that they were issued before the flush-optimal by the thread). Propagation of sfences

simply removes the sfence entry, which is only used to restrict the order of propagation of other

entries, and is discarded once it reaches the head of the store buffer.

Finally, persisting a write moves a write entry from the persistence buffer to the non-volatile

memory (persist-w). Writes to the same location persist in the same order in which they propagate.

The PER-markers ensure that writes that propagated before some marker persist before writes that

propagate after that marker. After the PER-markers play their role, they are discarded from the

persistence buffer (persist-per).

We note that the step for (non-deterministic) system crashes is included in Def. 2.6 upon syn-

chronizing the LTS of a program with the one of the Px86 memory subsystem. Without crashes,
the effect of the persistence buffer is unobservable, and Px86 coincides with the standard TSO

semantics.

Example 3.3. Consider the following four sequential programs:

x := 1 ;

y := 1 ;

(𝐴) ✓

x := 1 ;

fl(x) ;
y := 1 ;

(𝐵) ✗

x := 1 ;

fo(x) ;
y := 1 ;

(𝐶) ✓

x := 1 ;

fo(x) ;
sfence ;

y := 1 ;

(𝐷) ✗

To refer to particular program behaviors, we use colored boxes for denoting the last write that

persisted for each locations (inducing a possible content of the non-volatile memory in a run of the

program). When some location lacks such annotation (like x in the above examples), it means that

none of its write persisted, so that its value in the non-volatile memory is 0 (the initial value). In

particular, the behaviors annotated above all have𝑚 ⊇ {x ↦→ 0, y ↦→ 1}. It is easy to verify that Px86
allows/forbids each of these behaviors as specified by the corresponding ✓/✗ marking. In particular,

example (C) demonstrates that propagating a write before a prior flush-optimal is essential. Indeed,

the annotated behavior is obtained by propagating y := 1 from the store buffer before fo(x) (but
necessarily after x := 1). Otherwise, y := 1 cannot persist without x := 1 persisting before.

Remark 3. To simplify the presentation, following Izraelevitz et al. [2016a], but unlike Raad

et al. [2020], we conservatively assume that writes persist atomically at the location granularity

(representing, e.g., machine words). Real machines provide granularity at the width of a cache line,

and, assuming the programmer can faithfully control what locations are stored on same cache

line, may provide stronger guarantees. Nevertheless, adapting our results to support cache line

granularity is straightforward.

Remark 4. Persistent systems make programs responsible for recovery from crashes: after a

crash, programs restart with reinitialized program state and the volatile component of the memory

state. In contrast, Raad et al. [2020] define their system assuming a separate recovery program

called a recovery context, which after a crash atomically advances program state from the initial

one. In our technical development, we prefer to make minimal assumptions about the recovery

mechanism. Nevertheless, by adjusting crash transitions in Def. 2.6, our framework and results can

be easily extended to support Raad et al. [2020]’s recovery context.

4 THE PTSOSYN PERSISTENT MEMORY SUBSYSTEM
In this section we present our alternative persistent memory subsystem, which we call PTSOsyn,

that is observationally equivalent to Px86. We list major differences between PTSOsyn and Px86:
• PTSOsyn has synchronous flush instructions—the propagation of a flush of location 𝑥 from the

store buffer is blocking the execution until all writes to 𝑥 that propagated earlier have persisted.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:11

We note that, as expected in a TSO-based model, flushes do not take their synchronous effect

when they are issued by the thread, but rather have a delayed globally visible effect happening

when they propagate from the store buffer.

• PTSOsyn has synchronous sfence instructions—the propagation of an sfence from the store buffer

is blocking the execution until all flush-optimals of the same thread that propagated earlier

have taken their effect. The latter means that all writes to the location of the flush-optimal that

propagated before the flush-optimal have persisted. Thus, flush-optimals serve as markers in

the persistence buffer, that are only meaningful when an sfence (issued by the same thread that

issued the flush-optimal) propagates from the store buffer. As for flushes, the effect of an sfence

is not at its issue time but at its propagation time. We note that mfence and RMW operations

(both when they fail and when they succeed) induce an implicit sfence.

• Rather than a global persistence buffer, PTSOsyn employs per-location persistence buffers directly

reflecting the fact that the persistence order has to agree with the propagation order only between

writes to the same location, while writes to different locations may persist out of order.

• The store buffers of PTSOsyn are “almost” FIFO buffers. With the exception of flush-optimals,

entries may propagate from the store buffer only when they reach the head of the buffer. Flush-

optimals may still “overtake” writes as well as flushes/flush-optimals of a different location.

Example 4.3 below demonstrates why we need to allow the latter (there is a certain design choice

here, see Remark 5).

To formally present PTSOsyn, we first define per-location persistence buffers and per-location-

persistence-buffer mappings.

Definition 4.1. A per-location persistence buffer is a finite sequence p of elements of the form

W(𝑣) or FO(𝜏) (where 𝑣 ∈ Val and 𝜏 ∈ Tid). A per-location-persistence-buffer mapping is a function

P assigning a per-location persistence buffer to every 𝑥 ∈ Loc. We denote by P𝜖 , the initial per-
location-persistence-buffer mapping assigning the empty sequence to every 𝑥 ∈ Loc.

Flush instructions under PTSOsyn take effect upon their propagation, so, unlike in Px86, they do

not add PER-markers into the persistence buffers. For flush-optimals, instead of PER-markers, we

use (per location) FO(𝜏) markers, where 𝜏 is the identifier of the thread that issued the instruction. In

accordance with how Px86’s sfence only blocks the propagation of the same thread’s flush-optimals,

the synchronous behavior of sfence must not wait for flush-optimals by different threads (see

Ex. 4.4 below).

The (overloaded) get function is updated in the obvious way:

get(𝑚, p, b) ≜ 𝜆𝑥.


𝑣 b = b1 · W(𝑥, 𝑣) · b2 ∧ W(𝑥, _) ∉ b2
𝑣 W(𝑥, _) ∉ b ∧ p = p1 · W(𝑣) · p2 ∧ W(_) ∉ p2
𝑚(𝑥) otherwise

For looking up a value for location 𝑥 by thread 𝜏 , we apply getwith𝑚 being the current non-volatile

memory, p being 𝑥 ’s persistence buffer, b being 𝜏 ’s store buffer
Using these definitions, PTSOsyn is presented in Fig. 2. Its set of volatile states, PTSOsyn .Q̃, consists

of all pairs ⟨P, B⟩, where P is a per-location-persistence-buffer mapping and B is a store-buffer

mapping. Initially, all buffers are empty (PTSOsyn .Q̃Init = {⟨P𝜖 , B𝜖⟩}).
The differences of PTSOsyn w.r.t. Px86 are highlighted in Fig. 2. First, the prop-fl transition only

occurs when P (𝑥) = 𝜖 to ensure that all previously propagated writes have persisted. Second, the

prop-sfence transition (as well as rmw, rmw-fail, and mfence) only occurs when∀𝑦. FO(𝜏) ∉ P (𝑦)
holds to ensure that propagation of each sfence blocks until previous flush-optimals of the same

thread have completed. Third, the persist-w and persist-fo transitions persist the entries from

the per-location persistence buffers in-order. Finally, the prop-w and prop-fl transitions propagate

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:12 Artem Khyzha and Ori Lahav

𝑚 ∈ Loc → Val P ∈ Loc → ({W(𝑣) | 𝑣 ∈ Val} ∪ {FO(𝜏) | 𝜏 ∈ Tid})∗
B ∈ Tid → ({W(𝑥, 𝑣) | 𝑥 ∈ Loc, 𝑣 ∈ Val} ∪ {FL(𝑥) | 𝑥 ∈ Loc} ∪ {FO(𝑥) | 𝑥 ∈ Loc} ∪ {SF})∗

PInit ≜ 𝜆𝑥 . 𝜖 BInit ≜ 𝜆𝜏 . 𝜖

write/flush/flush-opt/sfence

typ(𝑙) ∈ {W, FL, FO, SF}
B′ = B[𝜏 ↦→ B(𝜏) · 𝑙]

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P, B′⟩

read

𝑙 = R(𝑥, 𝑣)
get(𝑚, P (𝑥), B(𝜏)) (𝑥) = 𝑣

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P, B⟩

rmw

𝑙 = RMW(𝑥, 𝑣R, 𝑣W)
get(𝑚, P (𝑥), 𝜖) (𝑥) = 𝑣R

B(𝜏) = 𝜖

∀𝑦. FO(𝜏) ∉ P (𝑦)
P ′ = P [𝑥 ↦→ P (𝑥) · W(𝑣W)]

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P ′, B⟩

rmw-fail

𝑙 = R-ex(𝑥, 𝑣)
get(𝑚, P (𝑥), 𝜖) (𝑥) = 𝑣

B(𝜏) = 𝜖

∀𝑦. FO(𝜏) ∉ P (𝑦)

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P, B⟩

mfence

𝑙 = MF

B(𝜏) = 𝜖

∀𝑦. FO(𝜏) ∉ P (𝑦)

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P, B⟩

prop-w

B(𝜏) = W(𝑥, 𝑣) · b B′ = B[𝜏 ↦→ b]
P ′ = P [𝑥 ↦→ P (𝑥) · W(𝑣)]

⟨𝑚, P, B⟩ 𝜖−→PTSOsyn ⟨𝑚, P ′, B′⟩

prop-fl

B(𝜏) = FL(𝑥) · b B′ = B[𝜏 ↦→ b]
P (𝑥) = 𝜖

⟨𝑚, P, B⟩ 𝜖−→PTSOsyn ⟨𝑚, P, B′⟩

prop-fo

B(𝜏) = b1 · FO(𝑥) · b2
W(𝑥, _), FL(𝑥), FO(𝑥), SF ∉ b1

B′ = B[𝜏 ↦→ b1 · b2] P ′ = P [𝑥 ↦→ P (𝑥) · FO(𝜏)]

⟨𝑚, P, B⟩ 𝜖−→PTSOsyn ⟨𝑚, P ′, B′⟩

prop-sf

B(𝜏) = SF · b B′ = B[𝜏 ↦→ b]
∀𝑦. FO(𝜏) ∉ P (𝑦)

⟨𝑚, P, B⟩ 𝜖−→PTSOsyn ⟨𝑚, P, B′⟩

persist-w

P (𝑥) = W(𝑣) · p
P ′ = P [𝑥 ↦→ p] 𝑚′ =𝑚[𝑥 ↦→ 𝑣]

⟨𝑚, P, B⟩ 𝜖−→PTSOsyn ⟨𝑚′, P ′, B⟩

persist-fo

P (𝑥) = FO(_) · p
P ′ = P [𝑥 ↦→ p]

⟨𝑚, P, B⟩ 𝜖−→PTSOsyn ⟨𝑚, P ′, B⟩

Fig. 2. The PTSOsyn Persistent Memory Subsystem (differences w.r.t. Px86 are highlighted)

entries from the head of a store buffer, so only prop-fo transitions may not use the store buffers as

perfect FIFO queues.

Example 4.2. It is instructive to refer back to the simple programs in Ex. 3.3 and see how same

judgments are obtained for PTSOsyn albeit in a different way. In particular, in these example the

propagation order must follow the issue order. Then, the behavior of program (C) is not explained

by out-of-order propagation, but rather by using the fact that x := 1 and y := 1 are propagated to

different persistence buffers, and thus can persist in an order opposite to their propagation order.

Example 4.3. As mentioned above, while PTSOsyn forbids propagating writes/flushes/sfences

before propagating prior entries, this is still not the case for flush-optimals that can propagate

before prior write/flushes/flush-optimals.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:13

The program on the right demonstrates such case. The annotated

outcome is allowed in Px86 (and thus, has to be allowed in PTSOsyn).

The fact that y := 3 persisted implies that y := 2 propagated after

y := 1. Now, since writes propagate in order, we obtain that y := 2

propagated after x := 1. Had we required that fo(x) must propagate

after y := 2, we would obtain that fo(x) must propagate after x := 1.

In turn, due to the sfence instruction, this would forbid z := 1 from

persisting before x := 1 has persisted.

x := 1 ;

y := 1 ;

if y = 2 then
y := 3 ;

y := 2 ;

fo(x) ;
sfence ;

z := 1 ;

Remark 5. There is an alternative formulation for PTSOsyn that always propagates flush-optimals

from the head of the store buffer. This simplification comes at the expense of complicating how

flush-optimals are added into the store buffer upon issuing. Concretely, we can have a flush-opt

step that does not put the new FO(𝑥) entry in the tail of the store buffer (omit FO(𝑥) from the

write/flush/flush-opt/sfence issuing step). Instead, the step looks inside the buffer and puts the

FO(𝑥)-entry immediately after the last pending entry 𝑙 with loc(𝑙) = 𝑥 or typ(𝑙) = SF (or at the
head of the buffer is no such entry exists):

flush-opt1

𝑙 = FO(𝑥)
B(𝜏) = b

head
· 𝛼 · b

tail
loc(𝛼) = 𝑥 ∨ 𝛼 = SF

W(𝑥, _), FL(𝑥), FO(𝑥), SF ∉ b
tail

B′ = B[𝜏 ↦→ b
head

· 𝛼 · 𝑙 · b
tail

]

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P, B′⟩

flush-opt2

𝑙 = FO(𝑥)

W(𝑥, _), FL(𝑥), FO(𝑥), SF ∉ B(𝜏)
B′ = B[𝜏 ↦→ 𝑙 · B(𝜏)]

⟨𝑚, P, B⟩ 𝜏,𝑙−−→PTSOsyn ⟨𝑚, P, B′⟩
This alternative reduces the level of non-determinism in the system. Roughly speaking, it is

equivalent to eagerly taking prop-fo-steps, which is sound, since delaying a prop-fo-step may

only put more constraints on the rest of the run. We suspect that insertions not in the tail of the

buffer (even if done in deterministic positions) may appear slightly less intuitive than eliminations

not from the head of the buffer, and so we continue with PTSOsyn as formulated in Fig. 2.

Example 4.4. An sfence (or an sfence-inducing operation: mfence and RMW) performed by one

thread does not affect flush-optimals by other threads. To achieve this, PTSOsyn records thread

identifiers in FO-entries in the persistence buffer. (In Px86, this is captured by the fact that sfence

only affects the propagation order from the (per-thread) store buffers.)

The program on the right demonstrates how this works. The anno-

tated behavior is allowed by PTSOsyn: the flush-optimal entry in x’s
persistence buffer has to be in that buffer at the point the sfence is

issued (since the second thread has already observed y := 1). But,

since it is an sfence coming from the store buffer of the second thread,

and the flush-optimal entry is by the first thread, the sfence has no

effect in this case.

x := 1 ;

fo(x) ;
y := 1 ;

a := y ; //1
sfence ;

if a = 1 then
z := 1 ;

The next lemma (used to prove Thm. 5.29 below) ensures that we can safely assume that crashes

only happenwhen all store buffers are empty (i.e., endingwith B𝜖 ≜ 𝜆𝜏 . 𝜖). (Clearly, such assumption

is wrong for the persistence buffers). Intuitively, it follows from the fact that we can always remove

from a trace all thread operations starting from the first write/flush/sfence operation that did not

propagate from the store buffer before the crash. These can only affect the volatile part of the state.

Lemma 4.5. Suppose that ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡
=⇒PTSOsyn ⟨𝑚, P, B⟩. Then:

• ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡
=⇒PTSOsyn ⟨𝑚′, P ′, B𝜖⟩ for some𝑚′ and P ′.

• ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡 ′
=⇒PTSOsyn ⟨𝑚, P, B𝜖⟩ for some 𝑡 ′ ≲ 𝑡 .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:14 Artem Khyzha and Ori Lahav

4.1 Observational Equivalence of Px86 and PTSOsyn

Our first main result is stated in the following theorem.

Theorem 4.6. Px86 and PTSOsyn are observationally equivalent.

We briefly outline the key steps in the proof of this theorem. The full proof presented in Appen-

dix B.5 formalizes the following ideas by using instrumented memory subsystems and employing

two different intermediate systems that bridge the gap between Px86 and PTSOsyn.

We utilize Lemma 2.10, which splits the task of proving Theorem 4.6 into four parts:

(A) Every𝑚0-initialized PTSOsyn-observable-trace is also an𝑚0-initialized Px86-observable-trace.
(B) For every𝑚0-to-𝑚 PTSOsyn-observable-trace 𝑡 , some 𝑡 ′ ≲ 𝑡 is an𝑚0-to-𝑚 Px86-observable-trace.
(C) Every𝑚0-initialized Px86-observable-trace is also an𝑚0-initialized PTSOsyn-observable-trace.

(D) For every𝑚0-to-𝑚 Px86-observable-trace 𝑡 , some 𝑡 ′ ≲ 𝑡 is an𝑚0-to-𝑚 PTSOsyn-observable-trace.

Part (A) requires showing that Px86 allows the same observable behaviors as PTSOsyn regardless

of the final memory. This part is straightforward: we perform silent persist-w and persist-fo

steps at the end of the PTSOsyn run to completely drain the persistence buffers, and then move all

the persistence steps to be immediately after corresponding propagation steps. It is then easy to

demonstrate that Px86 can simulate such sequence of steps.

Part (B) requires showing that Px86 can survive crashes with the same non-volatile state as

PTSOsyn. We note that this cannot be always achieved by executing the exact same sequence of

steps under PTSOsyn and Px86. Example 3.3(C) illustrates a case in point: If PTSOsyn propagates

all of the instructions, and only persists the write y := 1, to achieve the same result, Px86 needs
to propagate y := 1 ahead of propagating fo(x) (otherwise, the persist-w step for y := 1 would

require persisting fo(x) first, resulting in a non-volatile state different from PTSOsyn’s). Our proof

strategy for part (B) is to reach the same non-volatile memory by omitting all propagation steps

of non-persisting flush-optimals from the run. We prove that this results in a trace that can be

transformed into a Px86-observable-trace.
Part (C) requires showing that PTSOsyn allows the same observable behaviors as Px86 regardless

of the final memory. In order to satisfy stronger constraints on the content of the persistence buffers

upon the propagation steps of PTSOsyn, we employ a transformation like the one from part (A)

and obtain a trace of Px86, in which every persisted instruction is persisted immediately after it is

propagated. Unlike part (A), it is not trivial that PTSOsyn can simulate such a trace due to its more

strict constraints on the propagation from the store buffers. We overcome this challenge by eagerly

propagating and persisting flush-optimals as we construct an equivalent run of PTSOsyn (as a part

of a forward simulation argument).

Part (D) requires showing that PTSOsyn can survive crashes with the same non-volatile state as

Px86. This cannot be always achieved by executing the exact same sequence of steps under Px86 and
PTSOsyn, since they do not lead to the same non-volatile states: the synchronous semantics of flush,

sfence, mfence and RMW instructions under PTSOsyn makes instructions persist earlier. However,

the program state is lost after the crash, so at that point the client cannot observe outcomes of

instructions that did not persist. Therefore, crashing before a flush/flush-optimal instruction persists

is observationally indistinguishable from crashing before it propagates from the store buffer. These

intuitions allow us to reach the non-volatile memory in PTSOsyn with a per-thread-prefix of the

program trace that reached that memory in Px86. More concretely, we trim the sequence of steps

of Px86 to a per-thread prefix in order to remove all propagation steps of non-persisting flush/flush-

optimal instructions, and then move the persistence steps of the persisting instructions to be

immediately after their propagation, which is made possible by certain commutativity properties

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:15

of persistence steps. This way, we essentially obtain a PTSOsyn-observable-trace, which, as in part

(C), formally requires the eager propagation and persistence of flush-optimals.

5 DECLARATIVE SEMANTICS
In this section we provide an alternative characterization of PTSOsyn (and, due to the equivalence

theorem, also of Px86) that is declarative (a.k.a. axiomatic) rather than operational. In such semantics,

instead of considering machine traces that are totally ordered by definition, one aims to abstract

from arbitrary choices of the order of operations, and maintain such order only when it is necessary

to do so. Accordingly, behaviors of concurrent systems are represented as partial orders rather

than total ones. This more abstract approach, while may be less intuitive to work with, often leads

to much more succinct presentations, and has shown to be beneficial for comparing models and

mapping from one model to another (see, e.g., [Podkopaev et al. 2019; Sarkar et al. 2012; Wickerson

et al. 2017]), reasoning about program transformations (see, e.g., [Vafeiadis et al. 2015]), and bounded

model checking (see, e.g., [Abdulla et al. 2018; Kokologiannakis et al. 2017]). In the current paper,

the declarative semantics is instrumental for establishing the DRF and mapping theorem in §7.

We present two different declarative models of PTSOsyn. Roughly speaking, the first, called

DPTSOsyn, is an extension the declarative TSO model in [Lahav et al. 2016], and it is closer to

the operational semantics as it tracks the propagation order. The second, called DPTSOmo
syn, is an

extension the declarative TSO model in [Alglave et al. 2014] that employs per-location propagation

orders on writes only, but ignores some of the program order edges.

5.1 A Declarative Framework for Persistency Specifications
Before introducing the declarative models, we present the general notions used to assign declarative

semantics to persistent systems (see Def. 2.6). This requires several modifications of the standard

declarative approach that does not handle persistency. First, we define execution graphs, each of

which represents a particular behavior. We start with their nodes, called events.

Definition 5.1. An event is a triple 𝑒 = ⟨𝜏, 𝑛, 𝑙⟩, where 𝜏 ∈ Tid ∪ {⊥} is a thread identifier (⊥ is

used for initialization events), 𝑛 ∈ N is a serial number, and 𝑙 ∈ Lab is an event label (as defined in

Def. 2.1). The functions tid, #, and lab return the thread identifier, serial number, and label of an

event. The functions typ, loc, valR, and valW are lifted to events in the obvious way. We denote by

E the set of all events, and by Init the set of initialization events, i.e., Init ≜ {𝑒 ∈ E | tid(𝑒) = ⊥}.
We useW,R,RMW,R-ex,MF, FL, FO, and SF for the sets of all events of the respective type (e.g.,
R ≜ {𝑒 ∈ E | typ(𝑒) = R}). Sub/superscripts are used to restrict these sets to certain location (e.g.,

W𝑥 = {𝑤 ∈ W | loc(𝑤) = 𝑥}) and/or thread identifier (e.g., E𝜏 = {𝑒 ∈ E | tid(𝑒) = 𝜏}).

Our representation of events induces a sequenced-before partial order on events, where 𝑒1 < 𝑒2
holds iff (𝑒1 ∈ Init and 𝑒2 ∉ Init) or (𝑒1, 𝑒2 ∉ Init, tid(𝑒1) = tid(𝑒2), and #(𝑒1) < #(𝑒2)). That is,
initialization events precede all non-initialization events, and events of the same thread are ordered

according to their serial numbers.

Next, a (standard) mapping justifies every read with a corresponding write event:

Definition 5.2. A relation rf is a reads-from relation for a set 𝐸 of events if the following hold:

• rf ⊆ (𝐸 ∩ (W ∪ RMW)) × (𝐸 ∩ (R ∪ RMW ∪ R-ex)).
• If ⟨𝑤, 𝑟 ⟩ ∈ rf , then loc(𝑤) = loc(𝑟) and valW (𝑤) = valR (𝑟).
• If ⟨𝑤1, 𝑟 ⟩, ⟨𝑤2, 𝑟 ⟩ ∈ rf , then𝑤1 = 𝑤2 (that is, rf −1 is functional).
• ∀𝑟 ∈ 𝐸 ∩ (R ∪ RMW ∪ R-ex). ∃𝑤. ⟨𝑤, 𝑟 ⟩ ∈ rf (each read event reads from some write event).

The “non-volatile outcome” of an execution graph is recorded in memory assignments:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:16 Artem Khyzha and Ori Lahav

Definition 5.3. A memory assignment 𝜇 for a set 𝐸 of events is a function assigning an event in

𝐸 ∩ (W𝑥 ∪ RMW𝑥) to every location 𝑥 ∈ Loc.

Intuitively speaking, 𝜇 records the last write in the graph that persisted before the crash. Using

the above notions, we formally define execution graphs.

Definition 5.4. An execution graph is a tuple 𝐺 = ⟨𝐸, rf , 𝜇⟩, where 𝐸 is a finite set of events, rf is

a reads-from relation for 𝐸, and 𝜇 is a memory assignment for 𝐸. The components of𝐺 are denoted

by 𝐺.E, 𝐺.rf, and 𝐺.M. For a set 𝐴 ⊆ E, we write 𝐺.𝐴 for 𝐺.E ∩ 𝐴 (e.g., 𝐺.W𝑥 = 𝐺.E ∩ W𝑥). In

addition, derived relations and functions are defined as follows:

𝐺.po ≜ {⟨𝑒1, 𝑒2⟩ ∈ 𝐺.E ×𝐺.E | 𝑒1 < 𝑒2} (program order)

𝐺.rfe ≜ 𝐺.rf \𝐺.po (external reads-from)

𝑚(𝐺) ≜ 𝜆𝑥 . valW (𝐺.M(𝑥)) (induced persistent memory)

Our execution graphs are always initialized with some initial memory:

Definition 5.5. Given 𝑚 : Loc → Val, an execution graph 𝐺 is 𝑚-initialized if 𝐺.E ∩ Init =

{⟨⊥, 0, W(𝑥,𝑚(𝑥))⟩ | 𝑥 ∈ Loc}. We say that 𝐺 is initialized if it is𝑚-initialized for some𝑚 : Loc →
Val. We denote by𝑚Init (𝐺) the (unique) function𝑚 for which 𝐺 is𝑚-initialized.

A declarative characterization of a persistent memory subsystem is captured by the set of

execution graphs that the subsystem allows. Intuitively speaking, the conditions it enforces on

𝐺.rf correspond to the consistency aspect of the memory subsystem; and those on𝐺.M correspond

to its persistency aspect.

Definition 5.6. A declarative persistency model is a set 𝐷 of execution graphs. We refer to the

elements of 𝐷 as 𝐷-consistent execution graphs.

Now, to use a declarative persistency model for specifying the possible behaviors of programs

(namely, what program states are reachable under a given model 𝐷), we need to formally associate

execution graphs with programs. The next definition uses the characterization of programs as LTSs

to provide this association. (Note that at this stage 𝐺.rf and 𝐺.M are completely arbitrary.)

Notation 5.7. For a set 𝐸 of events, thread identifier 𝜏 ∈ Tid, and event label 𝑙 ∈ Lab, we write
NextEvent(𝐸, 𝜏, 𝑙) to denote the event given by ⟨𝜏,max{#(𝑒) | 𝑒 ∈ 𝐺.E𝜏 } + 1, 𝑙⟩.

Definition 5.8. An execution graph𝐺 is generated by a program Pr with final state𝑞 if ⟨𝑞Init, 𝐸0⟩ →∗

⟨𝑞,𝐺.E⟩ for some 𝑞Init ∈ Pr .QInit and 𝐸0 ⊆ Init, where → is defined by:

𝑞
𝜏,𝑙−−→Pr 𝑞

′

⟨𝑞, 𝐸⟩ → ⟨𝑞′, 𝐸 ∪ {NextEvent(𝐸, 𝜏, 𝑙)}⟩
𝑞

𝜖−→Pr 𝑞
′

⟨𝑞, 𝐸⟩ → ⟨𝑞′, 𝐸⟩
We say that 𝐺 is generated by Pr if it is generated by Pr with some final state.

The following alternative characterization of the association of graphs and programs, based on

traces, is useful below.

Definition 5.9. An observable program trace 𝑡 ∈ (Tid × Lab)∗ is induced by an execution graph

𝐺 if 𝑡 = ⟨tid(𝑒1), lab(𝑒1)⟩, ... ,⟨tid(𝑒𝑛), lab(𝑒𝑛)⟩ for some enumeration 𝑒1, ... ,𝑒𝑛 of 𝐺.E \ Init that
respects𝐺.po (i.e., ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ 𝐺.po implies that 𝑖 < 𝑗).We denote by traces(𝐺) the set of all observable
program trace that are induced by 𝐺 .

Proposition 5.10. Let 𝑡 ∈ traces(𝐺). Then, traces(𝐺) = {𝑡 ′ ∈ (Tid × Lab)∗ | 𝑡 ′ ∼ 𝑡} (where ∼ is
per-thread equivalence of observable program traces, see Def. 2.3).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:17

Proposition 5.11. If𝐺 is generated by Pr with final state 𝑞, then for every 𝑡 ∈ traces(𝐺), we have
𝑞Init

𝑡
=⇒Pr 𝑞 for some 𝑞Init ∈ Pr .QInit.

Proposition 5.12. If 𝑞Init
𝑡
=⇒Pr 𝑞 for some 𝑞Init ∈ Pr .QInit and 𝑡 ∈ traces(𝐺), then 𝐺 is generated

by Pr with final state 𝑞.

Now, following [Raad et al. 2020], reachability of program states under a declarative persistency

model 𝐷 is defined using “chains” of 𝐷-consistent execution graphs, each of which represents the

behavior obtained between two consecutive crashes. Examples 5.21 and 5.22 below illustrate some

execution graph chains for simple programs.

Definition 5.13. A program state 𝑞 ∈ Pr .Q is reachable under a declarative persistency model 𝐷 if

there exist 𝐷-consistent execution graphs 𝐺0, ... ,𝐺𝑛 such that:

• For every 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝐺𝑖 is generated by Pr .
• 𝐺𝑛 is generated by Pr with final state 𝑞.

• 𝐺0 is𝑚Init-initialized (where𝑚Init = 𝜆𝑥 ∈ Loc. 0).
• For every 1 ≤ 𝑖 ≤ 𝑛, 𝐺𝑖 is𝑚(𝐺𝑖−1)-initialized.

In the sequel, we provide declarative formulations for (operational) persistentmemory subsystems

(see Def. 2.5). Observational refinements (and equivalence) between a persistent memory subsystem

𝑀 and a declarative persistency model 𝐷 are defined just like observational refinements between

persistent memory subsystems (see Def. 2.8), comparing reachable program states under𝑀 (using

Def. 2.7) to reachable program states under 𝐷 (using Def. 5.13).

The following lemmas are useful establishing refinements without considering all programs and
crashes (compare with Lemma 2.10). In both lemmas𝑀 denotes a persistent memory subsystem𝑀 ,

and 𝐷 denotes a declarative persistency model.

Lemma 5.14. The following conditions together ensure that𝑀 observationally refines 𝐷 :
(i) For every𝑚0-initialized𝑀-observable-trace 𝑡 , there exists a𝐷-consistent𝑚0-initialized execution

graph 𝐺 such that 𝑡 ∈ traces(𝐺).
(ii) For every 𝑚0-to-𝑚 𝑀-observable-trace 𝑡 , there exist 𝑡 ′ ≲ 𝑡 and 𝐷-consistent 𝑚0-initialized

execution graph such that 𝑡 ′ ∈ traces(𝐺) and𝑚(𝐺) =𝑚.

Lemma 5.15. If for every 𝐷-consistent initialized execution graph 𝐺 , some 𝑡 ∈ traces(𝐺) is an
𝑚Init (𝐺)-to-𝑚(𝐺) 𝑀-observable-trace, then 𝐷 observationally refines𝑀 .

5.2 The DPTSOsyn Declarative Persistency Model
In this section we define the declarative DPTSOsyn model. As in (standard) TSO models [Lahav

et al. 2016; Owens et al. 2009], DPTSOsyn-consistency requires one to justify an execution graph

with a TSO propagation order (tpo), which, roughly speaking, corresponds to the order in which the

events in the graph are propagated from the store buffers.

Definition 5.16. The set of propagated events, denoted by P, is given by:

P ≜ W ∪ RMW ∪ R-ex ∪MF ∪ FL ∪ FO ∪ SF (= E \ R).
Given an execution graph 𝐺 , a strict total order tpo on 𝐺.P is called a TSO propagation order for 𝐺 .

DPTSOsyn-consistency sets several conditions on the TSO propagation order that, except for one

novel condition related to persistency, are adopted from the model in [Lahav et al. 2016] (which,

in turn, is a variant of the model in [Owens et al. 2009]). To define these conditions, we use the

standard “from-read” derived relation, which places a read (or RMW) 𝑟 before a write (or RMW)𝑤

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:18 Artem Khyzha and Ori Lahav

when 𝑟 reads from a write that was propagated before𝑤 . We parametrize this concept by the order

on writes. (Here we only need 𝑅 = tpo, but we reuse this definition in Def. 5.25 with a different 𝑅.)

Definition 5.17. The from-read (a.k.a. reads-before) relation for an execution graph 𝐺 and a strict

partial order 𝑅 on 𝐺.E, denoted by 𝐺.fr(𝑅), is defined by:

𝐺.fr(𝑅) ≜
⋃

𝑥 ∈Loc
([R𝑥 ∪ RMW𝑥 ∪ R-ex𝑥] ;𝐺.rf−1 ; 𝑅 ; [W𝑥 ∪ RMW𝑥]) \ [E] .

Next, for persistency, we use one more derived relation. Since flushes and sfences in PTSOsyn

take effect at the moment they propagate from the store buffer, we can derive the existence of a
propagation order from any flush event to location 𝑥 (or flush-optimal to 𝑥 followed by sfence)

to any write 𝑤 to 𝑥 that propagated from the store buffer after 𝐺.M(𝑥) persisted. Indeed, if the
propagation order went in the opposite direction, we would be forced to persist𝑤 and overwrite

𝐺.M(𝑥), but the latter corresponds the last persisted write to 𝑥 . This derived order is formalized as

follows. (Again, we need 𝑅 = tpo, but this definition is reused in Def. 5.25 with a different 𝑅.)

Definition 5.18. The derived TSO propagation order for an execution graph 𝐺 and a strict partial

order 𝑅 on 𝐺.E, denoted by 𝐺.dtpo(𝑅), is defined by:

𝐺.dtpo(𝑅) ≜
⋃

𝑥 ∈Loc
𝐺.FLO𝑥 × {𝑤 ∈ W𝑥 ∪ RMW𝑥 | ⟨𝐺.M(𝑥),𝑤⟩ ∈ 𝑅}

where 𝐺.FLO𝑥 is the following set:

𝐺.FLO𝑥 ≜ 𝐺.FL𝑥 ∪ (FO𝑥 ∩ dom(𝐺.po ; [RMW ∪ R-ex ∪MF ∪ SF])).

Using fr and dtpo, DPTSOsyn-consistency is defined as follows.

Definition 5.19. The declarative persistency model DPTSOsyn consists of all execution graphs 𝐺

for which there exists a propagation order tpo for 𝐺 such that the following hold:

(1) For every 𝑎, 𝑏 ∈ P, except for the case that 𝑎 ∈ W∪ FL∪ FO, 𝑏 ∈ FO, and loc(𝑎) ≠ loc(𝑏), if
⟨𝑎, 𝑏⟩ ∈ 𝐺.po, then ⟨𝑎, 𝑏⟩ ∈ tpo.

(2) tpo? ;𝐺.rfe ;𝐺.po? is irreflexive.
(3) 𝐺.fr(tpo) ;𝐺.rfe? ;𝐺.po is irreflexive.

(4) 𝐺.fr(tpo) ; tpo is irreflexive.
(5) 𝐺.fr(tpo) ; tpo ;𝐺.rfe ;𝐺.po is irreflexive.
(6) 𝐺.fr(tpo) ; tpo ; [RMW ∪ R-ex ∪MF] ;𝐺.po is irreflexive.
(7) 𝐺.dtpo(tpo) ; tpo is irreflexive.

Conditions (1) − (6) take care of the concurrency part of the model. They are taken from [Lahav

et al. 2016] and slightly adapted to take into account the fact that our propagation order also orders

FL, FO, and SF events which do not exist in non-persistent TSO models.
5
The only conditions that

affect the propagation order on such events are (1) and (2). Condition (1) forces the propagation
order to agree with the program order, except for the order between a W/FL/FO-event and a

subsequent FO-event to a different location. This corresponds to the fact that propagation from

PTSOsyn’s store buffers is in-order, except for out-of-order propagation of FO’s, which can “overtake”
preceding writes, flushes, and flush-optimals to different locations. In turn, condition (2) ensures
that if a read event observes some write 𝑤 in the persistence buffer (or persistent memory) via

𝐺.rfe, then subsequent events (including FL/FO/SF-events) are necessarily propagated from the

store buffer after the write𝑤 .

5
Another technical difference is that we ensure here that failed CAS instructions, represented as R-ex events, are also acting
as mfences, while in [Lahav et al. 2016; Raad et al. 2020] they are not distinguished from plain reads.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:19

Condition (7) is our novel constraint. It is the only condition required for the persistency part of

the model. The approach in [Raad et al. 2020] for Px86 requires the existence of a persistence order,
reflecting the order in which writes persist (after they propagate), and enforce certain condition

on this order. This makes the semantics less abstract (in the sense that it is closer to operational

traces). Instead, we use the derived propagation order (induced by the graph component, 𝐺.M), and
require that it must agree with the propagation order itself. This condition ensures that if a write

𝑤 to location 𝑥 propagated from the store buffer before some flush to 𝑥 , then the last persisted

write cannot be a write that propagated before 𝑤 . The same holds if 𝑤 propagated before some

flush-optimal to 𝑥 that is followed by an sfence by the same thread (or any other instruction that

has the effect of an sfence).

The following simple lemma is useful below.

Lemma 5.20. Let tpo be a propagation order for an execution graph 𝐺 for which the conditions of
Def. 5.19 hold. Then, 𝐺.dtpo(tpo) ⊆ tpo.

Proof. Easily follows from the fact that tpo is total on𝐺.P and the last condition in Def. 5.19. □

Example 5.21. The execution graphs depicted below correspond to the annotated behaviors of

the simple sequential programs in Ex. 3.3. For every location 𝑥 , the event 𝐺.M(𝑥) is highlighted.

The solid edges are program order edges. In each graph, we also depict the tpo-edges that are forced
in order to satisfy conditions (1) − (6) above, and the𝐺.dtpo(tpo)-edges they induce. Execution

graphs (A) and (C) are DPTSOsyn-consistent, while (B) and (D) violate condition (7) above.
W(x, 0) W(y, 0)

W(x, 1)

W(y, 1)

tpo tpo

tpo

W(x, 0) W(y, 0)

W(x, 1)

FL(x)

W(y, 1)

tpo tpo

tpo

tpo

dtpo

W(x, 0) W(y, 0)

W(x, 1)

FO(x)

W(y, 1)

tpo tpo

tpo

tpo

W(x, 0) W(y, 0)

W(x, 1)

FO(x)

SF

W(y, 1)

tpo tpo

tpo

tpo

tpo

dtpo

(𝐴) ✓ (𝐵) ✗ (𝐶) ✓ (𝐷) ✗

Example 5.22. The following example (variant of Ex. 4.3) demonstrates a non-volatile outcome

that is justified with a sequence of two DPTSOsyn-consistent execution graphs. In the graphs below

we use serial numbers (𝑛) to present a possible valid tpo relation Note that, for the first graph, it is

crucial that program order from a write to an FO-event of a different location does not enforce a

tpo-order in the same direction (otherwise, the graph would violate condition (7) above).

if (y = 3) then
if (x = 0) then
if (z = 1) then
z := 2 ;

x := 1 ;

y := 1 ;

if y = 2 then
y := 3 ;

y := 2 ;

fo(x) ;
sfence ;

z := 1 ;

(1) W(x, 0) (2) W(y, 0) (3) W(z, 0)

R(y, 0)

(5) W(x, 1)

(6) W(y, 1)

R(y, 2)

(8) W(y, 3)

(7) W(y, 2)

(4) FO(x)

(9) SF

(10) W(z, 1)

𝐺0 ✓

rf

rf

dtpo

(1) W(x, 0) (2) W(y, 3) (3) W(z, 1)

R(y, 3)

R(x, 0)

R(z, 1)

(4) W(z, 2)

𝐺1 ✓

rf

rf
rf

5.3 An Equivalent Declarative Persistency Model: DPTSOmo
syn

We present an equivalent more abstract declarative model that requires existential quantification

over modification orders, rather than over propagation orders (total orders of𝐺.P). Modification

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:20 Artem Khyzha and Ori Lahav

orders totally order writes (including RMWs) to the same location, leaving unspecified the order

between other events, as well as the order between writes to different locations. This alternative

formulation has a global nature: it identifies an “happens-before” relation and requires acyclicity

this relation. In particular, it allows us to relate PTSOsyn to an SC persistency model (see §7).

Unlike in SC, in TSO we cannot include𝐺.po in the “happens-before” relation. Instead, we use a

restricted subset, which consists of the program order edges that are “preserved”.

Definition 5.23. The preserved program order relation for an execution graph𝐺 , denoted by𝐺.ppo,
is defined by:

𝐺.ppo ≜

{
⟨𝑎, 𝑏⟩ ∈ 𝐺.po

���� (𝑎 ∈ W ∪ FL ∪ FO ∪ SF =⇒ 𝑏 ∉ R) ∧
(𝑎 ∈ W ∪ FL ∪ FO ∧ loc(𝑎) ≠ loc(𝑏) =⇒ 𝑏 ∉ FO)

}
This definition extends the (non-persistent) preserved program order of TSO that is given by

{⟨𝑎, 𝑏⟩ ∈ 𝐺.po | 𝑎 ∈ W =⇒ 𝑏 ∉ R} [Alglave et al. 2014].
Using ppo, we state a global acyclicity condition, and show that it must hold in DPTSOsyn-

consistent executions.

Lemma 5.24. Let tpo be a propagation order for an execution graph 𝐺 for which the conditions of
Def. 5.19 hold. Then, 𝐺.ppo ∪𝐺.rfe ∪ tpo ∪𝐺.fr(tpo) is acyclic.

Proof (outline). The proof considers a cycle in 𝐺.ppo ∪𝐺.rfe ∪ tpo ∪𝐺.fr(tpo) of minimal

length. The fact that tpo is total on 𝐺.P and the minimality of the cycle imply that this cycle may

contain at most two events in P. Then, each of the possible cases is handled using one of the

conditions of Def. 5.19. □

We now switch from propagation orders to modification orders and formulate the alternative

declarative model.

Definition 5.25. A relation mo is a modification order for an execution graph𝐺 if mo is a disjoint
union of relations {mo𝑥 }𝑥 ∈Loc where each mo𝑥 is a strict total order on 𝐺.E ∩ (W𝑥 ∪ RMW𝑥).
Given a modification order mo for 𝐺 , the PTSOsyn-happens-before relation, denoted by 𝐺.hb(mo),
is defined by:

𝐺.hb(mo) ≜ (𝐺.ppo ∪𝐺.rfe ∪mo ∪𝐺.fr(mo) ∪𝐺.dtpo(mo))+.

Definition 5.26. The declarative persistency model DPTSOmo
syn consists of all execution graphs 𝐺

for which there exists a modification order mo for 𝐺 such that the following hold:

(1) 𝐺.hb(mo) is irreflexive. (2) 𝐺.fr(mo) ;𝐺.po is irreflexive.

In addition to requiring that the PTSOsyn-happens-before is irreflexive, Def. 5.26 forbids 𝐺.po to

contradict𝐺.fr(mo). Since program order edges from writes to reads are not included in𝐺.hb(mo),
the latter condition is needed to ensure “per-location-coherence” [Alglave et al. 2014].

Example 5.27. Revisiting Ex. 5.21 (B), in DPTSOmo
syn-inconsistency follows from the𝐺.dtpo(mo) ;

ppo loop from the flush event (mo is forced to agree with 𝐺.po). In turn, the consistency of

𝐺0 in Ex. 5.22 only requires to provide a modification order, which can have (1) → (5) for x,
(2) → (6) → (7) → (8) for y, and (3) → (10) for z. Note thatmo does not order writes to different
locations as well as the flush-optimal and the sfence events.

We prove the equivalence of DPTSOsyn and DPTSOmo
syn.

Theorem 5.28. DPTSOsyn = DPTSOmo
syn.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:21

Proof. For one direction, let𝐺 be a DPTSOsyn-consistent execution graph. Let tpo be a propaga-
tion order for 𝐺 that satisfies the conditions of Def. 5.19. We define mo ≜

⋃
𝑥 ∈Loc [W𝑥 ∪ RMW𝑥] ;

tpo ; [W𝑥 ∪RMW𝑥]. By definition, we have𝐺.fr(mo) = 𝐺.fr(tpo) and𝐺.dtpo(mo) = 𝐺.dtpo(tpo).
Using Lemma 5.24 and Lemma 5.20, it follows that mo satisfies the conditions of Def. 5.26, and so

𝐺 is DPTSOmo
syn-consistent.

For the converse, let𝐺 be aDPTSOmo
syn-consistent execution graph. Letmo be a modification order

for𝐺 that satisfies the conditions of Def. 5.26. Let 𝑅 be any total order on𝐺.E extending𝐺.hb(mo).
Let tpo ≜ [P] ;𝑅 ; [P]. Again, we have𝐺.fr(tpo) = 𝐺.fr(mo) and𝐺.dtpo(tpo) = 𝐺.dtpo(mo). This
construction ensures that 𝐺.ppo ∪𝐺.rfe ∪ tpo ∪𝐺.fr(tpo) ∪𝐺.dtpo(mo) is contained in 𝑅, and

thus acyclic. Then, all conditions of Def. 5.19 follow. □

5.4 Equivalence of PTSOsyn and DPTSOsyn

Using Lemmas 5.14 and 5.15, we show that PTSOsyn and DPTSOsyn are observationally equivalent.

(Note that for showing that DPTSOsyn observationally refines PTSOsyn, we use the Lemma 5.24.)

Theorem 5.29. PTSOsyn and DPTSOsyn are observationally equivalent.

The proof is given in Appendix C.

6 PERSISTENT MEMORY SUBSYSTEM: PSC
In this section we present an SC-based persistent memory subsystem, which we call PSC. This
system is stronger, and thus easier to program with, than PTSOsyn. From a formal verification point

of view, assuming finite-state programs, in §6.1 we show that PSC can be represented as a finite
transition system (like standard SC semantics), so that reachability of program states under PSC is

trivially decidable (PSPACE-complete). In §6.2, we accompany the operational definition with an

equivalent declarative one. The latter is used in §7 to relate PTSOsyn and PSC.
The persistent memory subsystem PSC is obtained from PTSOsyn by simply discarding the store

buffers, thus creating direct links between the threads and the per-location persistence buffers. More

concretely, issued writes go directly to the appropriate persistence buffer (made globally visible

immediately when they are issued); issued flushes to location 𝑥 wait until the 𝑥-persistence-buffer

has drained; issued flush-optimals go directly to the appropriate persistence buffer; and issued

sfences wait until all writes before a flush-optimal entry (of the same thread issuing the sfence)

in every per-location persistence buffer have persisted. As in PTSOsyn, RMWs, failed RMWs, and

mfences induce an sfence.
6
We note that without crashes, the effect of the persistence buffers is

unobservable, and PSC trivially coincides with the standard SC semantics.

We note that, unlike for PTSOsyn, discarding the store buffers from Px86 results in a model that is

stronger than PSC, where flush and flush-optimals are equivalent (which makes sfences redundant),

and providing this stronger semantics requires one to place barriers even for sequential programs.

To formally define PSC, we again use a “lookup” function (overloading again the get notation).
In PSC, when thread 𝜏 reads from a shared location 𝑥 it obtains the latest accessible value of 𝑥 ,

which is defined by applying the following get function on the current persistent memory𝑚, and

the current per-location persistence buffer p for location 𝑥 :

get(𝑚, p) ≜ 𝜆𝑥 .

{
𝑣 p = p1 · W(𝑣) · p2 ∧ W(_) ∉ p2
𝑚(𝑥) otherwise

Using this definition, PSC is presented in Fig. 3. Its set of volatile states, PSC.Q̃, consists all per-
location-persistence-buffer mappings. Initially all buffers are empty (PSC.Q̃Init = {P𝜖 }).
6
In PSC there is no need in mfences, as they are equivalent to sfences; we only keep them here for the sake uniformity.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:22 Artem Khyzha and Ori Lahav

𝑚 ∈ Loc → Val P ∈ Loc → ({W(𝑣) | 𝑣 ∈ Val} ∪ {FO(𝜏) | 𝜏 ∈ Tid})∗

PInit ≜ 𝜆𝑥. 𝜖

write

𝑙 = W(𝑥, 𝑣)

P ′ = P [𝑥 ↦→ P (𝑥) · W(𝑣)]

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P ′⟩

read

𝑙 = R(𝑥, 𝑣)
get(𝑚, P (𝑥)) (𝑥) = 𝑣

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P⟩

rmw

𝑙 = RMW(𝑥, 𝑣R, 𝑣W)
get(𝑚, P (𝑥)) (𝑥) = 𝑣R
∀𝑦. FO(𝜏) ∉ P (𝑦)

P ′ = P [𝑥 ↦→ P (𝑥) · W(𝑣W)]

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P ′⟩

rmw-fail

𝑙 = R-ex(𝑥, 𝑣)
get(𝑚, P (𝑥)) (𝑥) = 𝑣

∀𝑦. FO(𝜏) ∉ P (𝑦)

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P⟩

mfence/sfence

𝑙 ∈ {MF, SF}
∀𝑦. FO(𝜏) ∉ P (𝑦)

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P⟩

flush

𝑙 = FL(𝑥)
P (𝑥) = 𝜖

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P⟩

flush-opt

𝑙 = FO(𝑥)
P ′ = P [𝑥 ↦→ P (𝑥) · FO(𝜏)]

⟨𝑚, P⟩ 𝜏,𝑙−−→PSC ⟨𝑚, P ′⟩

persist-w

P (𝑥) = W(𝑣) · p
P ′ = P [𝑥 ↦→ p] 𝑚′ =𝑚[𝑥 ↦→ 𝑣]

⟨𝑚, P⟩ 𝜖−→PSC ⟨𝑚′, P ′⟩

persist-fo

P (𝑥) = FO(_) · p
P ′ = P [𝑥 ↦→ p]

⟨𝑚, P⟩ 𝜖−→PSC ⟨𝑚, P ′⟩

Fig. 3. The PSC Persistent Memory Subsystem

Example 6.1. Except for Examples 4.3 and 5.22, PSC provides the same allowed/forbidden judg-

ments as PTSOsyn (and Px86) for all of the examples above. (Obviously, standard litmus tests, which

are not related to persistency, differentiate the models.) The annotated behaviors in Examples 4.3

and 5.22 are, however, disallowed in PSC. Indeed, by removing the store buffers, PSC requires

that the order of entries in each persistence buffer follows exactly the order of issuing of the

corresponding instructions (even when they are issued by different threads).

6.1 An Equivalent Finite Persistent Memory Subsystem: PSCfin

From a formal verification perspective, PSC has another important advantage w.r.t. PTSOsyn. As-

suming finite-state programs (i.e., finite sets of threads, values and locations, but still, possibly, loopy

programs) the reachability problem under PSC (that is, checking whether a given program state 𝑞

is reachable under PSC according to Def. 2.7) is computationally simple—PSPACE-complete—just

like under standard SC semantics [Kozen 1977]. Since PSC is an infinite state system (the persis-

tence buffer are unbounded), the PSPACE upper bound is not immediate. To establish this bound,

we present an alternative persistent memory subsystem, called PSCfin, that is observationally

equivalent to PSC, and, assuming that Tid and Loc are finite, PSCfin is a finite LTS.
The system PSCfin is presented in Fig. 4. Its states keep track of a non-volatile memory𝑚, a

(volatile) mapping 𝑚̃ of the most recent value to each location, a (volatile) set 𝐿 of locations that still

persist, and a (volatile) set𝑇 of thread identifiers that may perform an sfence (or an sfence-inducing

instruction). Every write (or RMW) to some location 𝑥 can “choose” to not persist, removing 𝑥 from

𝐿, and thus forbidding later writes to 𝑥 to persist. Importantly, once some write to 𝑥 did not persist

(so we have 𝑥 ∉ 𝐿), flushes to 𝑥 cannot be anymore executed (the system deadlocks). A similar

mechanism handles flush-optimals: once a flush-optimal y thread 𝜏 “chooses” to not persist, further

writes to the same location may not persist, and, moreover, it removes 𝜏 from 𝑇 , so that thread 𝜏

cannot anymore execute an sfence-inducing instruction (sfence, mfence, or RMW).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:23

𝑚 ∈ Loc → Val 𝑚̃ ∈ Loc → Val 𝐿 ⊆ Loc 𝑇 ⊆ Tid

𝑚̃Init ≜ 𝜆𝑥. 0 𝐿Init ≜ Loc 𝑇Init ≜ Tid

write-persist

𝑙 = W(𝑥, 𝑣) 𝑥 ∈ 𝐿

𝑚′ =𝑚 [𝑥 ↦→ 𝑣] 𝑚̃′ = 𝑚̃ [𝑥 ↦→ 𝑣]

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚′, 𝑚̃′, 𝐿,𝑇 ⟩

write-no-persist

𝑙 = W(𝑥, 𝑣)
𝑚̃′ = 𝑚̃ [𝑥 ↦→ 𝑣] 𝐿′ = 𝐿 \ {𝑥 }

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃′, 𝐿′,𝑇 ⟩

read

𝑙 = R(𝑥, 𝑣)
𝑚̃ (𝑥) = 𝑣

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩

rmw-persist

𝑙 = RMW(𝑥, 𝑣R, 𝑣W) 𝑥 ∈ 𝐿

𝑚̃ (𝑥) = 𝑣R 𝜏 ∈ 𝑇

𝑚′ =𝑚 [𝑥 ↦→ 𝑣W] 𝑚̃′ = 𝑚̃ [𝑥 ↦→ 𝑣W]

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚′, 𝑚̃′, 𝐿′,𝑇 ⟩

rmw-no-persist

𝑙 = RMW(𝑥, 𝑣R, 𝑣W)
𝑚̃ (𝑥) = 𝑣R 𝜏 ∈ 𝑇

𝑚̃′ = 𝑚̃ [𝑥 ↦→ 𝑣W] 𝐿′ = 𝐿 \ {𝑥 }

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃′, 𝐿′,𝑇 ⟩

rmw-fail

𝑙 = R-ex(𝑥, 𝑣)
𝑚̃ (𝑥) = 𝑣 𝜏 ∈ 𝑇

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩

mfence/sfence

𝑙 ∈ {MF, SF} 𝜏 ∈ 𝑇

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩

flush

𝑙 = FL(𝑥) 𝑥 ∈ 𝐿

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩

flush-opt-persist

𝑙 = FO(𝑥) 𝑥 ∈ 𝐿

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩

flush-opt-no-persist

𝑙 = FO(𝑥) 𝐿′ = 𝐿 \ {𝑥 } 𝑇 ′ = 𝑇 \ {𝜏 }

⟨𝑚,𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin ⟨𝑚,𝑚̃, 𝐿′,𝑇 ′⟩

Fig. 4. The PSCfin Persistent Memory Subsystem

Theorem 6.2. PSC and PSCfin are observationally equivalent.

Remark 6. One may apply a construction like PSCfin for PTSOsyn, namely replacing the per-

sistence buffers with a standard non-volatile memory 𝑚̃ and (finite) sets 𝐿 and 𝑇 . For PTSOsyn

such construction does not lead to a finite-state machine, as we will still have unbounded store

buffers. The non-primitive recursive lower bound established by Atig et al. [2010] for reachability

under the standard x86-TSO semantics easily extends to PTSOsyn. Indeed, for programs that start

by resetting all memory locations to 0 (the very initial value), reachability of program states under

PTSOsyn coincides with reachability under TSO. Abdulla et al. [2021] establish the decidability of

reachability under Px86 (equivalently, under PTSOsyn) by introducing a rather intricate equivalent

model that can be used in the framework of well-structured transition systems.

6.2 The DPSC Declarative Persistency Model
We present a declarative formulation of PSC, which we call DPSC. As DPTSOmo

syn, it is based on an

“happens-before” relation.

Definition 6.3. Given a modification order mo for an execution graph 𝐺 , the PSC-happens-before
relation, denoted by 𝐺.hbPSC (mo), is defined by:

𝐺.hbPSC (mo) ≜ (𝐺.po ∪𝐺.rf ∪mo ∪𝐺.fr(mo) ∪𝐺.dtpo(mo))+.

𝐺 .hbPSC (mo) extends the standard happens-before relation that defines SC [Alglave et al. 2014]

with the derived propagation order (𝐺.dtpo(mo)). In turn, it extends the PTSOsyn-happens-before

(see Def. 5.25) by including all program order edges rather than only the “preserved” ones. Consis-

tency simply enforces the acyclicity of 𝐺.hbPSC (mo):

Definition 6.4. The declarative persistency model DPSC consists of all execution graphs𝐺 for

which there exists a modification order mo for 𝐺 such that 𝐺.hbPSC (mo) is irreflexive.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:24 Artem Khyzha and Ori Lahav

Next, we state the equivalence of PSC and DPSC (the proof is given in Appendix F).

Theorem 6.5. PSC and DPSC are observationally equivalent.

7 RELATING PTSOSYN AND PSC

In this section we develop a data-race-freedom (DRF) guarantee for PTSOsyn w.r.t. the stronger

and simpler PSC model. This guarantee identifies certain forms of races and ensures that if all

executions of a given program do not exhibit such races, then the program’s states that are reachable

under PTSOsyn are also reachable under PSC. Importantly, as standard in DRF guarantees, it suffices

to verify the absence of races under PSC. Thus, programmers can adhere to a safe programming

discipline that is formulated solely in terms of PSC.
To facilitate the exposition, we start with a simplified version of the DRF guarantee, and later

strengthen the theorem by further restricting the notion of a race. The strengthened theorem

is instrumental in deriving a sound mapping of programs from PSC to PTSOsyn, which can be

followed by compilers to ensure PSC semantics under x86-TSO.

7.1 A Simplified DRF Guarantee
The premise of the DRF result requires the absence of two kinds of races: (i) races between a

write/RMW operation and a read accessing the same location; and (ii) races between write/RMW

operation and a flush-optimal instruction to the same location. Write-write races are allowed.

Similarly, racy reads are only plain reads, and not “R-ex’s” that arise from failed CAS operations. In

particular, this ensures that standard locks, implemented using a CAS for acquiring the lock (in a

spinloop) and a plain write for releasing the lock, are race free and can be safely used to avoid races

in programs. This frees us from the need to have lock and unlock primitives (e.g., as in [Owens

2010]), and still obtain an applicable DRF guarantee.

For the formal statement of the theorem, we define races and racy programs.

Definition 7.1. Given a read or a flush-optimal label 𝑙 , we say that thread 𝜏 exhibits an 𝑙-race in a

program state 𝑞 ∈ Pr .Q if 𝑞(𝜏) enables 𝑙 , while there exists a thread 𝜏W ≠ 𝜏 such that 𝑞(𝜏W) enables
an event label 𝑙W with typ(𝑙W) ∈ {W, RMW} and loc(𝑙W) = loc(𝑙).

Definition 7.2. A program Pr is racy if for some program state 𝑞 ∈ Pr .Q that is reachable under
PSC, some thread 𝜏 exhibits an 𝑙-race for some read or flush-optimal label 𝑙 .

The above notion of racy programs is operational (we believe it may be more easily applicable by

developers compared to a declarative notion). It requires that under PSC, the program Pr can reach

a state 𝑞 possibly after multiple crashes, where 𝑞 enables both a write/RMW by some thread 𝜏W and

a read/flush-optimal of the same location by some other thread 𝜏 . As mentioned above, Def. 7.2

formulates a property of programs under the PSC model.

Theorem 7.3. For a non-racy program Pr, a program state 𝑞 ∈ Pr .Q is reachable under PTSOsyn iff
it is reachable under PSC.

The theorem is a direct corollary of the more general result in Thm. 7.8 below. A simple corollary

of Thm. 7.3 is that single-threaded programs (e.g., those in Ex. 3.3) cannot observe the difference

between PTSOsyn and PSC (due to the non-FIFO propagation of flush-optimals in PTSOsyn, even

this is not completely trivial).

Example 7.4. Since PTSOsyn allows the propagation of flush-optimals before previously issued

writes to different locations, it is essential to include races on flush-optimals in the definition above.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:25

Indeed, if races between writes and flush-optimals are not counted,

then the program on the right is clearly race free. However, the anno-

tated persistent memory (z = w = 1 but x = y = 0) is reachable under

PTSOsyn (by propagating each flush-optimal before the prior write),

but not under PSC.

x := 1 ;

fo(y) ;
sfence ;

z := 1 ;

y := 1 ;

fo(x) ;
sfence ;

w := 1 ;

7.2 A Generalized DRF Guarantee and a PSC to PTSOsyn Mapping
We refine our definition of races to be sufficiently precise for deriving a mapping scheme from

PSC to PTSOsyn as a corollary of the DRF guarantee. To do so, reads and flush-optimals are only

considered racy if they are unprotected, as defined next.

Definition 7.5. Let 𝜌 = 𝑙1, ... ,𝑙𝑛 be a sequence of event labels.

• A read label R(𝑥, _) is unprotected after 𝜌 if there is some 1 ≤ 𝑖W ≤ 𝑛 such that 𝑙𝑖W = W(𝑦, _)
with 𝑦 ≠ 𝑥 and for every 𝑖W < 𝑗 ≤ 𝑛 we have 𝑙 𝑗 ∉ {W(𝑥, _), RMW(_, _, _), R-ex(_, _), MF}.

• A flush-optimal label FO(𝑥) is unprotected after 𝜌 if there is some 1 ≤ 𝑖W ≤ 𝑛 such that 𝑙𝑖W =

W(𝑦, _)with𝑦 ≠ 𝑥 and for every 𝑖W < 𝑗 ≤ 𝑛wehave 𝑙 𝑗 ∉ {W(𝑥, _), RMW(_, _, _), R-ex(_, _), MF, SF}.
Roughly speaking, unprotected labels are induced by read/flush-optimal instructions of location

𝑥 that follow a write instruction to a different location with no barrier, which can be either an RMW

instruction, an mfence, or a write to 𝑥 , intervening in between. Flush-optimals are also protected if

an sfence barrier is placed between that preceding write and the flush-optimal instruction.

Using the last definitions, we define strongly racy programs.

Notation 7.6. For an observable program traces 𝑡 and thread 𝜏 , we denote by suffix𝜏 (𝑡) the
sequence of event labels corresponding to themaximal crashless suffix of 𝑡 |𝜏 (i.e., suffix𝜏 (𝑡) = 𝑙1, ... ,𝑙𝑛
when ⟨𝜏, 𝑙1⟩, ... ,⟨𝜏, 𝑙𝑛⟩ is the maximal crashless suffix of the restriction of 𝑡 to transition labels of

the form ⟨𝜏, _⟩).
Definition 7.7. A program Pr is strongly racy if there exist 𝑞 ∈ Pr .Q, trace 𝑡 , thread 𝜏 , and a read

or a flush-optimal label 𝑙 such that the following hold:

• 𝑞 is reachable under PSC via the trace 𝑡

(i.e., ⟨𝑞Init,𝑚Init, P𝜖⟩
𝑡
=⇒PrqPSC ⟨𝑞,𝑚, P⟩ for some 𝑞Init ∈ Pr .QInit and ⟨𝑚, P⟩ ∈ PSC.Q).

• 𝜏 exhibits an 𝑙-race in 𝑞.

• 𝑙 is unprotected after suffix𝜏 (𝑡).
The generalized DRF result is stated in the next theorem.

Theorem 7.8. For a program Pr that is not strongly racy, a program state 𝑞 ∈ Pr .Q is reachable
under PTSOsyn iff it is reachable under PSC.

Example 4.4 is an example of a program that is racy but not strongly racy. By Thm. 7.8, that

program has only PSC-behaviors. Example 4.3 can be made not strongly racy: by adding an sfence

instruction between y := 2 and fo(x); by strengthening fo(x) to fl(x); or by replacing y := 2 with

an atomic exchange instruction (an RMW).

An immediate corollary of Thm. 7.8 is that programs that only use RMWs when writing to shared

locations (e.g., [Morrison and Afek 2013]) may safely assume PSC semantics (all labels will be

protected). More generally, by “protecting” all racy reads and flush-optimals, we can transform a

given program and make it non-racy according to the definition above. In other words, we obtain a

compilation scheme from a language with PSC semantics to x86. Since precise static analysis of

races is hard, such scheme may over-approximate. Concretely, a sound scheme can:

(i) like the standard compilation from SC to TSO [Mapping 2019], place mfences separating all
read-after-write pairs of different locations (when there is no RMW already in between); and

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:26 Artem Khyzha and Ori Lahav

(ii) place sfences separating all flush-optimal-after-write pairs of different locations (when there

is no RMW or other sfence already in between).

Moreover, since a write to 𝑥 between a write to some location 𝑦 ≠ 𝑥 and a flush-optimal to 𝑥

makes the flush protected, in the standard case where flush-optimal to some location 𝑥 immediately

follows a write to 𝑥 (for ensuring a persistence order for that write), flush-optimals can be compiled

without additional barriers. Similarly, the other standard use of a flush-optimal to 𝑥 after reading

from 𝑥 (known as “flush-on-read” for ensuring a persistence order for writes that the thread relies

on) does not require additional barriers as well—an mfence is anyway placed between writes to

locations different than 𝑥 and the read from 𝑥 that precedes the flush-optimal. Thus, we believe

that for most “real-world” programs the above scheme will not incur additional runtime overhead

compared standard mappings from SC to x86 (see, e.g., [Liu et al. 2017; Marino et al. 2011; Singh

et al. 2012] for performance studies).

To prove Thm. 7.8 we use the declarative formulations of PTSOsyn and PSC. First, we relate
unprotected labels as defined in Def. 7.5 with unprotected events in the corresponding execution

graph, as defined next.

Definition 7.9. Let𝐺 be an execution graph. An event 𝑒 ∈ R∪FOwith 𝑥 = loc(𝑒) is𝐺-unprotected
if one of the following holds:

• 𝑒 ∈ 𝐺.R and ⟨𝑤, 𝑒⟩ ∈ 𝐺.po \ (𝐺.po ; [W𝑥 ∪RMW∪R-ex∪MF] ;𝐺.po) for some𝑤 ∈ W \ Init
with loc(𝑤) ≠ 𝑥 .

• 𝑒 ∈ 𝐺.FO and ⟨𝑤, 𝑒⟩ ∈ 𝐺.po \ (𝐺.po ; [W𝑥 ∪ RMW ∪ R-ex ∪ MF ∪ SF] ; 𝐺.po) for some

𝑤 ∈ W \ Init with loc(𝑤) ≠ 𝑥 .

Proposition 7.10. Let 𝜏 ∈ Tid. Let𝐺 and𝐺 ′ be execution graphs such that𝐺 ′.E𝜏 = 𝐺.E𝜏 ∪ {𝑒} for
some𝐺.po ∪𝐺.rf-maximal event 𝑒 . If 𝑒 is𝐺 ′-unprotected, then lab(𝑒) is unprotected after suffix𝜏 (𝑡)
for some observable program trace 𝑡 ∈ traces(𝐺).

The next key lemma, establishing the DRF-guarantee “on the execution graph level”, is needed

for proving Thm. 7.8. Its proof utilizes DPTSOmo
syn, which is closer to DPSC than DPTSOsyn.

Lemma 7.11. Let 𝐺 be a DPTSOsyn-consistent execution graph. Suppose that for every𝑤 ∈ 𝐺.W ∪
𝐺.RMW and𝐺-unprotected event 𝑒 ∈ Rloc(𝑤) ∪ FOloc(𝑤) , we have either ⟨𝑤, 𝑒⟩ ∈ (𝐺.po∪𝐺.rf)+ or
⟨𝑒,𝑤⟩ ∈ (𝐺.po ∪𝐺.rf)+. Then, 𝐺 is DPSC-consistent.

With Lemma 7.11, the proof of Thm. 7.8 extends the standard declarative DRF argument. Roughly

speaking, we consider the first DPSC-inconsistent execution graph encountered in a chain of

execution graphs for reaching a certain program state. Then, we show that a minimal DPSC-
inconsistent prefix of that graph must entail a strong race as defined in Def. 7.7.

8 CONCLUSION AND RELATEDWORK
We have presented an alternative x86-TSO persistency model, called PTSOsyn, formulated it opera-

tionally and declaratively, and proved it to be observationally equivalent to Px86when observations

consist of reachable program states and non-volatile memories. To the best of our understanding,

PTSOsyn captures the intuitive persistence guarantees (of flush-optimal and sfence instructions, in

particular) widely present in the literature on data-structure design as well as on programming

persistent memory (see [Intel 2015; Intel 2019; Scargall 2020]). We have also presented a formaliza-

tion of an SC-based persistency model, called PSC, which is simpler and stronger than PTSOsyn,

and related it to PTSOsyn via a sound compilation scheme and a DRF-guarantee. We believe that

the developments of data structures and language-level persistency constructs for non-volatile

memory, such as listed in §1, may adopt PTSOsyn and PSC as their formal semantic foundations.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:27

Our models may also simplify reasoning about persistency under x86-TSO both for programmers

and automated verification tools.

We have already discussed in length the relation of our work to [Raad et al. 2020]. Next, we

describe the relation to several other related work.

Pelley et al. [2014] (informally) explore a hardware co-design for memory persistency and

memory consistency and propose a model of epoch persistency under sequential consistency, which

splits thread executions into epochs with special persist barriers, so that the order of persistence

is only enforced for writes from different epochs. Condit et al. [2009]; Joshi et al. [2015] propose

hardware implementations for persist barriers to enable epoch persistency under x86-TSO. While

x86-TSO does not provide a persist barrier, flush-optimals combined with an sfence instruction

could be used to this end.

Kolli et al. [2016] conducted the first analysis of persistency under x86. They described the

semantics induced by the use of CLWB and sfence instructions as synchronous, reaffirming our

observation about the common understanding of persistency models. The PTSO model [Raad and

Vafeiadis 2018], which was published before Px86, is a proposal for integrating epoch persistency

with the x86-TSO semantics. It has synchronous explicit persist instructions and per-location

persistence buffers like our PTSOsyn model, but it is more complex (its persistence buffers are

queues of sub-buffers, each of which records pending writes of a given epoch), and uses coarse-

grained instructions for persisting all pending writes, which were deprecated in x86 [Rudoff 2019].

Kolli et al. [2017] propose a declarative language-level acquire-release persistency model offering

new abstractions for programming for persistent memory in C/C++. In comparison, our work

aims at providing a formal foundation for reasoning about the underlying architecture. Gogte et al.

[2018] improved the model of [Kolli et al. 2017] by proposing a generic logging mechanism for

synchronization-free regions that aims to achieve failure atomicity for data-race-free programs. We

conjecture that our results (in particular our DRF guarantee relating PTSOsyn and PSC) can serve as

a semantic foundation in formally proving the failure-atomicity properties of their implementation.

Raad et al. [2019] proposed a general declarative framework for specifying persistency semantics

and formulated a persistency model for ARM in this framework (which is less expressive than in

x86). Our declarative models follow their framework, accounting for a specific outcomes using

chains of execution graphs, but we refrain from employing an additional “non-volatile-order” for

tracking the order in which stores are committed to the non-volatile memory. Instead, in the spirit

of a theoretical model of [Izraelevitz et al. 2016b], which gives a declarative semantics of epoch

persistency under release consistency (assuming both an analogue of the synchronous sfence and

also an analogue of a deprecated coarse-grained flush instruction), we track the last persisted write

for each location, and use it to derive constraints on existing partial orders. Thus, we believe that

our declarative model is more abstract, and may provide a suitable basis for partial order reduction

verification techniques (e.g., [Abdulla et al. 2018; Kokologiannakis et al. 2017]).

Finally, the decidability of reachability under Px86 was investigated in [Abdulla et al. 2021].

Using load buffers instead of store buffers, the authors presented a rather intricate model that is

equivalent to Px86 and can be used in the framework of well-structured transition systems for

establishing the decidability of reachability.

ACKNOWLEDGMENTS
We thank Adam Morrison and the POPL’21 reviewers for their helpful feedback and insights. This

research was supported by the Israel Science Foundation (grant number 5166651 and 2005/17). The

second author was also supported by the Alon Young Faculty Fellowship.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:28 Artem Khyzha and Ori Lahav

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. 2021. Deciding

Reachability under Persistent x86-TSO. Proc. ACM Program. Lang. 5, POPL, Article 56 (Jan. 2021), 32 pages. https:

//doi.org/10.1145/3434337

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal Stateless Model Checking

under the Release-Acquire Semantics. Proc. ACM Program. Lang. 2, OOPSLA, Article 135 (Oct. 2018), 29 pages. https:

//doi.org/10.1145/3276505

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018. Bztree: A High-Performance Latch-Free

Range Index for Non-Volatile Memory. Proc. VLDB Endow. 11, 5 (Jan. 2018), 553–565. https://doi.org/10.1145/3164135.

3164147

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On the Verification Problem

for Weak Memory Models. In POPL. ACM, New York, NY, USA, 7–18. https://doi.org/10.1145/1706299.1706303

Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-Juergen Boehm. 2012. Implications of CPU Caching on Byte-addressable
Non-Volatile Memory Programming. Technical Report HPL-2012-236. Hewlett-Packard.

Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile Main Memory. Proc. VLDB Endow. 8, 7 (Feb. 2015),
786–797. https://doi.org/10.14778/2752939.2752947

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee.

2009. Better I/O Through Byte-addressable, Persistent Memory. In SOSP. ACM, New York, NY, USA, 133–146. https:

//doi.org/10.1145/1629575.1629589

Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor Zablotchi. 2018. Log-Free Concurrent Data Structures. In

USENIX ATC. USENIX Association, USA, 373–385.

Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch, and Erez Petrank. 2020. NVTraverse: In NVRAM

Data Structures, the Destination is More Important than the Journey. In PLDI. ACM, New York, NY, USA, 377–392.

https://doi.org/10.1145/3385412.3386031

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A Persistent Lock-free Queue for Non-volatile

Memory. In PPoPP. ACM, New York, NY, USA, 28–40. https://doi.org/10.1145/3178487.3178490

Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018.

Persistency for Synchronization-free Regions. In PLDI. ACM, New York, NY, USA, 46–61. https://doi.org/10.1145/3192366.

3192367

Intel. 2015. Persistent Memory Programming. http://pmem.io/

Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s Manual (Combined Volumes). https://software.intel.com/

sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf Order Number: 325462-069US.

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016a. Brief Announcement: Preserving Happens-before in

Persistent Memory. In SPAA. ACM, New York, NY, USA, 157–159. https://doi.org/10.1145/2935764.2935810

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016b. Linearizability of Persistent Memory Objects Under a

Full-System-Crash Failure Model. In DISC. Springer Berlin Heidelberg, Berlin, Heidelberg, 313–327.

Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. 2015. Efficient Persist Barriers for Multicores. In MICRO.
ACM, New York, NY, USA, 660–671. https://doi.org/10.1145/2830772.2830805

Artem Khyzha and Ori Lahav. 2020. Taming x86-TSO Persistency (Extended Version). https://arxiv.org/abs/2010.13593

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective Stateless Model Checking

for C/C++ Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017), 32 pages. https://doi.org/10.1145/

3158105

Aasheesh Kolli, Vaibhav Gogte, Ali Saidi, Stephan Diestelhorst, Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch.

2017. Language-level Persistency. In ISCA. ACM, New York, NY, USA, 481–493. https://doi.org/10.1145/3079856.3080229

Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven Pelley, Sihang Liu, Peter M. Chen, and Thomas F.

Wenisch. 2016. Delegated Persist Ordering. In MICRO. IEEE Press, Piscataway, NJ, USA, Article 58, 13 pages. http:

//dl.acm.org/citation.cfm?id=3195638.3195709

Dexter Kozen. 1977. Lower bounds for natural proof systems. In SFCS. IEEE Computer Society, Washington, 254–266.

https://doi.org/10.1109/SFCS.1977.16

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. In POPL. ACM, New York,

NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas Willhalm. 2019. Evaluating Persistent Memory

Range Indexes. Proc. VLDB Endow. 13, 4 (Dec. 2019), 574–587. https://doi.org/10.14778/3372716.3372728

Jihang Liu, Shimin Chen, and Lujun Wang. 2020. LB+Trees: Optimizing Persistent Index Performance on 3DXPoint Memory.

Proc. VLDB Endow. 13, 7 (March 2020), 1078–1090. https://doi.org/10.14778/3384345.3384355

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3434337
https://doi.org/10.1145/3434337
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1145/2627752
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3178487.3178490
https://doi.org/10.1145/3192366.3192367
https://doi.org/10.1145/3192366.3192367
http://pmem.io/
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://doi.org/10.1145/2935764.2935810
https://doi.org/10.1145/2830772.2830805
https://arxiv.org/abs/2010.13593
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3079856.3080229
http://dl.acm.org/citation.cfm?id=3195638.3195709
http://dl.acm.org/citation.cfm?id=3195638.3195709
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3384345.3384355

Taming x86-TSO Persistency (Extended Version) 1:29

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2017. A Volatile-by-Default JVM for Server Applications. Proc. ACM
Program. Lang. 1, OOPSLA, Article 49 (Oct. 2017), 25 pages. https://doi.org/10.1145/3133873

Mapping 2019. C/C++11 mappings to processors. Retrieved July 3, 2019 from http://www.cl.cam.ac.uk/~pes20/cpp/

cpp0xmappings.html

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011. A Case for an

SC-Preserving Compiler. In PLDI. ACM, New York, NY, USA, 199–210. https://doi.org/10.1145/1993498.1993522

Adam Morrison and Yehuda Afek. 2013. Fast Concurrent Queues for X86 Processors. In PPoPP. ACM, New York, NY, USA,

103–112. https://doi.org/10.1145/2442516.2442527

Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-

DRAM Persistent and Concurrent B-Tree for Storage Class Memory. In SIGMOD. ACM, New York, NY, USA, 371–386.

https://doi.org/10.1145/2882903.2915251

Scott Owens. 2010. Reasoning About the Implementation of Concurrency Abstractions on x86-TSO. In ECOOP. Springer-
Verlag, Berlin, Heidelberg, 478–503. http://dl.acm.org/citation.cfm?id=1883978.1884011

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs. Springer, Heidelberg,
391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory Persistency. In ISCA. IEEE Press, Piscataway, NJ, USA,

265–276. http://dl.acm.org/citation.cfm?id=2665671.2665712

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap Between Programming Languages and Hardware

WeakMemoryModels. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290382

Azalea Raad and Viktor Vafeiadis. 2018. Persistence Semantics forWeakMemory: Integrating Epoch Persistencywith the TSO

Memory Model. Proc. ACM Program. Lang. 2, OOPSLA, Article 137 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276507

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency Semantics of the Intel-x86 Architecture.

Proc. ACM Program. Lang. 4, POPL, Article 11 (Jan. 2020), 31 pages. https://doi.org/10.1145/3371079

Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak Persistency Semantics from the Ground Up: Formalising

the Persistency Semantics of ARMv8 and Transactional Models. Proc. ACM Program. Lang. 3, OOPSLA, Article 135 (Oct.
2019), 27 pages. https://doi.org/10.1145/3360561

Andy M. Rudoff. 2019. Deprecating the PCOMMIT Instruction. https://software.intel.com/content/www/us/en/develop/

blogs/deprecate-pcommit-instruction.html

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave, and Derek Williams.

2012. Synchronising C/C++ and POWER. In PLDI. ACM, New York, NY, USA, 311–322. https://doi.org/10.1145/2254064.

2254102

Steve Scargall. 2020. Programming Persistent Memory: A Comprehensive Guide for Developers. Apress Media, LLC. https:

//doi.org/10.1007/978-1-4842-4932-1

Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madanlal Musuvathi. 2012. End-to-End

Sequential Consistency. SIGARCH Comput. Archit. News 40, 3 (June 2012), 524–535. https://doi.org/10.1145/2366231.

2337220

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common

Compiler Optimisations are Invalid in the C11 Memory Model and what we can do about it. In POPL. ACM, New York,

NY, USA, 209–220. https://doi.org/10.1145/2676726.2676995

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H. Campbell. 2011. Consistent and Durable Data

Structures for Non-Volatile Byte-Addressable Memory. In FAST. USENIX Association, USA, 5.

Tianzheng Wang, Justin J. Levandoski, and Per-Åke Larson. 2018. Easy Lock-Free Indexing in Non-Volatile Memory. In

ICDE. IEEE Computer Society, Los Alamitos, CA, USA, 461–472. https://doi.org/10.1109/ICDE.2018.00049

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically Comparing Memory

Consistency Models. In POPL. ACM, New York, NY, USA, 190–204. https://doi.org/10.1145/3009837.3009838

Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and Bingsheng He. 2015. NV-Tree: Reducing

Consistency Cost for NVM-Based Single Level Systems. In FAST. USENIX Association, USA, 167–181.

Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank. 2019. Efficient Lock-free Durable Sets. Proc.
ACM Program. Lang. 3, OOPSLA, Article 128 (Oct. 2019), 26 pages. https://doi.org/10.1145/3360554

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3133873
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/1993498.1993522
https://doi.org/10.1145/2442516.2442527
https://doi.org/10.1145/2882903.2915251
http://dl.acm.org/citation.cfm?id=1883978.1884011
https://doi.org/10.1007/978-3-642-03359-9_27
http://dl.acm.org/citation.cfm?id=2665671.2665712
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3276507
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://software.intel.com/content/www/us/en/develop/blogs/deprecate-pcommit-instruction.html
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1007/978-1-4842-4932-1
https://doi.org/10.1145/2366231.2337220
https://doi.org/10.1145/2366231.2337220
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1109/ICDE.2018.00049
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3360554

1:30 Artem Khyzha and Ori Lahav

A PROOFS FOR SECTION 2
Proposition A.1. For every observable program trace 𝑡 with ∉ 𝑡 :

⟨𝑞,𝑚,𝑚̃⟩ 𝑡
=⇒Prq𝑀 ⟨𝑞′,𝑚′, 𝑚̃′⟩ ⇐⇒ (𝑞 𝑡

=⇒Pr 𝑞
′ ∧ ⟨𝑚,𝑚̃⟩ 𝑡

=⇒𝑀 ⟨𝑚′, 𝑚̃′⟩)

The proposition follows immediately from Definition 2.6.

Lemma 2.10. The following conditions together ensure that a persistent memory subsystem 𝑀1

observationally refines a persistent memory subsystem𝑀2:
(i) Every𝑚0-initialized𝑀1-observable-trace is also an𝑚0-initialized𝑀2-observable-trace.
(ii) For every𝑚0-to-𝑚 𝑀1-observable-trace 𝑡1, some 𝑡2 ≲ 𝑡1 is an𝑚0-to-𝑚 𝑀2-observable-trace.

Proof. Suppose that 𝑞 ∈ Pr .Q is reachable under 𝑀1. Then, by Def. 2.7, ⟨𝑞,𝑚,𝑚̃⟩ is reachable
in Pr q 𝑀1 for some ⟨𝑚,𝑚̃⟩ ∈ 𝑀1 .Q. Thus, there exist crashless observable program traces 𝑡0, ... ,𝑡𝑛 ,

initial program states 𝑞
0
, ... ,𝑞𝑛 ∈ Pr .QInit, initial non-volatile memories𝑚1, ... ,𝑚𝑛 ∈ Loc → Val, and

initial volatile states 𝑚̃0, ... ,𝑚̃𝑛 ∈ 𝑀1.Q̃Init, such that the following hold:

• ⟨𝑞
0
,𝑚Init, 𝑚̃0⟩

𝑡0
=⇒Prq𝑀1

⟨_,𝑚1, _⟩, and ⟨𝑞𝑖 ,𝑚𝑖 , 𝑚̃𝑖⟩
𝑡𝑖
=⇒Prq𝑀1

⟨_,𝑚𝑖+1, _⟩ for every 1 ≤ 𝑖 ≤ 𝑛 − 1.

• ⟨𝑞𝑛,𝑚𝑛, 𝑚̃𝑛⟩
𝑡𝑛
==⇒Prq𝑀1

⟨𝑞, _, _⟩.
By Prop. A.1, it follows that:

• 𝑞𝑖
𝑡𝑖
=⇒Pr _ for every 0 ≤ 𝑖 ≤ 𝑛 − 1, and 𝑞𝑛

𝑡𝑛
==⇒Pr 𝑞.

• 𝑡0 is an𝑚Init-to-𝑚 𝑀1-observable-trace, and 𝑡𝑖 is an𝑚𝑖 -to-𝑚𝑖+1 𝑀1-observable-trace for every

1 ≤ 𝑖 ≤ 𝑛 − 1.

• 𝑡𝑛 is an𝑚𝑛-initialized𝑀1-observable-trace.

Then, assumption (ii) entails that there exist 𝑡 ′
0
, ... ,𝑡 ′𝑛−1 such that the following hold:

• 𝑡 ′𝑖 ≲ 𝑡𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1.

• 𝑡 ′
0
is a𝑚Init-to-𝑚1 𝑀2-observable-trace, and 𝑡

′
𝑖 is an𝑚𝑖 -to-𝑚𝑖+1 𝑀2-observable-trace for every

1 ≤ 𝑖 ≤ 𝑛 − 1.

Therefore, there exist initial volatile states 𝑚̃′
0
, ... ,𝑚̃′

𝑛−1 ∈ 𝑀2.Q̃Init such that:

⟨𝑚Init, 𝑚̃
′
0
⟩

𝑡 ′
0

=⇒𝑀2
⟨𝑚1, _⟩ and ⟨𝑚𝑖 , 𝑚̃

′
𝑖 ⟩

𝑡 ′𝑖
=⇒𝑀2

⟨𝑚𝑖+1, _⟩ for every 1 ≤ 𝑖 ≤ 𝑛 − 1.

Now, since 𝑞𝑖
𝑡𝑖
=⇒Pr _ and 𝑡

′
𝑖 ≲ 𝑡𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1, by Prop. 2.4, we have 𝑞𝑖

𝑡 ′𝑖
=⇒Pr _ for every

0 ≤ 𝑖 ≤ 𝑛 − 1. By Prop. A.1, it follows that:

⟨𝑞
0
,𝑚Init, 𝑚̃

′
0
⟩

𝑡 ′
0

=⇒Prq𝑀2
⟨_,𝑚1, _⟩ and ⟨𝑞𝑖 ,𝑚𝑖 , 𝑚̃

′
𝑖 ⟩

𝑡 ′𝑖
=⇒Prq𝑀2

⟨_,𝑚𝑖+1, _⟩ for every 1 ≤ 𝑖 ≤ 𝑛 − 1 (1)

In addition, assumption (i) entails that 𝑡𝑛 is an𝑚𝑛-initialized 𝑀2-observable-trace. Therefore,

there exists 𝑚̃′
𝑛 ∈ 𝑀2.Q̃Init such that ⟨𝑚𝑛, 𝑚̃

′
𝑛⟩

𝑡𝑛
==⇒Prq𝑀2

⟨_, _⟩. Knowing that 𝑞𝑛
𝑡𝑛
==⇒Pr 𝑞 holds, we

conclude:

⟨𝑞𝑛,𝑚𝑛, 𝑚̃
′
𝑛⟩

𝑡𝑛
==⇒Prq𝑀2

⟨𝑞, _, _⟩ (2)

Putting Eq. (1) and Eq. (2) together, we have shown that there exist 𝑡 ′ = 𝑡 ′
0
· · ... · · 𝑡 ′𝑛−1 · · 𝑡𝑛

and 𝑚̃′
0
, ... ,𝑚̃′

𝑛 ∈ 𝑀2.Q̃Init such that:

⟨𝑞
0
,𝑚Init, 𝑚̃

′
0
⟩

𝑡 ′
0

=⇒Prq𝑀2
⟨_,𝑚1, _⟩

 −→Prq𝑀2
⟨𝑞

1
,𝑚1, 𝑚̃

′
1
⟩

𝑡 ′
1

=⇒Prq𝑀2
...

...
𝑡 ′𝑛−1
===⇒Prq𝑀2

⟨_,𝑚𝑛, _⟩
 −→Prq𝑀2

⟨𝑞𝑛,𝑚𝑛, 𝑚̃
′
𝑛⟩

𝑡𝑛
==⇒Prq𝑀2

⟨𝑞, _, _⟩,
meaning that 𝑞 is reachable for Pr under the persistent memory subsystem𝑀2. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:31

B PROOFS FOR SECTION 4
To carry out our equivalence proofs we use instrumented versions of Px86 and PTSOsyn. We also

introduce two additional (instrumented) persistent memory subsystems, iPTSO1 and iPTSO2, that

serve as intermediate systems in our proof. In Appendix B.1 we generally define instrumented

persistent memory subsystems. In Appendix B.2 we present the instrumented version of Px86.
In Appendix B.3 we present iPTSO1 and iPTSO2. In Appendix B.4 we present the instrumented

version of PTSOsyn. In Appendix B.5 we use these subsystems to establish the proof of Thm. 4.6.

Finally, in Appendix B.6 we provide the proof of Lemma 4.5.

B.1 Instrumented Persistent Memory Subsystems
Instrumented persistent memory subsystems are defined similarly to persistent memory subsystems,

except for their transition labels (the alphabet of the LTS), which carry more information. In

particular, the observable transition labels of the form ⟨𝜏, 𝑙⟩ of persistent memory subsystems

are augmented with an identifier 𝑠 ∈ N, which uniquely identifies the transition. The 𝜖-labels of

silent transitions of persistent memory subsystems are made more informative as well. Hence, the

transition labels of an instrumented persistent memory subsystem i𝑀 consists of transition labels of

the form ⟨𝜏, 𝑙#𝑠⟩ (where 𝜏 ∈ Tid and 𝑙 ∈ Lab) as well as a set denoted by i𝑀.iΣ of instrumented silent
transition labels, which differs from one system to another. We assume that, like the instrumented

non-silent transition labels, the instrumented silent transition labels also include an identifier 𝑠 ∈ N.
We use the function #(·) to retrieve this identifier from a given instrumented (silent or non-silent)

transition label.

In the sequel, we use the same definition style and terminology that we used for persistent

memory subsystems also in the context of instrumented persistent memory subsystems (e.g.,

defining only the volatile component of the state).

The following erasure function Λ forgets the instrumentation in the transition labels.

Definition B.1. For a transition label 𝛼 of an instrumented persistent memory subsystem i𝑀 ,

Λ(𝛼) is defined as follows:

Λ(𝛼) ≜
{
⟨𝜏, 𝑙⟩ 𝛼 = ⟨𝜏, 𝑙#𝑠⟩
𝜖 𝛼 ∈ i𝑀.iΣ

The erasure of a trace i𝑡 of an instrumented persistent memory subsystem i𝑀 , denoted by Λ(i𝑡), is
the sequence obtained from Λ(i𝑡 (1)), ... ,Λ(i𝑡 (|i𝑡 |)) by omitting all 𝜖 labels.

As usual with instrumented operational semantics, it will be easy to see that the instrumentation

does not affect the observable behaviors. Formally, we require the existence of an erasure (many-to-

one) function from instrumented states to non-instrumented ones that satisfies certain conditions,

as defined next.

Definition B.2. Let𝑀 be a persistent memory subsystem and i𝑀 be an instrumented persistent

memory subsystem. A function Λ : i𝑀.Q̃ → 𝑀.Q̃ is an erasure function if the following conditions

hold:

• 𝑀.Q̃Init = {Λ(𝑚̃) | 𝑚̃ ∈ i𝑀.Q̃Init}.
• If ⟨𝑚, i𝑚̃⟩ 𝜏,𝑙#𝑠−−−→i𝑀 ⟨𝑚′, i𝑚̃′⟩, then ⟨𝑚,Λ(i𝑚̃)⟩ 𝜏,𝑙−−→𝑀 ⟨𝑚′,Λ(i𝑚̃′)⟩.
• If ⟨𝑚, i𝑚̃⟩ 𝛼−→i𝑀 ⟨𝑚′, i𝑚̃′⟩ for some 𝛼 ∈ i𝑀.iΣ, then ⟨𝑚,Λ(i𝑚̃)⟩ 𝜖−→𝑀 ⟨𝑚′,Λ(i𝑚̃′)⟩.
• If ⟨𝑚,Λ(i𝑚̃)⟩ 𝜏,𝑙−−→𝑀 ⟨𝑚′, 𝑚̃′⟩, then ⟨𝑚, i𝑚̃⟩ 𝜏,𝑙#𝑠−−−→i𝑀 ⟨𝑚′, i𝑚̃′⟩ for some 𝑠 ∈ N and i𝑚̃′ ∈ i𝑀.Q̃
such that Λ(i𝑚̃′) = 𝑚̃′

.

• If ⟨𝑚,Λ(i𝑚̃)⟩ 𝜖−→𝑀 ⟨𝑚′, 𝑚̃′⟩, then ⟨𝑚, i𝑚̃⟩ 𝛼−→i𝑀 ⟨𝑚′, i𝑚̃′⟩ for some 𝛼 ∈ i𝑀.iΣ and i𝑚̃′ ∈ i𝑀.Q̃
such that Λ(i𝑚̃′) = 𝑚̃′

.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:32 Artem Khyzha and Ori Lahav

Given such function Λ, we say that i𝑀 is a Λ-instrumentation of𝑀 . Furthermore, i𝑀 is called an

instrumentation of𝑀 if it is a Λ-instrumentation of𝑀 for some erasure function Λ.

Lemma B.3. Let i𝑀 be aΛ-instrumentation of a persistent memory subsystem𝑀 . Then, the following
hold:

• For every𝑚0,𝑚 ∈ Loc → Val, i𝑚̃Init ∈ i𝑀.Q̃Init, i𝑚̃ ∈ i𝑀.Q̃, and i𝑡 , if ⟨𝑚0, i𝑚̃Init⟩
i𝑡−→i𝑀 ⟨𝑚, i𝑚̃⟩,

then ⟨𝑚0,Λ(𝑚̃Init)⟩
Λ(i𝑡)
====⇒𝑀 ⟨𝑚,Λ(i𝑚̃)⟩.

• For every𝑚0,𝑚 ∈ Loc → Val, 𝑚̃Init ∈ 𝑀.Q̃Init, 𝑚̃ ∈ 𝑀.Q̃, and 𝑡 , if ⟨𝑚0, 𝑚̃Init⟩
𝑡
=⇒𝑀 ⟨𝑚,𝑚̃⟩, then

⟨𝑚0, i𝑚̃Init⟩
i𝑡−→i𝑀 ⟨𝑚, i𝑚̃⟩ for some i𝑡 , i𝑚̃Init ∈ i𝑀.Q̃Init, and i𝑚̃ ∈ i𝑀.Q̃ such that Λ(i𝑡) = 𝑡 and

Λ(i𝑚̃) = 𝑚̃.

B.2 iPx86: Instrumented Px86

The instrumented versions of our TSO-based persistent memory subsystems augment the entries

of the persistent and store buffers with the identifier 𝑠 ∈ N that was used in the label of the issuing

step that added the entry to the buffer. For instance, we have entries of the form W(𝑥, 𝑣)#𝑠 in the

persistence buffer instead of W(𝑥, 𝑣); and FL(𝑥)#𝑠 in the store buffer instead of FL(𝑥). Then, when
propagating an entry with identifier 𝑠 , we include 𝑠 in the instrumented silent transition label. This

allows us to easily relate the transitions in which events are issued, propagated from store buffer,

and persist. For instance, a write step generates a fresh identifier 𝑠 (included both in the transition

label and in the new store buffer entry), that is (possibly) reused in a (exactly one) later prop-w

step, and further (possibly) reused in (exactly one) later persist-w step.

Definition B.4. An instrumented persistence buffer is a finite sequence ip of elements of the form

𝛼#𝑠 where 𝛼 is a persistence-buffer entry (of the form W(𝑥, 𝑣) or PER(𝑥)) and 𝑠 ∈ N. An instrumented
store buffer is a finite sequence ib of elements of the form 𝛼#𝑠 where 𝛼 is a store-buffer entry (of

the form W(𝑥, 𝑣), FL(𝑥), FO(𝑥), or SF) and 𝑠 ∈ N. An instrumented store-buffer mapping is a function

iB assigning an instrumented store buffer to every 𝜏 ∈ Tid.

Definition B.5. The erasure of an instrumented persistence buffer ip, denoted by Λ(ip), is the
persistence buffer obtained from ip by omitting the identifier 𝑠 from all symbols. Similarly, the

erasure of an instrumented store buffer ib, denoted by Λ(ib), is the store buffer obtained from ib by
omitting the identifier 𝑠 from all symbols, and it is lifted to instrumented store-buffer mappings in

the obvious way.

Using these definitions, iPx86 (instrumented Px86) is presented in Fig. 5. The functions tid,
typ, loc are extended to iPx86.iΣ in the obvious way (in particular, for 𝛼 ∈ iPx86.iΣ, we have
typ(𝛼) ∈ {PropW/PropFL/PropFO/PropSF/PerW/PerPER}).
It is easy to see that iPx86 is an instrumentation of Px86.

Lemma B.6. iPx86 is a Λ-instrumentation of Px86 for Λ ≜ 𝜆⟨ip, iB, 𝑆⟩. ⟨Λ(ip),Λ(iB)⟩.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:33

iPx86.iΣ ≜{ ⟨𝜏, PropW(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropFL(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {⟨𝜏, PropFO(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropSF#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑠 ∈ N}
∪ {PerW(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {PerPER(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}

𝑚 ∈ Loc → Val ip ∈ ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪ {PER(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N})∗

iB ∈ Tid → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪ {FL(𝑥)#𝑠 | 𝑥 ∈ Loc,N ∈ N}
∪ {FO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {SF#𝑠 | 𝑠 ∈ N})∗ 𝑆 ⊆ N

ipInit ≜ 𝜖 iBInit ≜ 𝜆𝜏. 𝜖 𝑆 Init = ∅

write/flush/flush-opt/sfence

𝑆′ = 𝑆 ⊎ {𝑠 }
typ(𝑙) ∈ {W, FL, FO, SF}
iB′ = iB[𝜏 ↦→ iB(𝜏) · 𝑙#𝑠]

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPx86 ⟨𝑚, ip, iB′, 𝑆′⟩

read

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R(𝑥, 𝑣)

get(𝑚,Λ(ip),Λ(iB(𝜏))) (𝑥) = 𝑣

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPx86 ⟨𝑚, ip, iB, 𝑆′⟩

rmw

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = RMW(𝑥, 𝑣R, 𝑣W)

get(𝑚,Λ(ip), 𝜖) (𝑥) = 𝑣R

iB(𝜏) = 𝜖

ip′ = ip · W(𝑥, 𝑣W)#𝑠

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPx86 ⟨𝑚, ip′, iB, 𝑆′⟩

rmw-fail

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R-ex(𝑥, 𝑣)

get(𝑚,Λ(ip), 𝜖) (𝑥) = 𝑣

iB(𝜏) = 𝜖

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPx86 ⟨𝑚, ip, iB, 𝑆′⟩

mfence

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = MF

iB(𝜏) = 𝜖

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPx86 ⟨𝑚, ip, iB, 𝑆′⟩

prop-w

𝐿 = PropW(𝑥)#𝑠
iB(𝜏) = ib1 · W(𝑥, 𝑣)#𝑠 · ib2

W(_, _)#_, FL(_)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] ip′ = ip · W(𝑥, 𝑣)#𝑠

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPx86 ⟨𝑚, ip′, iB′, 𝑆 ⟩

prop-fl

𝐿 = PropFL(𝑥)#𝑠
iB(𝜏) = ib1 · FL(𝑥)#𝑠 · ib2

W(_, _)#_, FL(_)#_, FO(𝑥)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] ip′ = ip · PER(𝑥)#𝑠

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPx86 ⟨𝑚, ip′, iB′, 𝑆 ⟩

prop-fo

𝐿 = PropFO(𝑥)#𝑠
iB(𝜏) = ib1 · FO(𝑥)#𝑠 · ib2

W(𝑥, _)#_, FL(𝑥)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] ip′ = ip · PER(𝑥)#𝑠

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPx86 ⟨𝑚, ip′, iB′, 𝑆 ⟩

prop-sf

𝐿 = PropSF#𝑠
iB(𝜏) = SF#𝑠 · ib

iB′ = iB[𝜏 ↦→ ib]

⟨𝑚, ip, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPx86 ⟨𝑚, ip, iB′, 𝑆 ⟩

persist-w

𝐿 = PerW(𝑥)#𝑠
ip = ip1 · W(𝑥, 𝑣)#𝑠 · ip2
W(𝑥, _)#_, PER(_)#_ ∉ ip1

ip′ = ip1 · ip2 𝑚′ =𝑚 [𝑥 ↦→ 𝑣]

⟨𝑚, ip, iB, 𝑆 ⟩ 𝐿−→iPx86 ⟨𝑚′, ip′, iB, 𝑆 ⟩

persist-per

𝐿 = PerPER(𝑥)#𝑠
ip = ip1 · PER(𝑥)#𝑠 · ip2
W(𝑥, _)#_, PER(_)#_ ∉ ip1

ip′ = ip1 · ip2

⟨𝑚, ip, iB, 𝑆 ⟩ 𝐿−→iPx86 ⟨𝑚, ip′, iB, 𝑆 ⟩

Fig. 5. The iPx86 Instrumented Persistent Memory Subsystem (the instrumentation is colored).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:34 Artem Khyzha and Ori Lahav

B.3 Intermediate Systems iPTSO1 and iPTSO2

For the proof of equivalence of Px86 and PTSOsyn, we use two intermediate instrumented persistent

memory subsystems: iPTSO1 and iPTSO2. Next, we present these systems.

Definition B.7. An instrumented per-location persistence buffer is a finite sequence ip of elements

of the form 𝛼#𝑠 where 𝛼 is a per-location persistence buffer entry (of the form W(𝑣) or FO(𝜏))
and 𝑠 ∈ N. An instrumented per-location-persistence-buffer mapping is a function iP assigning an

instrumented per-location persistence buffer to every 𝑥 ∈ Loc.

Definition B.8. The erasure of an instrumented per-location persistence buffer ip, denoted by Λ(ip),
is the per-location persistence buffer obtained from ip by omitting the identifier 𝑠 from all symbols.

It is lifted to instrumented per-location-persistence-buffer mappings in the obvious way.

iPTSO1 is presented in Fig. 6. Note that the per-location-persistence-buffers of iPTSO1 do not

include FO(𝜏)-entries (these are used in the other systems below). The rules write/flush/flush-

opt/sfence, mfence and prop-sf are identical to the rules of iPx86. The rules read, rmw, rmw-fail

and prop-w are analogous to those of iPx86 (they are trivially adjusted to operate with per-location

persistence buffers).

The main feature of iPTSO1 is that it makes all flush and flush-optimal instructions blocking. To

this end, propagation of FO(𝑥) and FL(𝑥) is predicated upon iP (𝑥) being empty, and persistence

steps for writes persist writes from the heads of the buffers.

iPTSO2 is presented in Fig. 7. This instrumented persistent memory subsystem is similar to (the

instrumented version of) PTSOsyn with the exception that its store buffers do not have the "almost"

FIFO behavior of PTSOsyn and propagate entries out-of-order. We further highlight the differences

w.r.t. iPTSO1. Like iPTSO1, PTSO2 also has synchronous flush instructions, however, flush-optimal

instructions are asynchronous. The prop-fo transition is analogous to iPx86 (adjusted to the type

of persistence buffers). PTSO2 makes sfence instructions synchronous, as well as other serializing

instructions, which results in rmw, rmw-fail, mfence and prop-sf enforcing persistence of all

flush-optimal instructions preceding the given one in program order as required by the constraint

(∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)). Finally, persist-fo simply ensures that writes to a given location persist

before the subsequent flush-optimal instruction.

B.4 iPTSOsyn: Instrumented PTSOsyn

We will also need an instrumented version of PTSOsyn, called iPTSOsyn. This system is presented

in Fig. 8. It is identical to iPTSO2, except for some transitions (as highlighted in the figure). It is

easy to see that iPTSOsyn is an instrumentation of PTSOsyn.

Lemma B.9. iPTSOsyn is a Λ-instrumentation of PTSOsyn for Λ ≜ 𝜆⟨iP, iB, 𝑆⟩. ⟨Λ(iP),Λ(iB)⟩.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:35

iPTSO1 .iΣ ≜{ ⟨𝜏, PropW(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropFL(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {⟨𝜏, PropFO(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropSF#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑠 ∈ N}
∪ {PerW(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}

𝑚 ∈ Loc → Val iP ∈ Loc → {W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N}∗

iB ∈ Tid → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪ {FL(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {FO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {SF#𝑠 | 𝑠 ∈ N})∗ 𝑆 ⊆ N

iPInit ≜ 𝜆𝑥. 𝜖 iBInit ≜ 𝜆𝜏 . 𝜖 𝑆 Init = ∅

write/flush/flush-opt/sfence

𝑆′ = 𝑆 ⊎ {𝑠 }
typ(𝑙) ∈ {W, FL, FO, SF}
iB′ = iB[𝜏 ↦→ iB(𝜏) · 𝑙#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO1
⟨𝑚, iP, iB′, 𝑆′⟩

read

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥)),Λ(iB(𝜏))) (𝑥) = 𝑣

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO1
⟨𝑚, iP, iB, 𝑆′⟩

rmw

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = RMW(𝑥, 𝑣R, 𝑣W)

get(𝑚,Λ(iP (𝑥)), 𝜖) (𝑥) = 𝑣R

iB(𝜏) = 𝜖

iP′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣W)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO1
⟨𝑚, iP′, iB, 𝑆′⟩

rmw-fail

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R-ex(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥)), 𝜖) (𝑥) = 𝑣

iB(𝜏) = 𝜖

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO1
⟨𝑚, iP, iB, 𝑆′⟩

mfence

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = MF

iB(𝜏) = 𝜖

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO1
⟨𝑚, iP, iB, 𝑆′⟩

prop-w

𝐿 = PropW(𝑥)#𝑠
iB(𝜏) = ib1 · W(𝑥, 𝑣)#𝑠 · ib2

W(_, _)#_, FL(_)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] iP′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO1
⟨𝑚, iP′, iB′, 𝑆 ⟩

prop-fl

𝐿 = PropFL(𝑥)#𝑠
iB(𝜏) = ib1 · FL(𝑥)#𝑠 · ib2

W(_, _)#_, FL(_)#_, FO(𝑥)#_, SF#_ ∉ ib1
iP (𝑥) = 𝜖

iB′ = iB[𝜏 ↦→ ib1 · ib2]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO1
⟨𝑚, iP, iB′, 𝑆 ⟩

prop-fo

𝐿 = PropFO(𝑥)#𝑠
iB(𝜏) = ib1 · FO(𝑥)#𝑠 · ib2

W(𝑥, _)#_, FL(𝑥)#_, SF#_ ∉ ib1
iP (𝑥) = 𝜖

iB′ = iB[𝜏 ↦→ ib1 · ib2]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO1
⟨𝑚, iP, iB′, 𝑆 ⟩

prop-sf

𝐿 = PropSF#𝑠
iB(𝜏) = SF#𝑠 · ib

iB′ = iB[𝜏 ↦→ ib]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO1
⟨𝑚, iP, iB′, 𝑆 ⟩

persist-w

𝐿 = PerW(𝑥)#𝑠
iP (𝑥) = W(𝑣)#𝑠 · ip

iP′ = iP [𝑥 ↦→ ip] 𝑚′ =𝑚 [𝑥 ↦→ 𝑣]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝐿−→iPTSO1
⟨𝑚′, iP′, iB, 𝑆 ⟩

Fig. 6. The iPTSO1 Instrumented Persistent Memory Subsystem (differences w.r.t. iPx86 are highlighted)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:36 Artem Khyzha and Ori Lahav

iPTSO2 .iΣ ≜{ ⟨𝜏, PropW(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropFL(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {⟨𝜏, PropFO(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropSF#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑠 ∈ N}
∪ {PerW(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪{PerFO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}

𝑚 ∈ Loc → Val iP ∈ Loc → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪{FO(𝜏)#𝑠 | 𝜏 ∈ Tid, 𝑠 ∈ N})∗

iB ∈ Tid → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪ {FL(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {FO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {SF#𝑠 | 𝑠 ∈ N})∗ 𝑆 ⊆ N

iPInit ≜ 𝜆𝑥. 𝜖 iBInit ≜ 𝜆𝜏. 𝜖 𝑆 Init = ∅

write/flush/flush-opt/sfence

𝑆′ = 𝑆 ⊎ {𝑠 }
typ(𝑙) ∈ {W, FL, FO, SF}
iB′ = iB[𝜏 ↦→ iB(𝜏) · 𝑙#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO2
⟨𝑚, iP, iB′, 𝑆′⟩

read

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥)),Λ(iB(𝜏))) (𝑥) = 𝑣

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO2
⟨𝑚, iP, iB, 𝑆′⟩

rmw

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = RMW(𝑥, 𝑣R, 𝑣W)

get(𝑚,Λ(iP (𝑥)), 𝜖) (𝑥) = 𝑣R

iB(𝜏) = 𝜖

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)
iP′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣W)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO2
⟨𝑚, iP′, iB, 𝑆′⟩

rmw-fail

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R-ex(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥)), 𝜖) (𝑥) = 𝑣

iB(𝜏) = 𝜖

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO2
⟨𝑚, iP, iB, 𝑆′⟩

mfence

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = MF

iB(𝜏) = 𝜖

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSO2
⟨𝑚, iP, iB, 𝑆′⟩

prop-w

𝐿 = PropW(𝑥)#𝑠
iB(𝜏) = ib1 · W(𝑥, 𝑣)#𝑠 · ib2

W(_, _)#_, FL(_)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] iP′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO2
⟨𝑚, iP′, iB′, 𝑆 ⟩

prop-fl

𝐿 = PropFL(𝑥)#𝑠
iB(𝜏) = ib1 · FL(𝑥)#𝑠 · ib2

W(_, _)#_, FL(_)#_, FO(𝑥)#_, SF#_ ∉ ib1
iP (𝑥) = 𝜖

iB′ = iB[𝜏 ↦→ ib1 · ib2]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO2
⟨𝑚, iP, iB′, 𝑆 ⟩

prop-fo

𝐿 = PropFO(𝑥)#𝑠
iB(𝜏) = ib1 · FO(𝑥)#𝑠 · ib2

W(𝑥, _)#_, FL(𝑥)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] iP′ = iP [𝑥 ↦→ iP (𝑥) · FO(𝜏)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO2
⟨𝑚, iP′, iB′, 𝑆 ⟩

prop-sf

𝐿 = PropSF#𝑠
iB(𝜏) = SF#𝑠 · ib

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)
iB′ = iB[𝜏 ↦→ ib]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSO2
⟨𝑚, iP, iB′, 𝑆 ⟩

persist-w

𝐿 = PerW(𝑥)#𝑠
iP (𝑥) = W(𝑣)#𝑠 · ip

iP′ = iP [𝑥 ↦→ ip] 𝑚′ =𝑚 [𝑥 ↦→ 𝑣]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝐿−→iPTSO2
⟨𝑚′, iP′, iB, 𝑆 ⟩

persist-fo

𝐿 = PerFO(𝑥)#𝑠
iP (𝑥) = FO(𝜏)#𝑠 · ip
iP′ = iP [𝑥 ↦→ ip]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝐿−→iPTSO2
⟨𝑚, iP′, iB, 𝑆 ⟩

Fig. 7. The iPTSO2 Instrumented Persistent Memory Subsystem (differences w.r.t. iPTSO1 are highlighted)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:37

iPTSOsyn .iΣ ≜{ ⟨𝜏, PropW(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropFL(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {⟨𝜏, PropFO(𝑥)#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {⟨𝜏, PropSF#𝑠 ⟩ | 𝜏 ∈ Tid, 𝑠 ∈ N}
∪ {PerW(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {PerFO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}

𝑚 ∈ Loc → Val iP ∈ Loc → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪ {FO(𝜏)#𝑠 | 𝜏 ∈ Tid, 𝑠 ∈ N})∗

iB ∈ Tid → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N} ∪ {FL(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}
∪ {FO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N} ∪ {SF#𝑠 | 𝑠 ∈ N})∗ 𝑆 ⊆ N

iPInit ≜ 𝜆𝑥. 𝜖 iBInit ≜ 𝜆𝜏. 𝜖 𝑆 Init = ∅

write/flush/flush-opt/sfence

𝑆′ = 𝑆 ⊎ {𝑠 }
typ(𝑙) ∈ {W, FL, FO, SF}
iB′ = iB[𝜏 ↦→ iB(𝜏) · 𝑙#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSOsyn ⟨𝑚, iP, iB′, 𝑆′⟩

read

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥)),Λ(iB(𝜏))) (𝑥) = 𝑣

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSOsyn ⟨𝑚, iP, iB, 𝑆′⟩

rmw

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = RMW(𝑥, 𝑣R, 𝑣W)

get(𝑚,Λ(iP (𝑥)), 𝜖) (𝑥) = 𝑣R

iB(𝜏) = 𝜖

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)
iP′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣W)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSOsyn ⟨𝑚, iP′, iB, 𝑆′⟩

rmw-fail

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = R-ex(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥)), 𝜖) (𝑥) = 𝑣

iB(𝜏) = 𝜖

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSOsyn ⟨𝑚, iP, iB, 𝑆′⟩

mfence

𝑆′ = 𝑆 ⊎ {𝑠 }
𝑙 = MF

iB(𝜏) = 𝜖

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝑙#𝑠−−−−→iPTSOsyn ⟨𝑚, iP, iB, 𝑆′⟩

prop-w

𝐿 = PropW(𝑥)#𝑠
iB(𝜏) = W(𝑥, 𝑣)#𝑠 · ib

iB′ = iB[𝜏 ↦→ ib] iP′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSOsyn ⟨𝑚, iP′, iB′, 𝑆 ⟩

prop-fl

𝐿 = PropFL(𝑥)#𝑠
iB(𝜏) = FL(𝑥)#𝑠 · ib

W(_, _)#_, FL(_)#_, FO(𝑥)#_, SF#_ ∉ ib1
iP (𝑥) = 𝜖

iB′ = iB[𝜏 ↦→ ib]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSOsyn ⟨𝑚, iP, iB′, 𝑆 ⟩

prop-fo

𝐿 = PropFO(𝑥)#𝑠
iB(𝜏) = ib1 · FO(𝑥)#𝑠 · ib2

W(𝑥, _)#_, FL(𝑥)#_, FO(𝑥)#_, SF#_ ∉ ib1
iB′ = iB[𝜏 ↦→ ib1 · ib2] iP′ = iP [𝑥 ↦→ iP (𝑥) · FO(𝜏)#𝑠]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSOsyn ⟨𝑚, iP′, iB′, 𝑆 ⟩

prop-sf

𝐿 = PropSF#𝑠
iB(𝜏) = SF#𝑠 · ib

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)
iB′ = iB[𝜏 ↦→ ib]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝜏,𝐿−−−→iPTSOsyn ⟨𝑚, iP, iB′, 𝑆 ⟩

persist-w

𝐿 = PerW(𝑥)#𝑠
iP (𝑥) = W(𝑣)#𝑠 · ip

iP′ = iP [𝑥 ↦→ ip] 𝑚′ =𝑚 [𝑥 ↦→ 𝑣]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝐿−→iPTSOsyn ⟨𝑚′, iP′, iB, 𝑆 ⟩

persist-fo

𝐿 = PerFO(𝑥)#𝑠
iP (𝑥) = FO(𝜏)#𝑠 · ip
iP′ = iP [𝑥 ↦→ ip]

⟨𝑚, iP, iB, 𝑆 ⟩ 𝐿−→iPTSOsyn ⟨𝑚, iP′, iB, 𝑆 ⟩

Fig. 8. The iPTSOsyn Instrumented Persistent Memory Subsystem (differences w.r.t. iPTSO2 are highlighted)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:38 Artem Khyzha and Ori Lahav

B.5 Proof of Theorem 4.6
With the four systems above, we prove Thm. 4.6.

Utilizing Lemma 2.10, we need to show:

(A) Every𝑚0-initialized PTSOsyn-observable-trace is also an𝑚0-initialized Px86-observable-trace.
(B) For every𝑚0-to-𝑚 PTSOsyn-observable-trace 𝑡 , some 𝑡 ′ ≲ 𝑡 is an𝑚0-to-𝑚 Px86-observable-trace.
(C) Every𝑚0-initialized Px86-observable-trace is also an𝑚0-initialized PTSOsyn-observable-trace.

(D) For every𝑚0-to-𝑚 Px86-observable-trace 𝑡 , some 𝑡 ′ ≲ 𝑡 is an𝑚0-to-𝑚 PTSOsyn-observable-trace.

In the proof outlines below, we highlight the steps whose proofs we found more interesting.

The proofs of the non-highlighted steps are easier and mostly straightforward.

B.5.1 General Definitions for all Parts.

Definition B.10. Let 𝐴 be an LTS. We say that a pair ⟨𝜎, 𝜎 ′⟩ ∈ 𝐴.Σ × 𝐴.Σ of transition labels

A-commutes if
𝜎−→𝐴 ;

𝜎′
−→𝐴 ⊆ 𝜎′

−→𝐴 ;

𝜎−→𝐴 .

Definition B.11. A trace i𝑡 of one the systems iPx86, iPTSO2, or iPTSOsyn is called PropFO-
complete if for every 𝑖 ∈ dom(i𝑡) with i𝑡 (𝑖) = ⟨𝜏, PropFO(𝑥)#𝑠⟩, we have #(i𝑡 (𝑗)) = 𝑠 for some 𝑗 > 𝑖 .

In addition, if i𝑡 is a iPx86-trace, we also say that i𝑡 is
(1) PropFL-complete if for every 𝑖 ∈ dom(i𝑡) with i𝑡 (𝑖) = ⟨𝜏, PropFL(𝑥)#𝑠⟩, we have #(i𝑡 (𝑗)) = 𝑠

for some 𝑗 > 𝑖 .

(2) {PropFL, PropFO}-complete if i𝑡 is both PropFL-complete and PropFO-complete.

Definition B.12. Given a trace i𝑡 of one the systems iPTSO2 or iPTSOsyn, the delay function
𝑑i𝑡 : dom(i𝑡) → N assigns to every 𝑖 ∈ dom(i𝑡) with typ(i𝑡 (𝑖)) ∈ {RMW, PropW, PropFO} the

difference 𝑗 − 𝑖 − 1 where 𝑗 > 𝑖 is the (unique) index satisfying #(i𝑡 (𝑗)) = #(i𝑡 (𝑖)). If typ(i𝑡 (𝑖)) ∉
{RMW, PropW, PropFO} or such index 𝑗 does not exist, the delay 𝑑i𝑡 (𝑖) is defined to be 0. Similarly,

if i𝑡 is a trace of iPx86, the delay function 𝑑i𝑡 : dom(i𝑡) → N assigns to every 𝑖 ∈ dom(i𝑡) with
typ(i𝑡 (𝑖)) ∈ {RMW, PropW, PropFO, PropFL} the difference 𝑗 − 𝑖 − 1 where 𝑗 > 𝑖 is the (unique) index

satisfying #(i𝑡 (𝑗)) = #(i𝑡 (𝑖)). If typ(i𝑡 (𝑖)) ∉ {RMW, PropW, PropFO, PropFL} or such index 𝑗 does

not exist, the delay 𝑑i𝑡 (𝑖) is defined to be 0.

Definition B.13. A trace i𝑡 of one the systems iPx86, iPTSO2, or iPTSOsyn is synchronous if
𝑑i𝑡 (𝑖) = 0 for every 1 ≤ 𝑖 ≤ |i𝑡 |.
B.5.2 Proof of (A). The proof of (A) is structured as follows:

(A.0) Let 𝑡 be an𝑚0-initialized PTSOsyn-observable-trace.

(A.1) By Lemmas B.3 and B.9, there exists some𝑚0-initialized iPTSOsyn-trace i𝑡 such that Λ(i𝑡) = 𝑡 .

(A.2) By Lemma B.16, there exists some𝑚0-initialized iPx86-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).
(A.3) By Lemmas B.3 and B.6, Λ(i𝑡 ′) is an𝑚0-initialized Px86-observable-trace.
(A.4) Then, the claim follows observing that Λ(i𝑡 ′) = Λ(i𝑡) = 𝑡 .

Lemma B.14. For every𝑚0-initialized iPTSOsyn-trace i𝑡 , there exists some PropFO-complete𝑚0-
initialized iPTSOsyn-trace i𝑡 ′ such that Λ(i𝑡) = Λ(i𝑡 ′).

Proof. i𝑡 can be extended to some i𝑡 ′ so that every ⟨_, RMW(𝑥, _, 𝑣)#𝑠⟩, ⟨_, PropW(𝑥)#𝑠⟩, and
⟨_, PropFO(𝑥)#𝑠⟩ has a matching PerW(𝑥)#𝑠 or PerFO(𝑥)#𝑠 . Indeed, since it is always possible to
persist entries of persistence buffer in order, we can simply append corresponding labels in the

order in which unmatched propagation events occur in i𝑡 . □

Lemma B.15. For every PropFO-complete𝑚0-initialized iPTSOsyn-trace i𝑡 , there exists some syn-
chronous PropFO-complete𝑚0-initialized iPTSOsyn-trace i𝑡 ′ such that Λ(i𝑡) = Λ(i𝑡 ′).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:39

Proof sketch. We can transform i𝑡 into a synchronous PropFO-complete𝑚0-initialized iPTSOsyn-

trace i𝑡 ′ simply by moving PerW(𝑥)#𝑠 and PerFO(𝑥)#𝑠 immediately after matching ⟨_, PropW(𝑥)#𝑠⟩,
⟨_, RMW(𝑥, _, 𝑣)#𝑠⟩, or ⟨_, PropFO(𝑥)#𝑠⟩ labels in i𝑡 . In a PropFO-complete trace, the writes 𝑥 that do

not persist always occur after PerFO(𝑥)#_ steps. With that observed, one can argue that consider-

ing propagation labels in order and moving their matching persist labels is possible, as relevant

persistence buffers constraints are satisfied by construction. □

Lemma B.16 (Step A.2). For every𝑚0-initialized iPTSOsyn-trace i𝑡 , there exists some𝑚0-initialized
iPx86-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof sketch. By Lemma B.14 applied to i𝑡 , there exists some PropFO-complete𝑚0-initialized

iPTSOsyn-trace i𝑡1 such that Λ(i𝑡) = Λ(i𝑡1). Moreover, by Lemma B.15 applied to i𝑡1, there exists
some synchronous PropFO-complete𝑚0-initialized iPTSOsyn-trace i𝑡 ′1 such that Λ(i𝑡1) = Λ(i𝑡 ′

1
).

We further transform i𝑡 ′
1
into i𝑡 ′ by putting a persist step PerPER(𝑥)#𝑠 after each PropFL(𝑥)#𝑠 , and

by replacing PerFO(𝑥)#𝑠 after each PropFO(𝑥)#𝑠 with PerPER(𝑥)#𝑠 . Note that the resulting trace
is {PropFL, PropFO}-complete and synchronous.

We argue that i𝑡 ′ that is a iPx86-trace. Indeed, for all but persistence steps, whenever iPTSOsyn

performs a step, the same step is possible in iPx86. The persistence steps in i𝑡 ′ are enabled by

construction, since their constraints on the content of the persistence buffer are trivially satisfied

in a synchronous trace. Overall, we have constructed i𝑡 ′ that is𝑚0-initialized iPx86-trace such that

Λ(i𝑡 ′) = Λ(i𝑡). □

B.5.3 Proof of (B). The proof of (B) is structured as follows:

(B.0) Let 𝑡 be an𝑚0-to-𝑚 PTSOsyn-observable-trace.

(B.1) By Lemmas B.3 and B.9, there exists some𝑚0-to-𝑚 iPTSOsyn-trace i𝑡 such that Λ(i𝑡) = 𝑡 .

(B.2) By Lemma B.17, i𝑡 is also an𝑚0-to-𝑚 iPTSO2-trace.

(B.3) By Lemma B.22, there exists some𝑚0-to-𝑚 iPTSO1-trace i𝑡1 such that Λ(i𝑡1) ≲ Λ(i𝑡).
(B.4) By Lemma B.23, there exists some𝑚0-to-𝑚 iPx86-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡1).
(B.5) By Lemmas B.3 and B.6, Λ(i𝑡 ′) is an𝑚0-to-𝑚 Px86-observable-trace.
(B.6) Then, the claim follows observing that Λ(i𝑡 ′) = Λ(i𝑡1) ≲ Λ(i𝑡) = 𝑡 .

Lemma B.17. Every𝑚0-to-𝑚 iPTSOsyn-trace i𝑡 is also an𝑚0-to-𝑚 iPTSO2-trace.

Proof. Every transition of iPTSOsyn is also a transition of iPTSO2. □

Lemma B.18. For every 𝑚0-to-𝑚 iPTSO2-trace i𝑡 , there exists some PropFO-complete 𝑚0-to-𝑚
iPTSO2-trace i𝑡 ′ such that Λ(i𝑡 ′) ≲ Λ(i𝑡).

Proof. We take i𝑡 ′ to be the trace obtained from i𝑡 by discarding all transition labels at an index

𝑖 with typ(i𝑡 (𝑖)) = PropFO but #(i𝑡 (𝑗)) ≠ #(i𝑡 (𝑖)) for every 𝑗 > 𝑖 . It is straightforward to verify

that i𝑡 ′ is a PropFO-complete𝑚0-to-𝑚 iPTSO2-trace, as well as that Λ(i𝑡 ′) ≲ Λ(i𝑡). □

Proposition B.19. ⟨𝛼, 𝛽⟩ iPTSO2-commutes if typ(𝛽) ∈ {PerW, PerFO} and one of the following
conditions holds:

• typ(𝛼) ∉ {PerW, PerFO} and #(𝛼) ≠ #(𝛽).
• typ(𝛼) ∈ {PerW, PerFO} and loc(𝛼) ≠ loc(𝛽).

Lemma B.20. For every PropFO-complete𝑚0-to-𝑚 iPTSO2-trace i𝑡 , there exists some synchronous
PropFO-complete𝑚0-to-𝑚 iPTSO2-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof. By induction on the sum of delays in i𝑡 (i.e.,
∑

𝑖 𝑑i𝑡 (𝑖)). If this sum is 0, then we can

take i𝑡 ′ = i𝑡 . Otherwise, consider the minimal 1 ≤ 𝑖 ≤ |i𝑡 | with 𝑑i𝑡 (𝑖) > 0. Then, we have

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:40 Artem Khyzha and Ori Lahav

typ(i𝑡 (𝑖)) ∈ {RMW, PropW, PropFO} and #(i𝑡 (𝑗)) = #(i𝑡 (𝑖)) for 𝑗 = 𝑖 +𝑑i𝑡 (𝑖) + 1. Following iPTSO2’s

transitions, it must be the case that loc(i𝑡 (𝑗)) = loc(i𝑡 (𝑖)), typ(i𝑡 (𝑗)) = PerW if typ(i𝑡 (𝑖)) ∈
{RMW, PropW}, and typ(i𝑡 (𝑗)) = PerFO if typ(i𝑡 (𝑖)) = PropFO. Now, it is straightforward to verify

that ⟨i𝑡 (𝑗 − 1), i𝑡 (𝑗)⟩ must satisfy one of the conditions in Prop. B.19, and so this pair iPTSO2-

commutes. The resulting PropFO-complete𝑚0-to-𝑚 iPTSO2-trace has smaller sum of delays, and

the claim follows by applying the induction hypothesis. □

Lemma B.21. For every synchronous PropFO-complete𝑚0-to-𝑚 iPTSO2-trace i𝑡 , there exists some
𝑚0-to-𝑚 iPTSO1-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof. We obtain i𝑡 ′ bymerging consecutive prop-fo and persist-fo steps in i𝑡 into one prop-fo
step of iPTSO1, thus maintaining the persistence buffers without FO-entries. □

Lemma B.22 (Step B.3). For every𝑚0-to-𝑚 iPTSO2-trace i𝑡 , there exists some𝑚0-to-𝑚 iPTSO1-trace
i𝑡 ′ such that Λ(i𝑡 ′) ≲ Λ(i𝑡).
Proof. By Lemma B.18, there exists some PropFO-complete 𝑚0-to-𝑚 iPTSO2-trace i𝑡𝑐 such

that Λ(i𝑡𝑐) ≲ Λ(i𝑡). Then, by Lemma B.20, there exists a synchronous PropFO-complete𝑚0-to-𝑚

iPTSO2-trace i𝑡𝑠 such that Λ(i𝑡𝑠) = Λ(i𝑡𝑐). Then, by Lemma B.21, there exists an𝑚0-to-𝑚 iPTSO1-

trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡𝑠). Now, since Λ(i𝑡𝑐) ≲ Λ(i𝑡), Λ(i𝑡𝑠) = Λ(i𝑡𝑐), and Λ(i𝑡 ′) = Λ(i𝑡𝑠),
we have that Λ(i𝑡 ′) ≲ Λ(i𝑡), and the claim follows. □

Lemma B.23 (Step B.4). For every𝑚0-to-𝑚 iPTSO1-trace i𝑡 , there exists some𝑚0-to-𝑚 iPx86-trace
i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof sketch. We transform i𝑡 into i𝑡 ′ by putting a persist step PerPER(𝑥)#𝑠 after each oc-

currence of PropFL(𝑥)#𝑠 or PropFO(𝑥)#𝑠 . All of the steps in i𝑡 ′ are trivially enabled in iPx86 by
construction, so i𝑡 ′ is an𝑚0-to-𝑚 iPx86-trace. □

B.5.4 Helper Lemmas for (C) and (D). To prove (C) and (D), we introduce several trace transforma-

tion properties for persisting synchronously.

Proposition B.24. ⟨𝛼, 𝛽⟩ iPx86-commutes if typ(𝛽) ∈ {PerW, PerPER} and one of the following
conditions holds:

• typ(𝛼) ∉ {PerW, PerPER} and #(𝛼) ≠ #(𝛽).
• typ(𝛼) = PerW and loc(𝛼) ≠ loc(𝛽).

Lemma B.25. For every {PropFL, PropFO}-complete𝑚0-to-𝑚 iPx86-trace i𝑡 , there exists some syn-
chronous {PropFL, PropFO}-complete𝑚0-to-𝑚 iPx86-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof. By induction on the sum of delays in i𝑡 (i.e.,
∑

𝑖 𝑑i𝑡 (𝑖)). If this sum is 0, then we can take

i𝑡 ′ = i𝑡 . Otherwise, consider the minimal 1 ≤ 𝑖 ≤ |i𝑡 | with 𝑑i𝑡 (𝑖) > 0. Then, we have typ(i𝑡 (𝑖)) ∈
{RMW, PropW, PropFL, PropFO} and #(i𝑡 (𝑗)) = #(i𝑡 (𝑖)) for 𝑗 = 𝑖 + 𝑑i𝑡 (𝑖) + 1. Following iPx86’s
transitions, it must be the case that loc(i𝑡 (𝑗)) = loc(i𝑡 (𝑖)), typ(i𝑡 (𝑗)) = PerW if typ(i𝑡 (𝑖)) ∈
{RMW, PropW}, and typ(i𝑡 (𝑗)) = PerPER if typ(i𝑡 (𝑖)) ∈ {PropFL, PropFO}. Consider the possible
cases:

(1) typ(i𝑡 (𝑗 − 1)) ∉ {PerW, PerPER}: Then, by Prop. B.24, ⟨i𝑡 (𝑗 − 1), i𝑡 (𝑗)⟩ iPx86-commutes. The

resulting PropFO-complete𝑚0-to-𝑚 iPx86-trace has smaller sum of delays, and the claim

follows by applying the induction hypothesis.

(2) typ(i𝑡 (𝑗−1)) = PerW: Theminimality of 𝑖 ensures that the index 𝑖 ′with #(i𝑡 (𝑖 ′)) = #(i𝑡 (𝑗−1))
satisfies 𝑖 ′ ≥ 𝑖 . Following iPx86’s transitions, wemust have loc(i𝑡 (𝑗−1)) ≠ loc(i𝑡 (𝑗)) (writes
to the same location persist in their propagation order). Then, again, the claim follows using

Prop. B.24 and the induction hypothesis.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:41

(3) typ(i𝑡 (𝑗 − 1)) = PerPER: The minimality of 𝑖 ensures that the index 𝑖 ′ with #(i𝑡 (𝑖 ′)) =

#(i𝑡 (𝑗 − 1)) satisfies 𝑖 ′ ≥ 𝑖 . Following iPx86’s transitions, we must have typ(i𝑡 (𝑗)) = PerW
(PER-entries to the same location are removed from the persistence buffer in their propagation

order), as well as loc(i𝑡 (𝑗 − 1)) ≠ loc(i𝑡 (𝑗)) (a PER-entry cannot be removed from the

persistence buffer if there is a preceding write entry to the same location). In this case we

can swap i𝑡 (𝑗 − 1) and 𝑡 (𝑗), and, as before obtain a PropFO-complete𝑚0-to-𝑚 iPx86-trace,
so the claim follows by the induction hypothesis. □

Lemma B.26 (Steps C.3 and D.3). For every𝑚0-to-𝑚 iPTSO2-trace i𝑡 , there exists some𝑚0-to-𝑚
iPTSOsyn-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof (outline). We use a standard forward simulation argument, where iPTSOsyn eagerly

takes prop-fo and persist-fo steps whenever possible. Then, iPTSOsyn is always at a state in

which the flush-optimals are further propagated w.r.t. the corresponding state of iPTSO2 (e.g., a

flush-optimal in iPTSO2’s store buffer may already be in iPTSOsyn’s persistence buffer). In this case,

the flush-optimals impose only (possibly) weaker constraints on the transitions. For this argument

to work we rely on the fact that a flush-optimal of a certain thread being further propagated does

not impose constraints on actions of other threads.

More formally, we define a simulation relation 𝑅 between iPTSO2-states and iPTSOsyn-states.

To define 𝑅 we use the notation 𝑠 |𝑇 to restrict a sequence 𝑠 (which will be an instrumented per-

location persistence buffer or an instrumented store buffer) to entries of type X ∈ 𝑇 (yielding

a possibly shorter sequence). The simulation relation 𝑅 ⊆ iPTSO2 .Q × iPTSOsyn .Q is defined as

follows: ⟨⟨𝑚2, iP2, iB2, 𝑆2⟩, ⟨𝑚, iP, iB, 𝑆⟩⟩ ∈ 𝑅 if the following hold:

• 𝑚2 =𝑚 and 𝑆2 = 𝑆 .

• For every 𝑥 ∈ Loc, iP2 (𝑥) | {W} = iP (𝑥) | {W} .
• For every 𝜏 ∈ Tid, iB2 (𝜏) | {W,FL,SF} = iB(𝜏) | {W,FL,SF} .
• If iB(𝜏) (𝑖) ∈ {W(𝑥, _)#_, FL(𝑥)#_, SF#_} and iB(𝜏) (𝑗) = FO(𝑥)#_ for some 𝑖 < 𝑗 , then

iB(𝜏) (𝑖2) = iB(𝜏) (𝑖) and iB(𝜏) (𝑗2) = iB(𝜏) (𝑗) for some 𝑖2 < 𝑗2.

• If iP (𝑥) (𝑖) = W(_)#_ and iP (𝑥) (𝑗) = FO(𝜏)#𝑠 for some 𝑖 < 𝑗 , then one of the following holds:

– iP2 (𝑥) (𝑖2) = iP (𝑥) (𝑖) and iP2 (𝑥) (𝑗2) = FO(𝜏)#𝑠 for some 𝑖2 < 𝑗2; or

– iP2 (𝑥) (𝑖2) = iP (𝑥) (𝑖) and iB2 (𝜏) (𝑗2) = FO(𝑥)#𝑠 for some 𝑖2 and 𝑗2.

• If iB2 (𝜏) (𝑖2) = SF#_ and iB2 (𝜏) (𝑗2) = FO(_)#_ for some 𝑖2 < 𝑗2, then iB(𝜏) (𝑖) = iB2 (𝜏) (𝑖2)
and iB(𝜏) (𝑗) = iB2 (𝜏) (𝑗2) for some 𝑖 < 𝑗 .

• If iB(𝜏) (𝑗) = FO(𝑥)#_, then iB(𝜏) (𝑖) ∈ {W(𝑥, _)#_, FL(𝑥)#_, SF#_} for some 𝑖 < 𝑗 .

• If iP (𝑥) (𝑗) = FO(_)#_, then iP (𝑥) (𝑖) = W(_)#_ for some 𝑖 < 𝑗 .

Initially, we clearly have ⟨⟨𝑚0, P𝜖 , B𝜖 , ∅⟩, ⟨𝑚0, P𝜖 , B𝜖 , ∅⟩⟩ ∈ 𝑅. Now, suppose that ⟨𝑚, iP2, iB2, 𝑆⟩
𝛼−→iPTSO2

⟨𝑚′, iP ′
2
, iB′

2
, 𝑆 ′⟩, and let ⟨𝑚1, iP, iB, 𝑆1⟩ ∈ iPTSOsyn .Q such that ⟨⟨𝑚, iP2, iB2, 𝑆⟩, ⟨𝑚1, iP, iB, 𝑆1⟩⟩ ∈ 𝑅.

Then, we have𝑚 =𝑚1 and 𝑆 = 𝑆1. We show that ⟨𝑚, iP, iB, 𝑆⟩ 𝑡−→iPTSOsyn ⟨𝑚′, iP ′, iB′, 𝑆 ′⟩ for some 𝑡 ,

iP ′
, and iB′

such that Λ(𝑡) = Λ(𝛼) and ⟨⟨𝑚′, iP ′
2
, iB′

2
, 𝑆 ′⟩, ⟨𝑚′, iP ′, iB′, 𝑆 ′⟩⟩ ∈ 𝑅.

Roughly speaking, to obtain this we will make iPTSOsyn take persist-fo steps as eagerly as

possible after every other step. (Thus, when iPTSO2 takes a prop-fo or persist-fo step, iPTSOsyn

remains in the same state.) The rest of the proof continues by separately considering each possible

step of iPTSO2, and establishing the simulation invariants at each step. For example, suppose

that ⟨𝑚, iP2, iB2, 𝑆⟩
𝜏,PropW(𝑥)#𝑠
−−−−−−−−−−→iPTSO2

⟨𝑚′, iP ′
2
, iB′

2
, 𝑆 ′⟩. Then, the simulation invariants ensure that

⟨𝑚, iP, iB, 𝑆⟩ 𝜏,PropW(𝑥)#𝑠
−−−−−−−−−−→iPTSOsyn ⟨𝑚′, iPmid, iBmid, 𝑆

′⟩ for some iPmid and iBmid. Then, to establish the

simulation invariant, we repeatedly execute prop-fo and persist-fo steps as long as it is possible

and obtain the state ⟨𝑚′, iP ′, iB′, 𝑆 ′⟩. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:42 Artem Khyzha and Ori Lahav

B.5.5 Proof of (C). The proof of (C) is structured as follows:

(C.0) Let 𝑡 be an𝑚0-initialized Px86-observable-trace.
(C.1) By Lemmas B.3 and B.6, there exists some𝑚0-initialized iPx86-trace i𝑡 such that Λ(i𝑡) = 𝑡 .

(C.2) By Lemma B.28, there exists some𝑚0-initialized iPTSO2-trace i𝑡2 such that Λ(i𝑡2) = Λ(i𝑡).
(C.3) By Lemma B.26, there exists some𝑚0-initialized iPTSOsyn-trace i𝑡 ′2 such that Λ(i𝑡 ′

2
) = Λ(i𝑡2).

(C.4) By Lemmas B.3 and B.9, Λ(i𝑡 ′
2
) is an𝑚0-initialized PTSOsyn-observable-trace.

(C.5) Then, the claim follows observing that Λ(i𝑡 ′
2
) = Λ(i𝑡2) = Λ(i𝑡) = 𝑡 .

The next lemma states that every trace can be continued to empty the content of its persistence

buffer.

Lemma B.27. For every𝑚0-initialized iPx86-trace i𝑡 , there exists some {PropFL, PropFO}-complete
𝑚0-initialized iPx86-trace i𝑡 ′ such that Λ(i𝑡) = Λ(i𝑡 ′).

Proof sketch. i𝑡 can be extended to some i𝑡 ′ so that every ⟨_, RMW(𝑥, _, 𝑣)#𝑠⟩, ⟨_, PropW(𝑥)#𝑠⟩,
⟨_, PropFO(𝑥)#𝑠⟩ or ⟨_, PropFL(𝑥)#𝑠⟩ has a matching PerW(𝑥)#𝑠 or PerPER(𝑥)#𝑠 . Indeed, since it is
always possible to persist entries of persistence buffer in order, we can simply append corresponding

labels in the order, in which unmatched propagation events occur in i𝑡 . □

Lemma B.28 (Step C.2). For every𝑚0-initialized iPx86-trace i𝑡 , there exists some𝑚0-initialized
iPTSO2-trace i𝑡2 such that Λ(i𝑡2) = Λ(i𝑡).

Proof sketch. By Lemma B.27 applied to i𝑡 , there is some {PropFL, PropFO}-complete iPx86-
trace i𝑡1 such that Λ(i𝑡) = Λ(i𝑡1). Moreover, by applying Lemma B.25 to i𝑡1, there is some syn-

chronous {PropFL, PropFO}-complete𝑚0-initialized iPx86-trace i𝑡 ′
1
such that Λ(i𝑡1) = Λ(i𝑡 ′

1
). We

transform i𝑡 ′
1
further into i𝑡2 by removing every PerPER(𝑥)#𝑠 following ⟨_, PropFL(𝑥)#𝑠⟩, and by

replacing every PerPER(𝑥)#𝑠 following ⟨_, PropFO(𝑥)#𝑠⟩ with PerFO(𝑥)#𝑠 .
We argue that i𝑡2 that is an iPTSO2-trace. Indeed, by construction of i𝑡 ′, each persistence buffer

iP (𝑥) only contains FO(𝜏)#𝑠-entries right before the step propagating them from the buffer takes

place. Moreover, each persistence buffer iP (𝑥) does not contain W(𝑣)#𝑠-entries upon executing

⟨_, PropFL(𝑥)#𝑠⟩ steps, since the conditions for persisting flush instructions in i𝑡 ′
1
ensure that such

writes previously persisted. Hence, the constraints on the content of the persistence buffers are

satisfied in iPTSO2 by construction. □

B.5.6 Proof of (D). The proof of (D) is structured as follows:

(D.0) Let 𝑡 be an𝑚0-to-𝑚 Px86-observable-trace.
(D.1) By Lemmas B.3 and B.6, there exists some𝑚0-to-𝑚 iPx86-trace i𝑡 such that Λ(i𝑡) = 𝑡 .

(D.2) By Lemma B.31, there exists some𝑚0-to-𝑚 iPTSO1-trace i𝑡1 such that Λ(i𝑡1) ≲ Λ(i𝑡).
(D.3) By Lemma B.32, there exists some𝑚0-to-𝑚 iPTSO2-trace i𝑡2 such that Λ(i𝑡2) = Λ(i𝑡1).
(D.4) By Lemma B.26, there exists some𝑚0-to-𝑚 iPTSOsyn-trace i𝑡 ′2 such that Λ(i𝑡 ′

2
) = Λ(i𝑡2).

(D.5) By Lemmas B.3 and B.9, Λ(i𝑡 ′
2
) is an𝑚0-to-𝑚 PTSOsyn-observable-trace.

(D.6) Then, the claim follows observing that Λ(i𝑡 ′
2
) = Λ(i𝑡2) = Λ(i𝑡1) ≲ Λ(i𝑡) = 𝑡 .

Lemma B.29. For every𝑚0-to-𝑚 iPx86-trace i𝑡 , there exists some {PropFL, PropFO}-complete𝑚0-
to-𝑚 iPx86-trace i𝑡 ′ such that Λ(i𝑡 ′) ≲ Λ(i𝑡).

Proof. Let 𝑖0 be the minimal index for which typ(i𝑡 (𝑖0)) ∈ {PropFL, PropFO} but #(i𝑡 (𝑗)) ≠

#(i𝑡 (𝑖0)) for every 𝑗 > 𝑖0. Let 𝑖1, ... ,𝑖𝑚 be an enumeration of all indices 𝑖 > 𝑖0 with typ(i𝑡 (𝑖)) ∈
{PerW, PerPER}. We define i𝑡 ′ = i𝑡 (1), ... ,i𝑡 (𝑖0 − 1), i𝑡 (𝑖1), ... ,i𝑡 (𝑖𝑚). We trivially have that Λ(i𝑡 ′) ≲
Λ(i𝑡). To see that i𝑡 ′ is a ({PropFL, PropFO}-complete) iPx86-trace, it suffices to note that the

transitions of iPx86 ensure that for every 1 ≤ 𝑗 ≤ 𝑚 with typ(i𝑡 (𝑖 𝑗)) = PerW, we have typ(i𝑡 (𝑘)) ∈
{RMW, PropW} and #(i𝑡 (𝑘)) = #(i𝑡 (𝑖 𝑗)) for some 𝑘 < 𝑖0; and for every 1 ≤ 𝑗 ≤ 𝑚 with typ(i𝑡 (𝑖 𝑗)) =

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:43

PerPER, we have typ(i𝑡 (𝑘)) ∈ {PropFL, PropFO} and #(i𝑡 (𝑘)) = #(i𝑡 (𝑖 𝑗)) for some 𝑘 < 𝑖0. Finally,

since i𝑡 ′ includes all PerW transitions of i𝑡 , it is an𝑚0-to-𝑚 iPx86-trace. □

Lemma B.30. For every synchronous {PropFL, PropFO}-complete 𝑚0-to-𝑚 iPx86-trace i𝑡 , there
exists some𝑚0-to-𝑚 iPTSO1-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof. We obtain i𝑡 ′ by merging consecutive prop-fl/prop-fo and persist-per steps in i𝑡
into one prop-fl/prop-fo step of iPTSO1, thus maintaining the persistence buffers without PER-
entries. □

Lemma B.31 (Step D.2). For every𝑚0-to-𝑚 iPx86-trace i𝑡 , there exists some𝑚0-to-𝑚 iPTSO1-trace
i𝑡 ′ such that Λ(i𝑡 ′) ≲ Λ(i𝑡).

Proof. By Lemma B.29, there exists some {PropFL, PropFO}-complete𝑚0-to-𝑚 iPx86-trace i𝑡𝑐
such that Λ(i𝑡𝑐) ≲ Λ(i𝑡). Then, by Lemma B.25, there exists a synchronous {PropFL, PropFO}-
complete𝑚0-to-𝑚 iPx86-trace i𝑡𝑠 such that Λ(i𝑡𝑠) = Λ(i𝑡𝑐). Then, by Lemma B.30, there exists an

𝑚0-to-𝑚 iPTSO1-trace i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡𝑠). Now, since Λ(i𝑡𝑐) ≲ Λ(i𝑡), Λ(i𝑡𝑠) = Λ(i𝑡𝑐),
and Λ(i𝑡 ′) = Λ(i𝑡𝑠), we have that Λ(i𝑡 ′) ≲ Λ(i𝑡), and the claim follows. □

Lemma B.32 (Step D.3). For every𝑚0-to-𝑚 iPTSO1-trace i𝑡 , there exists some𝑚0-to-𝑚 iPTSO2-trace
i𝑡 ′ such that Λ(i𝑡 ′) = Λ(i𝑡).

Proof sketch. iPTSO2 can simulate iPTSO1 by taking a persist-fo step immediately after every

prop-fo step, keeping the persistence buffers without any FO(_)#_ entries. □

B.6 Proof of Lemma 4.5
Lemma 4.5. Suppose that ⟨𝑚0, P𝜖 , B𝜖⟩

𝑡
=⇒PTSOsyn ⟨𝑚, P, B⟩. Then:

• ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡
=⇒PTSOsyn ⟨𝑚′, P ′, B𝜖⟩ for some𝑚′ and P ′.

• ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡 ′
=⇒PTSOsyn ⟨𝑚, P, B𝜖⟩ for some 𝑡 ′ ≲ 𝑡 .

Proof. The first item is trivial (we can simply propagate and persist whatever needed in the

end of the trace). We prove the second using the instrumented system iPTSOsyn. By Lemmas B.3

and B.9, there exist i𝑡 , iP , iB, and 𝑆 ⊆ N, such that ⟨𝑚0, P𝜖 , B𝜖 , ∅⟩
i𝑡−→iPTSOsyn ⟨𝑚, iP, iB, 𝑆⟩, Λ(i𝑡) = 𝑡 ,

Λ(iP) = P , and Λ(iB) = B. For every 𝜏 ∈ Tid, let 𝑖𝜏 be the minimal index such that tid(i𝑡 (𝑖𝜏)) = 𝜏 ,

typ(i𝑡 (𝑖𝜏)) ∈ {W, FL, FO, SF}, and #(i𝑡 (𝑗)) ≠ #(i𝑡 (𝑖𝜏)) for every 𝑗 > 𝑖 (that is, the operation in

index 𝑖𝜏 never propagated from the store buffer). If such index does not exist, we let 𝑖𝜏 = ⊥. For
every 𝜏 ∈ Tid, let 𝐼𝜏 be the set of all indices 𝑖 ≥ 𝑖𝜏 such that tid(i𝑡 (𝑖)) = 𝜏 and typ(i𝑡 (𝑖)) ∈
{W, R, RMW, R-ex, MF, FL, FO, SF} (that is, the operation in index 𝑖 was issued after an operation that

never propagated from the store buffer). If 𝑖𝜏 = ⊥, we let 𝐼𝜏 = ∅. Now, let i𝑡 ′ be the sequence

obtained from 𝑡 by omitting for every 𝜏 ∈ Tid all transition labels in indices 𝐼𝜏 , and further omitting

i𝑡 (𝑗) if #(i𝑡 (𝑗)) = #(i𝑡 (𝑖)) for some 𝑖 ∈ 𝐼𝜏 (that is, we remove the operations in 𝐼𝜏 and their

corresponding propagation operations). Note that such 𝑗 can only exist if typ(i𝑡 (𝑖)) = FO. It is easy

to see that ⟨𝑚0, P𝜖 , B𝜖 , ∅⟩
i𝑡 ′−−→iPTSOsyn ⟨𝑚, iP, B𝜖 , 𝑆 ′⟩ for some 𝑆 ′ (in particular, all operations of threads

𝜋 ≠ 𝜏 , as well as all propagation operations, are oblivious to the contents of B(𝜏)). Going back

to the non-instrumented system, by Lemmas B.3 and B.9, we obtain that ⟨𝑚0, P𝜖 , B𝜖⟩
Λ(i𝑡 ′)
=====⇒PTSOsyn

⟨𝑚,Λ(iP), B𝜖⟩. It is also easy to see that our construction ensures that Λ(i𝑡 ′) ≲ 𝑡 . □

C PROOFS FOR SECTION 5
Lemma 5.14. The following conditions together ensure that𝑀 observationally refines 𝐷 :

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:44 Artem Khyzha and Ori Lahav

(i) For every𝑚0-initialized𝑀-observable-trace 𝑡 , there exists a𝐷-consistent𝑚0-initialized execution
graph 𝐺 such that 𝑡 ∈ traces(𝐺).

(ii) For every 𝑚0-to-𝑚 𝑀-observable-trace 𝑡 , there exist 𝑡 ′ ≲ 𝑡 and 𝐷-consistent 𝑚0-initialized
execution graph such that 𝑡 ′ ∈ traces(𝐺) and𝑚(𝐺) =𝑚.

Proof. Suppose that 𝑞 ∈ Pr .Q is reachable under𝑀 . Then, by definition, ⟨𝑞,𝑚,𝑚̃⟩ is reachable
in Pr q 𝑀 for some ⟨𝑚,𝑚̃⟩ ∈ 𝑀.Q. Thus, there exist crashless observable program traces 𝑡0, ... ,𝑡𝑛 ,

initial program states 𝑞
0
, ... ,𝑞𝑛 ∈ Pr .QInit, initial non-volatile memories𝑚1, ... ,𝑚𝑛 ∈ Loc → Val, and

initial volatile states 𝑚̃0, ... ,𝑚̃𝑛 ∈ 𝑀.Q̃Init, such that the following hold:

• ⟨𝑞
0
,𝑚Init, 𝑚̃0⟩

𝑡0
=⇒Prq𝑀 ⟨_,𝑚1, _⟩, and ⟨𝑞𝑖 ,𝑚𝑖 , 𝑚̃𝑖⟩

𝑡𝑖
=⇒Prq𝑀 ⟨_,𝑚𝑖+1, _⟩ for every 1 ≤ 𝑖 ≤ 𝑛 − 1.

• ⟨𝑞𝑛,𝑚𝑛, 𝑚̃𝑛⟩
𝑡𝑛
==⇒Prq𝑀 ⟨𝑞, _, _⟩.

By Prop. A.1, it follows that:

• 𝑞𝑖
𝑡𝑖
=⇒Pr _ for every 0 ≤ 𝑖 ≤ 𝑛 − 1, and 𝑞𝑛

𝑡𝑛
==⇒Pr 𝑞.

• 𝑡0 is an𝑚Init-to-𝑚 𝑀-observable-trace, and 𝑡𝑖 is an𝑚𝑖 -to-𝑚𝑖+1 𝑀-observable-trace for every

1 ≤ 𝑖 ≤ 𝑛 − 1.

• 𝑡𝑛 is an𝑚𝑛-initialized𝑀-observable-trace.

Then, assumption (ii) entails that there exist 𝑡 ′
0
, ... ,𝑡 ′𝑛−1 and𝐷-consistent execution graphs𝐺0, ... ,𝐺𝑛−1

such that the following hold:

• 𝑡 ′𝑖 ≲ 𝑡𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1.

• 𝑡 ′𝑖 ∈ traces(𝐺𝑖) for every 0 ≤ 𝑖 ≤ 𝑛 − 1.

• 𝐺0 is𝑚Init-initialized and𝑚(𝐺0) =𝑚1.

• For every 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝐺𝑖 is𝑚𝑖 -initialized and𝑚(𝐺𝑖) =𝑚𝑖+1.

Now, since 𝑞𝑖
𝑡𝑖
=⇒Pr _ and 𝑡

′
𝑖 ≲ 𝑡𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1, by Prop. 2.4, we have 𝑞𝑖

𝑡 ′𝑖
=⇒Pr _ for every

0 ≤ 𝑖 ≤ 𝑛 − 1. Since 𝑡 ′𝑖 ∈ traces(𝐺𝑖) for every 0 ≤ 𝑖 ≤ 𝑛 − 1, by Prop. 5.12, it follows that 𝐺𝑖 is

generated by Pr for every 0 ≤ 𝑖 ≤ 𝑛 − 1.

In addition, assumption (i) entails that there exists a 𝐷-consistent𝑚𝑛-initialized execution graph

𝐺𝑛 such that 𝑡𝑛 ∈ traces(𝐺𝑛). Since 𝑞𝑛
𝑡𝑛
==⇒Pr 𝑞, by Prop. 5.12, it follows that 𝐺𝑛 is generated by Pr

with final state 𝑞.

It follows that𝐺0, ... ,𝐺𝑛 are 𝐷-consistent execution graphs that satisfy the conditions of Def. 5.13,

so that 𝑞 is reachable under 𝐷 . □

Lemma 5.15. If for every 𝐷-consistent initialized execution graph 𝐺 , some 𝑡 ∈ traces(𝐺) is an
𝑚Init (𝐺)-to-𝑚(𝐺) 𝑀-observable-trace, then 𝐷 observationally refines𝑀 .

Proof. Suppose that 𝑞 ∈ Pr .Q is reachable under 𝐷 . Let 𝐺0, ... ,𝐺𝑛 be 𝐷-consistent execution

graphs that satisfy the conditions of Def. 5.13. Our assumption entails that there exist 𝑡0, ... ,𝑡𝑛 such

that for every 1 ≤ 𝑖 ≤ 𝑛, 𝑡𝑖 ∈ traces(𝐺𝑖) and 𝑡𝑖 is an𝑚Init (𝐺𝑖)-to-𝑚(𝐺𝑖) 𝑀-observable-trace. Let

𝑚̃0, ... ,𝑚̃𝑛 ∈ 𝑀.Q̃Init such that ⟨𝑚Init (𝐺𝑖), 𝑚̃𝑖⟩
𝑡𝑖
=⇒𝑀 ⟨𝑚(𝐺𝑖), _⟩ for every 1 ≤ 𝑖 ≤ 𝑛.

By Prop. 5.11, since 𝐺𝑖 is generated by Pr for every 0 ≤ 𝑖 ≤ 𝑛 − 1, there exist initial program

states 𝑞
0
, ... ,𝑞𝑛−1 ∈ Pr .QInit, such that 𝑞𝑖

𝑡𝑖
=⇒Pr _ for every 0 ≤ 𝑖 ≤ 𝑛 − 1. Using Prop. A.1, it follows

that ⟨𝑞𝑖 ,𝑚Init (𝐺𝑖), 𝑚̃𝑖⟩
𝑡𝑖
=⇒Prq𝑀 ⟨_,𝑚(𝐺𝑖), _⟩ for every 0 ≤ 𝑖 ≤ 𝑛 − 1.

In addition, since 𝐺𝑛 is generated by Pr with final state 𝑞, there exists initial program state

𝑞𝑛 ∈ Pr .QInit, such that 𝑞𝑛
𝑡𝑛
==⇒Pr 𝑞. Using Prop. A.1, it follows that ⟨𝑞𝑛,𝑚Init (𝐺𝑛), 𝑚̃𝑛⟩

𝑡𝑛
==⇒Prq𝑀

⟨𝑞,𝑚(𝐺𝑛), _⟩.
Now, since 𝑚Init (𝐺0) = 𝑚Init and 𝑚Init (𝐺𝑖) = 𝑚(𝐺𝑖−1) for every 1 ≤ 𝑖 ≤ 𝑛, it follows that

⟨𝑞,𝑚(𝐺𝑛), 𝑚̃⟩ is reachable in Pr q 𝑀 for some 𝑚̃ ∈ 𝑀.Q̃. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:45

The following property of ppo is useful below:

Lemma C.1. 𝐺.ppo ; [R] ;𝐺.po ⊆ 𝐺.ppo.

Lemma 5.24. Let tpo be a propagation order for an execution graph 𝐺 for which the conditions of
Def. 5.19 hold. Then, 𝐺.ppo ∪𝐺.rfe ∪ tpo ∪𝐺.fr(tpo) is acyclic.

Proof. In this proof we consider a single graph𝐺 , and thus omit the “𝐺.” prefix from all notations.

Consider a cycle in ppo ∪ rfe ∪ tpo ∪ fr(tpo) of minimal length. The fact that tpo is total on P
and the minimality of the cycle imply that this cycle may contain at most two events in P.
If the cycle contains no events in P, then it must consist solely of ppo-edges, which contradict

the fact that po is irreflexive.
If the cycle contains one event in P, then we must have ⟨𝑒, 𝑒⟩ ∈ (ppo∪rfe) ;ppo+ ; (ppo∪fr(tpo))

for some 𝑒 ∈ E, which implies that one of the following holds:

(𝑖) ⟨𝑒, 𝑒⟩ ∈ ppo+ ⊆ po,
(𝑖𝑖) ⟨𝑒, 𝑒⟩ ∈ ppo+ ; fr(tpo) ⊆ po ; fr(tpo),
(𝑖𝑖𝑖) ⟨𝑒, 𝑒⟩ ∈ rfe ; ppo+ ⊆ rfe ; po, or
(𝑖𝑣) ⟨𝑒, 𝑒⟩ ∈ rfe ; ppo+ ; fr(tpo) ⊆ rfe ; po ; fr(tpo).

Each of these options contradicts one of the conditions of Def. 5.19.

Finally, suppose that the cycle contains two events in P. Then, from the fact that tpo is total
on P, there must exist some ⟨𝑒1, 𝑒2⟩ ∈ tpo, such that ⟨𝑒2, 𝑒1⟩ ∈ ppo ∪ rfe ∪ fr(tpo) or ⟨𝑒2, 𝑒1⟩ ∈
(ppo∪ rfe) ; [R] ; ppo∗ ; (ppo∪ fr(tpo)). The first case leads to a contradiction since the conditions

of Def. 5.19 ensure that tpo ; ppo, tpo ; rfe, and tpo ; fr(tpo) are all irreflexive. It follows that one of
the following holds:

(𝑖) ⟨𝑒2, 𝑒2⟩ ∈ ppo ; [R] ; ppo+ ; tpo ⊆ ppo ; [R] ; po ; tpo ⊆ ppo ; tpo (by Lemma C.1),

(𝑖𝑖) ⟨𝑒2, 𝑒2⟩ ∈ ppo ; [R] ; ppo∗ ; fr(tpo) ; tpo,
(𝑖𝑖𝑖) ⟨𝑒2, 𝑒2⟩ ∈ rfe ; ppo+ ; tpo ⊆ rfe ; po ; tpo, or
(𝑖𝑣) ⟨𝑒2, 𝑒2⟩ ∈ rfe ; ppo∗ ; fr(tpo) ; tpo ⊆ tpo ∪ rfe ; po ; fr(tpo) ; tpo.

As before, each of these options contradicts one of the conditions of Def. 5.19. The least trivial

case is (𝑖𝑖): suppose that ⟨𝑒2, 𝑒2⟩ ∈ ppo ; [R] ; ppo∗ ; fr(tpo) ; tpo. Then, it must be the case that

𝑒2 ∈ RMW∪R-ex∪MF, and so ⟨𝑒2, 𝑒2⟩ ∈ po ; fr(tpo) ; tpo ; [RMW∪R-ex∪MF], which contradicts

Def. 5.19. □

Theorem 5.29 is obtained from the following two theorems (one for each direction):

Theorem C.2. PTSOsyn observationally refines DPTSOsyn.

Proof (outline). Using Lemma 5.14, it suffices to show that:

• For every 𝑚0-initialized PTSOsyn-observable-trace 𝑡 , there exists a DPTSOsyn-consistent

𝑚0-initialized execution graph 𝐺 such that 𝑡 ∈ traces(𝐺).
• For every𝑚0-to-𝑚 PTSOsyn-observable-trace 𝑡 , there exist 𝑡

′ ≲ 𝑡 and𝑚0-initializedDPTSOsyn-

consistent execution graph such that 𝑡 ′ ∈ traces(𝐺) and𝑚(𝐺) =𝑚.

Using Lemma 4.5, it suffices to prove that ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡
=⇒PTSOsyn ⟨𝑚, P, B𝜖⟩ implies that there exists

a DPTSOsyn-consistent𝑚0-initialized execution graph 𝐺 such that 𝑡 ∈ traces(𝐺) and𝑚(𝐺) = 𝑚.

Suppose that ⟨𝑚0, P𝜖 , B𝜖⟩
𝑡
=⇒PTSOsyn ⟨𝑚, P, B𝜖⟩. We construct a DPTSOsyn-consistent𝑚0-initialized

execution graph 𝐺 such that 𝑡 ∈ traces(𝐺) and𝑚(𝐺) =𝑚.

We use the instrumented semantics (iPTSOsyn). By Lemmas B.3 and B.9, we have ⟨𝑚0, P𝜖 , B𝜖 , ∅⟩
i𝑡
=⇒iPTSOsyn

⟨𝑚, iP, B𝜖 , 𝑆⟩ for some i𝑡 such that Λ(i𝑡) = 𝑡 , iP , and 𝑆 ⊆ N. We use the (instrumented) trace i𝑡 to
construct 𝐺 :

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:46 Artem Khyzha and Ori Lahav

• Events: For every 1 ≤ 𝑖 ≤ |i𝑡 | with i𝑡 (𝑖) = ⟨𝜏, 𝑙#_⟩ and typ(𝑙) ∈ {W, R, RMW, R-ex, MF, FL, FO, SF},
we include the event 𝑒𝑖 ≜ ⟨𝜏, 𝑖, 𝑙⟩ in 𝐺.E. In addition, we include the initialization events

𝑒𝑥 ≜ ⟨⊥, 0, W(𝑥,𝑚0 (𝑥))⟩ for every 𝑥 ∈ Loc. It is easy to see that we have 𝑡 ∈ traces(𝐺) and
that 𝐺 is𝑚0-initialized.

• Reads-from:𝐺.rf is constructed as follows: for every 1 ≤ 𝑖 ≤ |i𝑡 |with typ(𝑒𝑖) ∈ {R, RMW, R-ex}
and loc(𝑒𝑖) = 𝑥 , we locate the last index 1 ≤ 𝑗 < 𝑖 such that typ(𝑒 𝑗) = W, loc(𝑒 𝑗) = 𝑥 ,

tid(𝑒 𝑗) = tid(𝑒𝑖) and there does not exist an index 𝑗 < 𝑘 < 𝑖 such that #(i𝑡 (𝑘)) = #(i𝑡 (𝑗))
(namely, the write that corresponds to 𝑒 𝑗 was not propagated from the store buffer when

the read that corresponds to 𝑒𝑖 was executed), and include an edge ⟨𝑒 𝑗 , 𝑒𝑖⟩ in 𝐺.rf. If such
an index 𝑗 does not exist, we further locate the last index 1 ≤ 𝑘 < 𝑖 such that such that

typ(𝑒 𝑗) ∈ {RMW, PropW} and loc(𝑒 𝑗) = 𝑥 , and include an edge ⟨𝑒 𝑗 , 𝑒𝑖⟩ in 𝐺.rf, where 𝑗 is the

unique index satisfying 𝑗 < 𝑘 and #(i𝑡 (𝑗)) = #(i𝑡 (𝑘)), or 𝑗 = 𝑘 in case typ(𝑒 𝑗) = RMW. Finally,
if such index 𝑘 does not exist as well, we include the edge ⟨𝑒𝑥 , 𝑒𝑖⟩ in 𝐺.rf (reading from the

initialization event). Using iPTSOsyn’s operational semantics, it is easy to verify that 𝐺.rf is

indeed a reads-from relation for 𝐺.E.
• Memory assignment: To define𝐺.M, for every 𝑥 ∈ Loc, let 𝑖 (𝑥) be the maximal index such that

typ(i𝑡 (𝑖 (𝑥))) = PerW and loc(i𝑡 (𝑖 (𝑥))) = 𝑥 (that is, 𝑖 (𝑥) is the index of the last propagation
to the persistent memory of a write to 𝑥). In addition, let𝑤 (𝑖 (𝑥)) be the (unique) index 𝑘 such

that typ(i𝑡 (𝑘)) ∈ {W, RMW} and #(i𝑡 (𝑘)) = #(i𝑡 (𝑖 (𝑥))) (that is,𝑤 (𝑖 (𝑥)) is the index of the write
operation that persists in index 𝑖 (𝑥)). Now, we define𝐺.M(𝑥) ≜ 𝑒𝑤 (𝑖 (𝑥)) for every 𝑥 ∈ Loc for
which 𝑖 (𝑥) is defined. If 𝑖 (𝑥) is undefined (typ(i𝑡 (𝑖) = PerW and loc(i𝑡 (𝑖)) = 𝑥 never hold),

we set 𝐺.M(𝑥) ≜ 𝑒𝑥 (the initialization event of 𝑥). Then, we clearly have𝑚(𝐺) =𝑚.

To show that 𝐺 is DPTSOsyn-consistent, we construct a propagation order tpo for 𝐺 . First, for

every 1 ≤ 𝑖 ≤ |i𝑡 | with typ(𝑒𝑖) ∈ {W, FL, FO, SF}, let tp(𝑖) denote the (unique) index 𝑘 such that

typ(i𝑡 (𝑘)) ∈ {PropW/PropFL/PropFO/PropSF} and #(i𝑡 (𝑘)) = #(i𝑡 (𝑖)) (that is, tp(𝑖) is the index of
the propagation from the store buffer of the operation in index 𝑖). In addition, for every 1 ≤ 𝑖 ≤ |i𝑡 |
with typ(𝑒𝑖) ∈ {RMW, R-ex, MF}, we let tp(𝑖) ≜ 𝑖 . Now, tpo is constructed as follows: for every

𝑒𝑖 , 𝑒 𝑗 ∈ 𝐺.P, we include ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ tpo iff tp(𝑖) < tp(𝑗). In addition, we include in tpo some arbitrary

total order on𝐺.E∩ Init, as well as pairs ordering all initialization events before all non-initialization
events. It is straightforward to verify that this construction satisfies the (local) properties of Def. 5.19

yielding a DPTSOsyn-consistent graph:

(1) For every 𝑎, 𝑏 ∈ P, except for the case that 𝑎 ∈ W ∪ FL ∪ FO, 𝑏 ∈ FO, and loc(𝑎) ≠ loc(𝑏),
if ⟨𝑎, 𝑏⟩ ∈ 𝐺.po, then ⟨𝑎, 𝑏⟩ ∈ tpo: Let 𝑎, 𝑏 ∈ P such that ⟨𝑎, 𝑏⟩ ∈ 𝐺.po. Suppose that it is not
the case that 𝑎 ∈ W ∪ FL ∪ FO, 𝑏 ∈ FO, and loc(𝑎) ≠ loc(𝑏). First, if 𝑎 is an initialization

event, then by definition we have ⟨𝑎, 𝑏⟩ ∈ tpo (𝑏 cannot be an initialization event in this

case). Otherwise, we have that 𝑎 = 𝑒𝑖 and 𝑏 = 𝑒 𝑗 for some 1 ≤ 𝑖 < 𝑗 ≤ |i𝑡 | such that

tid(𝑒𝑖) = tid(𝑒 𝑗). Since iPTSOsyn propagates the entries from the persistent buffer in the

same order they were issued, except for the case of an FO-entry that may propagate before

previously-issued W/FL/FO-entries to a different location, it must be the case that tp(𝑖) < tp(𝑗),
and so we have ⟨𝑎, 𝑏⟩ = ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ tpo.

(2) tpo? ; 𝐺.rfe ; 𝐺.po? is irreflexive: First, we show that 𝐺.rfe ; 𝐺.po? is irreflexive. Suppose
that ⟨𝑎, 𝑏⟩ ∈ 𝐺.rfe and ⟨𝑏, 𝑎⟩ ∈ 𝐺.po?. Then, we have that 𝑎 = 𝑒 𝑗 and 𝑏 = 𝑒𝑖 for some

1 ≤ 𝑖 ≤ 𝑗 ≤ |i𝑡 | such that tid(𝑒𝑖) = tid(𝑒 𝑗) (note that initialization events do not have

incoming po or rf-edges). However, ⟨𝑒 𝑗 , 𝑒𝑖⟩ ∈ 𝐺.rf implies that 𝑗 < 𝑖 . Now, suppose that

⟨𝑎, 𝑏⟩ ∈ tpo, ⟨𝑏, 𝑐⟩ ∈ 𝐺.rfe, and ⟨𝑐, 𝑎⟩ ∈ 𝐺.po?. Then, it follows that 𝑎 = 𝑒𝑖 , 𝑏 = 𝑒 𝑗 , and

𝑐 = 𝑒𝑘 for some 1 ≤ 𝑖, 𝑗, 𝑘 ≤ |i𝑡 | such that tid(𝑒𝑘) = tid(𝑒𝑖), 𝑘 ≤ 𝑖 , and tp(𝑖) < tp(𝑗). Then,
since we do not have ⟨𝑒 𝑗 , 𝑒𝑘⟩ ∈ 𝐺.po ∪ 𝐺.po−1, we cannot have 𝜏 (𝑒 𝑗) = 𝜏 (𝑒𝑘). Then, the

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:47

construction of 𝐺.rf ensures that tp(𝑗) < 𝑘 . It follows that tp(𝑖) < 𝑘 . Since 𝑖 ≤ tp(𝑖), this
contradicts the fact that 𝑘 ≤ 𝑖 .

(3) 𝐺.fr(tpo) ; 𝐺.rfe? ; 𝐺.po is irreflexive: From the construction of 𝐺.rf, it is easy to verify

that ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ 𝐺.fr(tpo) implies that 𝑖 < tp(𝑗). Now, suppose that ⟨𝑎, 𝑏⟩ ∈ 𝐺.fr(tpo) and
⟨𝑏, 𝑎⟩ ∈ 𝐺.po. Then, 𝑎 = 𝑒 𝑗 and 𝑏 = 𝑒𝑖 for some 1 ≤ 𝑖 ≤ 𝑗 ≤ |i𝑡 | such that tid(𝑒𝑖) = tid(𝑒 𝑗)
and 𝑗 < tp(𝑖). It follows that 𝑖 < tp(𝑖) which contradicts our construction. Finally, suppose

that ⟨𝑎, 𝑏⟩ ∈ 𝐺.fr(tpo), ⟨𝑏, 𝑐⟩ ∈ 𝐺.rfe, and ⟨𝑐, 𝑎⟩ ∈ 𝐺.po. Then, it follows that 𝑎 = 𝑒𝑖 , 𝑏 = 𝑒 𝑗 ,

and 𝑐 = 𝑒𝑘 for some 1 ≤ 𝑖, 𝑗, 𝑘 ≤ |i𝑡 | such that tid(𝑒𝑘) = tid(𝑒𝑖), 𝑘 ≤ 𝑖 , and 𝑖 < tp(𝑗). As in
the previous item, we have that tp(𝑗) < 𝑘 , which leads to a contradiction.

(4) 𝐺.fr(tpo) ; tpo is irreflexive: Suppose that ⟨𝑎, 𝑏⟩ ∈ 𝐺.fr(tpo) and ⟨𝑏, 𝑎⟩ ∈ tpo. Then, 𝑎 = 𝑒 𝑗
and 𝑏 = 𝑒𝑖 for some 1 ≤ 𝑖, 𝑗 ≤ |i𝑡 | such that 𝑖 < tp(𝑗) and tp(𝑗) ≤ tp(𝑖). It follows that
𝑖 < tp(𝑖), which contradicts our construction.

(5) 𝐺.fr(tpo) ; tpo ; 𝐺.rfe ; 𝐺.po is irreflexive: Suppose that ⟨𝑎, 𝑏⟩ ∈ 𝐺.fr(tpo), ⟨𝑏, 𝑐⟩ ∈ tpo,
⟨𝑐, 𝑑⟩ ∈ 𝐺.rfe, and ⟨𝑑, 𝑎⟩ ∈ 𝐺.po. Then, it follows that 𝑎 = 𝑒𝑖 , 𝑏 = 𝑒 𝑗 , 𝑐 = 𝑒𝑘 , and 𝑑 = 𝑒𝑚 for

some 1 ≤ 𝑖, 𝑗, 𝑘,𝑚 ≤ |i𝑡 | such that tid(𝑒𝑚) = tid(𝑒𝑖),𝑚 < 𝑖 , 𝑖 < tp(𝑗), tp(𝑗) < tp(𝑘), and
tp(𝑘) < 𝑚. Clearly, these inequalities lead to a contradiction.

(6) 𝐺.fr(tpo) ; tpo ; [RMW ∪ R-ex ∪MF] ;𝐺.po is irreflexive: Suppose that ⟨𝑎, 𝑏⟩ ∈ 𝐺.fr(tpo),
⟨𝑏, 𝑐⟩ ∈ tpo, 𝑐 ∈ RMW ∪ R-ex ∪MF, and ⟨𝑐, 𝑎⟩ ∈ 𝐺.po. Then, it follows that 𝑎 = 𝑒𝑖 , 𝑏 = 𝑒 𝑗 ,

𝑐 = 𝑒𝑘 for some 1 ≤ 𝑖, 𝑗, 𝑘 ≤ |i𝑡 | such that tid(𝑒𝑘) = tid(𝑒𝑖), 𝑘 < 𝑖 , 𝑖 < tp(𝑗), tp(𝑗) < tp(𝑘).
However, since 𝑐 ∈ RMW ∪ R-ex ∪MF, we have tp(𝑘) = 𝑘 , and, as before, these inequalities

lead to a contradiction.

(7) 𝐺.dtpo(tpo) ; tpo is irreflexive: Suppose that ⟨𝑎, 𝑏⟩ ∈ 𝐺.dtpo(tpo) and ⟨𝑏, 𝑎⟩ ∈ tpo. By
definition, there is a location 𝑥 ∈ Loc such that

𝑎 ∈ 𝐺.FLO𝑥 = 𝐺.FL𝑥 ∪ (FO𝑥 ∩ dom(𝐺.po ; [RMW ∪ R-ex ∪MF ∪ SF])),

𝑏 ∈ W𝑥 ∪ RMW𝑥 , and ⟨𝐺.M(𝑥), 𝑏⟩ ∈ tpo. Then, 𝑎 = 𝑒 𝑗 and 𝑏 = 𝑒𝑖 for some 1 ≤ 𝑖, 𝑗 ≤ |i𝑡 |
such that tp(𝑖) < tp(𝑗). Now, if 𝑎 is a flush event, the flush step in index 𝑗 can only exist

if the write entry that corresponds to 𝑏 has persisted. Hence, 𝑖 (𝑥) is defined, and we have

𝐺.M(𝑥) = 𝑒𝑤 (𝑖 (𝑥)) . In addition, ⟨𝐺.M(𝑥), 𝑏⟩ ∈ tpo implies that tp(𝑤 (𝑖 (𝑥))) ≤ tp(𝑖). However,
since the persistence order (on each location) must follow the order in which the write

propagated from the store buffer, the write entry that corresponds to 𝑏 must persist after the

write entry that corresponds to 𝐺.M(𝑥), which contradicts the construction of𝐺.M. The case
that 𝑎 is a flush-optimal event followed by an RMW ∪ R-ex ∪MF ∪ SF-event of the same

thread is handled similarly. □

Theorem C.3. DPTSOsyn observationally refines PTSOsyn.

Proof (outline). By Lemma 5.15, is suffices to show that for every DPTSOsyn-consistent ini-

tialized execution graph 𝐺 , some 𝑡 ∈ traces(𝐺) is an𝑚Init (𝐺)-to-𝑚(𝐺) PTSOsyn-observable-trace.

By Lemmas B.3 and B.9, we may use the instrumented system iPTSOsyn and show that there exists

an𝑚Init (𝐺)-to-𝑚(𝐺) iPTSOsyn-trace i𝑡 such that Λ(i𝑡) ∈ traces(𝐺).
Let 𝐺 be a DPTSOsyn-consistent execution graph, and let tpo be a propagation order for 𝐺 that

satisfies the conditions of Def. 5.19. Let 𝐹 be some injective function from events to N (we will

use it to assign identifiers to the different operations). For every event 𝑒 ∈ E, we associate three
transition labels 𝛼 (𝑒), 𝛽 (𝑒), 𝛾 (𝑒):

• Issue of 𝑒: 𝛼 (𝑒) = ⟨tid(𝑒), lab(𝑒)#𝐹 (𝑒)⟩.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:48 Artem Khyzha and Ori Lahav

• Propagation of 𝑒 from store buffer to persistence buffer (only defined for 𝑒 ∈ W∪FL∪FO∪SF):

𝛽 (𝑒) =


⟨tid(𝑒), PropW(loc(𝑒))#𝐹 (𝑒)⟩ 𝑒 ∈ W
⟨tid(𝑒), PropFL(loc(𝑒))#𝐹 (𝑒)⟩ 𝑒 ∈ FL
⟨tid(𝑒), PropFO(loc(𝑒))#𝐹 (𝑒)⟩ 𝑒 ∈ FO
⟨tid(𝑒), PropSF#𝐹 (𝑒)⟩ 𝑒 ∈ SF

• Propagation of 𝑒 from persistence buffer to persistent memory (only defined for 𝑒 ∈ W ∪

RMW ∪ FO): 𝛾 (𝑒) =
{
PerW(loc(𝑒))#𝐹 (𝑒) 𝑒 ∈ W ∪ RMW
PerFO(loc(𝑒))#𝐹 (𝑒) 𝑒 ∈ FO

Using these definition, we construct a set 𝐴 of transition labels of iPTSOsyn. Let:

• 𝐸𝛼 = 𝐺.E \ Init.
• 𝐸𝛽 = (𝐺.W \ Init) ∪𝐺.FL ∪𝐺.FO ∪𝐺.SF.
• 𝐸

W𝑥
𝛾 = {𝑤 ∈ (W𝑥 \ Init) ∪ RMW𝑥 | ⟨𝑤,𝐺.M(𝑥)⟩ ∈ tpo?}.

• 𝐸W𝛾 =
⋃

𝑥 ∈Loc 𝐸
W𝑥
𝛾 .

• 𝐸
FO𝑥
𝛾 = FO𝑥 ∩ (dom(tpo? ;𝐺.po ; [RMW ∪ R-ex ∪MF ∪ SF]) ∪ dom(tpo ; [FL𝑥 ∪ {𝐺.M(𝑥)}]).

• 𝐸FO𝛾 =
⋃

𝑥 ∈Loc 𝐸
FO𝑥
𝛾 .

• 𝐸𝛾 = 𝐸W𝛾 ∪ 𝐸FO𝛾 .

We define

𝐴 = {𝛼 (𝑒) | 𝑒 ∈ 𝐸𝛼 } ∪ {𝛽 (𝑒) | 𝑒 ∈ 𝐸𝛽 } ∪ {𝛾 (𝑒) | 𝑒 ∈ 𝐸𝛾 }.

Next, we construct an enumeration of𝐴 which will serve as i𝑡 . Let 𝑅 be the union of the following

relations on 𝐴:

• 𝑅1 = {⟨𝛼 (𝑒), 𝛽 (𝑒)⟩ | 𝑒 ∈ 𝐸𝛽 }
• 𝑅2 = {⟨𝛽 (𝑒), 𝛾 (𝑒)⟩ | 𝑒 ∈ 𝐸𝛾 }
• 𝑅3 = {⟨𝛼 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛼] ;𝐺.po}
• 𝑅4 = {⟨𝛽 (𝑒1), 𝛽 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛽] ; tpo ; [𝐸𝛽]}
• 𝑅5 = {⟨𝛼 (𝑒1), 𝛽 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [RMW ∪ R-ex ∪MF] ; tpo ; [𝐸𝛽]}
• 𝑅6 = {⟨𝛽 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛽] ; tpo ; [RMW ∪ R-ex ∪MF]}
• 𝑅7 = {⟨𝛽 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛽] ;𝐺.rfe}
• 𝑅8 = {⟨𝛼 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [RMW] ;𝐺.rfe}
• 𝑅9 = {⟨𝛼 (𝑒1), 𝛽 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ 𝐺.fr(tpo) ; [𝐸𝛽]}
• 𝑅10 = {⟨𝛼 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ 𝐺.fr(tpo) ; [RMW]}
• 𝑅11 = {⟨𝛾 (𝑒1), 𝛽 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛾] ; tpo ; [FL]}
• 𝑅12 = {⟨𝛾 (𝑒1), 𝛽 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸FO𝛾] ;𝐺.po ; [SF]}
• 𝑅13 = {⟨𝛾 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸FO𝛾] ;𝐺.po ; [RMW ∪ R-ex ∪MF]}
• 𝑅14 = {⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛾] ; tpo ; [𝐸𝛾]}

It is standard to verify that for any enumeration i𝑡 of 𝑅, we have Λ(i𝑡) ∈ traces(𝐺) and that i𝑡 is an
𝑚Init (𝐺)-to-𝑚(𝐺) iPTSOsyn-trace. In particular, let 𝑥 ∈ Loc and suppose that for the last transition

label of the form PerW(𝑥)#_ in i𝑡 is not PerW(𝑥)#𝐹 (𝐺.M(𝑥)), but rather PerW(𝑥)#𝐹 (𝑤) for some

𝑤 ∈ 𝐸W𝛾 \ {𝐺.M(𝑥)}. Then, since 𝑤 ∈ 𝐸W𝛾 we have ⟨𝑤,𝐺.M(𝑥)⟩ ∈ tpo?, which contradicts the fact

that 𝑅14 ⊆ 𝑅. The proof that i𝑡 is indeed an iPTSOsyn-trace is performed by induction: assume that

a prefix i𝑡 ′ of i𝑡 is an iPTSOsyn-trace, show that it can be extended with one more label from i𝑡 . For
that matter, the claim has to be strengthened to relate the prefix i𝑡 ′ with the state that iPTSOsyn

reaches. This state, denoted by ⟨𝑚i𝑡 ′, iPi𝑡 ′, iBi𝑡 ′, 𝑆 i𝑡 ′⟩, is constructed as follows:

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:49

• Persistent memory: For every 𝑥 ∈ Loc, let 𝑒𝑥 ∈ 𝐸W𝛾 ∩ E𝑥 such that 𝛾 (𝑒𝑥) is the last occurrence
in i𝑡 ′ of a transition label of the form PerW(𝑥)#_. If no transition of the form PerW(𝑥)#_ occurs
in i𝑡 ′, let 𝑒𝑥 be the initialization write to 𝑥 in 𝐺 (i.e.,𝑚Init (𝐺) (𝑥)). Then,𝑚i𝑡 ′ = 𝜆𝑥. valW (𝑒𝑥).

• Instrumented persistent buffers: For every location 𝑥 , we include in iPi𝑡 ′ (𝑥) all entries of the
following forms:

– W(loc(𝑒), valW (𝑒))##(𝑒) for some 𝑒 ∈ 𝐺.W𝑥 such that 𝛽 (𝑒) ∈ i𝑡 ′ and 𝛾 (𝑒) ∉ i𝑡 ′.
– W(loc(𝑒), valW (𝑒))##(𝑒) for some 𝑒 ∈ 𝐺.RMW𝑥 such that 𝛼 (𝑒) ∈ i𝑡 ′ and 𝛾 (𝑒) ∉ i𝑡 ′.
– FO(tid(𝑒))##(𝑒) for some 𝑒 ∈ 𝐺.FO𝑥 such that 𝛽 (𝑒) ∈ i𝑡 ′ and 𝛾 (𝑒) ∉ i𝑡 ′.
Denote the instrumented entry related to event 𝑒 by entry(𝑒). Then, entry(𝑒1) appears before
entry(𝑒2) in iPi𝑡 ′ (𝑥) iff one of the following hold:

– If 𝑒1, 𝑒2 ∉ 𝐺.RMW𝑥 and 𝛽 (𝑒1) appears before 𝛽 (𝑒2) in i𝑡 ′.
– If 𝑒1 ∉ 𝐺.RMW𝑥 , 𝑒2 ∈ 𝐺.RMW𝑥 , and 𝛽 (𝑒1) appears before 𝛼 (𝑒2) in i𝑡 ′.
– If 𝑒1 ∈ 𝐺.RMW𝑥 , 𝑒2 ∉ 𝐺.RMW𝑥 , and 𝛼 (𝑒1) appears before 𝛽 (𝑒2) in i𝑡 ′.
– If 𝑒1, 𝑒2 ∈ 𝐺.RMW𝑥 and 𝛼 (𝑒1) appears before 𝛼 (𝑒2) in i𝑡 ′.

• Instrumented store buffers: For every thread identifier 𝜏 , we include in iBi𝑡 ′ (𝜏) all entries of
the following forms:

– W(loc(𝑒), valW (𝑒))##(𝑒) for some 𝑒 ∈ 𝐺.W𝜏
such that 𝛼 (𝑒) ∈ i𝑡 ′ and 𝛽 (𝑒) ∉ i𝑡 ′.

– FL(loc(𝑒))##(𝑒) for some 𝑒 ∈ 𝐺.FL𝜏 such that 𝛼 (𝑒) ∈ i𝑡 ′ and 𝛽 (𝑒) ∉ i𝑡 ′.
– FO(loc(𝑒))##(𝑒) for some 𝑒 ∈ 𝐺.FO𝜏

such that 𝛼 (𝑒) ∈ i𝑡 ′ and 𝛽 (𝑒) ∉ i𝑡 ′.
– SF##(𝑒) for some 𝑒 ∈ 𝐺.SF𝜏 such that 𝛼 (𝑒) ∈ i𝑡 ′ and 𝛽 (𝑒) ∉ i𝑡 ′.
Denote the instrumented entry related to event 𝑒 by entry(𝑒). Then, entry(𝑒1) appears before
entry(𝑒2) in iBi𝑡 ′ (𝜏) iff 𝛼 (𝑒1) appears before 𝛼 (𝑒2) in i𝑡 ′.

• 𝑆 i𝑡 ′ is the set of all identifiers used in i𝑡 ′.
It remains to show that 𝑅 is acyclic. Clearly, a cycle in 𝑅3 induces a𝐺.po-cycle, and so 𝑅3 is acyclic.

Now, since 𝑅3 is transitive, we can assume that any use of 𝑅3 in an 𝑅-cycle follows an 𝑅𝑖 -step with

𝑖 ≠ 3. It follows that any use of 𝑅3 in an 𝑅-cycle must start in a transition label 𝛼 (𝑒) for some 𝑒 ∈
𝐺.R∪𝐺.RMW∪𝐺.R-ex∪𝐺.MF. Hence, any 𝑅-cycle induces cycle in𝐺.ppo∪𝐺.rfe∪tpo∪𝐺.fr(tpo),
which is acyclic by Lemma 5.24. □

D PROOFS FOR SECTION 6
For the proofs in this section, we use the instrumented persistent memory subsystem (see Ap-

pendix B.1) iPSC, presented in Fig. 9. The functions tid, typ, loc are extended to iPSC.iΣ in the

obvious way (in particular, for 𝛼 ∈ iPSC.iΣ, we have typ(𝛼) ∈ {PerW/PerFO}).
It is easy to see that iPSC is an instrumentation of PSC (see Def. B.8 for the definition of an

erasure of an instrumented per-location persistence buffer).

Lemma D.1. iPSC is a Λ-instrumentation of PSC for Λ ≜ 𝜆⟨iP, 𝑆⟩. Λ(iP).

E PROOFS FOR SECTION 6.1
The next lemmas are used to prove Thm. 6.2.

Lemma E.1. Every𝑚0-to-𝑚 PSCfin-observable-trace 𝑡 is also an𝑚0-to-𝑚 PSC-observable-trace.

Proof (outline). We use a standard forward simulation argument. A simulation relation 𝑅 ⊆
PSCfin .Q × PSC.Q is defined as follows: ⟨⟨𝑚𝑓 , 𝑚̃, 𝐿,𝑇 ⟩, ⟨𝑚, P⟩⟩ ∈ 𝑅 if the following hold:

• 𝑚𝑓 =𝑚.

• For every 𝑥 ∈ Loc, 𝑚̃(𝑥) = get(𝑚, P (𝑥)) (𝑥).
• 𝑥 ∈ 𝐿 iff P (𝑥) = 𝜖 .

• 𝜏 ∈ 𝑇 iff ∀𝑦. FO(𝜏) ∉ P (𝑦).

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:50 Artem Khyzha and Ori Lahav

iPSC.iΣ ≜{PerW(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}∪{PerFO(𝑥)#𝑠 | 𝑥 ∈ Loc, 𝑠 ∈ N}

𝑚 ∈ Loc → Val iP ∈ Loc → ({W(𝑥, 𝑣)#𝑠 | 𝑥 ∈ Loc, 𝑣 ∈ Val, 𝑠 ∈ N}∪{FO(𝜏)#𝑠 | 𝜏 ∈ Tid, 𝑠 ∈ N})∗

iPInit ≜ 𝜆𝑥 . 𝜖 𝑆 Init = ∅

write

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 = W(𝑥, 𝑣)

iP ′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣)#𝑠]

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP ′, 𝑆 ′⟩

read

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 = R(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥))) (𝑥) = 𝑣

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP, 𝑆 ′⟩

rmw

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 = RMW(𝑥, 𝑣R, 𝑣W)

get(𝑚,Λ(iP (𝑥))) (𝑥) = 𝑣R
∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

iP ′ = iP [𝑥 ↦→ iP (𝑥) · W(𝑣W)#𝑠]

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP ′, 𝑆 ′⟩

rmw-fail

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 = R-ex(𝑥, 𝑣)

get(𝑚,Λ(iP (𝑥))) (𝑥) = 𝑣

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP, 𝑆 ′⟩

mfence/sfence

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 ∈ {MF, SF}

∀𝑦. FO(𝜏)#_ ∉ iP (𝑦)

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP, 𝑆 ′⟩

flush

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 = FL(𝑥)
iP (𝑥) = ∅

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP, 𝑆 ′⟩

flush-opt

𝑆 ′ = 𝑆 ⊎ {𝑠}
𝑙 = FO(𝑥)

iP ′ = iP [𝑥 ↦→ iP (𝑥) · FO(𝜏)#𝑠]

⟨𝑚, iP, 𝑆⟩ 𝜏,𝑙#𝑠−−−−→iPSC ⟨𝑚, iP ′, 𝑆 ′⟩

persist-w

𝐿 = PerW(𝑥)#𝑠
iP (𝑥) = W(𝑣)#𝑠 · ip

iP ′ = iP [𝑥 ↦→ ip] 𝑚′ =𝑚[𝑥 ↦→ 𝑣]

⟨𝑚, iP, 𝑆⟩ 𝐿−→iPSC ⟨𝑚′, iP ′, 𝑆⟩

persist-fo

𝐿 = PerFO(𝑥)#𝑠
iP (𝑥) = FO(_)#𝑠 · ip
iP ′ = iP [𝑥 ↦→ ip]

⟨𝑚, iP, 𝑆⟩ 𝐿−→iPSC ⟨𝑚, iP ′, 𝑆⟩

Fig. 9. The iPSC Instrumented Persistent Memory Subsystem (the instrumentation is colored).

Initially, we clearly have ⟨⟨𝑚0, 𝑚̃Init, 𝐿Init,𝑇Init⟩, ⟨𝑚0, P𝜖⟩⟩ ∈ 𝑅. Now, suppose that ⟨𝑚𝑓 , 𝑚̃, 𝐿,𝑇 ⟩ 𝜏,𝑙−−→PSCfin

⟨𝑚′
𝑓
, 𝑚̃′, 𝐿′,𝑇 ′⟩, and let ⟨𝑚, P⟩ ∈ PSC.Q such that ⟨⟨𝑚𝑓 , 𝑚̃, 𝐿,𝑇 ⟩, ⟨𝑚, P⟩⟩ ∈ 𝑅. Then, we have𝑚𝑓 =𝑚.

We show that ⟨𝑚, P⟩ 𝜏,𝑙
==⇒𝑙 ⟨𝑚′

𝑓
, P ′⟩ for some P ′

such that ⟨⟨𝑚′
𝑓
, 𝑚̃′, 𝐿′,𝑇 ′⟩, ⟨𝑚′

𝑓
, P ′⟩⟩ ∈ 𝑅. The rest

of the proof continues by separately considering each possible step of PSCfin, and establishing the

simulation invariants at each step. Below, we present the mapping of PSCfin-steps to PSC-steps:

• write-persist-step is mapped to a write-step immediately followed by a persist-w-step.

• write-no-persist is mapped to a write-step.

• rmw-persist is mapped to an rmw-step immediately followed by a persist-w-step.

• rmw-no-persist is mapped to an rmw-step.

• flush-opt-persist is mapped to an flush-opt-step immediately followed by a persist-fo-

step.

• flush-opt-no-persist is mapped to an flush-opt-step.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:51

• All other steps (read, rmw-fail, mfence ,sfence, and flush) are mapped to the PSC-step of

the same name.

It is straightforward to verify that this mapping induces possible sequences of steps, and preserves

the simulation invariants. □

For the converse, we use the following additional proposition (see Def. B.10 for the definition of

“commutes”).

Proposition E.2. ⟨𝛼, 𝛽⟩ iPSC-commutes if typ(𝛽) ∈ {PerW, PerFO} and one of the following
conditions holds:

• typ(𝛼) ∉ {PerW, PerFO} and #(𝛼) ≠ #(𝛽).
• typ(𝛼) ∈ {PerW, PerFO} and loc(𝛼) ≠ loc(𝛽).

Lemma E.3. Every𝑚0-to-𝑚 PSC-observable-trace 𝑡 is also an𝑚0-to-𝑚 PSCfin-observable-trace.

Proof (outline). Let 𝑡 be an 𝑚0-to-𝑚 PSC-observable-trace. By Lemmas D.1 and B.3, there

exists an 𝑚0-to-𝑚 iPSC-trace i𝑡 such that Λ(i𝑡) = 𝑡 . Using Prop. E.2, we can move all PerW-
steps and PerFO-steps to immediately follow their corresponding W/RMW-step and FO-step, thus
obtaining a “synchronized” instrumented trace in which every write/rmw/flush-optimal either

persists immediately after it is issued or never persists. This instrumented trace easily induces

an 𝑚0-to-𝑚 PSCfin-observable-trace: we take a *-persist-step for steps that are followed by a

PerW-steps or PerFO-steps, and otherwise we take the *-no-persist or other steps of PSCfin. □

Theorem 6.2. PSC and PSCfin are observationally equivalent.

Proof. Follows from Lemmas 2.10, E.1 and E.3. □

F PROOFS FOR SECTION 6.2
The following lemma is used to show that DPSC observationally refines PSC.

Lemma F.1. Let 𝐺 be a DPSC-consistent initialized execution graph. Then, some 𝑡 ∈ traces(𝐺) is
an𝑚Init (𝐺)-to-𝑚(𝐺) PSC-observable-trace.

Proof (outline). By Lemmas D.1 and B.3, we may use the instrumented system iPSC and show

that some i𝑡 with Λ(i𝑡) ∈ traces(𝐺) is an𝑚Init (𝐺)-to-𝑚(𝐺) iPSC-trace.
Letmo be a modification order for𝐺 that satisfies the condition of Def. 6.4. Let 𝐹 be some injective

function from events to N (we will use it to assign identifiers to the different operations). For every

event 𝑒 ∈ E, we associate two transition labels 𝛼 (𝑒), 𝛾 (𝑒):
• Issue of 𝑒: 𝛼 (𝑒) = ⟨tid(𝑒), lab(𝑒)#𝐹 (𝑒)⟩.
• Propagation of 𝑒 from persistence buffer to persistent memory (only defined for 𝑒 ∈ W ∪

RMW ∪ FO): 𝛾 (𝑒) =
{
PerW(loc(𝑒))#𝐹 (𝑒) 𝑒 ∈ W ∪ RMW
PerFO(loc(𝑒))#𝐹 (𝑒) 𝑒 ∈ FO

Let𝑇 be any total order on𝐺.E extending𝐺.hbPSC (mo). We construct a set 𝐴 of transition labels

of iPSC and an enumeration of 𝐴 which will serve as i𝑡 .
Let:

• 𝐸𝛼 = 𝐺.E \ Init.
• 𝐸

W𝑥
𝛾 = {𝑤 ∈ (W𝑥 \ Init) ∪ RMW𝑥 | ⟨𝑤,𝐺.M(𝑥)⟩ ∈ mo?}.

• 𝐸W𝛾 =
⋃

𝑥 ∈Loc 𝐸
W𝑥
𝛾 .

• 𝐸
FO𝑥
𝛾 = FO𝑥 ∩ (dom(𝑇 ?

; [FO𝑥] ;𝐺.po ; [RMW ∪ R-ex ∪MF ∪ SF]) ∪ dom(𝑇 ; [FL𝑥 ∪ 𝐸
W𝑥
𝛾]).

• 𝐸FO𝛾 =
⋃

𝑥 ∈Loc 𝐸
FO𝑥
𝛾 .

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:52 Artem Khyzha and Ori Lahav

• 𝐸𝛾 = 𝐸W𝛾 ∪ 𝐸FO𝛾 .

We define

𝐴 = {𝛼 (𝑒) | 𝑒 ∈ 𝐸𝛼 } ∪ {𝛾 (𝑒) | 𝑒 ∈ 𝐸W𝛾 ∪ 𝐸FO𝛾 }.

Let 𝑅 be the union of the following relations on 𝐴:

• 𝑅1 = {⟨𝛼 (𝑒), 𝛾 (𝑒)⟩ | 𝑒 ∈ 𝐸𝛾 }
• 𝑅2 = {⟨𝛼 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛼] ;𝑇 }
• 𝑅3 = {⟨𝛾 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛾] ;𝑇 ; [FL]}
• 𝑅4 = {⟨𝛾 (𝑒1), 𝛼 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸FO𝛾] ;𝐺.po ; [RMW ∪ R-ex ∪MF ∪ SF]}
• 𝑅5 = {⟨𝛾 (𝑒1), 𝛾 (𝑒2)⟩ | ⟨𝑒1, 𝑒2⟩ ∈ [𝐸𝛾] ;𝑇 ; [𝐸𝛾]}

It is easy to see that 𝑅 is acyclic (an 𝑅-cycle would entail a 𝑇 -cycle). It is standard to verify that for

any enumeration i𝑡 of 𝑅, we have Λ(i𝑡) ∈ traces(𝐺) and that i𝑡 is an𝑚Init (𝐺)-to-𝑚(𝐺) iPSC-trace.
In particular, let 𝑥 ∈ Loc and suppose that for the last transition label of the form PerW(𝑥)#_ in
i𝑡 is not PerW(𝑥)#𝐹 (𝐺.M(𝑥)), but rather PerW(𝑥)#𝐹 (𝑤) for some𝑤 ∈ 𝐸W𝛾 \ {𝐺.M(𝑥)}. Then, since
𝑤 ∈ 𝐸W𝛾 we have ⟨𝑤,𝐺.M(𝑥)⟩ ∈ mo? ⊆ 𝑇 ?

, which contradicts the fact that 𝑅5 ⊆ 𝑅. □

Theorem 6.5. PSC and DPSC are observationally equivalent.

Proof (outline). The fact that DPSC observationally refines PSC immediately follows from

Lemmas 5.15 and F.1. Next, we first show that PSC observationally refines DPSC. Let 𝑡 be an

𝑚0-to-𝑚 PSC-observable-trace. We construct a DPSC-consistent𝑚0-initialized execution graph 𝐺

such that 𝑡 ∈ traces(𝐺) and𝑚(𝐺) =𝑚. Then, the claim follows using Lemma 5.14.

We use the instrumented semantics (iPSC). By Lemmas D.1 and B.3, there exists a 𝑚0-to-𝑚

iPSC-trace i𝑡 such that Λ(i𝑡) = 𝑡 . We use i𝑡 to construct 𝐺 :

• Events: For every 1 ≤ 𝑖 ≤ |i𝑡 | with i𝑡 (𝑖) of the form ⟨𝜏, 𝑙#𝑠⟩, we include the event 𝑒𝑖 ≜ ⟨𝜏, 𝑖, 𝑙⟩
in 𝐺.E. In addition, we include the initialization events 𝑒𝑥 ≜ ⟨⊥, 0, W(𝑥,𝑚0 (𝑥))⟩ for every
𝑥 ∈ Loc. It is easy to see that we have 𝑡 ∈ traces(𝐺) and that 𝐺 is𝑚0-initialized.

• Reads-from:𝐺.rf is constructed as follows: for every 1 ≤ 𝑖 ≤ |i𝑡 |with typ(𝑒𝑖) ∈ {R, RMW, R-ex}
and loc(𝑒𝑖) = 𝑥 , we locate the maximal index 1 ≤ 𝑗 < 𝑖 such that typ(𝑒 𝑗) ∈ {W, RMW} and
loc(𝑒 𝑗) = 𝑥 (namely, the write that corresponds to 𝑒 𝑗 was the last write executed before the

read that corresponds to 𝑒𝑖 was executed), and include an edge ⟨𝑒 𝑗 , 𝑒𝑖⟩ in 𝐺.rf. If such index

𝑗 does not exist, we include the edge ⟨𝑒𝑥 , 𝑒𝑖⟩ in 𝐺.rf (reading from the initialization event).

Using iPSC’s operational semantics, it is easy to verify that 𝐺.rf is indeed a reads-from

relation for 𝐺.E.
• Memory assignment: To define𝐺.M, for every 𝑥 ∈ Loc, let 𝑖 (𝑥) be the maximal index such that

typ(i𝑡 (𝑖 (𝑥))) = PerW and loc(i𝑡 (𝑖 (𝑥))) = 𝑥 (that is, 𝑖 (𝑥) is the index of the last propagation
to the persistent memory of a write to 𝑥). In addition, let𝑤 (𝑖 (𝑥)) be the (unique) index 𝑘 such

that typ(i𝑡 (𝑘)) ∈ {W, RMW} and #(i𝑡 (𝑘)) = #(i𝑡 (𝑖 (𝑥))) (that is,𝑤 (𝑖 (𝑥)) is the index of the write
operation that persists in index 𝑖 (𝑥)). Now, we define𝐺.M(𝑥) ≜ 𝑒𝑤 (𝑖 (𝑥)) for every 𝑥 ∈ Loc for
which 𝑖 (𝑥) is defined. If 𝑖 (𝑥) is undefined (typ(i𝑡 (𝑖) = PerW and loc(i𝑡 (𝑖)) = 𝑥 never hold),

we set 𝐺.M(𝑥) ≜ 𝑒𝑥 (the initialization event of 𝑥). Then, we clearly have𝑚(𝐺) =𝑚.

To show that𝐺 is DPSC-consistent, we construct a modification mo for𝐺 . For every two events

𝑒𝑖 , 𝑒 𝑗 ∈ 𝐺.E ∩ (W ∪ RMW) with loc(𝑒𝑖) = loc(𝑒 𝑗), we include ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ in mo if either 𝑒𝑖 ∈ Init or
𝑖 < 𝑗 (that is, the write the corresponds to 𝑒𝑖 was executed before the write that corresponds to 𝑒 𝑗).

It is to verify that ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ 𝐺.po ∪𝐺.rf ∪mo ∪𝐺.fr(mo) ∪𝐺.dtpo(mo) implies that 𝑒𝑖 ∈ Init or
𝑖 < 𝑗 . It follows that 𝐺.hbPSC (mo) is acyclic and so 𝐺 is DPSC-consistent. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:53

G PROOFS FOR SECTION 7
Lemma 7.11. Let 𝐺 be a DPTSOsyn-consistent execution graph. Suppose that for every𝑤 ∈ 𝐺.W ∪

𝐺.RMW and𝐺-unprotected event 𝑒 ∈ Rloc(𝑤) ∪ FOloc(𝑤) , we have either ⟨𝑤, 𝑒⟩ ∈ (𝐺.po∪𝐺.rf)+ or
⟨𝑒,𝑤⟩ ∈ (𝐺.po ∪𝐺.rf)+. Then, 𝐺 is DPSC-consistent.

Proof. By Thm. 5.28, there exists a modification order mo for 𝐺 such that 𝐺.hb(mo) and

𝐺.fr(mo) ; 𝐺.po are irreflexive. We show that 𝐺.hbPSC (mo) is irreflexive. Suppose otherwise.

Let po = 𝐺.po, rf = 𝐺.rf, fr = 𝐺.fr(mo), dtpo = 𝐺.dtpo(mo), ppo = 𝐺.ppo, and hb = 𝐺.hb(mo).
Since po is transitive, (rf ∪mo ∪ fr ∪ dtpo) ; dtpo = ∅ (because of the domains and codomains

of the different relations), rf ; fr ⊆ mo, mo ; fr ⊆ mo, fr ; fr ⊆ fr , dtpo ; fr ⊆ dtpo (all these easily
follow from the fact that hb is irreflexive), and dom(rf ∪mo) ⊆ W ∪ RMW, it suffices to show that

po ; [W ∪ RMW] ∪ rf ∪mo ∪ po ; fr ∪ po ; dtpo is acyclic.
For this matter, we show that

[(R∪W∪RMW∪R-ex)\Init] ;(po;fr∪po;dtpo)\(po; [W∪RMW]∪rf ∪mo)+ ⊆ ppo+ ;fr∪ppo+ ;dtpo.
Given the latter inclusion, since po ; [W ∪ RMW] ⊆ ppo, the acyclicity of po ; [W ∪ RMW] ∪ rf ∪
mo ∪ po ; fr ∪ po ; dtpo will follow from the fact that hb is irreflexive.

Let ⟨𝑎, 𝑐⟩ ∈ [(R∪W∪ RMW∪ R-ex) \ Init] ; (po ; fr ∪ po ; dtpo) \ (po ; [W∪ RMW] ∪ rf ∪mo)+.
Let 𝑏 ∈ E such that ⟨𝑎, 𝑏⟩ ∈ po and ⟨𝑏, 𝑐⟩ ∈ fr ∪ dtpo. Let 𝑥 = loc(𝑏). Consider the possible cases:

• 𝑎 ∈ W, loc(𝑎) ≠ 𝑥 , 𝑏 ∈ R, and 𝑏 is 𝐺-protected: Then, we obtain that ⟨𝑎, 𝑏⟩ ∈ po ; [W𝑥 ∪
RMW∪ R-ex∪MF] ; po. If ⟨𝑎, 𝑏⟩ ∈ po ; [RMW∪ R-ex∪MF] ; po, then we have ⟨𝑎, 𝑏⟩ ∈ ppo+.
Otherwise, there is some 𝑏 ′ ∈ W𝑥 such that ⟨𝑎, 𝑏 ′⟩ ∈ po and ⟨𝑏 ′, 𝑏⟩ ∈ po. In this case it follows

that ⟨𝑏 ′, 𝑐⟩ ∈ mo, which contradicts the assumption that ⟨𝑎, 𝑐⟩ ∉ (po ; [W∪RMW] ∪rf ∪mo)+.
• 𝑎 ∈ W, loc(𝑎) ≠ 𝑥 , 𝑏 ∈ R, and 𝑏 is not 𝐺-protected: Then, we must have either ⟨𝑐, 𝑏⟩ ∈
(po∪ rf)+ or ⟨𝑏, 𝑐⟩ ∈ (po∪ rf)+. In the first case we obtain that ⟨𝑏, 𝑏⟩ ∈ fr ; (po∪ rf)+, which
contradicts the fact that hb and fr ; po are irreflexive. In turn, the second case contradicts the

assumption that ⟨𝑎, 𝑐⟩ ∉ (po ; [W ∪ RMW] ∪ rf ∪mo)+.
• 𝑎 ∈ W, loc(𝑎) = 𝑥 , and 𝑏 ∈ R: In this case, we must have ⟨𝑎, 𝑏⟩ ∈ mo? ; rf and so ⟨𝑎, 𝑐⟩ ∈ mo,
which contradicts the assumption that ⟨𝑎, 𝑐⟩ ∉ (po ; [W ∪ RMW] ∪ rf ∪mo)+.

• 𝑎 ∈ W, loc(𝑎) ≠ 𝑥 , and 𝑏 ∈ FO: Then, if 𝑏 is 𝐺-protected, we obtain that ⟨𝑎, 𝑏⟩ ∈ po ; [W𝑥 ∪
RMW ∪ R-ex ∪MF ∪ SF] ; po ⊆ ppo+. Otherwise, we must have either ⟨𝑐, 𝑏⟩ ∈ (po ∪ rf)+
or ⟨𝑏, 𝑐⟩ ∈ (po ∪ rf)+. In the first case we obtain that ⟨𝑏, 𝑏⟩ ∈ dtpo ; (po ∪ rf)+, which
contradicts the fact that hb is irreflexive. In turn, the second case contradicts the assumption

that ⟨𝑎, 𝑐⟩ ∉ (po ; [W ∪ RMW] ∪ rf ∪mo)+.
• Otherwise, the fact that ⟨𝑎, 𝑏⟩ ∈ po directly implies that ⟨𝑎, 𝑏⟩ ∈ ppo. □

Theorem 7.8. For a program Pr that is not strongly racy, a program state 𝑞 ∈ Pr .Q is reachable
under PTSOsyn iff it is reachable under PSC.

Proof. The right-to-left direction is trivial. For the left-to-right direction, suppose that𝑞 ∈ Pr .Q is
reachable under PTSOsyn. By Theorems 5.28 and C.2, 𝑞 is reachable under DPTSOmo

syn. Let𝐺0, ... ,𝐺𝑛

be DPTSOmo
syn-consistent execution graphs that satisfy the conditions of Def. 5.13 (for the program

Pr and the state 𝑞). If all 𝐺𝑖 ’s are DPSC-consistent, then 𝑞 is reachable under DPSC, and the claim

follows using Thm. 6.5.

Suppose otherwise. We show that Pr is strongly racy, which contradicts our assumption. Let

0 ≤ 𝑖 ≤ 𝑛− 1 be the minimal index such that𝐺𝑖 is not DPSC-consistent. Let𝐺 = 𝐺𝑖 . The minimality

of 𝑖 ensures that 𝐺0, ... ,𝐺𝑖−1 are all DPSC-consistent as well. Hence, using the sequence 𝐺0, ... ,𝐺𝑖−1,
by repeatedly applying Lemma F.1 and Prop. 5.11, we obtain that for𝑚0 ≜ 𝑚(𝐺𝑖−1) or𝑚0 ≜ 𝑚Init
if 𝑖 = 0, we have that ⟨𝑞Init,𝑚0, P𝜖⟩ is reachable in Pr q PSC for some 𝑞Init ∈ Pr .QInit.

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

1:54 Artem Khyzha and Ori Lahav

Let 𝐺.hb = (𝐺.po ∪𝐺.rf)+ and let

𝑊 =

{
𝑤 ∈ W ∪ RMW

���� ∃𝑒. 𝑒 is 𝐺-unprotected ∧ 𝑒 ∈ Rloc(𝑤) ∪ FOloc(𝑤) ∧
⟨𝑤, 𝑒⟩ ∉ (𝐺.po ∪𝐺.rf)+ ∧ ⟨𝑒,𝑤⟩ ∉ (𝐺.po ∪𝐺.rf)+

}
.

By Lemma 7.11, 𝑊 is not empty. Let 𝑤 be a 𝐺.po ∪ 𝐺.rf-minimal event in 𝑊 , and let 𝑒 be a

𝐺.po∪𝐺.rf-minimal𝐺-unprotected event in Rloc(𝑤) ∪ FOloc(𝑤) such that ⟨𝑤, 𝑒⟩ ∉ (𝐺.po∪𝐺.rf)+
and ⟨𝑒,𝑤⟩ ∉ (𝐺.po ∪𝐺.rf)+.
Let 𝐸 ′ = {𝑒 ′ | ⟨𝑒 ′,𝑤⟩ ∈ (𝐺.po ∪𝐺.rf)+ ∨ ⟨𝑒 ′, 𝑒⟩ ∈ (𝐺.po ∪𝐺.rf)+} and 𝐺 ′

be the execution

graph given by𝐺 ′.E = 𝐸 ′
,𝐺 ′.rf = [𝐺 ′.E] ;𝐺.rf; [𝐺 ′.E], and𝐺 ′.M = 𝜆𝑥. maxmo𝐺

′.E∩(W𝑥∪RMW𝑥),
where mo is some modification order for 𝐺 that satisfies the conditions of Def. 6.4. It is easy to

see that 𝐺 ′
is DPTSOsyn-consistent (since 𝐺 is DPTSOsyn-consistent). The minimality of𝑤 and 𝑒

ensures that for every𝑤 ′ ∈ 𝐺 ′.W∪𝐺 ′.RMW and𝐺 ′
-unprotected event 𝑒 ′ ∈ Rloc(𝑤) ∪FOloc(𝑤) , we

have either have ⟨𝑤 ′, 𝑒 ′⟩ ∈ (𝐺 ′.po∪𝐺 ′.rf)+ or ⟨𝑒 ′,𝑤 ′⟩ ∈ (𝐺 ′.po∪𝐺 ′.rf)+. Hence, by Lemma 7.11,

𝐺 ′
is DPSC-consistent.
Now, since 𝐺 is generated by Pr , we clearly also have that 𝐺 ′

is generated by Pr with some

final state 𝑞′. Hence, by Prop. 5.11, for every 𝑡 ∈ traces(𝐺 ′), we have 𝑞Init
𝑡
=⇒Pr 𝑞′ for some

𝑞Init ∈ Pr .QInit. By Lemma F.1, some 𝑡 ∈ traces(𝐺 ′) is an 𝑚0-to-𝑚(𝐺 ′) PSC-observable-trace. It
follows that ⟨𝑞Init,𝑚0, P𝜖⟩

𝑡
=⇒PrqPSC ⟨𝑞′,𝑚(𝐺 ′), P⟩ for some P .

Furthermore, the construction of 𝐺 ′
ensures that for 𝜏W = tid(𝑤) and 𝜏 = tid(𝑒), we have

that 𝑞′(𝜏W) enables lab(𝑤) and 𝑞′(𝜏R) enables lab(𝑒). To show that Pr is strongly racy, it remains

to show that lab(𝑒) is unprotected in suffixtid (𝑒) (𝑡). Let 𝐺 ′
𝑒 be the execution graph given by

𝐺 ′
𝑒 .E = 𝐺 ′.E ∪ {𝑒}, 𝐺 ′

𝑒 .rf = [𝐺 ′
𝑒 .E] ;𝐺.rf ; [𝐺 ′

𝑒 .E], and 𝐺 ′
𝑒 .M = 𝜆𝑥 . maxmo𝐺

′
𝑒 .E ∩ (W𝑥 ∪ RMW𝑥).

Using Prop. 7.10, it suffices to show that 𝑒 is𝐺 ′
𝑒 -unprotected. The latter easily follows from the fact

that 𝑒 is 𝐺-unprotected. □

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

Taming x86-TSO Persistency (Extended Version) 1:55

𝑒 ::= 𝑟 | 𝑣 | 𝑒 + 𝑒 | 𝑒 = 𝑒 | 𝑒 ≠ 𝑒 | ...

Inst ∋ inst ::= 𝑟 := 𝑒 | if 𝑒 goto 𝑛 | 𝑥 := 𝑒 | 𝑟 := 𝑥 |
𝑟 := FADD(𝑥, 𝑒) | 𝑟 := CAS(𝑥, 𝑒, 𝑒) |
mfence | fl(𝑥) | fo(𝑥) | sfence

Fig. 10. Programming language syntax.

𝑆 (pc) = 𝑟 := 𝑒

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒)]

⟨pc, 𝜙⟩ 𝜖−→𝑆 ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = if 𝑒 goto 𝑛

𝜙 (𝑒) ≠ 0

⟨pc, 𝜙⟩ 𝜖−→𝑆 ⟨𝑛, 𝜙⟩

𝑆 (pc) = if 𝑒 goto 𝑛

𝜙 (𝑒) = 0

⟨pc, 𝜙⟩ 𝜖−→𝑆 ⟨pc + 1, 𝜙⟩

𝑆 (pc) = 𝑥 := 𝑒

𝑙 = W(𝑥, 𝜙 (𝑒))

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙⟩

𝑆 (pc) = 𝑟 := 𝑥

𝑙 = R(𝑥, 𝑣) 𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := FADD(𝑥, 𝑒)
𝑙 = RMW(𝑥, 𝑣, 𝑣 + 𝜙 (𝑒))

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := CAS(𝑥, 𝑒R, 𝑒W)
𝑙 = RMW(𝑥, 𝜙 (𝑒R), 𝜙 (𝑒W))
𝜙 ′ = 𝜙 [𝑟 ↦→ 𝜙 (𝑒R)]

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = 𝑟 := CAS(𝑥, 𝑒R, 𝑒W)
𝑙 = R-ex(𝑥, 𝑣) 𝑣 ≠ 𝜙 (𝑒R)

𝜙 ′ = 𝜙 [𝑟 ↦→ 𝑣]

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙 ′⟩

𝑆 (pc) = mfence
𝑙 = MF

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙⟩

𝑆 (pc) = fl(𝑥)
𝑙 = FL(𝑥)

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙⟩

𝑆 (pc) = fo(𝑥)
𝑙 = FO(𝑥)

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙⟩

𝑆 (pc) = sfence
𝑙 = SF

⟨pc, 𝜙⟩ 𝑙−→𝑆 ⟨pc + 1, 𝜙⟩

Fig. 11. Transitions of LTS induced by a sequential program 𝑆 ∈ SProg.

H FROM PROGRAMS TO LABELED TRANSITION SYSTEMS
We present a concrete programming language syntax for (sequential) programs, and show how

programs in this language are interpreted as LTSs in the form assumed assumed in §2.1.

Let Reg ⊆ {a, b, ...} be a finite set of register names. Figure 10 presents our toy language.

Its expressions are constructed from registers (local variables) and values. Instructions include

assignments and conditional branching, as well as memory operations.

A sequential program 𝑆 is a function from a set of the form {0, 1, ... ,𝑁 } (the possible values of the
program counter) to instructions. It induces an LTS over Lab ∪ {𝜖}. Its states are pairs 𝑞 = ⟨pc, 𝜙⟩
where 𝑝𝑐 ∈ N (called program counter) and 𝜙 : Reg → Val (called local store, and extended to

expressions in the obvious way). Its initial state is ⟨0, 𝜆𝑟 ∈ Reg. 0⟩ and its transitions are given in

Fig. 11 (In particular, a read instruction in 𝑆 induces |Val| transitions with different labels.)

Proc. ACM Program. Lang., Vol. 1, No. POPL, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 An Operational Framework for Persistency Specifications
	2.1 Preliminaries
	2.2 Concurrent Programs Representation
	2.3 Persistent Systems

	3 The Px86 Persistent Memory Subsystem
	4 The PTSOsyn Persistent Memory Subsystem
	4.1 Observational Equivalence of Px86 and PTSOsyn

	5 Declarative Semantics
	5.1 A Declarative Framework for Persistency Specifications
	5.2 The DPTSOsyn Declarative Persistency Model
	5.3 An Equivalent Declarative Persistency Model: DPTSOsyncolorMO mo
	5.4 Equivalence of PTSOsyn and DPTSOsyn

	6 Persistent Memory Subsystem: PSC
	6.1 An Equivalent Finite Persistent Memory Subsystem: PSCfin
	6.2 The DPSC Declarative Persistency Model

	7 Relating PTSOsyn and PSC
	7.1 A Simplified DRF Guarantee
	7.2 A Generalized DRF Guarantee and a PSC to PTSOsyn Mapping

	8 Conclusion and Related Work
	Acknowledgments
	References
	A Proofs for Section 2
	B Proofs for Section 4
	B.1 Instrumented Persistent Memory Subsystems
	B.2 green!40!blackiPx86: Instrumented Px86
	B.3 Intermediate Systems green!40!blackiPTSO 1 and green!40!blackiPTSO 2
	B.4 green!40!blackiPTSOsyn: Instrumented PTSOsyn
	B.5 Proof of Theorem 4.6
	B.6 Proof of lem:emptybuff

	C Proofs for Section 5
	D Proofs for Section 6
	E Proofs for Section 6.1
	F Proofs for Section 6.2
	G Proofs for Section 7
	H From Programs to Labeled Transition Systems

