A Promising Semantics for Relaxed-Memory Concurrency

Jeehoon Kang
Seoul National University, South Korea
jeehoon.kang@snu.ac.kr

Ori Lahav
MPI-SWS, Germany
orilahav@mpi-sws.org

Chung-Kil Hur *
Seoul National University, South Korea
gil.hur@snu.ac.kr

Viktor Vafeiadis
MPI-SWS, Germany
viktor@mpi-sws.org

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Abstract
Despite many years of research, it has proven very difficult to develop a memory model for concurrent programming languages that adequately balances the conflicting desiderata of programmers, compilers, and hardware. In this paper, we propose the first relaxed memory model that (1) accounts for nearly all the features of the C++11 concurrency model, (2) provably validates a number of standard compiler optimizations, as well as a wide range of memory access reorderings that commodity hardware may perform, (3) avoids bad "out-of-thin-air" behaviors that break invariant-based reasoning, (4) supports "DRF" guarantees, ensuring that programmers who use sufficient synchronization need not understand the full complexities of relaxed-memory semantics, and (5) defines the semantics of racy programs without relying on undefined behaviors, which is a prerequisite for applicability to type-safe languages like Java.

The key novel idea behind our model is the notion of promises: a thread may promise to execute a write in the future, thus enabling other threads to read from that write out of order. Crucially, to prevent out-of-thin-air behaviors, a promise step requires a thread-local certification that it will be possible to execute the promised write even in the absence of the promise. To establish confidence in our model, we have formalized most of our key results in Coq.

1. Introduction

What is the right semantics for concurrent shared-memory programs written in higher-level languages? For programmers, the simplest answer would be a sequentially consistent (SC) semantics, in which all threads in a program share a single view of memory and writes to memory take immediate global effect.

However, a naive SC semantics is costly to implement. First of all, commodity architectures (such as x86, Power, and ARM) are not SC: they execute memory operations speculatively or out of order, and they employ hierarchies of buffers to reduce memory latency, with the effect that there is no globally consistent view of memory shared by all threads. To simulate SC semantics on these architectures, one must therefore insert expensive fence instructions to subvert the efforts of the hardware. Secondly, a number of common compiler optimizations—such as constant propagation—are rendered unsound by a naive SC semantics because they effectively reorder memory operations. Moreover, SC semantics is stronger (i.e., more restrictive) than necessary for many concurrent algorithms.

Hence, languages like Java and C++ have opted instead to provide relaxed (aka weak) memory models [19, 13], which enable programmers to demand SC semantics when they need it, but which also support a range of cheaper memory operations that trade off strongly consistent and/or well-defined behavior for efficiency.

1.1 Criteria for a Programming Language Memory Model

Unfortunately, despite many years of research, it has proven very difficult to develop a memory model for concurrent programming languages that adequately balances the conflicting desiderata of programmers, compilers, and hardware. In particular, we would like to find a memory model that satisfies the following properties:

- The model should be implementable, i.e., validate common compiler optimizations, as well as the reorderings of memory operations that may result from hardware out-of-order execution.
- The model should support high-level reasoning principles that programmers and compiler analyses depend on. At a bare minimum, it should validate simple invariant-based verification, and should provide some “DRF” guarantees [3], ensuring that programmers who employ sufficient synchronization need not understand the full complexities of relaxed-memory semantics.
- The model should ideally avoid relying on undefined behavior to define the semantics of racy programs. This is a prerequisite for applicability to type-safe languages like Java, in which well-typed programs may contain data races but are nevertheless expected to have safe, well-defined semantics.

Both Java and C++ fail to achieve some of these criteria.

In the case of Java, the memory model fails to validate a number of common program transformations performed by real Java compilers, such as redundant read-after-read elimination and “roach motel” reordering [25]. Although this problem is known for some time, no satisfactory solutions have yet to be developed.

In the case of C++, the memory model relies crucially on undefined behaviors to give semantics to racy programs, and moreover it permits certain “out-of-thin-air” executions which violate basic invariant-based reasoning (and DRF guarantees) [7]. To illustrate the problem, let us give a concrete example.

1.2 The “Out of Thin Air” Problem

Consider these two variants of the classic “load buffering” litmus test (with two threads running concurrently):

\[
\begin{align*}
a & := x; \\
y & := 1; \\
x & := y; \quad \text{(LB)} \\
a & := x; \\
y & := a; \\
x & := y; \quad \text{(L Bd)}
\end{align*}
\]

Here, we assume that all variables are initially 0, and that all memory accesses are of the weakest consistency level, i.e., they...
are compiled down to plain loads and stores at the hardware level with no additional synchronization (in C++ this is called “relaxed”). The question is: should it be possible for these programs to assign 1 to x? In the case of (LB), the answer is yes: architectures like Power and ARM may reorder the write of y before the read of x in the first thread (since these are accesses to distinct variables), after which a can be assigned 1 by a standard interleaving execution. In the case of (L Bd), however, the answer ought to be no: all the operations simply copy one variable to another and all are initially 0, so if a could receive 1, it would come “out of thin air”. No hardware reorderings or reasonable compiler optimizations will produce this behavior. If they did, it would cause major problems: one would not be able to establish even basic invariants (such as x = y = 0), and basic sanity results like the aforementioned DRF theorems would cease to hold. It is therefore a serious problem that the formal memory model of C++ allows such out-of-thin-air (OOTA) behavior.

Intuitively, the reason C++ allows OOTA behaviors is that it is not clear how to distinguish them from acceptable behaviors. The C++ model formalizes valid executions as graphs of memory access events (think: partially-ordered traces) subject to a set of coherence axioms, and the same coherent event graph that describes a valid execution of (LB) in which a receives 1 also describes a valid execution of (L Bd) in which a receives 1.

Hardware memory models (e.g., Power and ARM) handle this problem by taking syntactic dependencies between instructions into account in determining program semantics. Under such models, the out-of-order execution in (LB) is valid because the write to y is independent of the read from x, whereas in (L Bd) such out-of-order execution is prevented by the syntactic dependency between the two instructions. Although this approach is suitable for modeling hardware, it is too brittle for a language-level semantics because it fails to validate standard compiler optimizations that remove syntactic dependencies (see also [7]). As a very simple example, consider the following variant of (LB) and (L Bd):

\[a := x; \]
\[y := a + 1 - a; \quad x := y; \]
(LBfd)

Under the hardware models, this (LBfd) program would be treated similarly to (L Bd) due to the syntactic data dependency, so a could not receive 1. But even a basic optimizing compiler could trivially transform (LBfd) to (L Bd), in which case a could receive 1.

As a result, we still to this day lack a semantics for relaxed-memory concurrency in Java and C++ that corresponds to how these languages are implemented and that provides sufficient reasoning guarantees to programmers and compiler-writers. Several proposals have recently been made for how to fix the Java and C++ memory models (some of which are discussed in §6), but none have been proven to validate the full range of standard optimizations/reorderings performed by Java and C++ compilers and by commodity hardware like Power and ARM. Furthermore, for most of the existing proposals, it is known that indeed they do not validate some important reorderings.

1.3 A “Promising” Semantics for Relaxed Memory

In this paper, we present what we believe is a very promising way forward. In particular, we give the first relaxed memory model that supports nearly all the features of the C++11 concurrency model but nevertheless satisfies all three criteria listed in §1.1.

We achieve these ends through a combination of mechanisms (some standard, some not), but the most important and novel idea for the reader to take away from this paper is the notion of promises.

Under our model, which is defined by an operational semantics, a thread T may nondeterministically “promise” to write a value v to a memory location x at some point in the future. From the point of view of other threads, a promise is no different from an ordinary write: once T has promised to write v to x, other threads can read from that write. (In contrast, T cannot read from its own promised write until T has fulfilled the promise: this is crucial to preserve basic sanity of the semantics.) Intuitively, promises simulate the effect of read-write reorderings by allowing write events to be visible to other threads before the point at which they occur in the program order.

We must, however, ensure that promises do not introduce bad OOTA behaviors. Toward this end, we only allow T to promise to write v to x if it is possible to thread-locally certify that the promise can be fulfilled in a finite number of steps. That is, we must show that T will be able to write v to x after some finite sequence of steps of T’s execution (i.e., with no help from other threads). The certification requirement guarantees absence of bad OOTA executions by ensuring that T can only promise to write a value v to x if T could have written v to x anyway.

Returning to the examples from §1.2, it is easy to see how promises give us the desired semantics:

- In (LB), the first thread can promise to write 1 to y (since it will indeed write 1 to y no matter what value is assigned to a), after which the second thread can read from that promise and write 1 to x. Subsequently, the first thread can execute normally, reading 1 from x and assigning it to a.
- The execution of (LBfd) may proceed in exactly the same way. The fact that the write of y depends syntactically on a is irrelevant, because during certification of the promised write of 1 to y, the expression \(a + 1 - a \) will always evaluate to 1.
- By contrast, the OOTA behavior will not be allowed for (L Bd). In order for the first thread to promise to write 1 to y, it would need to certify that it can write 1 to y in some finite number of steps without promises. But since all variables are initially 0, this is not possible.

In this way, promises provide a solution to the OOTA problem that does not rely on tracking brittle syntactic dependencies. Furthermore, as we will see, the thread-local nature of our promise certification greatly simplifies the formal development of our semantics and has enabled us to straightforwardly prove the validity of read-write reorderings that were out of reach for prior work [14].

In the rest of the paper, we will flesh out the idea of promises—as well as the other elements of our model—in layers. We begin in §2 by presenting the details of our model restricted to relaxed reads and writes. In §3, we extend this base model further to support atomic updates (i.e., read-modify-write operations, like CAS). Then, in §4, we scale the model up to handle most features of the C++ memory model. In §5, we present our formal results, validating a wide range of program transformations and some high-level reasoning principles, most of which are fully mechanized in the Coq proof assistant (totalling about 30K lines of Coq). In §6, we compare with related work, and in §7, we conclude with discussion of future work.

2. Basic Model for Handling Relaxed Accesses

In this section, we introduce the key ideas of our memory model, first by example and then more formally. At first we will only consider a semantics for fully “relaxed” atomic read and write accesses (in the sense of C++). This is a natural starting point, since the OOTA problem is fundamentally about how to give a reasonable semantics for these relaxed accesses, and the key elements of our solution are easiest to understand in this simpler setting. We will see in subsequent sections how to extend and generalize this base model to account for a much richer variety of memory operations.
To illustrate our semantics, we will write small programs such as the following:

\[
\begin{align*}
x & := 1; \\
a & := y; \quad // 0 \\
b & := x; \quad // 0
\end{align*}
\]

(SB)

As a convention, we write \(a, b, c\) for local variables (registers) and \(x, y, z\) for (distinct) shared memory locations, and assume that all variables are initialized to 0. We refer to thread 1 as \(T_1\). Moreover, in order to refer to a specific observation of the program, we annotate the corresponding reads with the values expected to be read (e.g., in the above program, the comment notation indicates the observed result that \(a = b = 0\)).

2.1 Main Ideas

High-Level Requirements: Reorderings and Coherence

Relaunched read and write operations are intended to be compiled down directly to plain loads and stores at the machine level, so one of the main requirements of our semantics is that it be as permissive as commodity hardware. Toward this end, our semantics must justify reordering of independent memory operations (i.e., operations that access distinct locations), since the more weakly consistent architectures (like ARM) may potentially perform such reorderings. There are four such classes of reorderings—write-read, write-write, read-read, and read-write — and in §5 we will prove formally that our semantics justifies all of them.

On the other hand, it is also important that our semantics not be unnecessarily weak. In particular, all the existing implementations of C++, even for weaker architectures like Power and ARM, guarantee at a bare minimum a property we call per-location coherence (aka SC-per-location). Per-location coherence says that, even though threads may observe writes to different locations in different orders, they must observe writes to the same location in a single total order (called the “modification order” in C++ lingo). In addition to being supported by hardware, per-location coherence is preserved by common compiler optimizations as well. Hence, we want our semantics of relaxed accesses to guarantee it. (In §4.3 we will present an even weaker mode of accesses that does not provide full per-location coherence.)

Operational Semantics with Timestamps

In contrast to the C++ memory model, which relies on axiomatic semantics over event graphs, ours employs a more standard SC-style operational semantics for concurrency, in which the executions of different threads are nondeterministically interleaved. However, in order to account for weak memory behaviors, we use a more elaborate memory representation than the standard SC semantics does. Instead of being a flat map from addresses to values, our memory records the set of all writes ever performed. It may help to think of writes as messages, and memory as a message pool which grows monotonically. When a thread \(T\) reads from a location \(x\), it need not read “the latest” write to \(x\), since there is no shared understanding among threads of what the latest write is. The thread \(T\) thus retains flexibility in terms of which message it reads, but we must place some restrictions on this flexibility in order to guarantee per-location coherence.

Specifically, we totally order the writes to each location by attaching a (unique) timestamp to each write message. Thus, messages are triples of the form \(\langle x: v@t \rangle\) (where \(x\) is a location, \(v\) a value, and \(t\) a timestamp). (The modification order for a location \(x\) is thus implicitly derivable from the order of timestamps on \(x\)’s messages.) In addition, for each thread \(T\), we keep track of a map from locations \(x\) to the largest timestamp of a write to \(x\) that \(T\) has observed or executed. We refer to this map as \(T\)’s view of memory, and one can think of it as recording the set of most recent write messages that \(T\) has observed. Hence, when \(T\) reads from a location \(x\), it must read from a message with a timestamp at least as large as the one recorded for \(x\) in \(T\)’s view. And when \(T\) writes to \(x\), it must pick a timestamp strictly larger than the one recorded for \(x\) in its view.

Let us see how our semantics, as explained thus far, already suffices to justify desirable reorderings while ruling out violations of coherence. First, recall the write-read reordering exhibited by the “store buffering” (SB) example above, and let us see how the behavior can be justified. Initially, assume the memory contains the initialization messages \(\langle x: 0@0 \rangle\) and \(\langle y: 0@0 \rangle\), and both threads maintain a view of \(x\) and \(y\) that maps them to 0. When \(T_1\) performs the assignment \(x := 1\), it will choose some timestamp \(t > 0\), add the message \(\langle x: 1@t \rangle\) to the memory, and update its view of \(x\) to \(t\). But this will have no effect on its view of \(y\) or \(T_2\)’s view of \(x\), which remain at 0. Thus, when \(T_2\) subsequently reads \(y\), it is free to read 0. (And analogously for \(T_2\).)

On the flip side, per-location timestamps also explain why the following coherence violation is forbidden.

\[
\begin{align*}
x & := 1; \\
a & := x; \quad // 2 \\
b & := x; \quad // 1
\end{align*}
\]

(COH)

Here, the two writes to \(x\) must be totally ordered. Suppose, without loss of generality, that the \(x := 1\) was written at timestamp 1 and \(x := 2\) at timestamp 2. Then, although \(T_1\) may read value 2, \(T_2\) cannot read 1, because \(1\) was written at a smaller timestamp than the one that \(T_2\) already recorded in its view when it wrote \(x := 2\). One subtle point is that, when writing to a location \(x\), a thread \(T\) may select any unused timestamp \(t\) larger than the one recorded in its view of \(x\), but \(t\) need not be globally maximal. That is, \(t\) may be smaller than the timestamp that another thread has already used for a write to \(x\). This freedom is in fact crucial in order to permit write-write reorderings, as exemplified by the following test case:

\[
\begin{align*}
x & := 2; \\
y & := 1; \\
a & := y; \quad // 2 \\
b & := x; \quad // 2
\end{align*}
\]

To get the desired weak outcome, the writes of \(x := 1\) and \(y := 1\) must pick smaller timestamps than the \(x := 2\) and \(y := 2\) writes, respectively, but at least one of the 1-writes must be executed after the 2-write to the same location. Thus, it is essential to be able to write using a timestamp that is not globally maximal.

Promises

Unfortunately, our timestamp semantics alone does not suffice to explain read-write reorderings, as exemplified by the (LB) and (LBfd) programs from §1.2. It is precisely these reorderings that motivate our introduction of promises.

As explained in §1.3, a thread \(T\) may at any point promise to write \(x := v\) at some timestamp \(t\) (provided that \(t\) is greater than \(T\)’s current view of \(x\)). This promise is treated to a large extent like an actual write operation. In particular, it adds a new message \(\langle x: v@t \rangle\) to memory, which may then be read by other threads. However, in order to make such a promise, \(T\) must thread-locally certify— that is, \(T\) must demonstrate that it will be able to fulfill this promise (writing \(x := v\) at timestamp \(t\)) in a finite number of thread-local steps. Certification is needed to guarantee plausibility of the promise, but crucially, there is no requirement that the specific steps of execution taken during certification must match the subsequent steps of actual execution. Indeed, we already witnessed this with the (LB) and (LBfd) executions, where \(T_1\) read \(x := 0\) during the initial certification of its promised write to \(y\), but read \(x := 1\) during the actual execution.

Let us now briefly touch on a few technical points concerning the interaction of promises and timestamps.

First of all, it is important that \(T\) cannot directly read its own promises, because this would violate per-location coherence: for example, the single-threaded program \(a := x; x := 1\) would be able to return \(a = 1\)! Note that we do not need to explicitly enforce this restriction—it just falls out from our rules concerning timestamps.

3 2016/7/8
In particular, if T were to promise $(x : v \oplus t)$, and then were to read from its own promise, then T’s view of x would be updated to t, and there would be no way for T to subsequently fulfill the promise because it would have to pick a timestamp strictly greater than t when performing the assignment $x := v$.

That said, it is possible for T to read its promised value indirectly via another thread, as in the (LB) and (LBfd) programs. It may even read the promised value from the same location where it promised to write it, as in the following example.

\[
\begin{align*}
a &:= x; \not\equiv 1; \quad y := x; \quad x := y; \quad (ARM-weak)
\end{align*}
\]

This outcome can be explained by T_1 promising $(x : 1 \oplus 2)$, then T_2 reading $x = 1$ and storing it to y, and T_3 reading $y = 1$ and writing $x := 1$ at timestamp 1, which T_1 can read before fulfilling its promise. Such behavior, strange though it may seem, is actually allowed by the ARM memory model [11].

Last but not least, we wish to ensure that promises do not lead to impossible situations later down the road, i.e., that making a promise cannot cause the execution of a program to get stuck. The thread-local certification that accompanies a promise step goes some way toward ensuring this progress condition, but it is not enough. We also amend the semantics in the following two ways:

1. Every step a thread takes, it must re-certify all its outstanding promises to make sure they can still be fulfilled. To see why, consider a possible execution of the following program:

\[
\begin{align*}
a &:= x; \quad x := x; \quad t := 1; \quad x := 2;
\end{align*}
\]

Suppose that T_1 (for no particularly good reason) promises $(x : 1 \oplus 1)$. At first, this is easy to certify: T_1 can read the initial value of x (the message $(x : 0 \oplus 0)$), and then perform the assignment $x := 1$ picking timestamp 1. Suppose then that T_2 picks the timestamp 2 when performing $x := 2$. If at this point in the execution T_1 were permitted to read the message $(x : 2 \oplus 2)$, it would have the effect of bumping up T_2’s view of x to timestamp 2, which would prevent it from subsequently fulfilling its promise. It is thus crucial that T_2 not be allowed to read $x = 2$ (in this particular execution), and indeed our semantics will not allow it to do so because the re-certification check would fail. As the example illustrates, promises can restrict a thread’s future nondeterministic choices concerning the messages it reads.

2. We require the total order on timestamps to be dense (e.g., choosing timestamps to be rational numbers), so that there is always a place to put intermediate writes before a promise. Consider, for example, the following program:

\[
\begin{align*}
x &:= 1; \quad x := 2; \quad (ARM-weak)
\end{align*}
\]

Here, T_1 may promise $(x : 2 \oplus 2)$—in validating this promise, T_1 might write $(x : 1 \oplus 1)$ before writing $(x : 2 \oplus 2)$. If, however, T_2 subsequently writes $(x : 3 \oplus 1)$ before T_1 has actually written $x := 1$, then T_1 can no longer pick 1 as a timestamp for $x := 1$. To make progress here, T_1 needs a timestamp for $x := 1$ strictly between 0 and 2, and 1 is already taken. By requiring the timestamp order to be dense, we ensure that there is always some free timestamp (e.g., 1.5) that T_1 can use.

2.2 Formal Definition

We now define our model for relaxed accesses formally. Let Loc be the set of memory locations, Val be the set of values, and Time be an infinite set of timestamps, densely totally ordered by \leq. A timemap is a function $T : \text{Loc} \rightarrow \text{Time}$. The order \leq is extended pointwise to timemaps.

Programming Language

To keep the presentation abstract, we do not fix a particular programming language; we simply consider each thread t as a transition system with a set of states State_t, initial state $\sigma_1^t \in \text{State}_t$, and final state $\sigma_1^{\text{final}} \in \text{State}_t$. Intuitively, these states store the values of the local registers and the program counter. Transitions are labeled: the label $R(x, v)$ correspond to a transition that reads the value v from location x, $W(x, v)$ denotes a write of the value v in x, while local transitions that do not access the memory are labeled with “Silent”. We assume receptiveness of the transition systems (if some value can be read then all values can be read), and that they only get stuck in the σ_1^{final} states.

Messages

A message m is a tuple $(x : v \oplus t)$, where $x \in \text{Loc}$, $v \in \text{Val}$, and $t \in \text{Time}$. We denote by $m.\text{loc}$, $m.\text{val}$, and $m.\text{t}$ the components of a message m. Two messages m and m' are called disjoint, denoted $m \neq m'$, if $m.\text{loc} \neq m'.\text{loc}$ or $m.\text{t} \neq m'.\text{t}$. Two sets M and M' of messages are called disjoint, denoted $M \neq M'$, if $m \neq m'$ for every $m \in M$ and $m' \in M'$.

Memory

A memory is a pairwise disjoint finite set of messages. A message m may be (additively) inserted into memory M if m is disjoint from every message in M. Formally, the additive insertion $M \oplus m$ is given by $M \cup \{m\}$ and it is only defined if $M \neq \{m\}$.

Thread States and Configurations

A thread state is a triple $TS = (\sigma, V, P)$, where σ is the thread’s local state, V is a timemap representing the thread’s view of memory, and P is a memory that keeps track of the thread’s outstanding promises. We denote by $TS.\text{at}$, $TS.\text{view}$, and $TS.\text{prm}$ the components of a thread state TS. In turn, a thread configuration is a pair $TC = (TS, M)$, where TS is a thread state and M is a memory, called the global memory. Note that we will always have $TS.\text{prm} \subseteq M$.

Figure 1 shows the five reduction rules for thread configurations. The SILENT rule handles the case when the program performs some local computation that does not affect memory. The WRITE rule handles the case when the program reads to a location x. It extends the memory with a new message for x, whose timestamp t is greater than the one recorded for x in the thread’s view, and returns its value; it also updates the thread’s view of x to the timestamp of m. The READ rule handles the case when the program writes to a location x. It extends the memory with a new message for x, whose timestamp t is greater than the one recorded for x in the thread’s view, and it updates the thread’s view of x to match t. The PROMISE rule extends the memory and the thread’s promise set with an arbitrary new message m, whose timestamp is not already present in the memory. (The promise certification is handled separately, as described below.) Finally, the FULFILL rule is similar to the WRITE rule, except that instead of adding a message to the memory, it removes an appropriate message from the thread’s promise set P.

Note that we included the WRITE rule here only to improve readability. This rule is, in fact, redundant, since any application of WRITE can be simulated by first promising the appropriate message with the PROMISE rule and then immediately fulfilling the promise with the FULFILL rule.

As we have already mentioned, we have to restrict thread executions so that all promises a thread makes are fulfillable. Thread configurations satisfying this property are called consistent. Formally, a thread configuration (TS, M) is consistent if $(TS, M) \rightarrow^* (TS', M')$ for some TS' and M' such that $TS'.\text{prm} = \emptyset$. Notice that in the certification of a promise, it is formally possible to make further promises. Since, however, in the end all such promises must be fulfilled, it is useless to make such promises. (A property of this property is included in our formal development.)

Machine States

Finally, a machine state $MS = (TS, M)$ consists of a function TS assigning a thread state to every thread, and a
Atomicity ensures that it is not possible for both threads to increment \(x \) at the same time, if both of the updates were to increment \(x \) (i.e., the update generates) in \(x \)’s modification order, and that future writes to \(x \) are not possible after the independent accesses to \(x \). To produce this behavior, following our semantics from the previous section, \(T_3 \) could promise to write \(y := 1 \) because it can thread-locally certify that the promise can be fulfilled (the certification will involve updating \(z \) from 0 to 1). If, however, \(T_3 \) then updates \(z \) from 0 to 1, that will mean that \(T_1 \) can no longer perform the update it needs to fulfill its promise, and its execution will eventually get stuck.

To avoid such stuck executions, we strengthen the check performed by promise certification, i.e., the consistency requirement on thread configurations. We require that each thread’s promises are locally fulfillable not only in the current memory, but also in any future memory, i.e., any extension of the memory with additional messages. This quantification over future memories ensures that thread configurations remain consistent whenever another thread performs an execution step, and thus the machine cannot get stuck.

Returning to the above example, \(T_1 \) will not be permitted to promise to write \(y := 1 \) in the initial state, precisely because that promise could not be fulfilled under an arbitrary future memory configuration.
(THREAD: FULFILL UPDATE)
\[\begin{align*}
\sigma' &\leftarrow \sigma,\langle x : v @ t, t' \rangle \\
m_w &\leq \langle x : v @ (t, t') \rangle \\
V(x) &\leq t \quad V' = V[x \mapsto t_w] \\
\langle (\sigma, V, P), M \rangle &\rightarrow \langle (\sigma', V', P'), M \rangle
\end{align*} \]

Figure 2. Additional rule for updates (all other rules are as before except all messages \(\langle x : v @ t \rangle \) are replaced by \(\langle x : v @ (f, t) \rangle \)).

(e.g., one containing the update of \(T_3 \), as we showed). \(T_3 \) may, however, first promise \(\langle z : 1@0, 1 \rangle \) with the following state to its increment. \(T_3 \) can fulfill that promise, because no future extension of the memory will be able to add any messages in between. After making that promise, \(T_3 \) may then promise, e.g., \(\langle y : 1@3, 4 \rangle \), which it can now fulfill under any extension of the memory. With these promises in place, \(T_3 \) will be prevented from updating \(z \) from 0 to 1; it will be forced to update \(z \) from 1 to 2, which will not block the future execution of \(T_1 \).

Our quantification here over all future memories may seem rather restrictive in that it completely ignores what can or cannot happen in a particular program. That said, we find it a simple and natural way of ensuring "thread locality". The latter is a guiding principle for implementation of fences:

- **Release/Acquire Fences**
- **Release/Acquire Accesses**

A crucial feature of the C++ model is the ability for threads to synchronize using memory fences or stronger barriers for promises.

First, we refine each thread's view. Rather than having a single view of which messages it has observed, a thread now has three views:

- \(\text{V} = \{ \text{Cur}, \text{Acq}, \text{Rel} \} \)
- We denote by \(\text{V}.\text{Cur}, \text{V}.\text{Acq} \) and \(\text{V}.\text{Rel} \) the components of a thread's view \(V \).
- A thread's current view, \(\text{Cur} \), is as before: it records which messages the thread has observed and restricts which messages a read may return and a write may create.
- Its release view, \(\text{Rel} \), records what the thread's \(\text{Cur} \) view was at the point of its last release fence. Dually, its acquire view, \(\text{Acq} \), records what the thread's \(\text{Cur} \) view will become if it performs an acquire fence. Consequently, the views are related as follows: \(\text{Rel} \leq \text{Cur} \leq \text{Acq} \).

Second, we extend write messages to additionally record the release view of the thread at the read at the point when the write occurred. Thus, a message now takes the form \(m = \langle x : v @ (f, t), R \rangle \), where \(x, v, f, t \) are as before, and \(R \) is the message view, satisfying \(R(x) \leq t \). We write \(m.\text{view} \) to mean the message view \(R \) of \(m \).

During execution of relaxed accesses, a thread's views drift apart. When a thread reads a message, it incorporates the message's view into the thread's \(\text{Acq} \) view, but not into its \(\text{Cur} \) or \(\text{Rel} \) views. When a thread writes a message, it uses the thread's \(\text{Rel} \) view as the basis for the message's view, but only incorporates the message itself into the thread's \(\text{Cur} \) and \(\text{Acq} \) views, not its \(\text{Rel} \) view.

Fence commands bring these diverging views closer to one another. Specifically, an acquire fence increases the thread's \(\text{Cur} \) view to match its \(\text{Acq} \) view, thereby ensuring that the thread is up to date with respect to views of all the messages read before the fence. Symmetrically, a release fence increases the thread's \(\text{Rel} \) view to match its \(\text{Cur} \) view, thereby ensuring that the views of all messages the thread reads after the release fence will contain the messages observed before the fence.

Returning to the (MP+fences) program, suppose that \(T_1 \) emitted messages \(\langle x : 1@0, 1 \rangle \) and \(\langle y : 1@0, 0 \rangle \). Then, \(T_1 \)'s \(\text{Cur} \) view before the release fence is \(\langle x@0, y@0 \rangle \). The fence then updates \(T_1 \)'s \(\text{Rel} \) view to match its \(\text{Cur} \) view, so that the subsequent message may view the \(\text{Rel} \) view \(\langle x@0, y@0 \rangle \). (Without the release fence, we would have \(R_y = \langle x@0, y@0 \rangle \).) On \(T_2 \)'s side, the read of \(y = 1 \) updates \(T_2 \)'s \(\text{Cur} \) view to \(\langle x@0, y@0 \rangle \), and its \(\text{Acq} \) view to \(\langle x@0, y@0 \rangle \). The acquire fence then updates \(T_2 \)'s \(\text{Cur} \) view to match its \(\text{Acq} \) view, and hence the subsequent read of \(x \) must see the \(x := 1 \) write. If either the release or the acquire fence were missing, then \(T_2 \)'s \(\text{Cur} \) view at the read of \(x \) would have been \(\langle x@0, y@0 \rangle \), allowing it to read \(x = 0 \).

Interaction with Promises Promises (like every other message) now carry a view, and threads reading a promise are subject to the same constraints as if they were reading a usual message. In particular, after reading a promise and performing an acquire fence, a thread can only read messages with timestamp greater or equal to the view carried in the message. In order to avoid cases where execution gets stuck, we must ensure that some message can be read for every location. Thus we require that the view attached to promises is an existing view (includes only timestamps of messages in the memory) at the time the promise was made.

Going back to (MP+fences), note that \(T_1 \) cannot promise \(y := 1 \) before performing \(x := 1 \). Indeed, at that stage the only existing message for \(x \) in the memory is the initial one, but because of the release fence, the view in the \(y := 1 \) message must include the message that will be produced for the \(x := 1 \) assignment. Hence, release fences serve also as barriers for promises.

Release/Acquire Accesses A more fine-grained way of achieving synchronization besides the release and acquire fences in C++ are acquire reads and release writes. Intuitively speaking, an acquire read is a relaxed read followed by an acquire fence, while a release write is a release fence followed by a relaxed write, with the restriction that these fences induce synchronization only on the

2 Consume reads are widely considered a somewhat premature aspect of the C++ standard and are implemented as acquire reads in mainstream compilers.
location of the access. For example, in the following program, only the second thread synchronizes with the first one.

\[
\begin{align*}
x &: 1; \\
y_{\text{rel}} &: 1; \\
z &: 1; \quad \begin{array}{l}
a &= y_{\text{seq}}; \quad
\# \neq 0 \\
b &= x; \quad \# \neq 0 \\
c &= z_{\text{seq}}; \quad \# 1 \\
d &= x; \quad \# 1
\end{array}
\end{align*}
\]

Hence, b must get the value 1, while d may get 0.

To model these accesses, we treat the `Rel` view of each thread not as a single view, but rather as one separate view per location, recording the thread’s current view at the latest release fence or release write to that location. Performing a release write to location \(x \) increments the release view of \(x \) to match the `cur` view, while a release fence increments the release views of all locations. In addition, a release write to \(x \) attaches its new release view of \(x \) to the message. Performing an acquire read, then, increments the thread’s current view to include the message’s view.

In the example above, at the end of \(T_1 \)’s execution, its thread view has \(\text{Rel}(y) = [x@t_1, y@t_2, z@0] \), whereas \(\text{Rel}(z) = [x@0, y@0, z@0] \). As a result, the \(y_{\text{seq}} \) read increases \(T_2 \)’s `Cur` view to \([x@t_2, y@t_2, z@0] \), which forces it to then read \(x = 1 \), whereas the \(z_{\text{seq}} \) read increases \(T_3 \)’s `Cur` view to \([x@0, y@0, z@t_2] \), which allows it to later read \(x = 0 \).

Release Sequences Using the per-location release views, we can straightforwardly handle C++-style release sequences (following the definition of release sequences given in [24]). In C++, an acquire read synchronizes with a release write \(w \) to \(x \) not only if it reads from \(w \) but also if it reads from a write in \(w \)’s release sequence. The release sequence of \(w \) is inductively defined to include all the same-thread writes/updates to \(x \) after \(w \), as well as all updates reading from an event in the release sequence of \(w \). For example, in the following program, the \(y_{\text{seq}} \) synchronizes with the \(y_{\text{out}} := 1 \) because it reads from the \(y_{\text{++}} \), which in turn reads from the \(y_{\text{:=}} \).

\[
\begin{align*}
x &: 1; \\
y_{\text{rel}} &: 1; \\
y &: 2; \quad \begin{array}{l}
y_{\text{:=}} &: y_{\text{seq}}; \quad \# 3 \\
b &= x; \quad \# \neq 0
\end{array}
\end{align*}
\]

Our operational semantics already handles the case of reading from a later write of the same thread, because the thread’s release view for \(y \) is included in the message’s view. To handle the updates that read from elements of the release sequence, we insist that the view of the write message of an update must incorporate the view of the read message of the update. Thus, in this example, the views of all the \(y \) messages contain \(x@t_2 \), and hence \(T_3 \) must read \(x = 1 \).

Promises over Acquires We finally point out another delicate issue related to the interaction between promises and release/acquire accesses. Consider the following variants of the (LB) example:

\[
\begin{align*}
a &:= x; \quad \# 1 \\
y_{\text{rel}} &: 1; \quad x := y; \quad (\text{LBa}) \\
a &= x_{\text{seq}}; \quad \# 1 \\
y &:= 1; \quad (\text{LB})
\end{align*}
\]

In the first variant (LBa), the promise of \(y_{\text{rel}} := 1 \) should be forbidden for the same reason that a promise over a release fence is forbidden, and hence the specified behavior is disallowed. We note that this behavior is possible under the C++ model, but is not possible under the usual compilation of release/acquire accesses to Power and ARM (using a `1wSYNC/1dmb`.ary fence in the first thread).\(^3\)

In the second variant (LBa), we allow the promise of \(y := 1 \) and thus the \(a = 1 \) outcome. The reason is that we want to enable optimizations that result in the elimination of an acquire read and thus remove the reordering constraints of the acquire. Consider, for example, the following program transformation:

\[
\begin{align*}
a &:= x; \quad \# 2 \\
y &:= 1; \\
b &= y_{\text{seq}}; \\
y &:= 2; \\
a &= x; \quad \# 2
\end{align*}
\]

which may in effect reorder the \(y := 2 \) write before the \(a := x \) read even though there is an acquire read in between (by first replacing \(y_{\text{seq}} \) with 1 and then reordering \(a := x \) past both writes to \(y \)). Thus, our semantics has to allow promises over acquire actions. Note that there is no need to do so for release writes, because release writes cannot simply be eliminated in this way.

Remark 1. Our model explicitly forbids promises over release accesses to the same location (release writes to location \(x \) can only be performed by a thread \(T \) when the set of promises of \(T \) do not include a promise for \(x \)). This restriction allows us to simplify one part in the DRF proof. Nevertheless, we believe it is redundant as an explicit condition, and we leave its removal to future work.

4.2 Sequentially Consistent (SC) Atomics

As with the previous features, we will explain the handling of SC atomics in our model in a layered fashion.

SC Fences The first extension is to handle SC fences, whose purpose is to allow the programmer to enforce strong ordering guarantees among memory accesses. In particular, one would expect that full sequential consistency is restored if an SC fence is placed between every two shared memory accesses of a program.\(^4\)

To handle SC fences, we extend our machine state with a `global` timemap, which records the latest messages written by any thread before an SC fence. When a thread \(T \) executes an SC fence, in addition to the effect of both an acquire and a release fence, \(T \) increases both its `Cur` view and the global timemap to the maximum of the two. Consider the following variant of the (SB) example:

\[
\begin{align*}
x &: 1; \\
y &: 1; \\
\text{fence-sc;} &\quad a := y; \quad \# 0 \\
\text{fence-sc;} &\quad b := x; \quad \# \neq 0
\end{align*}
\]

Here, the current views of the two threads just before their SC fences are \([x@t_3, y@0] \) and \([x@0, y@t_3] \), respectively, while the global view is \([x@0, y@0] \). If the fence of \(T_1 \) is executed first, it will update \(S \) to \([x@t_3, y@0] \). So, when the fence of \(T_2 \) is executed, both its `Cur` view and `S` become \([x@t_3, y@t_3] \), from which point onwards \(T_3 \) read \(x = 1 \).

SC Accesses Besides SC fences, C++ also provides the notion of SC accesses, which can be thought of roughly as release/acquire accesses bundled with a “location-specific SC fence”. In the case of the (SB) example, ruling out the weak behavior without fences requires one to make all four accesses be SC accesses.

To handle these accesses, we need more machinery. First, we extend the notion of a view \(V \) —both message views \(R \) and the three component views of a thread (\(\text{Cur, Acq, Rel} \))—from being a single timemap to a pair of timemaps: one “normal” one \((V.rm)\) as before, and one for SC accesses \((V.ac)\), which must be higher in timestamp order than \(V.rm \) and which serves to restrict the possible timestamps available to future SC accesses. When performing an SC read, a thread has to respect its `Cur.ac` timemap, and update its views similarly to an acquire read. When performing an SC write, again, a thread has to respect its `Cur.ac` timemap, and update its views similarly to a release write; but it also has to respect the global SC timemap \(S \) (by picking a timestamp greater than the one recorded in \(S \)), and include \(S \) in its new timemap `Cur.ac`.

\(^3\)Moreover, we observe that even the C++ model forbids this outcome, if we additionally make the read of \(y \) in the second thread into a consume read (which is supposed to be compiled exactly as a relaxed read, but preserving syntactic dependencies).

\(^4\)Our semantics is stronger than the original C++ model [6] as well as [5], both of which fail to validate this basic property.
4.3 “Plain” Non-Synchronizing Accesses

Both C++ and Java provide some form of non-synchronizing accesses, i.e., accesses that are meant to be used only for non-racy data accesses (C++’s non-atomic accesses and Java’s normal accesses). Such accesses can never achieve synchronization, even together with fences. Consequently, compilers are free to reorder non-synchronizing reads across acquire fences, and to reorder release fences across non-synchronizing writes. These non-synchronizing accesses, which we refer to as plain accesses, are easily supported in our model. The difference from relaxed accesses is simple: a plain read from a message \(m \) should not incorporate \(m, \text{view} \) into the thread’s \(\text{view} \) view; and a message \(m \) produced by a plain write should only carry the 0-view (i.e., \(\bot \) in the lattice of views).

Besides the reordering mentioned above, compilers can (and do) utilize further the assumption that some accesses are intended to be non-racy. Indeed, assuming two non-racy reads, a compiler may reorder them when they are reading the same location. In a broader context, it may pave the way to further optimizations (e.g., a compiler may like to unconditionally optimize \(a := x; b := *p; c := x \to b := *p; a := x; c := a \), without the burden of analyzing whether the pointer \(p \) points to \(x \) or \(o \). Since we followed C++’s assumption of full per-location coherence for our relaxed accesses, the reordering of two reads from the same location is unsound for them. Concretely, consider the following example:

\[
\begin{align*}
x &:= 1; & a &:= x; & 2 \quad \text{or} & x &:= 1; & b &:= x; & 1 \\
x &:= 2; & a &:= x; & 2 \quad \text{or} & x &:= 2; & a &:= x; & 2
\end{align*}
\]

The target program obviously allows the specified behavior, while the source does not. Fortunately, it is not hard to adapt our plain accesses to provide only partial per-location coherence (in C11 terms, dropping “coherence-RR”), consequently allowing this reordering. Again, the idea is to extend our views with another timemap \(\text{V.pln} \) (in addition to \(\text{V.rlx} \) and \(\text{V.ac} \)) that is generally smaller than the normal timemap \(\text{V.rlx} \). A plain read from a message \(m \) with location \(x \) and time \(t \) only consults this new timemap, checking that \(\text{Cur.pln}(x) \leq t \), and only updates \(\text{Cur.rlx}(x) \) and \(\text{Cur.ac}(x) \) to include \(t \). A plain write, on the other hand, cannot pick a timestamp smaller than \(\text{Cur.rlx}(x) \) (since we do maintain the coherence properties besides “coherence-RR”).

Importantly, we do not exploit “catch-fire” semantics (à la C++) to accommodate our plain accesses, but rather give a well-defined semantics to arbitrary racy programs. In addition, we note that it is easy to decouple the two weaknesses of plain accesses compared to relaxed ones by introducing a middle access mode that allows synchronization (together with release and acquire fences), but supports only partial per-location coherence.

Remark 2. We currently assume that modern hardware performs all writes and reads atomically (so, we do not have non-atomic locations). Extending our semantics for actual non-atomic reads/writes can be straightforwardly done by introducing “garbage values” (LLVM-style undefined values [2]).

4.4 System Calls

For the purpose of defining the behaviors of programs (as needed to prove soundness of transformations), we augment our language and semantics with system calls labeled with “SysCall\((v) \)”. These are operations that are visible to an external observer (e.g., printing statements). For simplicity, we assume that these take one value (input or output), and more importantly, that they do not access the memory, and serve as the strongest barrier for reordering. Thus, we simply model system calls as SC fenses.

4.5 Modifying Existing Promises

So far, our model does not allow promises, once made, to be changed. However, our full model does allow two forms of promise adjustment, both of which are defined in such a way that threads that have already read from the promised message are unaffected.

Split. The first form of promise adjustment is splitting. Consider the following example:

\[
\begin{align*}
a &:= x; & 2 \quad \text{if } a &= 2 & y++;
\end{align*}
\]

Here, \(y++ \) denotes a fetch-and-add instruction that increments \(y \) by \(2 \). We find it natural to allow the specified behavior, as it can be obtained by benign compiler optimizations: first \(y++ \); \(y++ \) can be merged to \(y++ \), and then the whole if-then-else statement can be replaced by \(y++ \). Nevertheless, the model described so far forbids this behavior. Indeed, clearly, an execution obtaining this behavior must start with \(T_1 \) promising a message of the form \(y : 2@ (f, t) \). Since certification is needed for any future memory, it must take \(f = 0 \) (or else, it cannot fulfill its promise for a memory that includes, say, \(y : 42@ (0, 5) \)). Then, \(T_2 \) can read the promise and add a message of the form \(x : 2@ (t, t) \) to the memory. Now, \(T_1 \) would like to read this message. However, if it does so, it will not be able to fulfill its promise \(y : 2@ (0, t) \), simply because there is no available timestamp interval in which it can put the first \(y = 1 \) message. To solve this, we allow threads to split their own promises in two pieces, keeping the original promise with the same \(m \)-to-value. For the example above, \(T_1 \) could proceed by splitting its promise \(y : 2@ (0, t) \) into \(y : 1@ (0, t/2) \) and \(y : 2@ (t/2, t) \), reading the message \(x : 2@ (t, t) \) and fulfilling both promises.

Lower. The second form of promise adjustment is lowering of the promised message’s view. Note that by promising a message carrying a high view, a thread places more restrictions on the readers of that promise. Thus, changing the view of a promise \(m \) to a view \(R' \leq m \text{view} \) can never cause any harm. Technically, including this option simplifies our simulation arguments used to prove the soundness of program transformations, by allowing us to have a simpler simulation relation between the source and target memories. More generally speaking, it allows us to prove and use the following natural property: if all the views included in some machine state MS (in its memory’s messages and its thread’s views) are less than or equal to all views in another machine state MS’, then every behavior of MS’ is also a behavior of MS.

4.6 Formal Model

Finally, we formally present our full model, combining and making precise all the ideas outlined above. The model employs four modes for memory accesses, naturally ordered as follows:

\[
\text{pln} \sqsubseteq \text{rlx} \sqsubseteq \text{ra} \sqsubseteq \text{ac}
\]

We use \(o \) as a metavariable for access mode. The programming language is modeled by a transition system whose transition labels (see §2.2) are: “Silent” for local transitions; \(R(o, x, v) \) for reads; \(w(o, x, v) \) for writes; \(U(o, e, o, x, v, t_1, v_0) \) for update; \(F_{eq}, F_{as}, F_{ac} \) for fences; and SysCall\((v) \) for system calls. Note that updates have two access modes, one for the read and one for the write.

View. A view is a triple \(V = \langle T_{pln}, T_{rlx}, T_{ac} \rangle \) of timemaps (see §2.2) satisfying \(T_{pln} \leq T_{rlx} \leq T_{ac} \). We denote by \(V_{pln}, V_{rlx}, V_{ac} \) the components of \(V \). View denotes the set of all views.

Messages. A message \(m \) is a tuple \((x : v : f, t, R) \), where \(x \in \text{Loc}, v \in \text{Val}, f, t \in \text{Time}, \) and \(R \in \text{View}, \) satisfying \(f < t \) and \(R.\text{rlx}(x) \leq t \). We denote by \(m.\text{loc}, m.\text{val}, m.\text{from}, m.\text{to}, \) and \(m.\text{view} \) the components of \(m \).
Memory A *memory* is a (nonempty) pairwise disjoint finite set of messages (see §3 for def. of disjointness). A memory M supports the following insertions of a message $m = \langle x : v@t, R \rangle$:

- The **additive insertion**, denoted by $M \leftarrow m$, is only defined if $\{ m \} \not\subseteq M$, in which case it is given by $\{ m \} \cup M$.
- The **splitting insertion**, denoted by $M \leftarrow m$, is only defined if there exists $m' = \langle x : v'@t, R' \rangle$ with $t < t'$ in M, in which case it is given by $M \setminus \{ m' \} \cup \{ m, x : v'@t, R' \}$.
- The **updating insertion**, denoted by $M \leftarrow m$, is only defined if there exists $m' = \langle x : v@t, R' \rangle$ with $R \subseteq R' \in M$, in which case it is given by $M \setminus \{ m' \} \cup M \setminus \{ m \}$.

Closed Memory. Given a timemap T and a memory M, we write $T \in M$ if, for every $x \in L$, we have $T(x) = m$.to for some $m \in M$ with $m.loc = x$. For a view V, we write $V \subseteq M$ if $T \in M$ for each component timemap of V. A memory M is **closed** if $m.view \in M$ for every $m \in M$.

Future Memory. For memories M, M', we write $M \rightarrow M'$ if $M' \subseteq \{ M \leftarrow m, M \leftarrow m, M \leftarrow m \}$ for some message m, and M' is closed. We say M' is a *future memory* of M w.r.t. a memory P, if M' is closed, $P \subseteq M'$, and $M \rightarrow M'$.

Thread. A *thread view* is a triple $V = (cur, acq, rel)$, where $cur, acq \in View$ and $rel \in Loc \rightarrow View$ satisfying $rel(x) \leq cur \leq acq$ for all $x \in Loc$. We denote by $V.cur, V.acq$ and $V.rel$ the components of V. A *thread state* is a triple $TS = (\sigma, V, P)$ defined just as in §2.2 except with a thread view V instead of a single timemap (σ is a local state and P is a memory). We denote by $TS.st, TS.view$ and $TS.prm$ the components of TS.

Thread Configuration Steps. A *thread configuration* is a triple (TS, S, M), where TS is a thread state, S is a timemap (the global SC timemap), and M is a memory.

Figure 3 presents the full list of thread configuration steps. To avoid repetition we use the additional rules **READ-HELPER** and **WRITE-HELPER**. These employ several helpful notations: \perp and \sqsupseteq denote the natural bottom elements and join operations for timemaps and for views (pointwise extensions of the initial timestamp 0 and the \sqsupseteq—i.e., max—operation on timestamps); $\{ x@t \}$ denotes the timemap assigning t to x and 0 to other locations; and $(cond ? X)$ is defined to be X if $cond$ holds, and \perp otherwise.
The write and the update steps cover two cases: a fresh write to memory (MEMORY:NEW) and a fulfillment of an outstanding promise (MEMORY:FULFILL). The latter allows to split the promise or lower its view before its fulfillment (note that when \(m \in P \subseteq M \), we have \(P = P \preceq M \) and \(M = M \preceq M \) by def. of \(\preceq \)).

Consistency of Thread Configurations. A thread configuration \((TS, S, M)\) is called consistent if for every future memory \(M_{future} \) of \(M \) w.r.t. \(TS \).prm and every timemap \(S_{future} \) with \(S \subseteq S_{future} \subseteq M_{future} \), there exist \(TS', S', M' \) such that:

\[
(TS, S_{future}, M_{future}) \rightarrow^* (TS', S', M') \land \ TS'.prm = \emptyset
\]

Machine and Behaviors A machine state is a triple \(MS = (TS, S, M) \) consisting of a function \(TS \) assigning a thread state to every thread, an SC timemap \(S \), and a memory \(M \). The initial state \(MS^0 \) (for a given program) consists of the function \(TS^0 \) mapping each thread \(i \) to its initial state \(\sigma_i^0 \), the zero thread view (all timestamps in all timemaps are 0), and an empty set of promises; the zero timemap \(S^0 \); and the initial memory \(M^0 \) consisting of one message \((x : @0/0) \) for each location \(x \). The machine step is defined by the last rule in Figure 3. The variable \(e \) in the final thread configuration step can either be a usual step (\(e \) is empty), or denote a system call (\(e = \text{SysCall}() \)).

Finally, to define the set of behaviors of a program \(P \) (namely, what is externally observable during \(P \)'s executions), we use the system calls that \(P \)'s executions perform. More precisely, every execution induces a sequence of system calls (each may include a specific value for input/output), and the set of behaviors of a program \(P \) is taken to be the set of all system call sequences induced by executions of \(P \).

5. Results

In this section we outline the main properties that hold in our model.

5.1 Compiler Transformations

A transformation \(P_{ac} \sim P_{bg} \) is sound if it does not introduce new behaviors under any (parallel and sequential) context, that is, for every context \(C \), every behavior of \(C[P_{ac}] \) is a behavior of \(C[P_{bg}] \).

Next, we list the program transformations proven to be sound in our model. To streamline the presentation, we refer to transformations on the semantic level, as if they are applied on actions, namely fences and (valueless) memory accesses. Thus, we presuppose adequate syntactic manipulations on the program level that implement these semantic transformations. For example, a syntactic transformation implementing \(R_{x1} \rightarrow R_{x2} \) is a reordering \(a ::= x; b ::= y \rightarrow b ::= y; a ::= x \) on the program code (assuming \(a \neq b \)); while a merge of a write and an update correspond, e.g., to a syntactic transformation of the form \(x ::= a; x++ \rightarrow x ::= a + 1 \).

Nevertheless, our formal development proves soundness of transformations on the purely syntactic level, assuming a simple programming language with memory operations, conditionals, and loops.

Trace-Preserving Transformations Transformations that do not change the set of traces of actions in a given thread are clearly sound. For example, \(y ::= a + 1 - a \sim y ::= 1 \) is a sound transformation (recall that \(a \) denotes a local register; see §1.1LBd). Indeed, this is the crucial property that distinguishes a memory model for a higher-level language from a hardware memory model.

Strengthening A simple transformation that is sound in our model is strengthening of access modes. A read/write action \(X_c \) can be transformed to \(X_p \) provided that \(o \subseteq o' \). Similarly, it is sound to replace \(U_{o_1,o_2} \) by \(U'_{o'_1,o'_2} \) provided that \(o_1 \subseteq o'_1 \) and \(o_2 \subseteq o'_2 \), or to strengthen \(F_{acq} \) or \(F_{seq} \) to \(F_{acq} \).

Reorderings Next we consider transformations of the form \(X; Y \sim Y; X \), and specify the set of reorderable pairs, that is the set of pairs \(X; Y \) for which we proved this reordering transformation to be sound in our model. First, the following pairs are reorderable (where \(x \) and \(y \) denote distinct locations):

- \(W_{x1}; R_{x2}^w \) unless \(o_1 = o_2 = \text{sc} \)
- \(W_{x1}^r; W_{x2}^r \)
- \(R_{x1}; R_{x2}^r \) and \(R_{x1}^r; R_{x2}^r \)
- \(R_{x1}^r; W_{x2}^r \)
- \(R_{x1}; F_{acq} \)
- \(F_{acq}; F_{acq} \)
- \(F_{re1}; W_{x2}^r \)
- \(F_{re1}; R \)
- \(F_{re1}; F_{acq} \)
- \(F_{re2}; F_{acq} \)

In addition, for the purpose of specifying reorderable pairs, an update is just a combination of a read and a write. Thus, \(X; U_{o_1,o_2} \) is reorderable if both \(X; R_{o_1} \) and \(X; U_{o_2} \) are reorderable, and symmetrically \(U_{o_1,o_2}; X \) is reorderable if both \(R_{o_1}; X \) and \(W_{o_2}; X \) are reorderable. In particular, if an \(U_{o_1,o_2}; X \) is reorderable if \(x \neq y, o'_1 \subseteq r1x, o'_2 \subseteq r1x \), and either \(o'_1 \neq \text{sc} \) or \(o'_2 \neq \text{sc} \).

The set of reorderable pairs in our model contains all pairs that are reorderable in the C++ model [24], as well as those intended to be reorderable in the Java memory model, including in particular all "roach-motel reorderings" [25].

Merges These are transformations that completely eliminate an action. Clearly, the two actions in mergeable pairs (pairs for which we proved the merge to be sound in our model) should access the same location. Now, the following four kinds of pairs are mergeable:

- \(R_{acq}; R_c \)
- \(W_{acq}; W_c \)
- \(R_{after-R}; R_c \)
- \(W_{after-W}; W_c \)

Using the strengthening transformation, the access modes here can be read as upper bounds (e.g., \(R_{acq}; R_{acq} \) can be first strengthened to \(R_{acq}; R_{acq} \) and then merged). Note that the elimination of redundant read-after-write allows the write to be relaxed (thus we support the optimization that eliminates the acquire read, see §4.1). Nevertheless, an SC-read cannot be eliminated in this case, unless it follows an SC-write. Indeed, elimination of a an SC-read after a non-SC-write is unsound in our model. We note that while this elimination is allowed by a certain fix of of C++ described in [24], its effectiveness seems to be low, and, in fact, it is already unsound in the strengthening of the SC semantics in C++ that was proposed in [5] (see Appendix C for a counterexample).

In addition, the following pairs involving updates are mergeable:

- \(U_{r1x,r1x}; R_{r1x} \)
- \(U_{r1x,r1x}; F_{acq} \)
- \(U_{r1x,r1x}; F_{seq} \)
- \(U_{r1x,r1x}, R_{r1x} \)

Note that read-after-update does not allow the read to be an acquire read unless the update includes an acquire read (unlike read-after-write elimination). This is due to release sequences: eliminating an acquire read after a relaxed update may remove the synchronization due to a release sequence ending in this update.

Finally, two fences of the same type can obviously be merged.

With the exception of “SC-read after non-SC-write” mentioned above, the set of mergeable pairs in our model contains all pairs that are mergeable in the C++ model [24], and in the Java memory model [25]. In particular, note that we support R-after-W merging, which is the effect of local satisfaction of reads in hardware like TSO, Power, and ARM.

Unused Plain Read Elimination Finally, we proved that it is sound to eliminate plain read accesses if the values read are never used in the program.

Proof Technique Our proof of these results employs the well-known approach of simulation relations between the target and the source programs. Importantly, our definitions ensure thread-locality,
thus allowing us to define a simulation relation on thread configurations, which (as we prove) can be composed into a simulation relation on full machine states. Additionally, for thread configurations, we prove the adequacy of simulation up-to context, which lets us to ignore the certification processes in the source and the target, and just provide simulations between simple “code snippets”.

All the above transformations are fully validated in Coq (see our supplementary material [1]).

5.2 Compilation to TSO and Power

We briefly touch upon the correctness of compilation of our model to TSO and Power. To carry out this proof, we use a recent result by Lahav and Vafeiadis [17], which reduces the soundness proof of compilation to TSO and Power to (i) supporting a basic set of compiler transformations; and (ii) a soundness proof of compilation for stronger models: SC for TSO and “StrongPower” for Power. StrongPower is a strengthening of Herd’s axiomatic Power model [4], that does not allow cycles in the entire program order together with the reads-from relation (and thus, does not admit the weak behavior in (LB)).

Given that we have already proved a sufficiently large set of transformations in §5.1, it now suffices to verify the compilation to SC and StrongPower. Compilation to SC is trivial, and it remains to show that every behavior allowed by StrongPower is also allowed by our model. To prove this final statement, it suffices to consider only promise-free executions of our model. (Note that this does not contradict the fact that promises are needed to explain weak behaviors of the (non-strong) Power model, such as in (LB)).

As a major step towards that goal, we developed an axiomatic presentation of our promise-free semantics (see Appendix B), which is a strengthening of the C++ model. This axiomatic semantics can straightforwardly be shown to be weaker than the StrongPower model under a conservative compilation scheme (that places a lightweight fence after every acquire or SC read). We believe that this axiomatic semantics is also sufficient for proving the correctness of the more efficient compilation scheme (that uses a control dependency and an isync fence), but we leave this to future work.

5.3 DRF Theorems

We proceed with an explanation of our DRF theorems. These theorems provide ways of restricting attention to better-behaved subsets of the model assuming certain conditions on programs.

Evidently, the most complicated part of our semantics is the promises. Without promises, our model amounts to a usual operational model, where thread steps only arise because of program instructions. Hence, our first DRF result (and the one that is by far the most challenging to prove) identifies a set of programs for which promises cannot introduce additional behaviors. Specifically, we show that this holds for programs in which all racy accesses are either release/acquire or SC, assuming a promise-free semantics. Crucially, as usual in DRF guarantees, the races are considered under the stronger semantics (promise-free), not the full model, thus allowing programmers to adhere to this programming discipline while being completely ignorant of the weak semantics (promises).

More precisely, we say that a machine state MS is o-race-free, if whenever two different threads may take a (non-promise) step accessing the same location, then both accesses are reads or both have access mode strictly stronger than o.

Theorem 1 (Promise-Free DRF). Let ⇒ be the restriction of machine steps that does not include the (PROMISE) steps. Suppose that every machine state that is ⇒-reachable from the initial state of a program P is rlx-race-free. Then, the behaviors of P according to the full machine coincide with those according to the ⇒-machine.

Putting promises aside, a counter-intuitive part of weak memory models are the relaxed accesses, which allow threads to observe writes without observing previous writes to other locations. Removing pIn/rlx accesses, namely keeping only ra and ac, substantially simplifies our machine (in particular, its thread views would consist of just one view, the Qax one). Accordingly, our second DRF result states that it suffices to show that there are only races on ra or ac-accesses under release/acquire semantics in order to conclude that the program has only release/acquire behaviors.

Theorem 2 (DRF-RA). Let ra ⇒ be identical to ⇒ in Theorem 1, except for interpreting rlx and pIn accesses in program transitions as if they are all ra-accesses. Suppose that every machine state that is ra⇒-reachable from the initial state of a program P is ra-race-free. Then, the behaviors of P according to the full machine coincide with those according to ra⇒-machine.

The more standard DRF-guarantee, which we call DRF-SC, forbids any weak behavior in programs that, under SC semantics, only race on SC accesses. For this theorem we consider “an interleaving machine”, whose steps follow the usual SC-semantics: each read from the latest write to the appropriate location (ignoring the access modes mentioned in the program transitions).

Theorem 3 (DRF-SC). Let ra⇒ denote the steps of the interleaving machine. Suppose that every machine state that is ra⇒⇒-reachable from the initial state of a program P is ra-race-free. Then, the behaviors of P according to the full machine coincide with those according to ra⇒⇒-machine.

Our proof of Theorem 1 is fully mechanized in Coq. For the other two theorems, we give proof outlines in Appendix A.

5.4 An Invariant-Based Program Logic

Besides the DRF guarantees, to demonstrate that our model does not suffer from the disastrous consequences of OOTA, we prove soundness of a very simple program logic for concurrent programs with respect to our model. This logic is sufficiently weak to be sound even if all accesses are plain (the weakest mode in our model). Note that even this basic logic is unsound for C++’s relaxed accesses.

We take a program proof to be a tuple (J, S1, S2, ...), where J is a global invariant over the shared variables and each Si ⊆ State, is a set of local states (intuitively describing the reachable states of thread i) such that the following conditions hold:

• σ0 ∈ Si and \(\bigwedge_{x \in \text{loc}} x = 0 \vdash J\).
• If σ1 \(\sigma[0, x] \rightarrow\) then σ1 ∈ Si ∧ J ∧ x = v \(\vdash\) σ′ ∈ Si.
• If σ1 \(\sigma[0, x, v] \rightarrow\) then σ1 ∈ Si ∧ J \(\vdash\) σ′ ∈ Si ∧ J[v/x].
• If σ1 \(\{\text{acq}, x, v\} \rightarrow\) then σ1 ∈ Si ∧ J \(\vdash\) σ′ ∈ Si ∧ J[v/x].

Then, given a program proof for a program P, we can show that all the reachable states MS of the initial state MS0 of P satisfy the global invariant J:

Theorem 4 (Soundness). Let (J, S1, S2, ...) be a program proof, and let MS = (TS, S, M) such that MS0 ⇒∗ MS. Then, TS(i), t ∈ Si for every thread i, and \(\bigwedge_{x \in \text{loc}} x = f(x), \text{val} \vdash J\) for every function f that assigns to every location x a message m ∈ M such that m.loc = x.

The proof of this theorem is simple and is fully mechanized in our Coq development [1]. It holds trivially for promise-free executions, and extends easily to promise steps, since, roughly speaking, every promise step has a promise-free certification.
6. Related Work

There have been many proposals for solving the “out of thin air” problem. Several of them have come with proofs of DRF guarantees, but ours is the first to come with formal (and machine-checked) validation of a wide range of essential merges and reorderings ($\S 5.1$) concerning a full spectrum of features from the C++ model.

The first major attempt to solve the “out of thin air” problem was by the Java memory model (JMM) [19] (see also [18]). The JMM intended to validate all the compiler optimizations that Java compilers and just-in-time compilers might perform, but its formal definition failed to validate them [25]. Subsequent fixes were proposed to the model, which improved the set of enabled optimizations, but still falling short of what actual Java compilers were performing.

To resolve some of the problems with the JMM definition, Jagadeesan et al. [14] proposed an operational model following quite closely the intended behavior of the JMM, but employing the notion of a speculation. Speculations are similar to our notion of promises, but unlike promises they are not certified thread-locally: whereas we model interference conservatively by quantifying over all future memories during certification, they model interference from other threads more precisely by executing threads together during certification. We believe our conservative approach is sufficient for justifying standard compiler optimizations, which are typically thread-local, and moreover it simplifies the presentation of the semantics and the development of the meta-theory.

Jagadeesan et al.’s model satisfies the standard DRF theorem, as well as a DRF theorem saying that speculations are unnecessary for programs without read-write races. It is unknown, however, whether it validates read-read and read-write reorderings. If it does not, then it cannot be compiled to Power and ARM without additional fences for plain accesses, which would render the model impractical. Their model omits updates and fences.

More recently, Jeffrey and Riely [15] presented a weak memory model based on event structures. Their model admits the DRF-SC theorem, but does not fully allow the reordering of independent memory accesses, and thus cannot be compiled to Power/ARM without extra fences. The paper suggests an idea about how to fix the model to support such reorderings, but it is not known whether the suggested fixed model avoids OOTA behaviors. Relating to our work, their model seems to be “promising” reads (instead of writes) and restricting the quantification over possible futures to only those that could arise from further execution of the current program. The model only supports relaxed accesses and locks.

Pichon-Pharabod and Sewell [21] introduced an event structure model with both a normal reduction rule, which executes an initial event of the event structure, and special reduction rules that mimic the effect of standard compiler optimizations on the event structure. These optimization rules include a rather complex rule for non-thread-local optimizations that can declare a whole branch of the event structure unreachable. The paper does not present any formal results about the model. It is worth noting that the model does not support the weak behavior of the (ARM-weak) program and thus may not be compiled to ARM without additional fences. The model only handles relaxed and non-atomic accesses and locks.

Podkopaev et al. [22] proposed an operational model covering a large subset of the features of the C++ model. They provide many litmus tests to demonstrate the suitability of their model, but do not prove any formal results about it. Their model ensures per-location coherence in a very similar way to our model: using timestamps. In order to handle read-write reorderings, they allow reads to return symbolic values, which are then evaluated at a later point in time when their value is actually needed. This approach gives the expected behaviors to the (LB) and (LBd) programs, and may be extended with a set of syntactic symbolic simplification rules to also give the expected result to the (LBd) program. It seems, however, very difficult to extend this approach to enable code motion optimizations, where some common code is pulled out of two branches of a conditional. What makes code motion more challenging is that the common code may become apparent only after some earlier transformations, like for example the $y := 1$ assignment in the following code:

\[
\begin{align*}
& a := x; \# 1 \\
& \text{if } a = 1 \text{ then } y := a; \text{ else } (z := 1; y := z) \\
& \quad \quad y := x;
\end{align*}
\]

Our model allows the annotated behavior of the program above, precisely because our promises are semantic in nature and thus avoid the brittle tracking of syntactic data dependencies.

Zhang and Feng [26] suggested an operational model for Java accesses in which threads may re-execute some memory events. The model admits DRF-SC, and its replay mechanism enables it to support local transformations. However, again, to avoid OOTA, the replay mechanism is limited by its tracking of syntactic dependencies between instructions, and thus it fails to validate behaviors resulting from trace-preserving transformations like the one above.

Other proposals for language-level memory models have tried not to solve the OOTA problem, but to avoid it, by introducing stronger models where read-write reordering is not allowed. For example, Ševčik et al. [23] and Demange et al. [10] proposed using TSO as the memory model for C and Java, respectively. These proposals may be reasonable compromises if the only target machines of interest also follow the TSO model, but are prohibitively expensive on weaker architectures, such as Power and ARM, because enforcing TSO on those machines requires essentially as many fences as enforcing SC. In a similar line of work, Lahav et al. [16] introduced a strengthening of the release/acquire fragment of the C++ memory model, which they called SRA, together with an operational semantics for SRA. Compiling SRA to Power and ARM is cheaper than TSO, but still requires some fences before or after every shared variable access, and may thus not be suitable for performance-critical code.

Finally, another approach is to embrace OOTA and allow it. This was the approach taken by Batty et al.’s formalization of C++ [6], and by the OpenCL model [12], as well as by Crary and Sullivan [9], who introduced a more fine-grained specification of the orders that the model is supposed to preserve. All of these models allow the weak behavior of the (LBd) example, thereby invalidating standard reasoning principles and DRF theorems.

7. Future Work

There are a number of interesting issues remaining for future work.

Global Optimizations In our model, we insist that promises can always be certified thread-locally. This decision enables thread-local reasoning about our semantics and suffices to justify all the known thread-local program transformations that a compiler or the hardware may perform. It does, however, render unsound some transformations of a global nature, such as sequentialization, which merges threads together. To see this, consider the following:

\[
\begin{align*}
& a := x; \# 1 \\
& \text{if } a = 0 \text{ then } y := x; \quad \sim \quad a := x; \# 1 \\
& \quad \quad x := y; \\
& \text{if } a = 0 \text{ then } x := 1; \\
& \quad \quad y := x; \\
& \text{if } a = 1 \text{ then } x := 1; \quad \sim \quad x := y;
\end{align*}
\]

This source program disallows the specified behavior because if T_1 reads 1 for x after promising $x := 1$, then it will not be able to fulfill its promise. Nevertheless, the result $a = 1$ is allowed in the target program (obtained by sequentializing T_1 before T_2). Here, T_1 can safely promise $y := 1$, and later read $x := 1$ from T_2’s
write. While sequentialization seems like a transformation that no compiler would perform, there might be other more useful global optimizations. Investigating what global optimizations are supported in our model is left for future work.

Liveness It is natural to extend our operational model with liveness guarantees, and it is useful and interesting to see their interaction with the various program transformations and the DRF theorems. Liveness issues are currently mostly ignored in weak memory research.

Program Logic The program logic presented in §5.4 only establishes the very basic sanity of our memory model. Developing a useful program logic for this model is another direction for future work.

Compilation to ARM Showing the correctness of compilation of our model to ARMv8 is also an important direction. To the best of our knowledge, we know of no example that exhibits more behaviors in ARMv8 than in our model.

References

[1] Coq development for this paper available at the following URL: http://sf.smu.ac.kr/promise-concurrency.

5 Though sequentialization is a very intuitive property that one might expect a memory model to validate, we observe that TSO [20], Power [4], ARMv8 [11], Java [19], and C/C++11 [6] (without the corrections proposed in [24]) all do not allow sequentialization.
A. Proofs for DRF-RA and DRF-SC

We define the set of memory events $\alpha \in ME$ as follows:

\[
\begin{align*}
\{ \text{silent} \} \\
\cup \{ \text{read}(o, x, t) \mid o \in AM, x \in Loc, t \in Time \} \\
\cup \{ \text{write}(o, x, t) \mid o \in AM, x \in Loc, t \in Time \} \\
\cup \{ \text{update}(o, a, o_w, x, t_w) \mid o, a, o_w \in AM, x \in Loc, t_w \in Time \} \\
\cup \{ \text{fence}(T) \mid T \in \{ \text{acq}, \text{rel}, \text{sc} \} \} \\
\cup \{ \text{syscall}(v) \mid v \in \ldots \}
\end{align*}
\]

where $AM = \{ \text{pln}, \text{rlx}, \text{ra}, \text{sc} \}$.

We call the following events \textit{globally synchronizing}:

\[
\begin{align*}
\cup \{ \text{write}(o, x, t) \mid o = \text{sc} \} \\
\cup \{ \text{update}(o, a, o_w, x, t_w) \mid o_w = \text{sc} \} \\
\cup \{ \text{fence}(\text{sc}) \} \\
\cup \{ \text{syscall}(v) \mid v \in \ldots \}
\end{align*}
\]

Then we annotate promise free and release-acquire steps with the executed thread ids and memory events, denoted $\implies_{(i, \alpha)}$ and $\implies_{(i, \alpha)}^\text{fs}$ for the fs-machine.

Now, we prove two key lemmas for $\implies_{(i, \alpha)}$.

The first lemma states that removing a step does not essentially affect the subsequent irrelevant steps.

\textbf{Lemma 5 (Step removal).} Suppose we have a release-acquire execution

\[
\text{MS} \implies_{(i, \alpha_1)} \text{MS}_1 \implies_{(i, \alpha_2)} \cdots \implies_{(i, \alpha_n)} \text{MS}_n
\]

such that

\[
\forall k \geq 2, \text{MS}_k.\text{tha}(i_k).\text{view} \not\equiv \text{MS}_1.\text{tha}(i_1).\text{view}.
\]

Then we have $i_k \neq i_j$ for all $k \geq 2$ and the following execution

\[
\text{MS} \implies_{(i_2, \alpha_2)} \text{MS}'_2 \implies_{(i_3, \alpha_3)} \cdots \implies_{(i_n, \alpha_n)} \text{MS}'_n
\]

for some machine states MS'_k satisfying

\[
\forall k \geq 2, \forall \alpha_k \neq \alpha_i, \text{MS}'_k.\text{tha}(i).st = \text{MS}_k.\text{tha}(i).st
\]

\textbf{Proof.} There are only two cases where the first step with (i_1, α_1) affects a subsequent step with (i_k, α_k): either (i) the latter reads what the former wrote; or (ii) the former globally synchronizes. In case (i), the view $\text{MS}_k.\text{tha}(i_k).\text{view}$ becomes as high as the view $\text{MS}_1.\text{tha}(i_1).\text{view}$ because the read and write are ra-synchronized. This is impossible because it conflicts with the assumption. In case (ii), the effect is limited: MS'_k is the same as MS_k except the effect of the event α_k. More specifically, MS_k's memory may contain an extra message produced by α_k, and the threads other than i_1 in MS'_k are the same as those in MS_k except that every view in the former may be less than the corresponding view in the latter. By monotonicity, MS'_k has more behaviors than MS_k and thus we can construct such an execution. \hfill \square

The second lemma gives a condition for reordering independent executions.

\textbf{Lemma 6 (Step reorder).} Suppose we have a release-acquire execution

\[
\text{MS} \implies_{(i_1, \alpha_1)} \text{MS}_1 \implies_{(i_2, \alpha_2)} \text{MS}_2
\]

such that α_2 is not globally synchronizing and

\[
\text{MS}_1.\text{tha}(i_1).\text{view} \not\equiv \text{MS}_2.\text{tha}(i_2).\text{view}.
\]

Then we have $i_1 \neq i_2$ and MS_1' satisfying

\[
\text{MS} \implies_{(i_2, \alpha_2)} \text{MS}_1' \implies_{(i_1, \alpha_1)} \text{MS}_2.
\]

\textbf{Proof.} Basically a similar argument as in the previous lemma applies here: (i) α_2 should not read α_1; and (ii) the earlier step with α_2 does not affect the later step with α_1 since α_2 is not globally synchronizing. \hfill \square

\textbf{Theorem 7 (DRF-RA).} Let $\implies_{(\alpha)}$ be identical to \implies in Thm. 1, except for interpreting rlx and pln accesses in program transitions as if they are all ra-accesses. Suppose that every machine state that is $\implies_{(\alpha)}$-reachable from the initial state of a program P is rlx-race-free. Then, the behaviors of P according to the full machine coincides with those according to the $\implies_{(\alpha)}$-machine.

\textbf{Proof.} It suffices to show that (i) the existence of a rlx-race in the promise-free machine implies that in the $\implies_{(\alpha)}$-machine, and (ii) the behavior in the $\implies_{(\alpha)}$-machine and that in the promise-free machine coincide if P is rlx-race-free in the $\implies_{(\alpha)}$-machine. Then we can use Thm. 1 to finish the proof.

We prove both (i) and (ii) by a single simulation argument. We say a promise-free execution

\[
\text{MS}_0 \implies_{(i_1, \alpha_1)} \text{MS}_1 \implies_{(i_2, \alpha_2)} \cdots \implies_{(i_n, \alpha_n)} \text{MS}_n
\]

and a $\implies_{(\alpha)}$-execution

\[
\text{MS}'_0 \implies_{(i_1, \alpha_1)} \text{MS}'_1 \implies_{(i_2, \alpha_2)} \cdots \implies_{(i_n, \alpha_n)} \text{MS}'_n
\]

are simulated, if the following conditions hold:

1. $\forall k, j. \text{MS}_k.\text{tha}(j).st = \text{MS}'_k.\text{tha}(j).st$.
2. $\forall k, j. \text{MS}_k.\text{tha}(j).\text{view}.\text{Cur} = \text{MS}'_k.\text{tha}(j).\text{view}.\text{Cur}$.
3. $\forall k, j. \text{MS}_k.\text{tha}(j).\text{view}.\text{Acq} = \text{MS}'_k.\text{tha}(j).\text{view}.\text{Acq}$.
4. $\forall k, \text{MS}_k.\text{gsc} = \text{MS}'_k.\text{gsc}$; and
5. $\forall k, \text{MS}_k.\text{mem}$ and $\text{MS}'_k.\text{mem}$ have the same messages, except that the released view of a message in the $\implies_{(\alpha)}$-execution may be higher than that of the corresponding message in the promise-free execution.

This simulation proves (i), as a rlx-race in MS_k in the promise-free execution is also a rlx-race in MS'_k in the $\implies_{(\alpha)}$-machine, thanks to the condition 1. It also proves (ii) by the adequacy of the simulation relation.

Now we prove the simulation. Consider a promise-free step:

\[
\text{MS}_n \implies_{(i_{n+1}, \alpha_{n+1})} \text{MS}_n+1
\]

and we will find a corresponding $\implies_{(\alpha)}$-step that preserves the simulation relation:

\[
\text{MS}'_n \implies_{(i_{n+1}, \alpha_{n+1})} \text{MS}'_n+1
\]

Thanks to the simulation relation, there exists MS'_{n+1} such that $\text{MS}'_n \implies_{(i_{n+1}, \alpha_{n+1})} \text{MS}'_{n+1}$. If α_{n+1} is not reading (i.e., not a read or a update event), it is immediate from the semantics that the simulation relation is preserved. Now suppose $\alpha_{n+1} = \text{read}(o, x, t)$, and let k be such an index that $\alpha_k = \text{write}(a_n, x, t)$ (the update cases are similar), and R (and R') be the released view of $x@t$ in the promise-free execution (and $\implies_{(\alpha)}$-execution, respectively).

Now we proceed by a case analysis:

- Case $o_n = o_r \neq ra$.

Note that the current & acquire views of $\text{MS}_{n+1}.\text{tha}(i_{n+1})$ and $\text{MS}'_{n+1}.\text{tha}(i_{n+1})$ may diverge only due to the discrepancy of the read message’s released views (R and R') and the read’s access mode (o_r for the promise-free machine, and $o_r \neq ra$ for the $\implies_{(\alpha)}$-machine). A similar argument applies to the other machine state components in the simulation relation. Hence it suffices to show that $R = R'$ and $o_r = o_r \neq ra$, which clearly come from the assumption: in particular we have $R = \text{MS}_k.\text{tha}(i_k).\text{view}.\text{Cur} = \text{MS}'_k.\text{tha}(i_k).\text{view}.\text{Cur} = R'$ thanks to $o_w \neq ra$.

14 2016/7/8
Case $MS^t_k \ths(i_k).\view.Cur \leq MS^t_{i_n}.\ths(i_n).\view.Cur$. Since the released view $R' = MS^t_i \ths(i_k).\view.Cur$ of the read message is already incorporated in the current view, a similar argument to the above case also applies here.

Otherwise.

In this case, we construct a race in the $ Ra $-execution by repeatedly applying Lemma 5 to the execution:

$ MS^t_{j-1}Ra (i_{j},\alpha_{j}) MS^t_{k}Ra (i_{j+1},\alpha_{j+1}) \cdots Ra (i_{n},\alpha_{n}) MS^t_{n} $,

so that i_j (attempting to write to x with α_j) and i_{j+1} (attempting to read from x with α_{j+1}) race in a reachable machine state.

Let j be the first such an index (from n backwards) that $ MS^t_j \ths(i_j).\view.Cur \not\leq MS^t_{i_n}.\ths(i_n).\view.Cur $. By Lemma 5 there exists an Ra-execution:

$ MS^t_{j-1}Ra (i_{j+1},\alpha_{j+1}) MS^t_{j+1}Ra (i_{j+2},\alpha_{j+2}) \cdots Ra (i_{n},\alpha_{n}) MS^t_{n} $,

such that $ MS^t_{i_n}.\ths(i_{n+1}).st = MS^t_{i_n}.\ths(i_{n+1}).st $. By repetition, we have an Ra-execution:

$ MS^t_{k-1}Ra (i_{j},\alpha_{j}) MS^t_{j}Ra (i_{j+1},\alpha_{j+1}) \cdots Ra (i_{n},\alpha_{n}) MS^t_{n} $,

such that $ MS^t_{i_n}.\ths(i_{n+1}).st = MS^t_{i_n}.\ths(i_{n+1}).st $ and i_k is not executed at all from $ MS^t_{i_k} $ to $ MS^t_{n} $. Hence $ MS^t_{i_n}.\ths(i_{n+1}).st = MS^t_{i_n}.\ths(i_{n+1}).st $, thus i_k and i_{n+1} race in $ MS^t_{n} $.

Note that the repetition terminates, since the views in the machine states in the constructed execution is less than the views in the machine states in the original execution.

\[\square \]

Theorem 8 (DRF-SC). Let $ Ra $ denote the steps of the interleaving machine. Suppose that every machine state that is $ Ra $-reachable from the initial state of a program $ P $ is $ ra $-race-free. Then, the behaviors of $ P $ according to the full machine coincide with those according to the $ Ra $-machine.

Proof. We say that an execution in $ Ra $ is interleaving if any read step reads from the message with the greatest timestamp and any write step writes a message with a timestamp greater than any existing message’s timestamp. We call an interleaving $ ra $ execution simply an interleaving execution, which is ok because it is easy to see that they are equivalent.

Then it suffices to prove that (i) the existence of a $ ra $-race in an $ ra $ execution implies that in an interleaving execution, and (ii) the $ ra $ behaviors of $ P $ coincide with its interleaving behaviors if $ P $ is $ ra $-race-free in all interleaving executions. Then we can use Thm. 7 to finish the proof.

We prove both (i) and (ii) by the same argument. We say an $ ra $ execution

$ MS_0Ra (i_1,\alpha_1) MS_1Ra (i_2,\alpha_2) \cdots Ra (i_n,\alpha_n) MS_n $,

and an interleaving execution

$ MS_0Ra (i'_1,\alpha'_1) MS'_1Ra (i'_2,\alpha'_2) \cdots Ra (i'_n,\alpha'_n) MS'_n $,

are simulated, if the following conditions hold:

1. $ (i'_1, \alpha'_1), \ldots, (i'_n, \alpha'_n) $ is an reordering of $ (i_1, \alpha_1), \ldots, (i_n, \alpha_n) $ such that the order of globally synchronizing events including system calls is preserved; and
2. $ MS_0 = MS'_0 $ and $ MS'_n = MS_n $.

If we prove that given any $ ra $ execution of length $ n $ there exists a simulating interleaving execution, then we are done as follows. Given any (possibly infinite) $ ra $ execution and any number of steps $ n $, we can find an interleaving execution of the same length leading to the same machine state with the same sequence of observable events (i.e., system calls). Thus, any arbitrarily long observation on an $ ra $ execution cannot be distinguished from that on an interleaving execution. Also, if there is any $ ra $ execution leading to a $ ra $-racable machine state, we can find a simulating interleaving execution to the same racable machine state by the simulation argument.

Now it suffices to prove the simulation theorem by induction on $ n $. The base case is trivial. For an induction step, let’s assume that we have simulating executions of length $ n $, given as in the above definition of simulation. Suppose we have a step $ MS_nRa (i_{n+1},\alpha_{n+1}) MS_{n+1} $. Then we need to find a simulating interleaving execution of length $ n + 1 $ that starts from $ MS_n $ and ending in $ MS_{n+1} $.

First, if the event $ \alpha_{n+1} $ is not read/write/update, then the execution $ MS'_0 \cdots MS'_n Ra (i_{n+1},\alpha_{n+1}) MS_{n+1} $ is interleaving, so we are done. Thus suppose that $ \alpha_{n+1} $ performs read/write/update on a location $ x $ and does not satisfy the interleaving condition (i.e., does not read the latest message nor writes with a greatest timestamp). By definition of the interleaving condition, we can find the first event, say $ \alpha_k $, writing to $ x $ at timestamp $ t $ with respect to which the event $ \alpha_{n+1} $ violates the interleaving condition.

Then, exactly the same argument as in Thm. 7, we can remove all steps $ MS_j $ such that $ k \leq j \leq n $ and $ MS_j \ths(i_j).\view.Cur \geq MS_{i_n}.\ths(i_n).\view.Cur $. Then we have a race between $ \alpha_k $ and $ \alpha_{n+1} $. The resulting execution is also interleaving because removing a step from an interleaving execution always results in an interleaving execution. Thus, if $ \alpha_k $ and $ \alpha_{n+1} $ were not $ sc $ accesses, we have contradiction with the $ ra $-race-freedom assumption.

Now suppose that $ \alpha_k $ and $ \alpha_{n+1} $ are $ sc $ accesses. If $ \alpha_{n+1} $ is write/update, then we have contradiction because both $ \alpha_k $ and $ \alpha_{n+1} $ writes to $ x $ with $ sc $ and thus it is impossible for $ \alpha_{n+1} $ to violate the interleaving condition w.r.t $ \alpha_k $.

Finally suppose that $ \alpha_{n+1} $ is $ sc $-read. Since $ \alpha_{n+1} $ violates the interleaving condition w.r.t $ \alpha_k $, we have that

$ MS_{n+1}.\ths(i_{n+1}).\view.Cur.sc < t $.

Now we repeatedly apply the step-reordering lemma Lemma 6 as follows. First, we find the first event, say $ \alpha_j $, such that $ k \leq j \leq n + 1 $ and $ MS_j \ths(i_j).\view.Cur.sc \geq MS_{i_n}.\ths(i_n).\view.Cur.sc < t $. Then $ \alpha_j $ is not $ sc $ write/update because in that case we would have $ MS_j \ths(i_j).\view.Cur.sc \geq t $. Thus we can move down the event to just before $ \alpha_k $ using Lemma 6. In the reordered execution, we also perform the same reordering. We repeats this process until we move $ \alpha_{n+1} $ down to just before $ \alpha_k $.

Now we will show that such a reordering does not break the interleaving condition for all existing events and furthermore make $ \alpha_{n+1} $ to satisfy the interleaving condition. The latter holds trivially by construction because $ \alpha_k $ was the first event with respect to which $ \alpha_{n+1} $ violates the interleaving condition. The former holds as follows. In order to break the interleaving condition, we need to reorder two events $ (\alpha, \beta) $ to $ (\beta, \alpha) $ such that $ \beta $ is write/update to some location $ y $ and $ \alpha $ is read/write/update to the same location $ y $. During our reordering, suppose we meet this reordering for the first time. Then, the execution before the reordering is interleaving because we are about to break the condition for the first time. Since $ \alpha $ and $ \beta $ are racing on the same location, they both have to be $ sc $ accesses. However, this is contradiction since we never moved down any $ sc $ write/updates.

\[\square \]
We assume a finite set A of thread identifiers, and use i as a metavariable for thread identifiers.

Basic notations. Given a binary relation R, R^2, R^+, and R^* respectively denote its reflexive, transitive, and reflexive-transitive closures; R^{-1} denotes its inverse relation, and $dom(R)$ and $codom(R)$ denote its domain and codomain. We denote by $R_1; R_2$ the left composition of two relations R_1, R_2. When R is a strict partial order, R_{lin} is the relation consisting of all immediate R-edges; i.e., pairs $(a, b) \in R$ such that for every $c, (c, b) \in R$ implies $(c, a) \in R$, and $(a, c) \in R$ implies $(b, c) \in R$. Finally, $[A]$ denotes the identity relation on a set A. In particular, $[A]; R; [B] = R \cap (A \times B)$.

Events. An event consists of an identifier (natural number), a thread identifier (or 0 for initialization events), and a label. The label can have one of the following forms: $R(o, x, v)$ (“read”), $W(o, x, v)$ (“write”), or $O(o, a, w)$ (“fence”), where x is the location accessed, v is the value read/written, and o, a, w are access modes. The functions $tid, lab, typ, ord, loc, val$ respectively return (when applicable) the thread identifier, label, type, access mode, location, and value of an event.

Notation 1. We denote by R_x the restriction of a relation R on events accessing location x, i.e., $R_x = \{ (a, b) \in R \mid \text{loc}(a) = \text{loc}(b) = x \}$. Additionally, $R|_{\text{loc}}$ is the restriction of R to events accessing the same location, i.e., $R|_{\text{loc}} = \bigcup_x R_x$.

Executions. An execution G is a tuple $E, sb, rmw, rf, mo, sc)$ where:

- E is a finite set of events with distinct identifiers. This set E always contains a set E_{init} of initialization events, consisting of one write event assigning the initial value for every location. We assume that all initial values are 0.
- sb, called program order, is a union of relations $\{sb_i\mid i \in Tid\}$, where $\text{E}_{\text{init}} = E \cap (E \setminus \text{E}_{\text{init}})$, and for every $i \in Tid$, the relation sb_i is a strict total order on $\{a \in E \mid \text{tid}(a) = i\}$.
- rmw, called read-modify-write pairs, is a subset of sb_{lin}, such that for every $(a, b) \in rmw$ we have $\text{typ}(a) = R, \text{typ}(b) = W$, and $\text{loc}(a) = \text{loc}(b)$.
- rf, called reads-from, is a set of reads-from edges. These are pairs $(a, b) \in E \times E$ satisfying $\text{typ}(a) = W, \text{typ}(b) = R, \text{loc}(a) = \text{loc}(b)$, and $\text{val}(a) = \text{val}(b)$. We assume that an event cannot read from two different events (i.e., rf^{-1} is a function).
- mo, called modification order, is a binary relation.
- sc, called SC order, is a binary relation.

We identify an execution $G = (E, sb, rmw, rf, mo, sc)$ with a set of tagged elements with the tags E, sb, rmw, rf, mo, and sc for the different components of G. For example, the execution $(\{a, b\}, \{a, b\}, \emptyset, \emptyset, \emptyset, \emptyset)$ (where a and b are events) is also written as $\{a \in E \mid E : a : E \in E \}$. This notation is particularly useful when writing expressions like $G \cup rf : (a, b)$. Further, for a set E of events, $\{E : e \mid e \in E\}$ denotes the set $\{E : e \mid e \in E\}$. Similar notation is used for the other tags. In addition, we employ the following notations: $G.E = E, G.T = \{e \in E \mid \text{typ}(e) = T\}$ for $T \in \{R, W, F\}$. $G.sb = sb, G.rmw = rmw, G.rf = rf, G.mo = mo, G.sc = sc$. We may also subscript and superscripts to denote the accessed location, thread identifier and access mode. For example, $G.(E_{\text{init}})$ denotes the set $\{a \in G.W \mid \text{loc}(a) = x, \text{tid}(a) = i, ord(a) \subseteq ra\}$. We omit the prefix “G.” when it is clear from the context.

Derived sets and relations.

- $G.F^{eq} = \{a \in E \mid \text{lab}(a) = F(o_i, _), o_i \subseteq ra\}$ (acquire fences)
- $G.F^{rel} = \{a \in E \mid \text{lab}(a) = F(o, ow), ow \subseteq ra\}$ (release fences)
- $G.F^{sc} = \{a \in E \mid \text{lab}(a) = F(o, ow), ow \subseteq sc\}$ (SC fences)
- $G.E^{Sc} = R^{Sc} \cup W^{Sc} \cup F^{Sc}$ (SC events)
- $G.rseq = \{[w]; sb_{[loc]}; [W_{\sigma^{1}}]; (rf; rmw; [W_{\sigma^{1}}])^*\}$ (release-sequence)
- $G.rel = ([W_{\sigma^{1}}]; ([F_{\sigma^{1}}]; sb); rseq)$ (to-be-released)
- $G.syn = rel; rf; ([R^{Sc}]; ([R_{\sigma^{1}}]; sb; [F^{Sc}])))$ (synchronization)
- $G.hb = (sb \cup syn)^+$ (happens-before)

Coherent execution. An execution G is called coherent if the following hold:

- $R \subseteq codom(rf)$.
- mo is a disjoint union of relations $\{mo_x\}_{x \in loc}$, such that each relation mo_x is a strict total order on U_x.
- sc is a strict total order on E^{Sc}.
- $mo; rf; rmw$ is irreflexive.
- $mo; rf; hb$ is irreflexive.
- $mo; hb$ is irreflexive.
- $mo; rb; (R^{\sigma^{1}}); (sc; (F; hb))^{1}$ is irreducible.
- $mo; sc; (F; rb)$ is irreducible.

Alternative Presentation

- The three conditions involving the sc relation can be replaced by one equivalent condition:
 - $sb \cup rf \cup E^{Sc}; ([F]; hb)^1; (rb)^{-1}; (mo; rf; (hb; [F])); (rb)^{-1}$ is irreducible. (SC)
 - $sb \cup rf \cup sc$ is acyclic. (No-promises)

This allows one to define coherent executions without using the sc relation at all. Indeed, the three conditions on sc guarantee the acyclicity of this relation, while any total order on E^{Sc} extending this relation can serve as the sc order.

Execution extension. Let G be an execution.

- For an execution G', we write $G \subseteq G'$ if $G.X \subseteq G'.X$ for every component X of G.
- $Add(G, a)$ is the set of all executions G' such that $G \subseteq G'$, $G'.E = G.E \cup \{a\}$, $G'.sb = G.sb \cup ((G.E_{tid} \cup E_{init}) \times \{a\})$, and $G'.rmw = G.rmw$.
- $Add-asymmetric(G, a, a)$ is the set of all executions G' such that $G \subseteq G'$, $G'.E = G.E \cup \{a, a\}$, $G'.sb = G.sb \cup ((G.E_{tid} \cup E_{init}) \times \{a, a\})$, and $G'.rmw = G.rmw \cup \{a, a\}$.

Semantics of programs. The semantics or programs is provided in Figure 4. It assumes the same abstract programming language discussed in 2.2. The “axiomatic machine” state is a pair $([\Sigma, G])$, where Σ assigns a local state σ to every thread, and G is an execution. The initial state is given by $(\lambda_{\Sigma, \sigma}, G_0)$, where G_0 contains only the initialization events E_{init} (all its relations are empty). A behavior of a program (see §4.6) under this semantics is again taken to be the set of sequences of system calls generated in its executions.

This semantics is an operational presentation of the axiomatic semantics above. It is easy to see (since one of the conditions is acyclicity of $sb \cup rf \cup sc$) that it is equivalent to a purely axiomatic definition, that only speaks about the coherent executions associated.
with the full run of the program (namely, check for coherence only once, at the end).

B.1 Relation to C11

Put aside the presentation, there are three essential differences between our axiomatic model and the original C11 model [6]:

- It includes the corrected definition of release sequences in [24].
- Its main requirement about the sc relation (SC) is stronger and conciser than the corresponding C11 ones.
- It disallows cycles in sb ∪ rf ∪ sc (No-promises).

B.2 Equivalence Proof

Our proof of equivalence between the “axiomatic machine” and the promise-free machine (given in §4.6) shows that each machine simulates the other. Next, we provide the simulation relation. Given this relation, verifying that this is indeed a simulation in both directions is tedious but mainly straightforward (one direction, namely that the promise-free machine is not stronger than the axiomatic machine is formalized in our Coq development, except for the atomic updates).

Definition 1. A timestamp assignment for an execution G is a function \(f : \mathcal{W} \rightarrow \text{Time} \) such that for every \(a, b \in \mathcal{W} \), we have \(f(a) < f(b) \) iff \((a, b) \in \text{mol}_{\text{loc}} \). A timestamp assignment \(f \) is extended for sets of write events by \(f(A) = \max_{a \in A} f(a) \).

Definition 2. An execution \(G \) induces the following additional derived relations:

- \(G, \text{ur}r = (\text{rf}^7; \text{hb}; [\mathcal{P}^{#c}])^7; (\text{sc}; [\mathcal{F}])^7; \text{hb}^7 \).
- \(G, \text{rwr} = \text{ur}r \cup (\text{rf}; \text{hb}^7) \).
- \(G, \text{scr} = \text{rwr} \cup ([\text{rf}^7; \text{hb}; [\mathcal{F}]); \text{sc}; [\mathcal{W}]; \text{hb}^7] \).

Definition 3. An axiomatic machine state \((\Sigma, G) \) relates to a machine state \((TS, S, M) \), denoted by \((\Sigma, G) \sim (TS, S, M)\), if \(\Sigma(i) = TS(i)\).st for every \(i \in \text{Tid} \), and there exists a timestamp assignment \(f \) for \(G \) for which the hold:

- For every \(x \in \text{Loc} \), \(M(x) = \{m_b \mid b \in \mathcal{W}_x\} \), where each \(m_b \) satisfies:
 - \(m_b, \text{val} = \text{val}(b) \).
 - \(m_b, \text{to} = f(b) \).
 - \(m_b, \text{from} < f(b) \).
 - \(m_b, \text{from} = f(a) \text{ if } (a, b) \in \text{rf}; \text{rmv} \).
- For every \(y \in \text{Loc} \):
 - \(m_b, \text{view.pln}(y) = f\{a \in \mathcal{W}_y \mid (a, b) \in \text{ur}r; \text{rel}\} \).
 - \(m_b, \text{view.lxl}(y) = f\{a \in \mathcal{W}_y \mid (a, b) \in \text{rwr}; \text{rel}\} \).
 - \(m_b, \text{view.sc}(y) = f\{a \in \mathcal{W}_y \mid (a, b) \in \text{sc}; \text{rel}\} \).
- For every \(x \in \text{Tid} \), \(TS(i) = \{\Sigma(i), \mathcal{V}_i, 0\} \) where \(\mathcal{V}_i \) satisfies the following conditions for every \(x, y \in \text{Loc} \):
 - \(\mathcal{V}_i, \text{R xl}(y).\text{pln}(x) = \{\text{dom}(\mathcal{W}_x); \text{ur}r; [\mathcal{W}_y^{\text{ra}} \cup \mathcal{F}^{\text{ra}}]; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{R lxl}(y).\text{pln}(x) = \{\text{dom}(\mathcal{W}_x); \text{rwr}; [\mathcal{W}_y^{\text{ra}} \cup \mathcal{F}^{\text{ra}}]; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{R sc}(x) = \{\text{dom}(\mathcal{W}_x); \text{sc}; [\mathcal{W}_y^{\text{ra}} \cup \mathcal{F}^{\text{ra}}]; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{C xl}(y) = \{\text{dom}(\mathcal{W}_x); \text{rmv}; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{C lxl}(y) = \{\text{dom}(\mathcal{W}_x); \text{rwr}; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{C sc}(x) = \{\text{dom}(\mathcal{W}_x); \text{sc}; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{Acq.pln}(x) = \{\text{dom}(\mathcal{W}_x); \text{ur}r; \text{rf}; [\mathcal{W}_y^{\text{ra}}]; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{Acq.lxl}(x) = \{\text{dom}(\mathcal{W}_x); \text{rwr}; \text{rf}; [\mathcal{W}_y^{\text{ra}}]; [\mathcal{E}_i]\} \).
 - \(\mathcal{V}_i, \text{Acq.sc}(x) = \{\text{dom}(\mathcal{W}_x); \text{sc}; \text{rf}; [\mathcal{W}_y^{\text{ra}}]; [\mathcal{E}_i]\} \).

C. More

An example showing unsoundness of “SC-read-after-non-SC-write elimination”

\[
\begin{align*}
 y_4 := 2; & \quad x_4 := 2; \quad y_6 := 2; \quad x_5 := 2; \\
 x := 1; & \quad y_2 := 1; \quad x := 1; \quad y := 1; \\
 a := x_6; & \quad \# 1 \quad c := y_6; \quad \# 1 \quad a := 1; \quad \# 1 \\
 b := x; & \quad \# 2 \quad d := y; \quad \# 2 \quad b := x; \quad \# 2 \\
 d := y; & \quad \# 2
\end{align*}
\]