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C11's release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release
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Message passing
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print m
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C11's release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering

y=0

x = 1; y =1,
print y print x
both threads may print 0

X =
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Message passing

x=m=20
m = 42; Wh;i: X =0
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print m
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Formal definition

An execution is consistent if there are relations:

» reads-from (rf): maps every read to a corresponding write,
such that:

happens-before = (program-order U reads-from)* is irreflexive.

> (mo): total order on same-location writes,
such that none of the following occur:

Wx, v Wx, v—Wx, v/ Wx, v—Wx, v/

l hb rf\ l hb rf\

!/
Wx, v Rx, v Ux, v, v”



Good news

» Verified compilation schemes:

> x86-TSO (trivial compilation) [Batty el al. '11]
> Power [Batty el al. '12] [Sarkar el al. '12]

v

RA supports intended optimizations:

> In particular, write-read reordering (unlike SC):
Wx—Ry ~ Ry—Wx

v

DRF theorem (unlike full C11):
» No data races under SC ensures no weak behaviors

v

Monotonicity (unlike full C11, and x86-TSO):
» Adding synchronization does not introduce new behaviors

v

Program logics:
> RSL [Vafeiadis and Narayan '13]
> GPS [Turon et al. '14]
» OGRA [L and Vafeiadis '15]



Bad news

1. Allowed dubious behaviors

2. Overly weak SC-fences

3. No intuitive operational semantics
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Unobservable behaviors

X:y:a:b:O
print a;
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Strong release/acquire consistency

Definition (SRA-consistency)

An execution is SRA-consistent if it is RA-consistent and
hb U, mo, is acyclic.
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Definition (SRA-consistency)

An execution is SRA-consistent if it is RA-consistent and
hb U, mo, is acyclic.

If there are no write-write races then SRA and RA coincide. )




Better product, same price

» Same compiler optimizations are sound.

» Compilation to x86-TSO and Power is still correct.

* No better deal for Power:

Power model restricted to RA accesses = SRA

(based on Power's declarative model of [Alglave et al. '14])






C11's SC-fences

» The strongest fence instruction provided by C11 is SC-fence.

Example (Store Buffering)

x=y=0
x = 1; y =1
fence(); || fence();
print y || print x

printing 0 in both threads
is disallowed

Inconsistent: (F x F) N (po”; (hb U mo U fr); po?) is cyclic.

» Using the semantics of [Batty et al. '16].



SC-fences are overly weak

Independent reads, independent writes

x=y=0
print x; print y;
x:=1 y:=1
print y print x
both threads may print 1,0
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SC-fences are overly weak

Independent reads, independent writes

x=y=0
print x; print y;
x:=1] fence(); fence(); |[y:=1
print y print x
both threads may print 1,0
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SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.
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SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a

distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

[X— =F =0
\
Wx,1—— Rxl Ry,
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~—Wy,1

Inconsistent: Rx,0 reads an overwritten value



Compilation schemes are not affected

x86-TSO  » SC-fence — mfence
» Atomic update <— lock xchg
» mfence and lock xchg of an unused value
have the same operational effect.

Power » sync events are equivalent to a
acquire/release atomic updates from an
otherwise-unused location.



Reductions to SC

Theorem (basic reduction)

If a program includes a fence between every two racy accesses
to different shared variables, then it has only SC behaviors.

» Under x86-TSO, it suffices to have X — e
a fence between racy writes and fence();
subsequent racy reads. ri=y

Theorem (advanced reduction, simplified version)

For client-server programs, it suffices to place fences as under
x86-TSO.

In the paper: application to an RCU implementation.



3. An Operational Presentation

» Easier to understand by simulating step-by-step progress

» Foundation for traditional verification techniques



Example: the SRA machine (first attempt)

Message passing

» while x =0

> m:=42 e
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m=20 m=20
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Example: the SRA machine (first attempt)

Message passing

m = 42; Whll;X : 0
x:=1 . SEIP:
» print m
m =42 m =42
CPU 1 . CPU 2 .
x=1 x=1
m=42 m=42
outgoing | x=1 x=1

message
buffer




Timestamps

X = 6; X =T
ifx=7 ifx=06
print ‘go’ print ‘go’

‘go’ should be printed at most once
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Summary

» The release/acquire fragment of the C/C++11 memory
model, strikes a good balance between performance and
programmability.

» We propose a strengthening of this memory model that:
» forbids weak behaviors, unobservable in any implementation

» has simple fence semantics, with SC-reduction theorems
» admits intuitive operational semantics

» The stronger model has no additional implementation cost.

See http://plv.mpi-sws.org/sra/ for more details and Coq proofs.
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