Taming release-acquire consistency

Ori Lahav Nick Giannarakis Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

POPL 2016

Weak memory models

Weak memory models provide formal sound semantics for
realistic high-performance concurrency.

Programmability Performance

Weak memory models

Weak memory models provide formal sound semantics for
realistic high-performance concurrency.

sequential
q : very relaxed
consistency memory model
(SC)

P >
< »

Programmability Performance

Weak memory models

Weak memory models provide formal sound semantics for
realistic high-performance concurrency.

sequential
consistency
(SC)

<

release-acquire
memory model

(RA)

very relaxed
memory model

>

<

Programmability

>

Performance

C11's release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

C11's release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering

x=y=0
x =1; y =1,
print y print x
both threads may print 0

v

Message passing

x=m=20
m = 42; Wh;i: X =0
x:=1 i P
print m

only 42 may be printed

C11's release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering

x=y=0
x =1; y =1,
print y print x
both threads may print 0

v

Message passing

x=m=20
m = 42; Wh;i: X =0
x:=1 i P
print m

only 42 may be printed

C11's release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering

y=0

x = 1; y =1,
print y print x
both threads may print 0

X =

v

Message passing

x=m=20
m = 42; Wh;i: X =0
x:=1 i P
print m

only 42 may be printed

=y =0]
mo, 7 \ mo,
Wx, 1 Wy,1
Ry,

[x =m = 0]

momr//mox rf\‘

Wm, 42 Rx,1
| . J

Wx, 1 hb Rm, 0

Formal definition

An execution is consistent if there are relations:

» reads-from (rf): maps every read to a corresponding write,
such that:

happens-before = (program-order U reads-from)* is irreflexive.

> (mo): total order on same-location writes,
such that none of the following occur:

Wx, v Wx, v—Wx, v/ Wx, v—Wx, v/

l hb rf\ l hb rf\

!/
Wx, v Rx, v Ux, v, v”

Good news

» Verified compilation schemes:

> x86-TSO (trivial compilation) [Batty el al. '11]
> Power [Batty el al. '12] [Sarkar el al. '12]

v

RA supports intended optimizations:

> In particular, write-read reordering (unlike SC):
Wx—Ry ~ Ry—Wx

v

DRF theorem (unlike full C11):
» No data races under SC ensures no weak behaviors

v

Monotonicity (unlike full C11, and x86-TSO):
» Adding synchronization does not introduce new behaviors

v

Program logics:
> RSL [Vafeiadis and Narayan '13]
> GPS [Turon et al. '14]
» OGRA [L and Vafeiadis '15]

Bad news

1. Allowed dubious behaviors

2. Overly weak SC-fences

3. No intuitive operational semantics

Bad news

1. Allowed dubious behaviors

2. Overly weak SC-fences

3. No intuitive operational semantics

Unobservable behaviors

X:y:a:b:O
print a;

e il I A
7 print x; 7
a=1 S b:=1

Can this program print 1,1,1.17

Unobservable behaviors

X:y:a:b:O

) print g;
= print b; Y 1
y =2 . x:=2
print Xx;
a. = i b:=1
print y

Can this program print 1,1,1.17

Wx, 1 Wy, 1
Wyl, 2\ " R"i’ 1 /le 2
' ¢ Rb,1 '
Wa,1 l7 P Wh, 1
Rx,1

}

Ry, 1

Unobservable behaviors

X:y:a:b:O

L print a; .
; Z: éi print b | ¥ ;
7 print x; o
2=1 print y ph=1

Can this program print 1,1,1.17

wx, 1 Wy, 1
\/ \/
Wy, 2 rf Ri’ 1 Wx, 2
l rf Rb7 1 i
wa, 1 l rf Wb, 1
Rx,1

!

Ry, 1

Strong release/acquire consistency

Definition (SRA-consistency)

An execution is SRA-consistent if it is RA-consistent and
hb U, mo, is acyclic.

Strong release/acquire consistency

Definition (SRA-consistency)

An execution is SRA-consistent if it is RA-consistent and
hb U, mo, is acyclic.

If there are no write-write races then SRA and RA coincide.)

Better product, same price

» Same compiler optimizations are sound.

» Compilation to x86-TSO and Power is still correct.

* No better deal for Power:

Power model restricted to RA accesses = SRA

(based on Power's declarative model of [Alglave et al. '14])

C11's SC-fences

» The strongest fence instruction provided by C11 is SC-fence.

Example (Store Buffering)

x=y=0
x = 1; y =1
fence(); || fence();
print y || print x

printing 0 in both threads
is disallowed

Inconsistent: (F x F) N (po”; (hb U mo U fr); po?) is cyclic.

» Using the semantics of [Batty et al. '16].

SC-fences are overly weak

Independent reads, independent writes

x=y=0
print x; print y;
x:=1 y:=1
print y print x
both threads may print 1,0

% B _\le

Wx,1—+Rx,1 Ry, 1
N rf 4
Y rf rf)
\ ’
AN 7/
Y 7/
N 7’
\\ ,/
“~._Ry,0 Rx,0 .-°
frx“~-_Z:-.-::_-—"fry

consistent execution

SC-fences are overly weak

Independent reads, independent writes

x=y=0
print x; print y;
x:=1] fence(); fence(); |[y:=1
print y print x
both threads may print 1,0

% B _\le

01 Ry,1

f
“\ ’ l rf rf l ,"
\\ F F ,,'
\\ l l ,,/
T Ry,O\ ’RX,O’ .7
fr;\‘~-:::=t:::——‘—;'ry

consistent execution

SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

[x =y =0]
Wx,1—Rx,1 Ry, 1 «—Wy.,1
N rf rf <
Y l rf rf l)

\\ F F ,I
RN Ry, 0 Rx,0 ,x’,
f,;“*-:::---—:::—"’;‘ry

consistent execution

SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

[x=y=F=0(]

e "
Wx,l—/>Rx,1 R}/,1<\—Wy,1
rf rf
| }

UF,0,0 UF,0,0
| |

Ry, 0 Rx,0

SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

[x—y—F—O]
\
Wx,l Ry, ~— Wy, 1
UFO FOO

SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

[X— =F =0
D T—
Wx Rxl Ry, Wy, 1
UFOO FOO
l

Ry, 0 Rx,0

SC-fences are overly weak

Our suggestion

» Model SC-fences as acquire/release atomic updates of a

distinguished fence location.

» RA semantics enforces all fence events to be ordered by hb.

[X— =F =0
\
Wx,1—— Rxl Ry,
UFOO FOO

N

Ry, 0 Rx,0

hb

~—Wy,1

Inconsistent: Rx,0 reads an overwritten value

Compilation schemes are not affected

x86-TSO » SC-fence — mfence
» Atomic update <— lock xchg
» mfence and lock xchg of an unused value
have the same operational effect.

Power » sync events are equivalent to a
acquire/release atomic updates from an
otherwise-unused location.

Reductions to SC

Theorem (basic reduction)

If a program includes a fence between every two racy accesses
to different shared variables, then it has only SC behaviors.

» Under x86-TSO, it suffices to have X — e
a fence between racy writes and fence();
subsequent racy reads. ri=y

Theorem (advanced reduction, simplified version)

For client-server programs, it suffices to place fences as under
x86-TSO.

In the paper: application to an RCU implementation.

3. An Operational Presentation

» Easier to understand by simulating step-by-step progress

» Foundation for traditional verification techniques

Example: the SRA machine (first attempt)

Message passing

» while x =0

> m:=42 e
x =1 print m
m=20 m=20
outgoing
message

buffer

Example: the SRA machine (first attempt)

Message passing

» while x =0
skip;
print m

CpPU 1

x=j><iU2 x=0
m=42

outgoing
message
buffer

Example: the SRA machine (first attempt)

Message passing

» while x =0

outgoing
message
buffer

m=42

x=1

= skip;
x =1 print m
=42 =0
CPU 1 m_ CPU 2 m

Example: the SRA machine (first attempt)

Message passing

» while x =0

= skip;
x =1 print m
m =42 m =42
CPU 1 . CPU 2 .
x=1 x=0
m=42 m=42

outgoing | x=1
message
buffer

Example: the SRA machine (first attempt)

Message passing

» while x =0

_— skip;
x =1 print m
m =42 m =42
CPU 1 . CPU 2 .
x=1 x=1
m=42 m=42
outgoing | x=1 x=1

message
buffer

Example: the SRA machine (first attempt)

Message passing

m = 42; Whll;X : 0
x:=1 . SEIP:
» print m
m =42 m =42
CPU 1 . CPU 2 .
x=1 x=1
m=42 m=42
outgoing | x=1 x=1

message
buffer

Timestamps

X = 6; X =T
ifx=7 ifx=06
print ‘go’ print ‘go’

‘go’ should be printed at most once

Timestamps

» x = 0;

> x =17

if x=7 if x=06
print ‘go’ print ‘go’

‘go’ should be printed at most once

CPU 1

x=0 @0

x=0 a0

Global
timestamp
table

X@0

XTQ

Timestamps

X = 6; > x =17
»if x=7 ifx=06
print ‘go’ print ‘go’

‘go’ should be printed at most once

x=06 @l

x=0 a0

o)@2
x=6 @1

Global

timestamp

table
X@l

Timestamps

Global
timestamp
table

X@2

X = 6;

»if x=7
print ‘go’

X =T
»if x=06
print ‘go’

‘go’ should be printed at most once

CPU 1

x=06 @l

x=7 Q2

x=6 @l

)<)f2
x=7 Q2

Timestamps

Global
timestamp
table

X@2

X = 6;

»if x=7

print ‘go’

xX=7 Q2
CPU 1

»if x =06
print ‘go’

‘go’ should be printed at most once

x=7 Q2
CPU 2

x=6 @l

X=7 @2

x=7 Q2

Timestamps

Global
timestamp
table

X@2

X = 6;

»if x=7

print ‘go’

x=7 @2
CPU 1

»if x =06
print ‘go’

‘go’ should be printed at most once

x=7 Q2
CPU 2

x=6 @l

x=7 Q2

x=7 Q2

Timestamps

Global
timestamp
table

X@2

X = 6;

»if x=7

print ‘go’

x=7 @2
CPU 1

»if x =06
print ‘go’

‘go’ should be printed at most once

x=7 Q2
CPU 2

x=6 @l

x=7 Q2

x=7 Q2

Summary

» The release/acquire fragment of the C/C++11 memory
model, strikes a good balance between performance and
programmability.

» We propose a strengthening of this memory model that:
» forbids weak behaviors, unobservable in any implementation

» has simple fence semantics, with SC-reduction theorems
» admits intuitive operational semantics

» The stronger model has no additional implementation cost.

See http://plv.mpi-sws.org/sra/ for more details and Coq proofs.

http://plv.mpi-sws.org/sra/

Summary

» The release/acquire fragment of the C/C++11 memory
model, strikes a good balance between performance and
programmability.

» We propose a strengthening of this memory model that:
» forbids weak behaviors, unobservable in any implementation

» has simple fence semantics, with SC-reduction theorems
» admits intuitive operational semantics

» The stronger model has no additional implementation cost.

See http://plv.mpi-sws.org/sra/ for more details and Coq proofs.

Thank you!

http://plv.mpi-sws.org/sra/

