
Taming release-acquire consistency

Ori Lahav Nick Giannarakis Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)

POPL 2016

Weak memory models

Weak memory models provide formal sound semantics for
realistic high-performance concurrency.

Programmability Performance

sequential
consistency

(SC)

release-acquire
memory model

(RA)

very relaxed
memory model

Weak memory models

Weak memory models provide formal sound semantics for
realistic high-performance concurrency.

Programmability Performance

sequential
consistency

(SC)

release-acquire
memory model

(RA)

very relaxed
memory model

Weak memory models

Weak memory models provide formal sound semantics for
realistic high-performance concurrency.

Programmability Performance

sequential
consistency

(SC)

release-acquire
memory model

(RA)

very relaxed
memory model

C11’s release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering
x = y = 0

x := 1;
print y

y := 1;
print x

both threads may print 0

Message passing
x = m = 0

m := 42;
x := 1

while x = 0
skip;

print m
only 42 may be printed

[x = y = 0]

Wx , 1

Ry , 0

Wy , 1

Rx , 0

moymox

rf rf

[x = m = 0]

Wm, 42

Wx , 1

Rx , 1

Rm, 0

mox
mom

rf

rf

hb

C11’s release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering
x = y = 0

x := 1;
print y

y := 1;
print x

both threads may print 0

Message passing
x = m = 0

m := 42;
x := 1

while x = 0
skip;

print m
only 42 may be printed

[x = y = 0]

Wx , 1

Ry , 0

Wy , 1

Rx , 0

moymox

rf rf

[x = m = 0]

Wm, 42

Wx , 1

Rx , 1

Rm, 0

mox
mom

rf

rf

hb

C11’s release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering
x = y = 0

x := 1;
print y

y := 1;
print x

both threads may print 0

Message passing
x = m = 0

m := 42;
x := 1

while x = 0
skip;

print m
only 42 may be printed

[x = y = 0]

Wx , 1

Ry , 0

Wy , 1

Rx , 0

moymox

rf rf

[x = m = 0]

Wm, 42

Wx , 1

Rx , 1

Rm, 0

mox
mom

rf

rf

hb

C11’s release-acquire memory model

C11 model where all reads are acquire, all writes are release,
and all atomic updates are acquire/release

Store buffering
x = y = 0

x := 1;
print y

y := 1;
print x

both threads may print 0

Message passing
x = m = 0

m := 42;
x := 1

while x = 0
skip;

print m
only 42 may be printed

[x = y = 0]

Wx , 1

Ry , 0

Wy , 1

Rx , 0

moymox

rf rf

[x = m = 0]

Wm, 42

Wx , 1

Rx , 1

Rm, 0

mox
mom

rf

rf

hb

Formal definition

An execution is consistent if there are relations:

I reads-from (rf): maps every read to a corresponding write,
such that:
happens-before = (program-order ∪ reads-from)+ is irreflexive.

I modification-order (mo): total order on same-location writes,
such that none of the following occur:

Wx , v

Wx , v ′
hbmo

Wx , v Wx , v ′

Rx , v

mo

hbrf
Wx , v Wx , v ′

Ux , v , v ′′

mo

morf

Good news

I Verified compilation schemes:
I x86-TSO (trivial compilation) [Batty el al. ’11]
I Power [Batty el al. ’12] [Sarkar el al. ’12]

I RA supports intended optimizations:
I In particular, write-read reordering (unlike SC):

Wx→Ry Ry→Wx

I DRF theorem (unlike full C11):
I No data races under SC ensures no weak behaviors

I Monotonicity (unlike full C11, and x86-TSO):
I Adding synchronization does not introduce new behaviors

I Program logics:
I RSL [Vafeiadis and Narayan ’13]
I GPS [Turon et al. ’14]
I OGRA [L and Vafeiadis ’15]

Bad news

1. Allowed dubious behaviors

2. Overly weak SC-fences

3. No intuitive operational semantics

Bad news

1. Allowed dubious behaviors

2. Overly weak SC-fences

3. No intuitive operational semantics

Unobservable behaviors

x = y = a = b = 0

x := 1;
y := 2;
a := 1

print a;
print b;
print x ;
print y

y := 1;
x := 2;
b := 1

Can this program print 1, 1, 1, 1?

Wx , 1

Wy , 2

Wa, 1

Ra, 1

Rb, 1

Rx , 1

Ry , 1

Wy , 1

Wx , 2

Wb, 1
rf

rf

rf

rf

mox moymox moy

Unobservable behaviors

x = y = a = b = 0

x := 1;
y := 2;
a := 1

print a;
print b;
print x ;
print y

y := 1;
x := 2;
b := 1

Can this program print 1, 1, 1, 1?

Wx , 1

Wy , 2

Wa, 1

Ra, 1

Rb, 1

Rx , 1

Ry , 1

Wy , 1

Wx , 2

Wb, 1
rf

rf

rf

rf

mox moy

mox moy

Unobservable behaviors

x = y = a = b = 0

x := 1;
y := 2;
a := 1

print a;
print b;
print x ;
print y

y := 1;
x := 2;
b := 1

Can this program print 1, 1, 1, 1?

Wx , 1

Wy , 2

Wa, 1

Ra, 1

Rb, 1

Rx , 1

Ry , 1

Wy , 1

Wx , 2

Wb, 1
rf

rf

rf

rf

mox moymox moy

Strong release/acquire consistency

Definition (SRA-consistency)
An execution is SRA-consistent if it is RA-consistent and
hb ∪ ⋃

x mox is acyclic.

If there are no write-write races then SRA and RA coincide.

Strong release/acquire consistency

Definition (SRA-consistency)
An execution is SRA-consistent if it is RA-consistent and
hb ∪ ⋃

x mox is acyclic.

If there are no write-write races then SRA and RA coincide.

Better product, same price

I Same compiler optimizations are sound.

I Compilation to x86-TSO and Power is still correct.

* No better deal for Power:

Power model restricted to RA accesses = SRA

(based on Power’s declarative model of [Alglave et al. ’14])

2. Using Fences to Recover SC

C11’s SC-fences

I The strongest fence instruction provided by C11 is SC-fence.

Example (Store Buffering)

x = y = 0
x := 1;
fence();
print y

y := 1;
fence();
print x

printing 0 in both threads
is disallowed

[x = y = 0]

Wx , 1

F

Ry , 0

Wy , 1

F

Rx , 0

Inconsistent: (F× F) ∩ (po?; (hb ∪mo ∪ fr); po?) is cyclic.

I Using the semantics of [Batty et al. ’16].

SC-fences are overly weak

Independent reads, independent writes
x = y = 0

x := 1
print x ;

fence();

print y

print y ;

fence();

print x
y := 1

both threads may print 1, 0

[x = y = 0]

Wx , 1 Rx , 1

Ry , 0

Ry , 1

Rx , 0

Wy , 1
rf rf

rf rf

mox moy

fr yfr x

consistent execution

SC-fences are overly weak

Independent reads, independent writes
x = y = 0

x := 1
print x ;
fence();
print y

print y ;
fence();
print x

y := 1

both threads may print 1, 0

[x = y = 0]

Wx , 1 Rx , 1

F

Ry , 0

Ry , 1

F

Rx , 0

Wy , 1
rf rf

rf rf

mox moy

fr yfr x

consistent execution

SC-fences are overly weak

Our suggestion
I Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

I RA semantics enforces all fence events to be ordered by hb.

[x = y = 0]

Wx , 1 Rx , 1

F

Ry , 0

Ry , 1

F

Rx , 0

Wy , 1
rf rf

rf rf

mox moy

fr yfr x

consistent execution

SC-fences are overly weak

Our suggestion
I Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

I RA semantics enforces all fence events to be ordered by hb.

[x = y = F = 0]

Wx , 1 Rx , 1

U F, 0, 0

Ry , 0

Ry , 1

U F, 0, 0

Rx , 0

Wy , 1
rf rf

mox moy

hb
Inconsistent: Rx , 0 reads an overwritten value

SC-fences are overly weak

Our suggestion
I Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

I RA semantics enforces all fence events to be ordered by hb.

[x = y = F = 0]

Wx , 1 Rx , 1

U F, 0, 0

Ry , 0

Ry , 1

U F, 0, 0

Rx , 0

Wy , 1
rf rf

mox moy

hb
Inconsistent: Rx , 0 reads an overwritten value

SC-fences are overly weak

Our suggestion
I Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

I RA semantics enforces all fence events to be ordered by hb.

[x = y = F = 0]

Wx , 1 Rx , 1

U F, 0, 0

Ry , 0

Ry , 1

U F, 0, 0

Rx , 0

Wy , 1
rf rf

mox moy

hb
Inconsistent: Rx , 0 reads an overwritten value

SC-fences are overly weak

Our suggestion
I Model SC-fences as acquire/release atomic updates of a
distinguished fence location.

I RA semantics enforces all fence events to be ordered by hb.

[x = y = F = 0]

Wx , 1 Rx , 1

U F, 0, 0

Ry , 0

Ry , 1

U F, 0, 0

Rx , 0

Wy , 1
rf rf

mox moy

hb
Inconsistent: Rx , 0 reads an overwritten value

Compilation schemes are not affected

x86-TSO I SC-fence ↪→ mfence
I Atomic update ↪→ lock xchg
I mfence and lock xchg of an unused value
have the same operational effect.

Power I sync events are equivalent to a
acquire/release atomic updates from an
otherwise-unused location.

Reductions to SC

Theorem (basic reduction)
If a program includes a fence between every two racy accesses
to different shared variables, then it has only SC behaviors.

I Under x86-TSO, it suffices to have
a fence between racy writes and
subsequent racy reads.

x := e;
fence();
r := y

Theorem (advanced reduction, simplified version)
For client-server programs, it suffices to place fences as under
x86-TSO.

In the paper: application to an RCU implementation.

3. An Operational Presentation

I Easier to understand by simulating step-by-step progress

I Foundation for traditional verification techniques

Example: the SRA machine (first attempt)

Message passing
m = x = 0

I m := 42;

I

x := 1

I while x = 0
skip;

I

print m

cpu 1 m = 0
x = 0

outgoing
message
buffer

cpu 2 m = 0
x = 0

Example: the SRA machine (first attempt)

Message passing
m = x = 0

I

m := 42;
I x := 1

I while x = 0
skip;

I

print m

cpu 1 m = 42
x = 0

m=42

outgoing
message
buffer

cpu 2 m = 0
x = 0

Example: the SRA machine (first attempt)

Message passing
m = x = 0

I

m := 42;

I

x := 1

I while x = 0
skip;

I

print m

cpu 1 m = 42
x = 1

m=42

x=1outgoing
message
buffer

cpu 2 m = 0
x = 0

Example: the SRA machine (first attempt)

Message passing
m = x = 0

I

m := 42;

I

x := 1

I while x = 0
skip;

I

print m

cpu 1 m = 42
x = 1

m=42

x=1outgoing
message
buffer

cpu 2 m = 42
x = 0

m=42

Example: the SRA machine (first attempt)

Message passing
m = x = 0

I

m := 42;

I

x := 1

I while x = 0
skip;

I

print m

cpu 1 m = 42
x = 1

m=42

x=1outgoing
message
buffer

cpu 2 m = 42
x = 1

m=42

x=1

Example: the SRA machine (first attempt)

Message passing
m = x = 0

I

m := 42;

I

x := 1

I

while x = 0
skip;

I print m

cpu 1 m = 42
x = 1

m=42

x=1outgoing
message
buffer

cpu 2 m = 42
x = 1

m=42

x=1

Timestamps

I

x := 6;

I

if x = 7
print ‘go’

I

x := 7;

I

if x = 6
print ‘go’

‘go’ should be printed at most once

Timestamps

I x := 6;

I

if x = 7
print ‘go’

I x := 7;

I

if x = 6
print ‘go’

‘go’ should be printed at most once

cpu 1 x=0@0 cpu 2 x=0@0

Global
timestamp

table

x@0

Timestamps

I

x := 6;
I if x = 7

print ‘go’

I x := 7;

I

if x = 6
print ‘go’

‘go’ should be printed at most once

cpu 1 x=6@1

x=6@1

cpu 2 x=0@0

Global
timestamp

table

x@1

Timestamps

I

x := 6;
I if x = 7

print ‘go’

I

x := 7;
I if x = 6

print ‘go’

‘go’ should be printed at most once

cpu 1 x=6@1

x=6@1

cpu 2 x=7@2

x=7@2Global
timestamp

table

x@2

Timestamps

I

x := 6;
I if x = 7

print ‘go’

I

x := 7;
I if x = 6

print ‘go’

‘go’ should be printed at most once

cpu 1 x=7@2

x=6@1

x=7@2

cpu 2 x=7@2

x=7@2Global
timestamp

table

x@2

Timestamps

I

x := 6;
I if x = 7

print ‘go’

I

x := 7;
I if x = 6

print ‘go’

‘go’ should be printed at most once

cpu 1 x=7@2

x=6@1

x=7@2

cpu 2 x=7@2

x=7@2Global
timestamp

table

x@2

Timestamps

I

x := 6;
I if x = 7

print ‘go’

I

x := 7;
I if x = 6

print ‘go’

‘go’ should be printed at most once

cpu 1 x=7@2

x=6@1

x=7@2

cpu 2 x=7@2

x=7@2Global
timestamp

table

x@2

Summary

I The release/acquire fragment of the C/C++11 memory
model, strikes a good balance between performance and
programmability.

I We propose a strengthening of this memory model that:
I forbids weak behaviors, unobservable in any implementation
I has simple fence semantics, with SC-reduction theorems
I admits intuitive operational semantics

I The stronger model has no additional implementation cost.

See http://plv.mpi-sws.org/sra/ for more details and Coq proofs.

Thank you!

http://plv.mpi-sws.org/sra/

Summary

I The release/acquire fragment of the C/C++11 memory
model, strikes a good balance between performance and
programmability.

I We propose a strengthening of this memory model that:
I forbids weak behaviors, unobservable in any implementation
I has simple fence semantics, with SC-reduction theorems
I admits intuitive operational semantics

I The stronger model has no additional implementation cost.

See http://plv.mpi-sws.org/sra/ for more details and Coq proofs.

Thank you!

http://plv.mpi-sws.org/sra/

