
183

Putting Weak Memory in Order via a Promising Intermediate
Representation
SUNG-HWAN LEE, Seoul National University, Korea
MINKI CHO, Seoul National University, Korea
ROY MARGALIT, Tel Aviv University, Israel
CHUNG-KIL HUR, Seoul National University, Korea
ORI LAHAV, Tel Aviv University, Israel

We investigate the problem of developing an “in-order” shared-memory concurrency model for languages like

C and C++, which executes instructions following their program order, and is thus more amenable to reasoning

and verification compared to recent complex proposals with out-of-order execution. We demonstrate that

it is possible to fully support non-atomic accesses in an in-order model in a way that validates all compiler

optimizations that are performed in single-threaded code (including irrelevant load introduction). The key to

doing so is to utilize the distinction between a source model (with catch-fire semantics) and an intermediate

representation (IR)model (with undefined value for racy reads) and formally establish the soundness ofmapping

from source to IR. As for relaxed atomic accesses, an in-order model must forbid load-store reordering. We

discuss the rather limited performance impact of this fact and present a pragmatic approach to this problem,

which, in the long term, requires a new kind of hardware store instructions for implementing relaxed stores.

The source and IR semantics proposed in this paper are based on recent versions of the promising semantics,

and the correctness proofs of the mappings from the source to the IR and from the IR to Armv8 are mechanized

in Coq. This work is the first to formally relate an in-order source model and an out-of-order IR model with

the goal of having an in-order source semantics without any performance overhead for non-atomics.

CCS Concepts: • Theory of computation→ Concurrency; Operational semantics; • Software and its

engineering → Semantics; Compilers.

Additional Key Words and Phrases: Relaxed Memory Concurrency; Operational Semantics; Compiler Opti-

mizations; Intermediate Representation

ACM Reference Format:

Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav. 2023. Putting Weak Memory in

Order via a Promising Intermediate Representation. Proc. ACM Program. Lang. 7, PLDI, Article 183 (June 2023),
32 pages. https://doi.org/10.1145/3591297

1 INTRODUCTION
Despite decades of research, finding the right semantics for concurrent shared-memory programs

in high-level languages is still considered to be a major open problem [Batty et al. 2015], which

prevailing languages like C, C++, and Java have yet to overcome. The technical challenge lies

in precisely identifying and balancing the conflicting desiderata of programmers, compilers, and

modern multicore architectures. Generally speaking, programmers need a simple semantics that

Authors’ addresses: Sung-Hwan Lee, Seoul National University, Korea, sunghwan.lee@sf.snu.ac.kr; Minki Cho, Seoul

National University, Korea, minki.cho@sf.snu.ac.kr; Roy Margalit, Tel Aviv University, Israel, roy.margalit@cs.tau.ac.il;

Chung-Kil Hur, Seoul National University, Korea, gil.hur@sf.snu.ac.kr; Ori Lahav, Tel Aviv University, Israel, orilahav@tau.

ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART183

https://doi.org/10.1145/3591297

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-0783-7033
HTTPS://ORCID.ORG/0000-0002-6684-0921
HTTPS://ORCID.ORG/0000-0001-7266-8681
HTTPS://ORCID.ORG/0000-0002-1656-0913
HTTPS://ORCID.ORG/0000-0003-4305-6998
https://doi.org/10.1145/3591297
https://orcid.org/0000-0003-0783-7033
https://orcid.org/0000-0002-6684-0921
https://orcid.org/0000-0001-7266-8681
https://orcid.org/0000-0002-1656-0913
https://orcid.org/0000-0003-4305-6998
https://doi.org/10.1145/3591297

183:2 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

allows them to reason about their code; compilers strive to apply program optimizations and to be

able to justify their correctness; and hardware aims at efficient non-blocking implementations that

only provide rather weak consistency guarantees.

Recent years have shown multiple proposals of shared-memory concurrency models that aim to

address this challenge (see, e.g., [Chakraborty and Vafeiadis 2019; Jagadeesan et al. 2020; Jeffrey

et al. 2022; Kang et al. 2017; Lee et al. 2020; Paviotti et al. 2020]). These models typically focus on

performance, aiming at a semantics that allows various compiler optimizations and efficient mapping

to hardware. In particular, to support load-store reordering (of accesses to different addresses), either
as a part of a compiler optimization or as a possible result of the hardware’s pipeline, all these

models employ some sort of out-of-order execution that allows reads to read from future writes.

For not sacrificing programmability, which typically means that “out-of-thin-air” values should be

forbidden and the model should admit well-accepted data-race-freedom (DRF) guarantees [Adve

and Hill 1990; Batty et al. 2015; Cho et al. 2021], such models have to restrict their speculation

mechanisms in a way in which certain program behaviors have to be justified by the existence

of other program behaviors. For instance, the promising semantics by Kang et al. [2017] requires

promises of future writes to be justified by another thread-local run of the program, and event-

structure models, as the one by Chakraborty and Vafeiadis [2019], enforce consistency constraints

on a structure that captures several runs of the program. This makes these models rather complex

to reason about, and, indeed, besides several notable exceptions for particular models (see, e.g.,
[Abdulla et al. 2021; Svendsen et al. 2018]), existing verification research cannot handle such models.

This paper is devoted to investigating an alternative approach that puts amenability to reasoning
and verification in the center. For that, we are after an in-order semantics, where each allowed

behavior is accounted for by one execution of the program in which the actions of the different

threads follow the order dictated in their code, and every read reads from a previously executed write.

An in-order semantics allows one to incrementally reason about the code line-by-line, considering

at each step only the effect of the execution so far and the current instruction. In contrast, reasoning

about out-of-order semantics is much harder as it requires considering future instructions (or

revisiting previous decisions) based on other possible program executions.

The most intuitive example for an in-order semantics is the well-known model of sequential

consistency (SC), where different threads take turns communicating with a single global memory

in the form of address-to-value mapping, and every read obtains its value from the last previously

executed write to the same address. Nevertheless, various other models, weaker than SC, are still

in-order. In particular, RC11 [Lahav et al. 2017], a well-studied declarative model for C/C++ that

follows the proposal in [Boehm and Demsky 2014] to forbid cycles in the union of the program

order and the reads-from relation, is an in-order model. Verification for RC11-style models has been

extensively studied, and multiple techniques have been developed, including program logics [Dang

et al. 2020, 2022; Doherty et al. 2019], model checkers and fuzzers [Kokologiannakis et al. 2017,

2019; Luo and Demsky 2021], automatic robustness analyses [Margalit and Lahav 2021], and library

abstraction theorems [Raad et al. 2019; Singh and Lahav 2023].

Accordingly, our goal is to study: How far can one go in an in-order semantics? More concretely,

we aim to understand how in-order models can be designed in a way that minimizes the overhead

they cause for compiler optimizations and mapping to modern hardware.

We target C/C++ as a source language [Batty et al. 2011; Boehm and Adve 2008]. Most importantly,

this means that programmers distinguish between synchronization accesses (“atomics”) and weak

accesses that should not be used for inter-thread synchronization (“non-atomics”), and can cause

any behavior when they are misused for this purpose nonetheless. The latter allows us to rely on

“undefined behavior” for racy non-atomics, which is a crucial ingredient of our proposed approach.

(Thus, we do not provide a solution for “safe” languages that cannot tolerate undefined behavior.)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:3

1 extern void foo(unsigned int* x);
2 unsigned int test(unsigned int n) {
3 unsigned int x[1], sum = 0;
4 foo(x);
5 for (unsigned int i = 0; i < n; i++)
6 sum += x[0];
7 return sum; }

(a) Before optimization

1 extern void foo(unsigned int* x);
2 unsigned int test(unsigned int n) {
3 unsigned int x[1], sum = 0;
4 foo(x);
5 sum = x[0] * n;
6

7 return sum; }

(b) After optimization
Fig. 1. An example of load introduction. The program on the left adds the value in x[0] n times. GCC 12.2.0
with -Os flag and Clang 15.0.0 with -O2 flag compile this program into the one on the right (written in C
instead of assembly for readability) by turning the loop into a multiplication. This optimization effectively
introduces a load from x[0] when n = 0.

For atomics, we support the main shared memory constructs of C/C++11, including relaxed and

release/acquire accesses, read-modify-writes, and release/acquire and sequentially consistent fences.

Non-atomic accesses account for the vast majority of memory accesses in concurrent programs,

while atomics, which are used for inter-thread communication and synchronization, are relatively

rare. In particular, among atomics, the only ones that are intended to allow the problematic load-store

reordering are relaxed accesses, which are meant to be used by “very careful” programmers [Boehm

and Adve 2008] and are often confined to libraries that are manually optimized by experts. Thus, we

believe that the trade-off between performance and amenability to reasoning should be investigated

differently for atomics and non-atomics. Next, we separately discuss the performance overhead

that is imposed by an in-order semantics for supporting non-atomic accesses and atomic accesses.

Overhead in Non-atomic Accesses. Our first question is whether it is possible to have an in-

order semantics without imposing any performance overhead for non-atomic accesses. This stems

from a principled approach: being non-racy, non-atomics should allow all compiler optimizations

that are performed in single-threaded code.
1
We observe that a significant challenge exists for

validating this guiding principle in an in-order model, and we are not aware of any existing

model that solves this challenge (even for a simple fragment with only non-atomics and strong

synchronization accesses with, say, release/acquire semantics). In particular, RC11 invalidates

(irrelevant) load introduction, a transformation widely used in sequential code with significant

possible performance gains. In fact, the LLVM manual requires that non-atomics should validate

all optimizations allowed on sequential accesses (the only exception is store introduction, which

compilers avoid also in sequential code), and explicitly mentions that load introduction may be

performed by the compiler, and the LLVM compiler indeed introduces non-atomic loads as a part

in several of its optimization passes.
2
The assumptions of the GCC compiler are less clear, but some

examples show that it introduces loads as well. A concrete example is given in Fig. 1.

We provide a full solution to this challenge, and design an in-order semantics that does not

sacrifice any optimization on non-atomics. Inspired by LLVM, the key to doing so is to utilize

the distinction between a source semantics and an intermediate representation (IR) semantics. This

allows the separation of concerns: compiler optimizations may be unsound in the source semantics,

whereas the IR semantics does not have to be in-order. Indeed, the IR is not meant to be amenable

to conventional verification and reasoning, and programmers in the source language only need

to know the source semantics. This strategy, however, is not a magic potion: to have a sound

1
Compiler optimizations on single-threaded code effectively cover modern hardware’s behaviors of plain loads and stores,

so it is sufficient to focus this discussion on validating compiler optimizations. Still, in our results, we prove the correctness

of mapping non-atomics to plain machine loads and stores.

2
See https://llvm.org/docs/Atomics.html#optimization-outside-atomic [Accessed November 2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

https://llvm.org/docs/Atomics.html#optimization-outside-atomic

183:4 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

compilation, these models have to be designed in a way that the IR semantics is stronger than the

source semantics (i.e., all behaviors allowed by the IR should be allowed by the source).
3

Our main contribution is to show that this approach works with the right choice of source

and IR. Concretely, we develop an in-order source model, based on the promise-free fragment of

the promising semantics, and an IR model based on a recent version of the promising semantics

in [Cho et al. 2022], and prove the required relation between them. Our proposed source model is

(slightly) stronger than RC11, which allows the application of previous work on verification under

RC11. (In particular, we observe that certain races on non-atomics can be safely ignored in RC11’s

catch-fire mechanism.) For the IR, we have ported the result of [Cho et al. 2022], which establishes

the correctness of all optimizations on non-atomics that are allowed in sequential code. This means

that most compiler optimizations can be formally validated based on sequential reasoning, so even

most compiler developers need not understand the out-of-order IR model.

We note that while we mostly employ existing models (with some modifications and simplifi-

cations), to the best of our knowledge, this work is the first to formally relate an in-order source

model and an out-of-order IR model with the goal of having an in-order source semantics without

any performance overhead for non-atomics.

Overhead in Atomic Accesses. Naturally, the next question is about the performance overhead

for atomic accesses. Here, the challenge concerns relaxed accesses, which are meant to allow

load-store reordering that is in sharp contrast with in-order semantics. Unfortunately, we show

that any in-order model that supports all optimizations on non-atomics has to forbid the reordering

of a non-atomic/relaxed read followed by a relaxed write. (In particular, this reordering is forbidden

in both the source and the IR models we propose.)

What is the practical impact of forbidding this reordering? First, we note that although compiler

optimizations that reorder and eliminate atomics were extensively studied before (see, e.g., [Dodds
et al. 2018; Vafeiadis et al. 2015]), to the best of our knowledge, existing compilers do not perform

any of these optimizations. Then, it remains to understand the implications on the mapping to

hardware. Indeed, load-to-store ordering between plain accesses is not guaranteed to be preserved

by existing models of modern architectures, like those of Arm [Alglave et al. 2021; Pulte et al. 2017]

and Power [Alglave et al. 2014; Sarkar et al. 2011],
4
and so, forbidding this reordering seems to

require a stronger mapping of relaxed accesses for these architectures.

Interestingly, we observe a significant gap between CPU models and observable behaviors in
practice regarding the preservation of load-store ordering. While the abstract models of Arm and

Power allow the reorder of loads followed by stores, such behaviors were observed in practice only

in very few implementations.
5
In our discussion with CPU architects from Arm, we confirmed

that the load-store reordering is explicitly prohibited in Cortex processors, starting from Cortex-

A76. From this discussion, we further understood the technical trade-offs involved in their design,

and learned that, compared to other possible reorderings that the hardware performs, load-store

reordering is hard to apply and has rather limited performance benefits.

3
It is sufficient to have a correct efficient mapping from the source to the IR, where correctness is in the standard sense:

every behavior that is allowed by the IR semantics (of the mapped program) is also allowed by the source semantics (of the

source program). Since we do not want to sacrifice any performance in this mapping, we actually consider this mapping

being the identity mapping, and, thus, we simply require that the IR semantics is stronger than the source.

4
Intel’s architecture (assuming x86-TSO by Owens et al. [2009]), has rather strong semantics for plain loads and stores,

which never reorders loads with later stores.

5
Load-store reordering (concretely, the weak behavior of the LB litmus test) was never observed on Power as well as on

various implementations of Armv8 that were tested in [Alglave et al. 2021, 2014]. An anonymous review of this paper

provided information showing that this reordering is observed on Cortex A73, and mentioned that even on Cortex post A76

load-store reordering can be observed when memory locations are mapped to device, or when vector instructions are used.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:5

Accordingly, we propose a practical approach to this challenge. In the long term, we believe the

right way to go is for vendors to introduce new kinds of store instructions, which we call “strong

stores”, and officially preserve the order from loads to strong stores. We expect a minimal (to no)

overhead for these instructions compared to plain stores. In particular, strong stores still admit

store-store reorderings, which are commonly observed in practice, and are thus weaker than release

stores that are more expensive to implement. Meanwhile, in the absence of such instructions, we

propose to compile relaxed writes differently depending on the target hardware: (1) for a target

that preserves load-store order, the compilation can use plain accesses; and (2) otherwise, relaxed

writes have to be compiled as release writes.

Outline. The rest of this paper is structured as follows. In §2, we present the challenges, key

ideas, and observations of this paper in more detail. In §3, we present (a simplified fragment of) the

proposed source model and discuss its relation to RC11. In §4, we present (a simplified fragment of)

the IR model and establish the soundness of mapping the source model to the IR model. In §5, we

discuss the mapping to modern hardware, its soundness, and the proposed additions to hardware

models. Finally, in §6, we discuss related work.

Supplementary Material. Our main results ((1) soundness of mapping from source to IR,

(2) soundness of mapping from IR to ARMv8, (3) DRF guarantees for the source, and (4) adequacy

of sequential reasoning for validating optimizations in the IR) are mechanized in Coq. The

supplementary material available online [Lee et al. 2023] includes the Coq development, the full

models, a (pen-and-paper) proof of the relation to RC11, and the results of our experiments.

2 CHALLENGES AND KEY IDEAS
In this section, we present more details on the main observations and contributions of this paper.

To a significant extent, our central contributions are not in developing new concurrency models

and proving their meta-theoretic properties but rather in providing a holistic analysis and approach

to the problem of a shared-memory concurrency semantics in a high-level language like C, C++,

or Rust. Like in §1, we separately discuss non-atomics (§2.1) and atomics (§2.2) while focusing on

compiler optimizations for non-atomics and mapping to hardware for atomics. (Our results include

the mapping of non-atomics to plain accesses on hardware, as well as compiler optimizations

involving atomics, but these are not discussed in this section.)

2.1 Optimizing Non-Atomics in an In-Order Semantics
Supporting sequential optimizations for non-atomics in an in-order semantics is highly challenging,

and, to the best of our knowledge, it was not addressed by previous work. Next, we demonstrate

the challenge using the well-known load buffering example (§2.1.1); explain how the “catch-fire”

addresses this challenge (§2.1.2); describe why catch-fire semantics cannot support load introduction

by the compiler (§2.1.3); outline “undefined value” as an (informal) alternative to “catch-fire” and

why it fails in combination with an in-order model (§2.1.4); and conclude with our proposal of

having a two-layered model with catch-fire source semantics, and undefined-value-based semantics

for the intermediate representation (§2.1.5).

2.1.1 Read-Write Reordering vs. In-Order Semantics. To understand the crux of the challenge,
consider the classical example on the right, known as the load

buffering litmus test (LB, for short), where all accesses are marked

as non-atomics (na). Here and henceforth, we assume that all vari-

ables are implicitly initialized to 0. Our requirement on compiler

𝑎 := 𝑋 na

𝑌 na
:= 1

print 𝑎

𝑏 := 𝑌 na

𝑋 na
:= 1

print 𝑏
(LB)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:6 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

optimizations implies that the behavior in which both threads printing 1 must be allowed. Indeed,

the compiler may reorder the read from 𝑋 and the write to 𝑌 in the first thread (this is certainly

possible in sequential code, thus non-atomics should allow the reordering as well), and then

𝑎 = 𝑏 = 1 is possible even under SC. This behavior is in tension with the requirement to have an

in-order semantics for the source language, which will have to execute one of the reads first, and at

that point the only available write to read from is the implicit initialization write of the value 0.

2.1.2 Catch-Fire as a Solution? A well-known approach to address the above example is to

exploit the fact that non-atomics are not supposed to be used for inter-thread synchronization and

avoid providing any guarantees on the program behaviors when non-atomics participate in data

races. This idea, which we refer to as “catch-fire” semantics, is the cornerstone of the C/C++11 [Batty

et al. 2011], and its repaired version RC11 [Lahav et al. 2017], which explicitly states that a data

race on non-atomic accesses implies undefined behavior (UB, for short) for the given program.

Accordingly, RC11 allows the annotated behavior of the LB example above, while still being

an in-order semantics. A particular run, for instance, could perform both memory accesses of the

first thread (read 0 and write 1), observe a forbidden data-race when executing the first (or second)

access of the second thread, and then invoke UB. In turn, UB allows any possible continuation of

the execution, which in particular includes the ability to print 1 by both threads. This is still an

in-order semantics: threads execute their actions in the order specified by the program, a data-race

is detected according to previously executed accesses, and UB only affects future decisions.

Remark 1. The original presentation of RC11 in [Lahav et al. 2017] identifies program behaviors

with “final outcomes” (mapping each variable to the modification-order-maximal value written

to it). The current discussion assumes that behaviors are captured by sequences of system calls

(e.g., results of print statements) generated by a given program. RC11 can be easily adapted to this

notion by assuming that consistent execution graphs are incrementally constructed during the

program run, system calls are observed in the order they were executed along the run, and any

suffix of system calls is allowed once a racy execution graph is reached.

2.1.3 Load Introduction. A catch-fire semantics validates various compiler optimizations on

non-atomics, including access reordering and redundant access elimination. Indeed, whenever such

transformations enable additional behaviors, it can be shown that the source program was already

racy, and justify the target behaviors by UB invoked by the source. Catch-fire, however, falls short

to fully admit our guiding principle: some transformations allowed on sequential code are still

disallowed on non-atomics.

Concretely, the problem is with (irrelevant) load introduction. If the effect of the compiler’s

optimization introduces a non-atomic load (which may happen, e.g., when transforming

while 𝐵 do {𝑎 := 𝑋 na
; ...} to 𝑎 := 𝑋 na

; while 𝐵 do {...}

in traces where 𝐵 evaluates to false), then the target program may be racy (and invoke UB), while

the source is not. Thus, any model based on catch-fire cannot validate load introduction.

Load introduction is necessary for multiple optimizations based on speculation, which are

commonly performed by compilers (Clang, in particular) when hoisting loads, e.g., as a part of loop
invariant code motion, loop unswitching, load-widening or when loading a vector while only a

subset of elements is needed.
6
In addition to Fig. 1 from §1, Fig. 2 demonstrates another case where

load introduction has the potential to significantly improve performance.

6
See https://llvm.org/docs/Passes.html [Accessed November 2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

https://llvm.org/docs/Passes.html

Putting Weak Memory in Order via a Promising Intermediate Representation 183:7

1 extern void foo(char* x), bar(char* x);
2 int main() {
3 char x[8], y[8];
4 for (int i = 0; i < 10000000; i++) {
5 foo(x);
6 for (int j = 0; j < 8; j++)
7 y[j] = j%2 ? x[j] : 0;
8 bar(y); }
9 return 0; }

(a) Before optimization

1 extern void foo(char* x), bar(char* x);
2 int main() {
3 char x[8], y[8];
4 for (int i = 0; i < 10000000; i++) {
5 foo(x);
6 uint64_t r = *(uint64_t*)x;
7 *(uint64_t*)y = r & 0xFF00FF00FF00FF00ul;
8 bar(y); }
9 return 0; }

(b) After optimization
Fig. 2. An example of load introduction. The program on the left stores x[j] into y[j] for each odd j (and 0
otherwise). The program on the right is a hand-optimized version: it introduces loads from x[0], x[2], x[4],
and x[6]; merges all loads into a single 8 bytes load; and stores the result with an appropriate mask into y by
a single 8 bytes store. External functions (foo and bar) are used to prevent the compiler from eliminating the
loads and stores. By compiling both programs with Clang 15.0.1 and running them on ThunderX2 Armv8
server, we observed more than x2 performance gain (average execution time of 0.069s vs. 0.033s).

2.1.4 Undefined Value as a Solution? A natural idea for supporting load introduction is to

limit the “undefinedness” to the value being read in racy reads: instead of invoking UB, just leave

unspecified the value loaded by a non-atomic racy read, so if this value is never used (and the load

is indeed irrelevant), we will not introduce additional behaviors. The LLVM semantics follows this

idea: it keeps read-write races to be always well-defined and declares that non-atomic racy reads

may return “undef” value. In turn, “undef” can be refined to any value.
7

While being tempting at first sight, undefined value for racy reads will not solve our problem.

Referring back to the LB example above, it is easy to see that any execution of an in-order semantics

can observe a race only in one of the reads, so only one of them can return “undef”, which will not

allow both threads to print 1. To fix this, one has to either speculate a data race when performing

the first read, or revisit its previous decisions on the read value when performing the second write.

Both options lead us to models that are much more complicated than in-order models.

2.1.5 Our Proposal: An Intermediate Representation. The key idea in our approach is to split

the semantics into two models: a source model that accounts for the programmers’ needs, and an

intermediate representation (IR) model that accounts for the compilers’ (and hardware’s) needs.

Then, the compiler first maps the source program to the IR, and only then applies its optimizations.

Programmers should be only aware of the source model, which can be in-order (e.g., with catch-fire)

since it does not have to support compiler optimizations; and the IR semantics can support compiler

optimizations (e.g., with undefined value for racy reads and out-of-order race detection) since it does
not have to be in-order. Our manifestation of this approach consists of the following contributions:

(1) We propose a source model, which we denote by vRC11, obtained by adding non-atomic

accesses to the promise-free fragment of the promising semantics [Kang et al. 2017; Lee et al. 2020].

This model, which is stronger than RC11, is formulated as an operational model using timestamps

and thread-views to justify weak behaviors, and a simple race-detection mechanism that invokes

UB for races on non-atomics. Interestingly, we observe that not all such races should invoke UB, and

it is sufficient to consider races with previously executed writes (and ignore races with previously

executed reads). Thus, we are able to restrict the catch-fire mechanism in a way that deems fewer

programs racy but still achieves what catch-fire is needed for.

7
Branching on “undef” is still considered UB. The “freeze” instruction recently introduced in LLVM is a tool to support

branching on a possibly undefined value, which is often a result of load introduction [Lee et al. 2017].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:8 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

(2) For the IR model, we develop a simplification of the promising model by Cho et al. [2022],

which we denote by PS
IR
, where (simplified) promises are only needed for race detection. Thus,

PS
IR

justifies an out-of-order behavior by detecting a race with “promises” made by other threads.

More concretely, a thread in PS
IR

can promise to execute a non-atomic write to a location 𝑋 in the

future, whenever the thread can certify the promise by checking that it can perform a non-atomic

write to 𝑋 by executing alone. Once a promise is made, another thread reading from 𝑋 races with

the promise and reads “undef” value. We have ported the result of [Cho et al. 2022] to PS
IR
, which

establishes the correctness of all optimizations on non-atomics that are allowed in sequential code.

(3) We prove that PS
IR

is stronger than vRC11. Roughly speaking, this is possible because catch-

fire is sufficiently weak to account for the IR’s out-of-order behaviors. In other words, once a

program exhibits any behavior that stems from an out-of-order execution under PS
IR
, the same

program has a race in a (possibly different) execution under vRC11, where a race leads to UB. To

establish the proof, it is enough to show that the source can invoke UB for such an out-of-order

execution in PS
IR
. Here, the key idea is that the thread of vRC11 can follow the certification run

(which is required to justify a promise under PS
IR
) and perform a non-atomic write to 𝑋 instead of

making a promise to 𝑋 . Then, the other thread reading from 𝑋 races with that non-atomic write,

and the program invokes UB under vRC11.

Example 2.1. In the LB example, PS
IR

allows 𝑎 = 𝑏 = undef through an out-of-order execution

where the first thread promises to write to 𝑌 , and the second thread reads “undef” from 𝑌 since the

read races with the promise. The first thread could certify its promise before making it by reading

0 from 𝑋 and executing 𝑌 na
:= 1. In vRC11, instead of promising the write, the first thread can

execute and write to 𝑌 following the certification execution of PS
IR
. Then, the second thread’s read

from 𝑌 becomes racy, and the program invokes UB, which accounts for all possible behaviors.

Remark 2. In fact, since UB by the source accounts for any behavior of PS
IR
, the proof of mapping

the source to the IR can essentially assume that there is no race in the promise-free fragment of PS
IR
,

which makes the mapping proof similar to the proof of the DRF-PF theorem (a data-race-freedom

guarantee w.r.t. the promise-free semantics) in [Cho et al. 2021].

We note that the fact that PS
IR

is stronger than vRC11 allows one to soundly reason about pro-

grams under PS
IR

semantics while assuming vRC11 (which may be needed when the intermediate

language itself acts as a source language for another step of compilation and thus is not completely

compiler-internal). Such reasoning would be incomplete, but we expect that only a small fraction

of programs will need a precise analysis using the exact IR model.

2.2 Mapping Relaxed Accesses to Modern Hardware
In this section, we turn to the question of supporting atomic accesses focusing specifically on

relaxed accesses. We demonstrate the challenge (§2.2.1); revisit the assumptions on hardware

(§2.2.2); and propose two practical solutions: a long-term solution that depends on hardware vendors

implementing our feature request (§2.2.3), and a short-term solution that requires strengthening

the existing compiler mapping of relaxed accesses (§2.2.4).

2.2.1 Reordering of Relaxed Accesses in an In-Order Semantics. Like non-atomic accesses,

relaxed accesses in C/C++11 were intended to be mapped to plain loads and stores in the hardware

even when the hardware model allows load-store reordering. Clearly, this is in contrast with

an in-order semantics (indeed, consider the LB example above with relaxed accesses). Moreover,

since relaxed accesses are meant to be used in races (for improving the performance of certain

concurrency idioms; see, e.g., [Sinclair et al. 2017]), catch-fire is not a possible solution here. In fact,

as the next example shows, even the reordering of a non-atomic load followed by a relaxed atomic

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:9

(1) (2) (3) (4) (5) (6)

𝑐 := 𝑋 na

if ∗ then
𝑏 := 𝑋 na

if 𝑏 = 1 then
𝑌 rlx

:= 1

print 𝑏
else
𝑌 rlx

:= 1

𝑐 := 𝑋 na

if 𝑐 = 1 then
𝑏 := 𝑋 na

if 𝑏 = 1 then
𝑌 rlx

:= 1

print 𝑏
else
𝑌 rlx

:= 1

𝑐 := 𝑋 na

if 𝑐 = 1 then
𝑏 := 1

if 𝑏 = 1 then
𝑌 rlx

:= 1

print 𝑏
else
𝑌 rlx

:= 1

𝑐 := 𝑋 na

if 𝑐 = 1 then
𝑏 := 1

𝑌 rlx
:= 1

print 1

else
𝑌 rlx

:= 1

𝑐 := 𝑋 na

𝑌 rlx
:= 1

if 𝑐 = 1 then

print 1

𝑌 rlx
:= 1

𝑐 := 𝑋 na

if 𝑐 = 1 then

print 1

(1) introduce a non-atomic read 𝑐 := 𝑋 na
; (2) replace the non-deterministic choice with an expression; (3) forward the read

𝑐 := 𝑋 na
to the read 𝑏 := 𝑋 na

in the if-branch, turning it into 𝑏 := 1; (4) forward 𝑏 := 1 to the expression 𝑏 = 1 and the print

statement; (5) hoist the common write 𝑌 rlx
:= 1 out of the branch; and (6) reorder 𝑐 := 𝑋 na

and 𝑌 rlx
:= 1.

Fig. 3. A sequence of compiler transformations on non-atomics (1–5) and the problematic reordering of a
non-atomic load followed by a relaxed store (6) applied to the second thread of LB-CHOICE.

store cannot be allowed in an in-order semantics:

𝑎 := 𝑌 rlx

if 𝑎 = 1 then
𝑋 rlx

:= 1

if ∗ then
𝑏 := 𝑋 na

if 𝑏 = 1 then 𝑌 rlx
:= 1

print 𝑏 //prints 1
else
𝑌 rlx

:= 1

{

𝑎 := 𝑌 rlx

if 𝑎 = 1 then
𝑋 rlx

:= 1

𝑌 rlx
:= 1

𝑐 := 𝑋 na

if 𝑐 = 1 then
print 1

(LB-CHOICE)

Here, “∗” means a non-deterministic choice that non-deterministically returns arbitrary value.
8

Assuming an in-order semantics, the source program on the left cannot print 1 since either one

of 𝑎 := 𝑌 rlx
or 𝑏 := 𝑋 na

executes first and can only read 0 (from the initial memory). However, as

shown in Fig. 3, by applying a sequence of compiler transformations on non-atomics and finally

reordering (by the compiler or the target hardware) 𝑐 := 𝑋 na
and 𝑌 rlx

:= 1 in the second thread,

the program on the left can be transformed into the program on the right. Then, the second thread

printing 1 is easily observable (even under SC). Therefore, the reordering of a non-atomic load

followed by a relaxed store must be forbidden in any in-order source semantics that aims to allow

common compiler transformations on non-atomics.

2.2.2 Revisiting the Assumptions on Hardware. We observe that there is a significant gap

between CPU models and observable behaviors in practice regarding the preservation of load-store

ordering. While the abstract models effectively allow the reordering of loads with subsequent stores,

such behaviors are rarely observed in practice. Indeed, previous experiments performed to validate

the hardware models rarely observed weak behaviors of the LB litmus test. First, such behaviors

were never observed on any Power hardware [Alglave et al. 2014; Sarkar et al. 2011]. Second, while

they were observed on several Armv7 implementations, to the best of our knowledge, for Armv8,

LB was only observed on Qualcomm’s Snapdragon 820 mobile processors [Alglave et al. 2021] and

on Cortex A73.
9
To gain more confidence, we experimentally tested a newer version, Qualcomm’s

Snapdragon 888 processor, and the weak behaviors of LB were not observed there.

After discussing with Arm engineers, we gained a better understanding of the architectural

reasons why the potential performance improvement by allowing load-store reordering is relatively

8
A non-deterministic choice corresponds to “freezing” an undefined value in LLVM. See https://llvm.org/docs/LangRef.

html#undefined-values and https://llvm.org/docs/LangRef.html#freeze-instruction [Accessed November 2022].

9
Snapdragon 820 exhibits various other weak behaviors that are forbidden by the official model (950 such tests reported

in [Alglave et al. 2021]!). The information about Cortex A73 was obtained from the anonymous PLDI reviewer.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

https://llvm.org/docs/LangRef.html#undefined-values
https://llvm.org/docs/LangRef.html#undefined-values
https://llvm.org/docs/LangRef.html#freeze-instruction

183:10 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

small. Essentially, this stems from the fact that a store can be treated as completed in its own core

when it is added to the core-local store buffer before being made visible to other cores. Thus, no

intra-core optimization is prevented by preserving load-store ordering. The only exception is that

such reordering may reduce the pressure on the store buffer (so that fewer stores stall due to the

buffer being full), as it allows to commit a store from the store buffer to the shared storage possibly

before previous loads were completed. However, committing stores early complicates the cache

implementation regarding the ECC (error correction code) logic, and before committing a store,

the core must check that all incomplete preceding loads will never raise exceptions and are not

aliased with the store to be committed.

Remark 3. Unlike load-store ordering, preserving store-store ordering is rather expensive. For
instance, in Cortex A76 and later versions, a store from the store buffer is committed to a merge
buffer when it is the oldest store (i.e., all preceding loads are completed, and all preceding stores

are already committed to the merge buffer). Then, stores in the merge buffer may be reordered

to group together those writes that fit in the same cache line, which are merged and committed

at once. Such reordering between stores greatly reduces cache accesses and is thus considered

performance-critical, which is why store-store reordering visible to other cores is needed.

2.2.3 A Long Term Practical Solution. Based on the above discussion, we raise a clear “feature

request” from hardware vendors. Concretely, we propose hardware vendors to introduce a new kind

of store instructions, which we call “strong stores”, that will preserve load-store ordering. Then,

the IR’s relaxed stores will be mapped to strong hardware stores. For most hardware architectures,

where architects agree that load-store ordering is preserved, strong stores could be implemented

as plain stores. Otherwise, the overhead is not expected to be significant, and, in any case, strong

stores should be cheaper than release stores (since they do not need to preserve store-store order).

We believe that this is a case where the input from multiple years of research in concurrent

programming language semantics may guide hardware developers. In fact, other features of Arm,

such as sequentially consistent accesses and release sequences, were developed hand in hand with

C/C++11 constructs. Our proposal is of a similar nature, identifying an opportunity for hardware

vendors to significantly assist programming language design with a rather minimal cost.

In §5, we provide the proposed formal additions to the declarative models of Armv8 and Power

for supporting strong stores. We have performed extensive validation of these revised models using

the Herd model checker [Alglave et al. 2021, 2014], to see that, indeed, when strengthening all

stores to be strong, the behaviors that become disallowed are, like LB, behaviors that were not

observed on hardware (except for Snapdragon 820 and Cortex A73 as discussed above).

2.2.4 A Short Term Practical Solution. Without the availability of “strong stores” in hardware,

we propose to change the compiler mappings to take into account the target CPU. For CPUs that

preserve load-store ordering, it is still safe to map relaxed accesses to plain accesses. Otherwise, the

compiler should map relaxed store as it maps release stores (e.g., to an stlr instruction on Armv8).

Following Ou and Demsky [2018], mapping relaxed stores as release entails a performance

overhead of 3.6% on Arm (although it is rather hard to estimate performance for real-world

programs). We note that the mapping scheme that enforces the preservation of load-store ordering

by inserting a (fake) branch from every relaxed read, which is more efficient according to Ou

and Demsky [2018] (with -0.3% overhead), is unsound for our needs. Indeed, as the LB-CHOICE

example shows, we also need to forbid reordering of non-atomic reads followed by relaxed writes.

This would require adding a branch from every non-atomic read, which, given the prevalence of

non-atomic reads in concurrent programs, is expected to significantly harm performance.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:11

𝑣 ∈ Val value

𝑋,𝑌, 𝑍 ∈ Loc location

𝑜R ∈ {na, rlx, acq} read access mode

𝑜W ∈ {na, rlx, rel} write access mode

𝜏 ∈ Tid ≜ {𝜏1, 𝜏2, ...} thread identifier

𝑡 ∈ Time ≜ {0} ∪ Q+
timestamp

𝑉 ∈ View ≜ Loc → Time view

𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉 ⟩ ∈ Msg message

𝑀 ⊆ Msg memory

𝜎 thread-local program state

T = ⟨𝜎,𝑉 ⟩ ∈ Lts thread state

⟨T , 𝑀⟩ thread configuration

T ∈ Tid → Lts thread state mapping

M = ⟨T , 𝑀⟩ machine state

(silent)

𝜎 −→ 𝜎 ′

⟨⟨𝜎,𝑉 ⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 ⟩, 𝑀⟩

(system call)

𝜎
Sys(𝑒)
−−−−−→ 𝜎 ′

⟨⟨𝜎,𝑉 ⟩, 𝑀⟩
Sys(𝑒)
−−−−−→ ⟨⟨𝜎 ′,𝑉 ⟩, 𝑀⟩

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−→ 𝜎 ′

⟨𝑋@𝑡, 𝑣, _,𝑉m⟩ ∈ 𝑀 𝑉 (𝑋) ≤ 𝑡

𝑉 ′ = 𝑉 [𝑋 ↦→ 𝑡] ⊔
{
0 𝑜R ≠ acq

𝑉m 𝑜R = acq

⟨⟨𝜎,𝑉 ⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 ′⟩, 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉m⟩ 𝑉 (𝑋) < 𝑡 𝑀#𝑚

𝑉 ′ = 𝑉 [𝑋 ↦→ 𝑡] 𝑉m =

{
𝜆𝑋 . 0 𝑜W ≠ rel

𝑉 ′ 𝑜W = rel

⟨⟨𝜎,𝑉 ⟩, 𝑀⟩ −→ ⟨⟨𝜎 ′,𝑉 ′⟩, 𝑀 ∪ {𝑚}⟩

(race)

⟨𝑋@𝑡, _, 𝑜W, _⟩ ∈ 𝑀

𝑉 (𝑋) < 𝑡 𝑜W = na ∨ 𝑜 = na

race(𝑉 ,𝑀,𝑋, 𝑜)

(racy-read/write)

𝑙 ∈ { W(𝑋, 𝑜, _), R(𝑋, 𝑜, _) }
𝜎

𝑙−→ _ race(𝑉 ,𝑀,𝑋, 𝑜)
⟨⟨𝜎,𝑉 ⟩, 𝑀⟩ −→ ⟨⟨⊥,𝑉 ⟩, 𝑀⟩

(machine: normal)

⟨T (𝜏), 𝑀⟩ 𝑙−→ ⟨T ′, 𝑀 ′⟩

⟨T , 𝑀⟩ 𝑙−→ ⟨T [𝜏 ↦→ T ′], 𝑀 ′⟩

(machine: ub)

⟨T (𝜏), 𝑀⟩ −→ ⟨⟨⊥, _⟩, 𝑀 ′⟩
⟨T , 𝑀⟩ −→ ⟨⊥, 𝑀 ′⟩

Fig. 4. Domains and transitions of vRC11 (RMWs, fences, and release sequences are omitted). Differences
w.r.t. the promise-free fragment of PS are highlighted.

3 THE SOURCE MODEL
In this section, we present the in-order source semantics vRC11 (standing for “view-based RC11”),

which we obtain by adding transitions for non-atomic accesses to the promise-free fragment of the

promising semantics (PS, for short). In §3.1, we discuss the relation between vRC11 and RC11 and

show that vRC11 is stronger than RC11. Therefore, verification theory and tools developed for RC11

(or any weaker model), such as model checkers [Kokologiannakis et al. 2017, 2019; Luo and Demsky

2021], program logics [Dang et al. 2020; Doko and Vafeiadis 2017], and robustness analysis [Lahav

and Margalit 2019], all apply to vRC11. In §3.2, we provide a declarative presentation of the model.

vRC11 is obtained from PS by (i) removing the notion of promises that models early execution of

writes and all transitions and components of states related to promises; and (ii) adding transitions for

non-atomic and racy accesses. Next, we introduce the fragment of vRC11 consisting of non-atomic,

relaxed and release/acquire writes and reads. In turn, read-modify-writes (RMWs), fences, and

release sequences are omitted by brevity. They are included in the full model in Coq and presented

in [Lee et al. 2023, Appendix A]. Figure 4 summarizes the domains and the transitions of vRC11,

highlighting the differences w.r.t. the promise-free fragment of the model in [Kang et al. 2017].

Program Semantics.We assume that the program of each thread is represented as a labeled

transition system, whose states, denoted by 𝜎 , record the local register file and the continuation

code, and transitions 𝜎
𝑙−→ 𝜎 ′

are labeled with the action 𝑙 that is performed. For silent transitions

that do not communicate with the memory (e.g., conditionals and local assignments), we write

𝜎 −→ 𝜎 ′
. Read and write transitions have labels 𝑙 = R(𝑋, 𝑜R, 𝑣) and 𝑙 = W(𝑋, 𝑜W, 𝑣), respectively. We

also assume transitions executing system calls, which are externally observable (e.g., resulting from

print statements), with a label 𝑙 = Sys(𝑒) where 𝑒 is the output of the call.
Memory. A memory 𝑀 is a finite set of messages of the form𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉m⟩ representing a

previously executed write of a value 𝑣 ∈ Val to a location 𝑋 ∈ Loc. Each message has a timestamp
𝑡 ∈ Time, where Time is the set of non-negative rational numbers,

10
a write access mode 𝑜W of the

10
As in previous work [Kang et al. 2017; Lee et al. 2020], timestamps are densely ordered, so one can always add a message

between existing messages. This property is particularly useful when proving the soundness of compiler transformations

such as “store merge” that merges two successive stores 𝑋 := 1 ;𝑋 := 2 into a single store 𝑋 := 2. In the proof, the source

has to mimic the target program by finding a free timestamp for 𝑋 := 1 before 𝑋 := 2.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:12 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

operation by which the message was added, and a view 𝑉m ∈ View ≜ Loc → Time for enabling
release/acquire synchronization, which we explain below. The initial memory consists of an initial

message ⟨𝑋@0, 0, na, 𝜆𝑋 . 0⟩ for every location 𝑋 .

States. A machine state M = ⟨T , 𝑀⟩ consists of a function T assigning a thread state to each

thread identifier, and a memory 𝑀 shared among the threads. A thread state is a pair T = ⟨𝜎,𝑉 ⟩
where 𝜎 is a local program state and 𝑉 ∈ View is a thread view, recording the latest timestamp

that has been observed the thread for each location. The initial thread state consists of the initial

program state and the 0-view assigning 0 to each location.

Read Step. A thread can read a message ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉m⟩ ∈ 𝑀 with a timestamp greater than or

equal to the thread’s view of 𝑋 (i.e., 𝑉 (𝑋) ≤ 𝑡), updating its view of 𝑋 to include the timestamp 𝑡

of the message. If the read is an acquire (acq) read, the thread also acquires the message view 𝑉m
and joins it to its own view by taking pointwise maximum (denoted by ⊔).

Write Step. A thread writes by adding a message𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉m⟩ to the memory𝑀 provided

that 𝑡 is greater than the thread’s view (𝑉 (𝑋) < 𝑡) and that there is no existing message in 𝑀

with location 𝑋 and timestamp 𝑡 (denoted by𝑀#𝑚). The access mode 𝑜W of the write operation is

recorded in𝑚. The thread updates its view to 𝑉 ′ = 𝑉 [𝑋 ↦→ 𝑡]. A release write records the thread’s

view (𝑉m = 𝑉 ′
) in the message, while non-release writes have the 0-view in 𝑉m.

Racy Access. A memory access to location 𝑋 by a thread with view 𝑉 is racy if there is some

message ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉m⟩ ∈ 𝑀 with 𝑉 (𝑋) < 𝑡 and either the message is written by a non-atomic

write (𝑜W = na) or the access itself is non-atomic (as defined in (race) in Fig. 4). Executing a racy

read or a racy write leads the thread to the ⊥ program state.

Machine Step.Machine steps are obtained as standard interleaving of thread steps ⟨T (𝜏), 𝑀⟩ −→
⟨T ′, 𝑀 ′⟩. If the thread detects a race and steps to ⊥, the machine may take a (pf-machine: ub) step

that leads to the ⊥ machine state, that is later interpreted as UB.

Behavior. An (observable) behavior is a sequence 𝑠 = ⟨𝑒1, 𝑒2, ... , 𝑒𝑛⟩ of system calls. A machine

stateM generates a behavior 𝑠 , denoted byM ⇓ 𝑠 , if 𝑠 is obtained by restricting a trace of vRC11

starting from M to system call labels and replacing UB by an arbitrary suffix of system calls. With

standard notations for sequences, M ⇓ 𝑠 is defined by:

terminal(M)
M ⇓ 𝜖

M1 −→ M2 M2 ⇓ 𝑠

M1 ⇓ 𝑠

M1

Sys(𝑒)
−−−−→ M2 M2 ⇓ 𝑠

M1 ⇓ 𝑒 · 𝑠
M −→ ⟨⊥, _⟩

M ⇓ 𝑠

Here, terminal(M) means that the machine state M is terminal (i.e., every thread has empty

continuation code). As captured by the last rule, once a UB is invoked during the execution, the

machine exhibits any behavior that is prefixed with the sequence of system calls occurred before

the invocation of the UB. We let J𝑝𝑟𝑜𝑔K
vRC11

= { 𝑠 | init(prog) ⇓ 𝑠 }, which denotes the set of all

behaviors that an initial machine state init(prog) of a program prog exhibits.

Example 3.1. The “store buffering” test on the right demonstrates

how the memory and the thread views of vRC11 captures weak

behaviors exhibited by the reordering of a store followed by a

load. The behavior of both threads printing 0 is allowed by vRC11.

𝑋 rlx
:= 1

𝑎 := 𝑌 rlx

print 𝑎

𝑌 rlx
:= 1

𝑏 := 𝑋 rlx

print 𝑏
(SB)

Specifically, the first thread writes 1 to 𝑋 by adding a message ⟨𝑋@𝑡, 1, rlx, 𝜆𝑋 . 0⟩ with some

timestamp 𝑡 > 0 and increasing its thread view of 𝑋 to 𝑡 . After the write, the thread reads from

the initial message ⟨𝑌@0, 0, na, 𝜆𝑋 . 0⟩. By executing the second thread in the same way, it can read

either from the initial message ⟨𝑋@0, 0, na, 𝜆𝑋 . 0⟩ (since its view of 𝑋 is still 0) or from the message

of the first thread. Therefore, both threads can read 0 at the same execution.

Example 3.2. We show how vRC11 allows both threads printing 1 in the LB example in §2.

Suppose that the first thread reads 0 from the initial message for 𝑋 , and writes 1 to 𝑌 by adding

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:13

a message𝑚𝑌 = ⟨𝑌@𝑡, 1, na, 𝜆𝑋 . 0⟩ with some 𝑡 > 0. Then, the read from 𝑌 by the second thread

races with the message𝑚𝑌 since it has a timestamp 𝑡 greater than the timestamp of 𝑌 in the second

thread’s view (i.e.,𝑉 (𝑌) = 0 < 𝑡). Then, due to the racy read from 𝑌 , the second thread invokes UB,

which generates arbitrary behavior, including the behavior in which both threads print 1.

Example 3.3. Consider themessage passing program on the right.

The two non-atomic accesses to the data 𝐷 are well-synchronized

by a release-acquire synchronization through the flag 𝐹 , and thus,

they are not racy. Indeed, the first thread records its view in the

𝐷na
:= 42

𝐹rel := 1

𝑎 := 𝐹acq

if 𝑎 = 1 then
𝑏 := 𝐷na

(MP)

message 𝐹 = 1 and the view is transferred to the second thread when it reads 𝐹 = 1. The read from

𝐷 by the second thread is not racy since the timestamp of 𝐷 it has in its view is already increased

to include the timestamp of the message 𝐷 = 42. Moreover, the second thread is only allowed to

read 42 from 𝐷 . In contrast, the program becomes racy if any (or both) of the accesses to 𝐹 is made

relaxed. Then, there would not be a release-acquire synchronization between the two threads, and

the timestamp of 𝐷 in the second thread’s view would remain 0 (pointing to the initial message of

𝐷) even after reading 1 from 𝐹 . In turn, the read from 𝐷 would be racy and invoke a UB, as the

message 𝐷 = 42 would have a higher timestamp than the second thread’s view of 𝐷 .

We have ported the Coq proof by Cho et al. [2022] to establish the local DRF guarantees, LDRF-
RA and LDRF-SC, for vRC11. Generally speaking, data-race-freedom (DRF) guarantees ensure

“strong” semantics for programs that are race-free under the “strong” semantics, and thus provide

an essential formal justification for defensive programming. Local DRF (LDRF) guarantees further
extend this idea to be applicable also in the presence of races on some unrelated locations (e.g.,
confined in optimized libraries). LDRF-RA means that we consider release/acquire semantics as the

strong semantics, and LDRF-SC means that under the strong semantics, threads can only access

messages with globally maximal timestamps.

3.1 Relating vRC11 to RC11
The RC11 [Lahav et al. 2017] memory model addresses two problems of the C/C++11 model: its

flawed semantics for sequentially consistent accesses and fences (which is unrelated to the current

paper) and the more crucial problem of “out-of-thin-air” reads [Batty et al. 2015] that breaks the

fundamental DRF guarantee. To solve the latter problem, following [Boehm and Demsky 2014],

RC11 takes a conservative approach and forbids cycles in the union of the program order and the

reads-from relation. As discussed before, verification of concurrent programs under RC11 has been

extensively studied and multiple verification methods and tools have been developed. The next

theorem states that vRC11, the source model of the present paper, is stronger than RC11. Hence,

the soundness of all verification approaches for RC11 applies to vRC11 as well.

Theorem 3.4. For every program prog, JprogK
vRC11

⊆ JprogK
RC11

.

We provide a (pen-and-paper) proof in [Lee et al. 2023, Appendix C], based on a declarative

presentation of vRC11 (see §3.2), which can be more easily compared to RC11. Next, we demonstrate

behaviors allowed by RC11 but disallowed by vRC11 using examples.

Putting presentation aside, the main difference between vRC11 and RC11 is related to the fact

that an access in vRC11 can only race with previously executed writes, but not with previously

executed reads. To illustrate this point, consider the following example:

𝑎 := 𝑋 na

𝑌 rlx
:= 1

𝑏 := 𝑌 rlx

if 𝑏 = 1 then 𝑋 na
:= 42

(RW-RACE)

In both vRC11 and RC11, the read of 𝑋 has to return 0, but this program is considered racy in RC11

but not in vRC11. Specifically, both vRC11 and RC11 allow the execution where the second thread

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:14 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

reads 1 from 𝑌 (from the write of the first thread) and writes 42 to 𝑋 . In RC11 this execution is

deemed racy, since it has two accesses to the same location, such that (i) one of them is a write;

(ii) one of them is non-atomic; and (iii) they are not properly synchronized by release/acquire

accesses. In contrast, vRC11 does not view this execution as racy. In vRC11, an access can only race

with a message to the same location that already exists in the memory. Thus, the write to 𝑋 by the

second thread is never racy since there has not been any other write to 𝑋 . In other words, a write

can never race with a read executed before the write. Note that the execution 𝑋 na
:= 42 requires a

message 𝑌 = 1 in the memory, so it cannot precede the read 𝑎 := 𝑋 na
by the first thread.

Remark 4. Deeming programs like RW-RACE as non-racy may allow performance improvements

in certain programming idioms that are forbidden in RC11. For example, consider the following

multiple-readers-single-writer (MRSW) lock pattern:

...

𝑎 := 𝑋 na

reader-unlock()

...

𝑏 := 𝑋 na

reader-unlock()

writer-lock()
𝑋 na

:= 42

...

An MRSW lock protecting a location 𝑋 allows multiple readers to read from 𝑋 concurrently, while

the writer should be exclusive, blocking any other reader or writer. A typical implementation of

an MRSW lock maintains a counter counting how many readers currently hold the reader-lock.

For such an implementation, reader-unlock() decreases the counter using a fetch-and-decrement

operation and, writer-lock() checks if the counter reaches 0 and atomically swaps the value of the

counter to some special value using a compare-and-swap. Under RC11, to prevent the race between

the reads and the later write, reader-unlock() and writer-lock() should form release-acquire

synchronization. In contrast, as in RW-RACE, such synchronization is unnecessary under vRC11

since a write never races with a read executed before the write. Therefore, vRC11 allows one to

relax the write access mode of the fetch-and-add in reader-unlock() from rel to rlx. Moreover,

when there is only one writer thread, writer-lock() can be further optimized to use a relaxed

RMW instead of an acquire RMW.

In addition to the above, even for races with previously executed writes, the operational race

condition of vRC11 is more restrictive than the race definition in RC11, where two accesses to the

same location are considered racy if they are not “well-synchronized” (which is formally defined

using the “happens-before” relation). This can be observed in programs when certain locations are

accessed by both atomic and non-atomic accesses, as in the following example:

𝑋 rlx
:= 1

𝑎 := 𝑋 rlx

if 𝑎 = 1 then 𝑏 := 𝑋 na (COH-RACE)

In both vRC11 and RC11, the read of 𝑋 has to return 1, but, again, this program is racy in RC11

but not in vRC11. To see this, consider an execution where the relaxed read 𝑎 := 𝑋 rlx
by the

second thread reads 1 written by the first thread. The write 𝑋 rlx
:= 1 by the first thread and the

non-atomic read 𝑏 := 𝑋 na
by the second are racy in RC11 since they are not well-synchronized via

a release-acquire synchronization. In vRC11, the two accesses are not racy: once the second thread

reads 1 by the relaxed read 𝑎 := 𝑋 rlx
, its view to 𝑋 increases to include the message 𝑋 = 1. Then,

when the thread performs a non-atomic read from 𝑋 , no message to 𝑋 has a timestamp higher than

the thread’s view (i.e., only the message 𝑋 = 1 can be read by the second thread). Therefore, the

non-atomic read by the second thread does not race with the write of the first thread.

Both of the above examples demonstrate cases that RC11 assigns UB to a program, whereas

vRC11 gives it a defined semantics. We believe that races in vRC11 have a clear and simple meaning:

a read access is racy iff it can read from more than one message, and a write access is racy iff it

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:15

can “overwrite” more than one message. The examples above show cases where RC11 forces a

non-atomic read to read from a particular write, but the read is still considered racy in RC11.

Finally, there also is a difference between the two models related to SC-fences (which are not

presented above but included in the full model). In vRC11 the semantics of SC-fences is similar to

the one in the RC20 model in [Margalit and Lahav 2021], which is stronger than their semantics in

RC11. In particular, SC-fences in vRC11 model can be expressed in terms of a release and acquire

fences and an RMW to an otherwise unused location (see [Margalit and Lahav 2021, Remark 1]).

We do not discuss further this difference since it is orthogonal to our main topic.

3.2 A Declarative Presentation
For informed readers, we provide a declarative (a.k.a. axiomatic) presentation of vRC11. Such

presentation is more concise than the operational one, and it is especially useful for comparing

vRC11 to other models that are presented in a similar declarative fashion such as C/C++11. In

the following, we consider the full model with RMWs and fences. Due to lack of space, we refer

to [Lahav et al. 2017], which we build on, for more background and examples of this definition

style. (In any case, this technical section can be skipped when reading the paper.) The equivalence

between the operational and declarative models is proved in [Lee et al. 2023, Appendix B].

In declarative models, program executions are represented by execution graphs, whose nodes,
called events, keep track of accesses to the shared memory, and edges provide several (partial)

orders on these accesses. We assume that events are divided into three sets: writes (W), reads (R), and
fences (F). We use standard notations to retrieve events properties (such as loc(𝑒) for the location
accessed in 𝑒 and mod(𝑒) for the access mode) and to restrict sets accordingly (such as Wrel for the
set of release writes). Our execution graphs employ the standard basic relations: a program order

(po) that totally orders the events of each thread; an RMW relation (rmw) that distinguishes the
read-write pairs that together form an RMW; a reads-from relation (rf) that links each write event

𝑤 to the read events that read their value from𝑤 ; and a modification order (mo), a.k.a. coherence
order, that totally orders all writes to the same location. Based on these relations, several other

relations are derived (all as in RC11) using standard relational notations:

po |loc ≜ {⟨𝑒1, 𝑒2 ⟩ ∈ po | loc(𝑒1) = loc(𝑒2) } (po-same-location)

rb ≜ rf−1 ; mo (reads-before, a.k.a. from-read)

eco ≜ (rf ∪ mo ∪ rb)+ (extended-coherence-order)

rs ≜ [W] ; po |?loc ; [W
⊒rlx] ; (rf ; rmw)∗ (release-sequence)

sw ≜ ([Wrel] ∪ [F⊒rel] ; po) ; rs ; rf ; ([Racq] ∪ [R⊒rlx] ; po ; [F⊒acq]) (syncronized-with)

hb ≜ (po ∪ sw)+ (happens-before)

Now, to handle SC-fences we include another primitive relation in execution graphs that deter-

mines the order of SC-fences. We call this relation the SC-order, denoted by sc, and require it to be

a total strict order on all the SC-fences (i.e., on Fsc) in the execution graph. (Like rf and mo, sc is
existentially quantified—a behavior of a program is justified by some sc order of a corresponding
graph.) Using sc we derive the execution order, which is a partial order on events that operational

runs follow (note that hb ⊆ exec):

exec ≜ (po ∪ rf ∪ sc)+ (execution-order)

Then, consistent graphs are defined as follows.

Definition 3.5. An execution graph 𝐺 is vRC11-consistent if the following hold for its relations:

• hb ; eco is irreflexive. (coherence)

• hb ; sc ; hb ; eco is irreflexive. (sc-fence)

• rmw ∩ (rb ; mo) = ∅. (atomicity)

• exec is irreflexive. (no-LB)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:16 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

The coherence constraint is standard, and it ensures “SC-per-location”. The sc-fence constraint

gives the semantics to SC-fences, so they forbid, e.g., store buffering behaviors when inserted

between writes and reads. The atomicity constraint ensures the atomicity of RMWs. Finally, no-LB

demonstrates that vRC11 is “in-order” as it entails the acyclicity of the union of the program order

and the reads-from relation.

Example 3.6. As we saw in Example 3.3, in the MP program the second thread can only read

42 from 𝐷 . To see how this follows from the declarative model, we depict the execution graph

obtained when trying to read 0 (the initial value), and explain why it is inconsistent. The nodes,

labels, and program order (po) arise from the program behavior we analyze. Then, the reads-from

relation (rf) is forced since every read has to read its value from some write writing that value. The

modification order (mo) between 𝑖𝑛𝑖𝑡 and 𝑒1 is also forced: it has

to order these two nodes (as both write to the same location),

and going in the opposite order would violate coherence as we

have hb from 𝑖𝑛𝑖𝑡 to 𝑒1. Then, according to the definition above,

a “reads-before” edge (rb) is induced from 𝑒4 to 𝑒1, which implies

⟨𝑒4, 𝑒1⟩ ∈ eco. Now, since 𝑒2 and 𝑒3 are rel and acq, we have an
sw edge between them, inducing hb from 𝑒1 to 𝑒4. Together, this

violates coherence since we have ⟨𝑒1, 𝑒1⟩ ∈ hb ; eco.

𝑖𝑛𝑖𝑡 : W (𝐷, na, 0)

𝑒1 : W (𝐷, na, 42)

𝑒2 : W (𝐹, rel, 1)

𝑒3 : R (𝐹, acq, 1)

𝑒4 : R (𝐷, na, 0)

po rfrb

mo

To complete the presentation of the model, we define what execution graphs are considered racy,
with the help of additional derived relations:

conflict ≜
{
⟨𝑒1, 𝑒2 ⟩

����𝑒1 ≠ 𝑒2 ∧ (typ(𝑒1) = W ∨ typ(𝑒2) = W) ∧
loc(𝑒1) = loc(𝑒2) ∧ (mod(𝑒1) = na ∨ mod(𝑒2) = na)

}
(concliting events)

pb ≜ [W] ; rf? ; hb ; sc? ; hb? (propagated-before)

raceWW ≜ [W] ; conflict ; [W] \ (pb ∪ exec−1) (write-write-race)

raceWR ≜ [W] ; conflict ; [R] \ (pb ∪ exec−1) (write-read-race)

Roughly, ⟨𝑤, 𝑒⟩ ∈ pb means that the write 𝑤 has been observed by the thread executing 𝑒

before it executes 𝑒 , where observations are propagated through release/acquire synchronization

and SC-fences. In the operational model, this means that (the message associated with) 𝑤 has a

timestamp lower than the timestamp of the location of𝑤 in the current view of the thread executing

𝑒 . Then, raceWW relates two conflicting writes, 𝑤1 to 𝑤2, when 𝑤1 has not propagated before 𝑤2

(⟨𝑤1,𝑤2⟩ ∉ pb) and 𝑤1 can be executed before 𝑤2 (⟨𝑤2,𝑤1⟩ ∉ exec). Similarly, raceWR relates

conflicting write and read,𝑤 to 𝑟 , when𝑤 has not propagated before 𝑟 (⟨𝑤, 𝑟 ⟩ ∉ pb) and𝑤 can be

executed before 𝑟 (⟨𝑟,𝑤⟩ ∉ exec).
Finally, we say that execution graph 𝐺 is vRC11-racy if raceWW ∪ raceWR ≠ ∅, and as in RC11,

a program outcome is allowed if it is induced by some vRC11-consistent execution graph that is

generated by the program, or if some racy vRC11-consistent execution graph is generated by the

program. The latter disjunct corresponds to the program invoking UB.

Remark 5. An equivalent model is obtained if we include sc inside hb (together with po and sw).
In this presentation, sc-fence is not needed, and the definition of pb can be simplified to rf? ; hb.

Example 3.7. The RW-RACE program above does not generate a racy vRC11-consistent execu-

tion graph. Indeed, the only vRC11-consistent execution graph of it executing both non-atomic

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:17

𝑃, 𝑃𝐺 ⊆ Loc promise set

T = ⟨𝜎,𝑉 , 𝑃⟩ ∈ Lts thread state

⟨T , 𝑃𝐺 , 𝑀⟩ thread configuration

⟨T , 𝑃𝐺 , 𝑀⟩ machine state

(promise)

𝑋 ∉ 𝑃𝐺

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩ −→
⟨⟨𝜎,𝑉 , 𝑃 ∪ {𝑋 }⟩, 𝑃𝐺 ∪ {𝑋 }, 𝑀⟩

(silent)

𝜎 −→ 𝜎′

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩ −→ ⟨⟨𝜎′,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−−→ 𝜎′

⟨𝑋@𝑡, 𝑣, _,𝑉m⟩ ∈ 𝑀 𝑉 (𝑋) ≤ 𝑡

𝑉 ′ = 𝑉 [𝑋 ↦→ 𝑡] ⊔
{
0 𝑜R ≠ acq

𝑉m 𝑜R = acq

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩ −→ ⟨⟨𝜎′,𝑉 ′, 𝑃⟩, 𝑃𝐺 , 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−−→ 𝜎′ 𝑚 = ⟨𝑋@𝑡, 𝑣, 𝑜W,𝑉m⟩ 𝑀#𝑚

𝑉 (𝑋) < 𝑡 𝑉 ′ = 𝑉 [𝑋 ↦→ 𝑡] 𝑉m =

{
𝜆𝑋 . 0 𝑜W ≠ rel

𝑉 ′ 𝑜W = rel

⟨𝑃 ′, 𝑃𝐺 ′⟩ =
{
⟨𝑃 \ {𝑋 }, 𝑃𝐺 \ {𝑋 }⟩ 𝑜W = na ∧ 𝑋 ∈ 𝑃

⟨𝑃, 𝑃𝐺 ⟩ otherwise

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩ −→ ⟨⟨𝜎′,𝑉 ′, 𝑃 ′⟩, 𝑃𝐺 ′, 𝑀 ∪ {𝑚}⟩

(promised race)

𝑋 ∈ 𝑃𝐺 \ 𝑃
raceprm (𝑃, 𝑃𝐺 , 𝑋)

(race)

⟨𝑋@𝑡, _, 𝑜W, _⟩ ∈ 𝑀

𝑉 (𝑋) < 𝑡 𝑜W = na ∨ 𝑜 = na

race(𝑉 ,𝑀,𝑋, 𝑜)

(racy-read)

𝜎
R(𝑋,𝑜R,undef)−−−−−−−−−−−−→ 𝜎′

race(𝑉 ,𝑀,𝑋, 𝑜R) ∨ raceprm (𝑃, 𝑃𝐺 , 𝑋)
⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩ −→ ⟨⟨𝜎′,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩

(racy-write)

𝜎
W(𝑋,𝑜W,_)−−−−−−−−→ _

race(𝑉 ,𝑀,𝑋, 𝑜W)
⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩ −→ ⟨⟨⊥,𝑉 , ∅⟩, 𝑃𝐺 , 𝑀⟩

(system call)

𝜎
Sys(𝑒)
−−−−−−→ 𝜎′ 𝑃 = ∅

⟨⟨𝜎,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩
Sys(𝑒)
−−−−−−→ ⟨⟨𝜎′,𝑉 , 𝑃⟩, 𝑃𝐺 , 𝑀⟩

(machine: normal)

⟨T (𝜏), 𝑃𝐺 , 𝑀⟩ −→+ ⟨T ′, 𝑃𝐺
′, 𝑀′⟩

⟨T ′, 𝑃𝐺
′, 𝑀′⟩ −→∗ ⟨⟨_, _, ∅⟩, _, _⟩

⟨T , 𝑃𝐺 , 𝑀⟩ −→ ⟨T [𝜏 ↦→ T ′], 𝑃𝐺 ′, 𝑀′⟩

(machine: ub)

⟨T (𝜏), 𝑃𝐺 , 𝑀⟩ −→+ ⟨⟨⊥, _, _⟩, 𝑃𝐺 ′, 𝑀′⟩
⟨T , 𝑃𝐺 , 𝑀⟩ −→ ⟨⊥, 𝑃𝐺 ′, 𝑀′⟩

Fig. 5. Domains and transitions of PSIR (RMWs, fences, release sequences, and reservations are omitted).

accesses is depicted on the right. Here, we have ⟨𝑒4, 𝑒1⟩ ∈ [W] ;
conflict; [R]\pb, but this is not considered a write-read race since
⟨𝑒1, 𝑒4⟩ ∈ exec. In turn, if we had𝑋 na

:= 1 in the first thread (rather

than 𝑎 := 𝑋 na
), we would obtain that ⟨𝑒1, 𝑒4⟩ ∈ raceWW (with 𝑒1

labeled by W (𝑋, na, 1)) which would mean that the program has a

racy vRC11-consistent execution graph, so it allows any outcome.

𝑖𝑛𝑖𝑡 : W (𝑋, na, 0)

𝑒1 : R (𝑋, na, 0)

𝑒2 : W (𝑌, rlx, 1)

𝑒3 : R (𝑌, rlx, 1)

𝑒4 : W (𝑋, na, 42)

po rf

rf

mo

4 THE IR MODEL
In this section, we present our model of the intermediate representation, called PS

IR
, establish the

soundness of mapping from vRC11 to PS
IR
, and show that every sound transformation under the

sequential semantics SEQ in [Cho et al. 2022] is also sound under PS
IR
.

There are two major differences between PS
IR

and vRC11. First, to allow load introduction, a

racy read in PS
IR

returns an undefined value instead of invoking UB. As demonstrated above, this

change alone forbids the weak behavior of LB. PS
IR

addresses this issue by allowing promises, so it

is not an in-order semantics. Intuitively, a thread may promise that it will perform a non-atomic

write to a location 𝑋 in the future, making any accesses to 𝑋 by other threads to be racy.

In the following, we explain the PS
IR

model focusing on how it extends and modifies vRC11.

Figure 5 summarizes the steps of PS
IR
. We note that the (silent) and (read) steps are adapted in

an obvious way that does not alter the new components of the state, and the (race) definition is

also exactly as in vRC11. The full PS
IR

model in our Coq development includes RMWs, fences, and

release sequences, and is presented in [Lee et al. 2023, Appendix D].

Promises. Both each thread state and the global machine state are equipped with a set of

locations, called local promises (𝑃) and global promises (𝑃𝐺), respectively. The (promise) step allows

a thread to promise to write to a certain location 𝑋 in the future by adding 𝑋 both to its local

promises and to the global promises, provided that 𝑋 has not been already promised by some

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:18 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

thread (𝑋 ∉ 𝑃𝐺). Once 𝑋 being promised, the thread can later fulfill its promise by writing to 𝑋

via a non-atomic write. Accordingly, the (write) step is extended to update the local and global

promises set by removing 𝑋 from them if the write is non-atomic and 𝑋 was previously promised.

Certification. At each machine step (see (machine: normal)), the thread taking a sequence

of steps should certify its promises by demonstrating it is able to fulfill all its promises by taking

multiple steps in isolation. The certification requirement is crucial in proving the soundness of

mapping from vRC11 to PS
IR

(see Example 4.4 below).

Racy Reads. A racy read retrieves an undefined value (denoted by undef in (racy-read))

(unlike invoking UB in vRC11), thereby allowing the compiler transformation that introduces

unused loads. In addition, a race occurs with promised writes (see (promised race) definition): a

memory access to 𝑋 is considered racy also if there is a promise to 𝑋 made by another thread.
RacyWrites.A racy write invokes UB (like in vRC11), and there is no need to consider promised

writes for these races. A thread transition invoking UB directly fulfills the remaining promises (see

(racy-write)), so the local promises set is made empty after the transition, which allows for a

successful certification process.

System Calls. A system call requires the local promises to be empty (𝑃 = ∅). In other words, a

write cannot be promised over a system call. Intuitively, this means that a system call followed by

a (non-atomic) write cannot be reordered.

Behavior. Program behaviors under PS
IR

are defined as for vRC11, with one modification: when

undef is a part of a system call output in an execution trace, then it can be refined to any concrete

value in the program behavior (e.g., print(undef) in a trace can be mapped to print(1) in the

behavior). We denote by JprogK
PS

IR the set of behaviors a program prog exhibits under PS
IR
.

Example 4.1. In contrast to vRC11, in which a racy read invokes UB, in PS
IR

a racy read returns

undef. Thus, PSIR justifies LB example using a promise. Specifically, the first thread promises to 𝑌 ,

certified by reading 0 from 𝑋 and writing 1 to 𝑌 . Then, the read from 𝑌 by the second thread is racy

with that promise and it returns undef. After the racy read, the second thread writes 1 to 𝑋 and

prints 1. (Since undef represents an arbitrary value, it can be refined to 1.) Now, the first thread

reads 1 from 𝑋 , fulfills its promise to 𝑌 by performing a non-atomic write, and prints 1 as well.

Example 4.2. The following example demonstrates that a promise can be certified and fulfilled

by different write instructions even with different written values.

𝑎 := 𝑋 na

𝑌 rlx
:= 𝑎

𝑏 := 𝑌 rlx

if 𝑏 ≠ 0 then
𝑋 na

:= 1

print 42

else
𝑋 na

:= 2

{
𝑎 := 𝑋 na

𝑌 rlx
:= 𝑎

𝑋 na
:= 2

𝑏 := 𝑌 rlx

if 𝑏 ≠ 0 then
𝑋 na

:= 1

print 42

(LB-CASE)

The program on the left can be transformed into the program on the right by applying a sequence

of compiler transformations in the second thread: (𝑖) split the non-atomic write 𝑋 na
:= 1 into two

writes 𝑋 na
:= 2 followed by 𝑋 na

:= 1; (𝑖𝑖) hoist the common write 𝑋 na
:= 2 out of the branch; and

(𝑖𝑖𝑖) reorder the read 𝑏 := 𝑌 rlx
and the write 𝑋 na

:= 2. Since the program on the right is allowed to

print 42 (even under SC), PS
IR

should allow the same behavior for the program on the left. Indeed,

the program on the left can print 42 through the following PS
IR

execution: (1) the second thread

promises to 𝑋 , certifying it by reading 0 from 𝑌 and writing 2 to 𝑋 ; (2) the first thread reads undef
from 𝑋 by performing a racy read and writes undef to 𝑌 ; and (3) the second thread reads undef
from 𝑌 , enters the then-branch as 𝑏 ≠ 0 evaluates to undef,11 fulfills its promise to 𝑋 by writing 1

11
Here, we assume that branching on undef non-deterministically takes either one of the then-branch or the else-branch.

In LLVM, branching on undef is UB, and a “freeze” instruction should be used before the branching [Lee et al. 2017].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:19

to 𝑋 , and prints 42. Notably, in this execution, the promise to 𝑋 of the second thread is certified

using the write 𝑋 na
:= 2 and fulfilled by the other write 𝑋 na

:= 1.

Our main result is the following theorem (a Coq proof is available in the supplementary material):

Theorem 4.3. For any program prog, JprogK
PS

IR ⊆ JprogK
vRC11

.

The proof of this theorem is established using a simulation argument: for each transition in PS
IR
,

we identify a corresponding sequence of transitions in vRC11. While most thread transitions are

identical in vRC11 and PS
IR
, there are no corresponding transitions in vRC11 for the following

two transitions of PS
IR
: (1) (promise) transition; and (2) (racy-read) transition that races with

a promise (i.e., when raceprm (𝑃, 𝑃𝐺 , 𝑋) holds). For the former, the vRC11 machine simply takes

no transition and the machine states of vRC11 and PS
IR

remains identical except for the sets of

promises (𝑃 and 𝑃𝐺) in PS
IR
. For the latter, we show that the vRC11 machine can take multiple steps

and invoke UB by performing a racy read. Concretely, suppose that a thread 𝜏1 of PS
IR

performs a

racy read from a location 𝑋 that races with a promise made by another thread 𝜏2. Since there is

no promise in vRC11, we need to prove that 𝜏2 of vRC11 can actually perform a non-atomic write

to 𝑋 before 𝜏1 takes a racy read transition. The key property in this is to turn a certification of

the promise by 𝜏2 in PS
IR

into a real execution of vRC11. To do so, we proved that once a thread

certifies its promise to a location 𝑋 , under any possible future memory, the thread can take multiple

steps and perform a non-atomic write to 𝑋 .

Example 4.4. Theorem 4.3 does not hold without the certi-

fication of promises. Under vRC11, the only possible execu-

tion for this program is that both threads read the initial mes-

sages (i.e., 𝑎 = 𝑏 = 0). For Thm. 4.3 to hold, PS
IR

cannot allow

𝑎 := 𝑋 na

if 𝑎 = 1 then
𝑌 na

:= 1

𝑏 := 𝑌 na

if 𝑏 = 1 then
𝑋 na

:= 1

(LB-DRF)

any other behavior. Indeed, under PS
IR
, the first thread cannot promise to 𝑌 since the only value

that can be read from 𝑋 is 0, and thus, the thread cannot certify the promise. However, if PS
IR

allowed a thread to promise without certifying it, then 𝑎 = 𝑏 = undefwould be allowed. Specifically,
the first thread could unconditionally promise to 𝑌 ; the second thread could read undef and write

1 to 𝑋 ; and then the first thread could read undef and write 1 to 𝑌 while fulfilling its promise to 𝑌 .

In addition to Thm. 4.3, we also proved that program transformations sound in sequential

semantics are also sound to apply on non-atomics in PS
IR
. To do so, we adapted the sequential

machine SEQ from [Cho et al. 2022, Def. 3.3] to include non-promisable relaxed writes, as we have

in PS
IR

(see [Lee et al. 2023, Appendix E]), and ported the proof in [Cho et al. 2022] to PS
IR

to

show that all sound optimizations on non-atomics under (the adapted) SEQ are also sound under

PS
IR
. Thanks to this result, not only the programmers but also compiler writers who develop

optimizations on non-atomic code (including reorderings and eliminations of non-atomic accesses

across atomics) do not have to understand the out-of-order IR model.

The sequential machine SEQ, however, is not helpful for validating reorderings and eliminations

of atomics. These optimizations are not important for our current purpose (to the best of our

knowledge, they are not performed by current compilers). In fact, we found out that reordering

of relaxed writes (to different locations) is unsound in PS
IR
. (Still, PS

IR
can be soundly mapped

to Armv8, which effectively allows reordering in the target code; see §5.) The reason is related to

the reservation mechanism, an addition that was introduced to PS in [Lee et al. 2020] and used in

our full PS
IR

model, in order to support an efficient mapping of RMWs to Armv8. Future work is

required to understand whether PS
IR

can be changed to allow this reordering. We expect all other

transformations on atomics that are sound in RC11 to be sound in PS
IR
.

freeze(𝑣) returns 𝑣 when 𝑣 is a defined value (i.e., not undef) and non-deterministically returns any defined value (e.g., 42)
when 𝑣 is undef. In the example, the same argument holds when 𝑏 ≠ 0 is replaced with freeze(𝑏) ≠ 0.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:20 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

5 MAPPING TO HARDWARE
In this section, we consider the compiler mapping of PS

IR
to hardware: we present the proposed

addition of “strong stores” to hardware models (§5.1); discuss the implementation of strong stores

in existing hardware (§5.2); and establish soundness of mapping PS
IR

to the extended models (§5.3).

5.1 Strong Stores in Hardware Models
We propose a new store instruction called a “strong store” that preserves load-store ordering in

modern architectures. Strong stores are stronger than a plain hardware stores but weaker than

release stores (or than “lightweight fence”, lwsync, followed by a plain store, as release stores are

implemented on Power). Next, we describe the proposed extension of the Armv8 and Power models.

Armv8. We define Armv8S as the extension of the Armv8 memory model [Alglave et al. 2021;

Pulte et al. 2017] with strong stores. The Armv8 memory model defines a relation called barrier-
ordered-before (bob), modeling thread-local order of memory accesses that is induced by barriers

and release/acquire accesses. For example, bob includes po ; [L] that corresponds to the fact that a

release store (denoted by L) is never reordered with an earlier instruction in the program order

(denoted by po). In Armv8S, we extend bob to include also [R] ; po ; [S], where S represents the

set of strong stores. This simple modification enforces the preservation of the order of any load

followed by a strong store in the program order.

Power. Similarly to Armv8S, we define PowerS by extending the Power memory model of [Al-

glave et al. 2014]. Specifically, we propose a modest extension of the “no-thin-air” rule of the Power

consistency predicate that requires acyclicity of ppo ∪ fence ∪ rfe to include [R] ; po ; [S] as well.
Roughly, this constraint forbids load buffering behaviors when the order of the load followed by

the store is preserved by certain dependencies (ppo) or fences (fence). The PowerS model extends

this rule to prevent the load-store reordering also when the order is preserved by a strong store.

5.2 Implementing Strong Stores on Existing Hardware
As discussed in §2.2, the weak behavior of LB has been rarely observed in practice, despite massive

testing on CPU implementations of multiple Arm and Power architectures. In particular, among

the Armv8 and Power implementations that have been tested in [Alglave et al. 2021, 2014], only

Qualcomm’s Snapdragon 820 processor exhibited this behavior.

To gain more knowledge about the Snapdragon anomaly (and extend the dataset of [Alglave et al.

2021]), we experimented with a new Snapdragon version. We acquired a Snapdragon 888 (SM8350)

processor, and using the Litmus7 (part of DIY7) testing framework, we ran the 23 basic behavior

tests.
12
Like other processors and unlike Snapdragon 820, Snapdragon 888 did not exhibit the weak

behavior of LB in 6000M runs. For comparison, weak behaviors of the well-known store buffering

(SB) and message passing (MP) tests were observed in 93% and 0.676% (respectively) of the 6000M

runs. The supplementary material [Lee et al. 2023] includes the full results for Snapdragon 888.

On all those implementations that do not exhibit load buffering, we believe that strong stores

could be implemented just like plain stores, without any additional overhead. To validate this claim,

we used the Herd7 model checker. We started from the available tests in the suite of [Alglave et al.

2021, 2014], which includes 3,773 tests for Armv8
13
and 3,116 tests for Power,

14
and confirmed

that all behaviors that are forbidden by the strengthened hardware models where every store is

strong (i.e., the models obtained by including [R] ; po ; [W] in the bob relation of Armv8 or the

12
http://gallium.inria.fr/~maranget/cats7/model-aarch64/tests.html [Accessed November 2022].

13
https://gallium.inria.fr/~maranget/cats7/model-aarch64/index.html [Accessed November 2022].

14
https://gallium.inria.fr/~maranget/cats7/ppc9/ [Accessed November 2022].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

http://gallium.inria.fr/~maranget/cats7/model-aarch64/tests.html
https://gallium.inria.fr/~maranget/cats7/model-aarch64/index.html
https://gallium.inria.fr/~maranget/cats7/ppc9/

Putting Weak Memory in Order via a Promising Intermediate Representation 183:21

“no-thin-air” constraint of Power), but allowed by the existing models, were never observed on an

implementation (except for Snapdragon 820). The supplementary material [Lee et al. 2023] includes

the cat files defining the models, the tests we ran, and the logs of the results.

5.3 Mapping PSIR to Hardware
Given strong stores in hardware, the mapping of PS

IR
to hardware follows the standard schemes of

C/C++ concurrency primitives,
15
except that relaxed writes in PS

IR
are mapped to strong stores

(while non-atomic writes are compiled to plain stores). We do not assume here that the hardware

generally preserves load-store ordering, in which case, strong stores are not needed at all. In

addition, the soundness of the “short-term” solution (see §2.2), which, in the absence of strong

stores, suggests mapping relaxed writes as if they were release, follows from the discussion below

since release writes are mapped to constructs that provide stronger guarantees than strong stores.

Remark 6. As was observed in [Cho et al. 2021], to be able to match every out-of-order execution

to an in-order racy execution (which we need for Thm. 4.3, and Cho et al. [2021] need for LDRF-PF),

PS
IR

has to forbid the reordering of RMWs with subsequent writes. Then, the mapping of certain

RMW instructions to ARMv8 requires an extra “fake” control dependency from the read part of

the RMW, so the hardware will not reorder RMWs with following plain writes (which arise from

non-atomic writes in the source). We refer the reader to [Cho et al. 2021] for the exact mapping

scheme and the (unnoticeable) performance impact of it. We note that for hardware that preserves

load-store ordering for all stores, this additional fake dependency is not needed.

To formally state the correctness of this mapping, since there are no system calls in the hardware

models, we define the set of outcomes of a program for representing the final memories obtained

after program executions are completed. This notion is defined for PS
IR

and Armv8S as follows.

Definition 5.1. A function 𝑜 : Loc → Val is an outcome of a program prog under PSIR if some exe-

cution of prog terminates with a memory𝑀 (i.e., init(prog) −→∗ ⟨T , 𝑃𝐺 , 𝑀⟩ ∧ terminal(⟨T , 𝑃𝐺 , 𝑀⟩)),
and 𝑜 (𝑋) = 𝑣 where ⟨𝑋@𝑡, 𝑣, _, _⟩ ∈ 𝑀 is the message to 𝑋 with the greatest timestamp 𝑡 .

Definition 5.2. A function 𝑜 : Loc → Val is an outcome of a program prog under Armv8S (PowerS)
if 𝑜 assigns to every location 𝑋 the value of the co-maximal write to 𝑋 in some execution graph of

prog that is Armv8S-consistent (PowerS-consistent).
16

Using these definitions, the soundness of mapping from PS
IR

to Armv8S is stated as follows.

Theorem 5.3. For a PSIR program prog, we denote by (|𝑝𝑟𝑜𝑔|)A the Armv8S program obtained by
mapping prog as described above. Then, given a program prog and an outcome 𝑜 of (|prog |)A under
Armv8S, we have that either 𝑜 is an outcome of prog under PSIR or prog has undefined behavior under
PS

IR (i.e., it has an execution reaching a machine state of the form ⟨⊥, _, _⟩).
To prove this theorem, we utilized the operational model for Armv8 by Pulte et al. [2019], who

also showed (in Coq) its equivalence to the declarative formulation of Armv8. We extended their

operational model with strong relaxed accesses, reestablished the equivalence of the extended

models, and proved (in Coq), using a simulation argument, that runs of this extended operational

model reaching a certain outcome corresponds to runs of PS
IR

that yield the same outcome.

We believe the standard mapping from PS
IR

to PowerS (with relaxed stores compiled as strong

stores) is sound as well. Formally establishing the soundness of this mapping, possibly using the

IMM memory model [Podkopaev et al. 2019], is left as future work.

15
http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html [Accessed November 2022].

16
Intuitively, the coherence order (co), which totally orders the writes to each location, corresponds to the timestamp order

in PS
IR
.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html

183:22 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

6 RELATEDWORK
Our proposal for a concurrency semantics refines, simplifies, and combines existing ideas: catch-fire

and preserving load-store ordering as in RC11 [Boehm and Adve 2008; Boehm and Demsky 2014;

Lahav et al. 2017], an operational presentation of RC11 using the promising semantics without

promises and certified promises as a speculation mechanism to allow load-store reordering [Kang

et al. 2017], justifying compiler optimizations on non-atomics based on sequential reasoning [Cho

et al. 2022] (see also [Zha et al. 2022]), and the operational Arm model as a bridge between the

high-level semantics and the hardware model [Pulte et al. 2019]. We also rely on [Alglave et al. 2021,

2014] for the models of Power and Arm, the experimental data on observed behaviors, the Herd

model checker, and the testing framework; and on [Ou and Demsky 2018] for the performance

evaluation of different compilation schemes.

In particular, our PS
IR

model is inspired by the PS
na

model in [Cho et al. 2022]. The most

significant difference between PS
IR

and PS
na

is that PS
na

allows also promises of relaxed writes,

which makes PS
na

significantly more complex than PS
IR
. First, in PS

na
a thread promises messages

with specific timestamp, value, and view, while PS
IR

only maintains sets of locations that threads

will write to in the future. (This is possible because promises of PS
IR

are needed only for race

detection.) Second, unlike PS
IR
, PS

na
allows a thread to lower or split their promises, which leads to

substantial complications in proofs. Lastly, a non-atomic write in PS
IR

adds a single message to the

memory, while in PS
na

multiple messages may be added by a single non-atomic write.

The idea to use an undefined value rather than catch-fire in order to validate load introduction

comes from the LLVM (informal) model. To the best of our knowledge, the first attempt to apply

this approach in a formal model was in [Chakraborty and Vafeiadis 2017], where previous read

values can be revisited whenever relevant writes are executed. This requires a rather complicated

event-structure-based model, which does not admit the DRF guarantee. Later improvements of this

model [Chakraborty and Vafeiadis 2019; Moiseenko et al. 2020] admit DRF but fail to support load

introduction. In turn, our PS
IR

model (following PS
na
) applies this approach together with promises.

We are not aware of any previous proof relating an in-order source model based on catch-fire to an

IR model that is based on undefined values.

Other weak memory models were recently proposed (see, e.g., [Jagadeesan et al. 2020; Jeffrey

et al. 2022; Paviotti et al. 2020]), but they are all focused on generally allowing load-store reordering,

while our models (both source and IR) allow it only for non-atomic accesses. Notably, supporting

load introduction in these models is rather hard, and besides the promising models (e.g., the recent
version in [Cho et al. 2022]), we are not aware of any model that fully supports load-store reordering

as well as load introduction. In particular, Jeffrey et al. [2022] observe a tension between the kind

of temporal reasoning supported by their model and load-introduction.

In contrast, other work, e.g., [Liu et al. 2021; Marino et al. 2011], propose SC as a concurrency

semantics for programmers, and study its expected cost (which can be rather high). In turn, we

believe that an in-order model enjoys the advantages of SC, while allowing for rather minimal

performance overhead, provided that catch-fire for races on non-atomics is acceptable.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. Chung-Kil Hur is the corresponding

author. Minki Cho, Sung-Hwan Lee, and Chung-Kil Hur were supported by Samsung Research

Funding Center of Samsung Electronics under Project Number SRFC-IT2102-03. Roy Margalit and

Ori Lahav were supported by the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement no. 851811) and the Israel

Science Foundation (grant numbers 1566/18 and 814/22).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:23

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis. 2021. The Decidability of

Verification under PS 2.0. In ESOP. Springer International Publishing, Cham, 1–29. https://doi.org/10.1007/978-3-030-

72019-3_1

Sarita V. Adve and Mark D. Hill. 1990. Weak Ordering–a New Definition. In ISCA. ACM, New York, NY, USA, 2–14.

https://doi.org/10.1145/325164.325100

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed Cats: Formal

Concurrency Modelling at Arm. ACM Trans. Program. Lang. Syst. 43, 2, Article 8 (July 2021), 54 pages. https://doi.org/10.

1145/3458926

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of

Programming Language Concurrency Semantics. In ESOP. Springer, Berlin, Heidelberg, 283–307. http://dx.doi.org/10.

1007/978-3-662-46669-8_12

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Concurrency. In POPL.
ACM, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency Memory Model. In PLDI. ACM, New York,

NY, USA, 68–78. https://doi.org/10.1145/1375581.1375591

Hans-J. Boehm and Brian Demsky. 2014. Outlawing Ghosts: Avoiding out-of-Thin-Air Results. In MSPC. ACM, New York,

NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2618128.2618134

Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the Concurrency Semantics of an LLVM Fragment. In CGO.
IEEE Press, 100–110. https://doi.org/10.1109/CGO.2017.7863732

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Structures. Proc. ACM Program.
Lang. 3, POPL, Article 70 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290383

Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Modular Data-Race-Freedom Guarantees in the Promising

Semantics. In PLDI. ACM, New York, NY, USA, 867–882. https://doi.org/10.1145/3453483.3454082

Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022. Sequential Reasoning for Optimizing

Compilers under Weak Memory Concurrency. In PLDI. ACM, New York, NY, USA, 213–228. https://doi.org/10.1145/

3519939.3523718

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt Meets Relaxed Memory. Proc.
ACM Program. Lang. 4, POPL, Article 34 (Jan. 2020), 29 pages. https://doi.org/10.1145/3371102

Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer. 2022.

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic. In PLDI. ACM, New

York, NY, USA, 792–808. https://doi.org/10.1145/3519939.3523451

Mike Dodds, Mark Batty, and Alexey Gotsman. 2018. Compositional Verification of Compiler Optimisations on Relaxed

Memory. In ESOP. Springer International Publishing, Cham, 1027–1055. https://doi.org/10.1007/978-3-319-89884-1_36

Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick. 2019. Verifying C11 Programs Operationally. In PPoPP.
ACM, New York, 355–365. https://doi.org/10.1145/3293883.3295702

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In ESOP. Springer Berlin
Heidelberg, 448–475. https://doi.org/10.1007/978-3-662-54434-1_17

Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with Preconditions: A Simple Model of Relaxed Memory.

Proc. ACM Program. Lang. 4, OOPSLA, Article 194 (Nov. 2020), 30 pages. https://doi.org/10.1145/3428262

Alan Jeffrey, James Riely, Mark Batty, Simon Cooksey, Ilya Kaysin, and Anton Podkopaev. 2022. The Leaky Semicolon:

Compositional Semantic Dependencies for Relaxed-Memory Concurrency. Proc. ACM Program. Lang. 6, POPL, Article 54
(Jan. 2022), 30 pages. https://doi.org/10.1145/3498716

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-

Memory Concurrency. In POPL. ACM, New York, NY, USA, 175–189. https://doi.org/10.1145/3009837.3009850

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. 2017. Effective Stateless Model Checking

for C/C++ Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017), 32 pages. https://doi.org/10.1145/

3158105

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries. In

PLDI. ACM, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.3314609

Ori Lahav and Roy Margalit. 2019. Robustness Against Release/Acquire Semantics. In PLDI. ACM, New York, NY, USA,

126–141. https://doi.org/10.1145/3314221.3314604

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In PLDI. ACM, New York, NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1007/978-3-030-72019-3_1
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3458926
https://doi.org/10.1145/2627752
http://dx.doi.org/10.1007/978-3-662-46669-8_12
http://dx.doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/2618128.2618134
https://doi.org/10.1109/CGO.2017.7863732
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3453483.3454082
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1007/978-3-319-89884-1_36
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3498716
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3062341.3062352

183:24 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy Das, David Majnemer, John Regehr, and Nuno P.

Lopes. 2017. Taming Undefined Behavior in LLVM. In PLDI. ACM, New York, NY, USA, 633–647. https://doi.org/10.

1145/3062341.3062343

Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav. 2023. Coq development and supplementary

material for this paper. https://sf.snu.ac.kr/promising-ir/

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020.

Promising 2.0: Global Optimizations in Relaxed Memory Concurrency. In PLDI. ACM, New York, NY, USA, 362–376.

https://doi.org/10.1145/3385412.3386010

Lun Liu, Todd Millstein, and Madanlal Musuvathi. 2021. Safe-by-Default Concurrency for Modern Programming Languages.

ACM Trans. Program. Lang. Syst. 43, 3, Article 10 (Sept. 2021), 50 pages. https://doi.org/10.1145/3462206

Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++ Atomics. In ASPLOS. ACM, New York, NY, USA,

630–646. https://doi.org/10.1145/3445814.3446711

Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness against a C11-Style Memory Model. Proc. ACM
Program. Lang. 5, POPL, Article 4 (Jan. 2021), 33 pages. https://doi.org/10.1145/3434285

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011. A Case for an

SC-Preserving Compiler. In PLDI. ACM, New York, NY, USA, 199–210. https://doi.org/10.1145/1993498.1993522

Evgenii Moiseenko, Anton Podkopaev, Ori Lahav, Orestis Melkonian, and Viktor Vafeiadis. 2020. Reconciling Event

Structures with Modern Multiprocessors. In ECOOP. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 5:1–5:26. https://doi.org/10.4230/LIPIcs.ECOOP.2020.5

Peizhao Ou and Brian Demsky. 2018. Towards Understanding the Costs of Avoiding Out-of-Thin-Air Results. Proc. ACM
Program. Lang. 2, OOPSLA, Article 136 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276506

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In TPHOLs. Springer, Berlin,
Heidelberg, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed

Dependencies in Weak Memory Concurrency. In ESOP. Springer, Cham, 599–625. https://doi.org/10.1007/978-3-030-

44914-8_22

Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2019. Bridging the Gap Between Programming Languages and Hardware

WeakMemoryModels. Proc. ACM Program. Lang. 3, POPL, Article 69 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290382

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2017. Simplifying ARM Concur-

rency: Multicopy-Atomic Axiomatic and Operational Models for ARMv8. Proc. ACM Program. Lang. 2, POPL, Article 19
(Dec. 2017), 29 pages. https://doi.org/10.1145/3158107

Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung-Hwan Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V:

A Simpler and Faster Operational Concurrency Model. In PLDI. ACM, New York, NY, USA, 1–15. https://doi.org/10.

1145/3314221.3314624

Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. 2019. On Library Correctness under Weak Memory

Consistency: Specifying and Verifying Concurrent Libraries under Declarative Consistency Models. Proc. ACM Program.
Lang. 3, POPL, Article 68 (Jan. 2019), 31 pages. https://doi.org/10.1145/3290381

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER Multiprocessors.

In PLDI. ACM, New York, NY, USA, 175–186. https://doi.org/10.1145/1993498.1993520

Matthew D. Sinclair, Johnathan Alsop, and Sarita V. Adve. 2017. Chasing Away RAts: Semantics and Evaluation for Relaxed

Atomics on Heterogeneous Systems. In ISCA. ACM, New York, NY, USA, 161–174. https://doi.org/10.1145/3079856.

3080206

Abhishek Kr Singh and Ori Lahav. 2023. An Operational Approach to Library Abstraction under Relaxed Memory

Concurrency. Proc. ACM Program. Lang. 7, POPL, Article 53 (Jan. 2023), 31 pages. https://doi.org/10.1145/3571246

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. 2018. A separation logic for a

promising semantics. In ESOP. Springer International Publishing, Cham, 357–384. https://doi.org/10.1007/978-3-319-

89884-1_13

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common

Compiler Optimisations Are Invalid in the C11 Memory Model and What We Can Do About It. In POPL. ACM, New

York, NY, USA, 209–220. https://doi.org/10.1145/2676726.2676995

Junpeng Zha, Hongjin Liang, and Xinyu Feng. 2022. Verifying Optimizations of Concurrent Programs in the Promising

Semantics. In PLDI. ACM, New York, NY, USA, 903–917. https://doi.org/10.1145/3519939.3523734

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

https://doi.org/10.1145/3062341.3062343
https://doi.org/10.1145/3062341.3062343
https://sf.snu.ac.kr/promising-ir/
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3462206
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/3434285
https://doi.org/10.1145/1993498.1993522
https://doi.org/10.4230/LIPIcs.ECOOP.2020.5
https://doi.org/10.1145/3276506
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1145/3290382
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1145/3290381
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/3079856.3080206
https://doi.org/10.1145/3079856.3080206
https://doi.org/10.1145/3571246
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/3519939.3523734

Putting Weak Memory in Order via a Promising Intermediate Representation 183:25

𝑣 ∈ Val value

𝑋,𝑌, 𝑍 ∈ Loc location

𝑜R ∈ {na, rlx, acq} read access mode

𝑜W ∈ {na, rlx, rel} write access mode

𝑜F ∈ {acq, rel, acqrel, sc} fence access mode

𝜏 ∈ Tid ≜ {𝜏1, 𝜏2, ...} thread identifier

𝑓 , 𝑡 ∈ Time ≜ {0} ∪ Q+
timestamp

𝑉 ∈ View ≜ Loc → Time view

𝑉rel ∈ Loc → View release view

𝑉cur ∈ View current view

𝑉acq ∈ View acquire view

𝑆 ∈ View sc view

𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑜W,𝑉 ⟩ ∈ Msg message

𝑀 ⊆ Msg memory

𝜎 program state

V = ⟨𝑉rel,𝑉cur,𝑉acq⟩ thread view

T = ⟨𝜎,V⟩ ∈ Lts thread state

⟨T , 𝑆, 𝑀⟩ thread configuration

T : Tid → Lts thread state mapping

⟨T , 𝑆, 𝑀⟩ machine state

(read-helper)

𝑚 = ⟨𝑋@(_, 𝑡], _, _,𝑉m⟩
𝑉cur (𝑋) ≤ 𝑡 𝑉𝑠 = [𝑋 ↦→ 𝑡]

𝑉 ′
cur = 𝑉cur ⊔𝑉𝑠 ⊔ (𝑜R ⊒ acq ?𝑉m)

𝑉 ′
acq = 𝑉acq ⊔𝑉𝑠 ⊔ (𝑜R ⊒ rlx ?𝑉m)

⟨𝑉rel,𝑉cur,𝑉acq⟩
𝑜R,𝑚−−−→R ⟨𝑉rel,𝑉 ′

cur,𝑉
′
acq⟩

(write-helper)

𝑚 = ⟨𝑋@(𝑓 , 𝑡], _, _,𝑉m⟩ 𝑓 < 𝑡

𝑉cur (𝑋) < 𝑡 𝑉𝑠 = [𝑋 ↦→ 𝑡]
𝑉 ′
cur = 𝑉cur ⊔𝑉𝑠 𝑉 ′

acq = 𝑉acq ⊔𝑉𝑠
𝑉 ′
rel = 𝑉rel [𝑋 ↦→ 𝑉rel (𝑋) ⊔𝑉𝑠 ⊔ (𝑜W ⊒ rel ?𝑉 ′

cur)]
𝑉m = (𝑜W ⊒ rlx ? (𝑉 ′

rel (𝑋) ⊔𝑉𝑟))

⟨𝑉rel,𝑉cur,𝑉acq⟩
𝑜W,𝑉𝑟 ,𝑚−−−−−→W ⟨𝑉 ′

rel,𝑉
′
cur,𝑉

′
acq⟩

(race)

⟨𝑋@(_, 𝑡], _, 𝑜W, _⟩ ∈ 𝑀

V .cur(𝑋) < 𝑡

𝑜W = na ∨ 𝑜 = na

race(V, 𝑀,𝑋, 𝑜)

(fence-helper: non-sc)

V′ =


⟨𝑉rel,𝑉acq,𝑉acq⟩ 𝑜F = acq

⟨𝜆_.𝑉cur,𝑉cur,𝑉acq⟩ 𝑜F = rel

⟨𝜆_.𝑉acq,𝑉acq,𝑉acq⟩ 𝑜F = acqrel

⟨⟨𝑉rel,𝑉cur,𝑉acq⟩, 𝑆⟩
𝑜F−→F ⟨V′, 𝑆⟩

(fence-helper: sc)

𝑆 ′ = 𝑉acq ⊔ 𝑆

V′ = ⟨𝜆_. 𝑆 ′, 𝑆 ′, 𝑆 ′⟩

⟨⟨𝑉rel,𝑉cur,𝑉acq⟩, 𝑆⟩
sc−−→F ⟨V′, 𝑆 ′⟩

(silent)

𝜎 −→ 𝜎 ′

⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎 ′,V⟩, 𝑆, 𝑀⟩

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ ∈ 𝑀

V 𝑜R,𝑚−−−→R V′

⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎 ′,V′⟩, 𝑆, 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ 𝑀#𝑚

V 𝑜W,𝜆_.0,𝑚−−−−−−−→W V′ 𝑀 ′ = 𝑀 ∪ {𝑚}
⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎 ′,V′⟩, 𝑆, 𝑀 ′⟩

(update)

𝜎
RMW(𝑋,𝑜R,𝑜W,𝑣R,𝑣W)−−−−−−−−−−−−−→ 𝜎 ′

𝑚R = ⟨𝑋@(_, 𝑡R], 𝑣R, _,𝑉𝑟 ⟩ ∈ 𝑀

𝑚W = ⟨𝑋@(𝑡R, 𝑡W], 𝑣W, _, _⟩ 𝑀#𝑚W

V 𝑜R,𝑚R−−−−→R
𝑜W,𝑉𝑟 ,𝑚W−−−−−−→W V′ 𝑀 ′ = 𝑀 ∪ {𝑚W}

⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨𝜎 ′,V′⟩, 𝑆, 𝑀 ′⟩

(racy-read)

𝜎
R(𝑋,𝑜R,_)−−−−−−−→ _

race(V, 𝑀,𝑋, 𝑜R)
⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥,V⟩, 𝑆, 𝑀⟩

(racy-write)

𝜎
W(𝑋,𝑜W,_)−−−−−−−→ _

race(V, 𝑀,𝑋, 𝑜W)
⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥,V⟩, 𝑆, 𝑀⟩

(racy-update)

𝜎
RMW(𝑋,𝑜R,𝑜W,_,_)−−−−−−−−−−−−→ _

𝑜R = na ∨ 𝑜W = na ∨ race(V, 𝑀,𝑋, rlx)
⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→ ⟨⟨⊥,V⟩, 𝑆, 𝑀⟩

(fence)

𝜎
F(𝑜F)−−−−→ 𝜎 ′

⟨V, 𝑆⟩ 𝑜F−→F ⟨V′, 𝑆 ′⟩
⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V′⟩, 𝑆 ′, 𝑀⟩

(syscall)

𝜎
Sys(𝑒)
−−−−−→ 𝜎 ′

⟨V, 𝑆⟩ sc−−→F ⟨V′, 𝑆 ′⟩

⟨⟨𝜎,V⟩, 𝑆, 𝑀⟩
Sys(𝑒)
−−−−−→

⟨⟨𝜎 ′,V′⟩, 𝑆 ′, 𝑀⟩

(machine: normal)

⟨T (𝜏), 𝑆, 𝑀⟩ 𝑒−→ ⟨T ′, 𝑆 ′, 𝑀 ′⟩

⟨T , 𝑆, 𝑀⟩ 𝑒−→ ⟨T [𝜏 ↦→ T ′], 𝑆 ′, 𝑀 ′⟩

(machine: ub)

⟨T (𝜏), 𝑆, 𝑀⟩ −→ ⟨⟨⊥, _⟩, 𝑆 ′, 𝑀 ′⟩
⟨T , 𝑆, 𝑀⟩ −→ ⟨⊥, 𝑆 ′, 𝑀 ′⟩

Fig. 6. The full vRC11 model

A THE FULL vRC11 MODEL
In this section, we present the full vRC11 model including read-modify-updates (RMWs), fences,

and release sequences as given in Fig. 6. Here, we focus on the components that are not introduced

in §3. To simplify the presentation, we use the following new definitions: (1) read access modes are

ordered by na ⊏ rlx ⊏ acq and write access modes are ordered by na ⊏ rlx ⊏ rel; (2) [𝑋 ↦→ 𝑡]
denotes a singleton view assigning 𝑡 to𝑋 and 0 to other locations; and (3) given a view𝑉 , (𝑐𝑜𝑛𝑑 ?𝑉)
returns 𝑉 if 𝑐𝑜𝑛𝑑 holds and 𝜆_. 0 otherwise.

Memory. A memory is a (nonempty) pairwise disjoint finite set of messages. Now, a message
⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑜W,𝑉m⟩ ∈ Msg carries a timestamp interval (𝑓 , 𝑡], where, 𝑓 < 𝑡 instead of a single

timestamp. We denote by𝑚.loc,𝑚.val,𝑚.from,𝑚.to,𝑚.mod, and𝑚.view the components of a

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:26 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

message𝑚. We write two messages𝑚1 and𝑚2 are disjoint, denoted by𝑚1#𝑚2, if they have different

locations (𝑚1.loc ≠ 𝑚2 .loc) or have disjoint timestamp intervals (𝑚1 .to < 𝑚2 .from ∨𝑚2.to <

𝑚1.from). A memory𝑀 and a message𝑚 are disjoint (denoted by𝑀#𝑚) if ∀𝑚′ ∈ 𝑀. 𝑚′
#𝑚.

States. A machine state ⟨T , 𝑆, 𝑀⟩ consists of a function T assigning a thread state to each

thread identifier, an sc view 𝑆 ∈ 𝑉 , and a memory 𝑀 shared among the threads. A thread state
is a tuple T = ⟨𝜎,V⟩, where 𝜎 is a local state, V is a thread view. A thread view is a triple

V = ⟨𝑉rel,𝑉cur,𝑉acq⟩, where 𝑉rel ∈ Loc → View and 𝑉cur,𝑉acq ∈ View. We denote by V .cur,
V .acq, and V .rel the components of V . Note that 𝑉rel (𝑋) ⊑ 𝑉cur ⊑ 𝑉acq always holds for any 𝑋

by construction.

B EQUIVALENCE BETWEEN vRC11 AND THE DECLARATIVE PRESENTATION
We prove the equivalence between vRC11 and its declarative presentation given in §3.2 relying on

the existing proof of the equivalence between the promise-free fragment of the promising semantics

and its declarative presentation by [Kang et al. 2017]. To distinguish the declarative presentation of

vRC11 from vRC11 itself, we call the declarative model vRC11Axiom.

Before proving the equivalence, we define the following auxiliary relation:

rel = ([Wra] ∪ [F⊒rel] ; po) ; rs (to-be-released)

Then, sw can be expressed as follows:

sw = rel ; rf ; ([Rra] ∪ [R⊒rlx] ; po ; [F⊒acq]) (sync)

Next, we prove that vRC11 is stronger than vRC11Axiom using the declarative (operational) machine
of vRC11Axiom as in [Kang et al. 2017]. We extend the declarative machine of [Kang et al. 2017] by

adding the following race transition that yields UB:

(race)

𝐺 is vRC11Axiom-racy

⟨Σ,𝐺⟩ −→ ⟨⊥,𝐺⟩
Note that we assume that the sets of all behaviors of a program 𝑝𝑟𝑜𝑔 in vRC11Axiom and RC11,

denoted by J𝑝𝑟𝑜𝑔K
vRC11Axiom

and J𝑝𝑟𝑜𝑔K
RC11

, are defined similarly to vRC11 using the declarative

machine of vRC11Axiom and RC11, respectively.

We use the standard simulation technique to show the equivalence between vRC11 and vRC11Axiom.

In the following, we define the simulation relation between the two machines that slightly extends

the relation provided in [Kang et al. 2017, Appendix B].

Definition B.1. A timestamp assignment for an execution 𝐺 is a function 𝑓 : W → Time. A
timestamp assignment 𝑓 is extended for sets of write events by 𝑓 (𝐴) = max𝑎∈𝐴 𝑓 (𝑎).

Definition B.2. An execution 𝐺 induces the following additional derived relations:

𝐺.rwr = (rf? ; hb ; [Fsc])? ; (sc ; [F])? ; hb? ∪ (rf ; hb?).

Definition B.3. An vRC11Axiom machine state ⟨Σ,𝐺⟩ relates to a vRC11 machine state M =

⟨T ,S, 𝑀⟩, denoted by ⟨Σ,𝐺⟩ ∼ M, if the following hold:

• 𝐺 is coherent.

• M is well-formed.

• Σ(𝑖) = T (𝑖).st for every 𝑖 ∈ Tid.
• There exists two timestamp assignments 𝑓from, 𝑓to for 𝐺 for which the following hold:

– For every 𝑋 ∈ Loc and 𝑎, 𝑏 ∈ W𝑋 , we have 𝑓to (𝑎) < 𝑓to (𝑏) iff ⟨𝑎, 𝑏⟩ ∈ mo.
– For every 𝑋 ∈ Loc and 𝑎, 𝑏 ∈ W𝑋 , if ⟨𝑎, 𝑏⟩ ∈ mo \ rf ; rmw, then 𝑓to (𝑎) ≠ 𝑓from (𝑏).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:27

– For every 𝑏 ∈ W, if ⟨𝑎, 𝑏⟩ ∉ mo \ rf ; rmw for all 𝑎, then 𝑓from (𝑏) ≠ 0.

– For every 𝑋 ∈ Loc,𝑀 (𝑋) = {𝑚𝑏 | 𝑏 ∈ W𝑋 }, where each𝑚𝑏 satisfies:

∗ 𝑚𝑏 .val = val(𝑏).
∗ 𝑚𝑏 .to = 𝑓to (𝑏) and𝑚𝑏 .from = 𝑓from (𝑏).
∗ 𝑚𝑏 .from = 𝑓to (𝑎) if ⟨𝑎, 𝑏⟩ ∈ rf ; rmw.
∗ 𝑚𝑏 .mod = mod(𝑏).
∗ For every 𝑦 ∈ Loc,𝑚𝑏 .view(𝑦) = 𝑓to ({𝑎 ∈ W𝑦 | ⟨𝑎, 𝑏⟩ ∈ rwr ; rel}).
∗ If 𝑏 ∈ 𝑟𝑎𝑛𝑔𝑒 (rmw), mod(𝑏) ⊒ rlx.

– For every 𝑋 ∈ Loc, S(𝑋) = 𝑓to (Wsc𝑋 ∪ dom([W𝑋] ; rf? ; hb ; [Fsc])).
– For every 𝑖 ∈ Tid, T (𝑖) = ⟨Σ(𝑖),V𝑖 , ∅⟩ whereV𝑖 satisfies the following conditions for every

𝑋,𝑌 ∈ Loc:
∗ V𝑖 .rel(𝑌) (𝑋) = 𝑓to (dom([W𝑋] ; rwr ; [W⊐ra𝑌

∪ Frel] ; [E𝑖])).
∗ V𝑖 .cur(𝑋) = 𝑓to (dom([W𝑋] ; rwr ; [E𝑖])).
∗ V𝑖 .acq(𝑋) = 𝑓to (dom([W𝑋] ; rwr ; (rel ; rf ; [R⊐rlx])? ; [E𝑖])).

Using the simulation relation given in Def. B.3, we first prove that vRC11 is stronger than

vRC11Axiom.

Lemma B.4. Suppose that ⟨Σ,𝐺⟩ ∼ M. IfM takes a non-racy transitionM −→ M′ in vRC11, there
exists Σ′ and 𝐺 ′ such that
(1) the vRC11Axiom machine state takes the same transition ⟨Σ,𝐺⟩ −→ ⟨Σ′,𝐺 ′⟩ in vRC11Axiom; and
(2) ⟨Σ′,𝐺 ′⟩ ∼ M′.

Proof. It directly follows from the simulation proof done by [Kang et al. 2017]. □

Lemma B.5. Suppose that ⟨Σ,𝐺⟩ ∼ ⟨T , 𝑆, 𝑀⟩. If ⟨T , 𝑆, 𝑀⟩ takes a racy transition ⟨T , 𝑆, 𝑀⟩ −→ M′

in vRC11, the vRC11Axiom machine takes a racy transition in vRC11Axiom.

Proof. Suppose that a thread𝜏 takes a transition racy at a location𝑋 ⟨⟨𝜎, ⟨𝑉rel,𝑉cur,𝑉acq⟩⟩, 𝑆, 𝑀⟩ −→
⟨⟨⊥, ⟨𝑉rel,𝑉cur,𝑉acq⟩⟩, 𝑆, 𝑀⟩ where T (𝜏) = ⟨𝜎, ⟨𝑉rel,𝑉cur,𝑉acq⟩⟩ and the program state 𝜎 transi-

tions by accessing𝑋 with the access mode 𝑜 . It means that there is a message ⟨𝑋@(_, 𝑡], _, 𝑜W, _⟩ ∈ 𝑀

such that 𝑉cur (𝑋) < 𝑡 and either 𝑜W = na or 𝑜 = na. From the simulation relation on the memory,

there is an event 𝑤 in 𝐺 such that 𝑡 = 𝑓to (𝑤) and mod(𝑤) = 𝑜W. Moreover, from the simulation

relation on the current view and the fact 𝑉cur (𝑋) < 𝑡 , we obtain that there is no event 𝑒 ∈ E𝜏 such
that ⟨𝑤, 𝑒⟩ ∈ 𝐺.rwr.
Now, we consider three cases where the access by 𝜎 is a read, write, or RMW. If the access is a

read, an vRC11Axiom machine state can always read from𝑤 , resulting in an vRC11Axiom-consistent

graph 𝐺 ′
by adding a new read event 𝑒𝑟 with loc(𝑒𝑟) = 𝑋 and mod(𝑒𝑟) = 𝑜 . Then, it is enough to

show that ⟨𝑤, 𝑒𝑟 ⟩ ∈ raceWW ∪ raceWR. First, since𝑤 is a write event, ⟨𝑤, 𝑒𝑟 ⟩ ∈ [W] ; conflict ; [R].
Then, it is enough to show that ⟨𝑤, 𝑒𝑟 ⟩ ∉ pb ∪ exec−1. Since the execution of vRC11Axiom machine

always add a exec-maximal event, ⟨𝑤, 𝑒𝑟 ⟩ ∈ exec, and thus, ⟨𝑤, 𝑒𝑟 ⟩ ∉ exec−1. If ⟨𝑤, 𝑒𝑟 ⟩ ∈ pb, there
should be an event 𝑒′ in 𝐺 such that ⟨𝑒′, 𝑒𝑟 ⟩ ∈ po and ⟨𝑤, 𝑒′⟩ ∈ (rf? ; hb?) ∪ (rf? ; hb ; sc? ; hb?),
which is not possible since it implies that ⟨𝑤, 𝑒′⟩ ∈ 𝐺.rwr.

Next, if the access is a write, an vRC11Axiom machine state can always add a mo-maximal write.

Then, the same argument as in the previous case applies here because pb does not depend on the

mo relation.
Lastly, if the access is an RMW, it is necessary that 𝑜W = na (since there is no non-atomic

RMW). From the simulation relation on the memory, the write𝑤 is not written by an RMW (i.e.,
𝑏 ∉ 𝑟𝑎𝑛𝑔𝑒 (rmw)) since it has the access mode mod(𝑤) = na. Therefore, the vRC11Axiom machine

state can read from the write that is the immediate predecessor of 𝑤 in mo, adding an event 𝑒𝑢 ,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:28 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

without breaking the atomicity of RMWs. Then, as in the read case, one can show that there is a

race between𝑤 and 𝑒𝑢 .

Therefore, if ⟨T , 𝑆, 𝑀⟩ takes a racy transition in vRC11, so does ⟨Σ,𝐺⟩ in vRC11Axiom. □

Lemma B.6. For any program 𝑝𝑟𝑜𝑔, J𝑝𝑟𝑜𝑔K
vRC11

⊆ J𝑝𝑟𝑜𝑔K
vRC11Axiom

.

Proof. By induction on an execution of𝑝𝑟𝑜𝑔 in vRC11. It follows fromLemmaB.4 and LemmaB.5.

□

Next, we prove the opposite direction, vRC11Axiom is stronger than vRC11.

Lemma B.7. Suppose that ⟨Σ,𝐺⟩ ∼ M. If ⟨Σ,𝐺⟩ takes a non-racy transition ⟨Σ,𝐺⟩ −→ ⟨Σ′,𝐺 ′⟩ in
vRC11Axiom, there existsM′ such that

(1) the vRC11 machine state takes the same transitionM −→ M′ in vRC11; and
(2) ⟨Σ′,𝐺 ′⟩ ∼ M′.

Proof. As in Lemma B.4, it directly follows from the simulation proof done by [Kang et al.

2017]. □

Lemma B.8. Given a racy execution of a vRC11Axiom declarative machine starting from an initial
machine state, ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ,𝐺⟩ −→ ⟨⊥,𝐺⟩, there exists a minimal racy execution towards machine
states ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ and ⟨Σ𝑟𝑎𝑐𝑒 ,𝐺𝑟𝑎𝑐𝑒⟩ such that
(1) ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 ,𝐺𝑟𝑎𝑐𝑒⟩;
(2) 𝐺𝑟𝑎𝑐𝑒 is a sub-graph of 𝐺 ;
(3) 𝐺𝑚𝑖𝑛 is not vRC11Axiom-racy;
(4) 𝐺𝑟𝑎𝑐𝑒 adds to𝐺𝑚𝑖𝑛 an event 𝑏 that races with some event 𝑎 ∈ 𝐺𝑚𝑖𝑛 by ⟨𝑎, 𝑏⟩ ∈ raceWR∪raceWW;

and
(5) The sequence of system calls exhibited by these transitions is a prefix of the sequence exhibited

by ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ,𝐺⟩.

Proof. First, there exists the minimal racy prefix of the given execution ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ′,𝐺 ′⟩ −→
⟨Σ′′,𝐺 ′′⟩ −→∗ ⟨Σ,𝐺⟩ where 𝐺 ′

is not vRC11Axiom-racy and 𝐺 ′′
is vRC11Axiom-racy. Suppose that

two events 𝑎, 𝑏 ∈ 𝐺 ′′
are racy (i.e., ⟨𝑎, 𝑏⟩ ∈ raceWR ∪ raceWW). Then, we construct a sequence of

transitions ending with a sub-graph 𝐺𝑟𝑎𝑐𝑒 of 𝐺
′′
as follows:

(𝑖) Starting from the initial machine ⟨Σ0,𝐺0⟩, take transitions to ⟨Σ<𝑎,𝐺<𝑎⟩ that add every

event related to 𝑎 by 𝐺 ′′ .exec 𝑒 ∈ 𝐺 ′′ .exec−1 (𝑎) ≜ { 𝑒 | ⟨𝑒, 𝑎⟩ ∈ 𝐺 ′′ .exec }. (Note that

𝑏 ∉ 𝐺 ′′ .exec−1 (𝑎) since ⟨𝑏, 𝑎⟩ ∉ 𝐺 ′′ .exec−1.) Since given a vRC11Axiom-consistent graph 𝐺 ,

its every prefix in exec order is also an vRC11Axiom-consistent graph, this can be done by

picking a exec-minimal event from 𝐺 ′′ .exec−1 (𝑎) and take a transition that adds the event.

(𝑖𝑖) Add a transition adding 𝑎, resulting in an execution ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ<𝑎,𝐺<𝑎⟩ −→ ⟨Σ≤𝑎,𝐺≤𝑎⟩.
(𝑖𝑖𝑖) Similarly to (𝑖), take transitions adding every event related to 𝑏 by exec, resulting in an

execution ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ<𝑎,𝐺<𝑎⟩ −→ ⟨Σ≤𝑎,𝐺≤𝑎⟩ −→∗ ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩.
(𝑖𝑣) Finally, take another transition adding 𝑏, ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 ,𝐺𝑟𝑎𝑐𝑒⟩, we have the minimal

racy execution satisfying (1)-(4).
In particular,𝐺𝑟𝑎𝑐𝑒 is racy because𝐺𝑟𝑎𝑐𝑒 .pb∪𝐺𝑟𝑎𝑐𝑒 .exec

−1 ⊆ 𝐺 ′′ .pb∪𝐺 ′′ .exec−1. Moreover, (5) is
satisfied since the system call events are totally ordered by 𝐺.exec. □

Lemma B.9. Given a minimal racy execution ⟨Σ0,𝐺0⟩ −→∗ ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 ,𝐺𝑟𝑎𝑐𝑒⟩ satisfying
(1)-(4) of Lemma B.8 and an initial vRC11 machine stateM0 related by ⟨Σ0,𝐺0⟩ ∼ M0, there exists
M𝑚𝑖𝑛 taking the same transitions and invoking UB, M0 −→∗ M𝑚𝑖𝑛 −→ ⟨⊥, 𝑆, 𝑀⟩.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:29

Proof. From Lemma B.7, there exists M0 −→∗ M𝑚𝑖𝑛 taking the same transitions as ⟨Σ0,𝐺0⟩ −→∗

⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ and ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ ∼ M𝑚𝑖𝑛 . It is enough to show that M𝑚𝑖𝑛 = ⟨T𝑚𝑖𝑛, 𝑆𝑚𝑖𝑛, 𝑀𝑚𝑖𝑛⟩
can take a racy step to ⟨⊥, 𝑆, 𝑀⟩ for some 𝑆 and 𝑀 . Suppose that the last step in vRC11Axiom,

⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ −→ ⟨Σ𝑟𝑎𝑐𝑒 ,𝐺𝑟𝑎𝑐𝑒⟩ adds an event 𝑏 that races with some event 𝑎 ∈ 𝐺𝑚𝑖𝑛 by ⟨𝑎, 𝑏⟩ ∈
raceWR ∪ raceWW, where 𝑏 is executed by a thread 𝜏 . From ⟨Σ𝑚𝑖𝑛,𝐺𝑚𝑖𝑛⟩ ∼ M𝑚𝑖𝑛 , there exists a

message𝑚𝑎 ∈ 𝑀𝑚𝑖𝑛 corresponding to 𝑎. Since 𝑎 has never been propagated before𝑏,𝑉cur (loc(𝑎)) <
𝑡𝑎 = 𝑓to (𝑎) where T (𝜏) = ⟨𝜎, ⟨𝑉rel,𝑉cur,𝑉acq⟩⟩. Now, the program state 𝜎 of the thread 𝜏 is about

to perform a memory access that corresponds to 𝑏. From the fact that ⟨𝑎, 𝑏⟩ ∈ conflict, the next
transition of 𝜎 is accessing loc(𝑎) with an access mode mod(𝑏) where either one of mod(𝑎) =

𝑚𝑎 .mod or mod(𝑏) is non-atomic. Then, the thread configuration ⟨⟨𝜎, ⟨𝑉rel,𝑉cur,𝑉acq⟩⟩, 𝑆𝑚𝑖𝑛, 𝑀𝑚𝑖𝑛⟩
can take a racy transition that races with the message 𝑚𝑎 ∈ 𝑀𝑚𝑖𝑛 and invoke UB. Therefore,

M𝑚𝑖𝑛 −→ ⟨⊥, 𝑆𝑚𝑖𝑛, 𝑀𝑚𝑖𝑛⟩. □

Lemma B.10. For any program 𝑝𝑟𝑜𝑔, J𝑝𝑟𝑜𝑔K
vRC11Axiom

⊆ J𝑝𝑟𝑜𝑔K
vRC11

.

Proof. It follows from Lemma B.7, Lemma B.8, and Lemma B.9. □

Then, the equivalence between vRC11 and vRC11Axiom follows from Lemma B.6 and Lemma B.10.

Theorem B.11. For any program 𝑝𝑟𝑜𝑔, J𝑝𝑟𝑜𝑔K
vRC11Axiom

= J𝑝𝑟𝑜𝑔K
vRC11

.

C RELATING vRC11 TO RC11
We prove that vRC11 is stronger than RC11 by showing that vRC11Axiom is stronger than RC11.

The following derived relation is used in defining RC11:

pscF = [Fsc] ; (hb ∪ hb ; eco ; hb) ; [Fsc] (partial-SC-fence-order)

Given the derived relations in §3.2 and above, a consistent execution in RC11 is defined as follows.

Definition C.1. An execution graph 𝐺 is RC11-consistent if the following hold:

• hb ; eco? is irreflexive. (RC11-cohcrence)

• pscF is acyclic. (RC11-sc-fence)

• rmw ∩ (rb ; mo) = ∅. (RC11-atomicity)

• po ∪ rf is acyclic. (RC11-no-LB)

Then, a racy graph in RC11 is defined as follows.

Definition C.2. An execution graph 𝐺 is RC11-racy if conflict \ (hb ∪ hb−1) ≠ ∅. A program

𝑝𝑟𝑜𝑔 has undefined behavior under RC11 if it has some racy RC11-consistent execution.

Next, we prove that vRC11Axiom is stronger than RC11 by showing that (1) an vRC11Axiom-consistent

graph is RC11-consistent; and (2) an vRC11Axiom-racy graph is RC11-racy.

Lemma C.3. An vRC11Axiom-consistent execution graph 𝐺 is RC11-consistent.

Proof. We show that 𝐺 satisfies the four axioms of RC11-consistency.

(RC11-coherence). It follows from (coherence) of vRC11Axiom-consistency.

(RC11-sc-fence). Since sc is a strict total order on SC fences, it is enough to show that

pscF ⊆ sc. From (RC11-coherence) that we have already proved, it is clear that pscF is irreflexive.
Then, suppose that there are two distinct SC fence events 𝑓1 and 𝑓2 such that ⟨𝑓1, 𝑓2⟩ ∈ pscF and
⟨𝑓1, 𝑓2⟩ ∉ sc. Since sc is a total order, ⟨𝑓2, 𝑓1⟩ ∈ sc. From (no-LB) of vRC11Axiom, ⟨𝑓1, 𝑓2⟩ ∉ hb since
otherwise, sc∪hb ⊆ sc∪rf becomes cyclic. Therefore, by replacing ecowith an equivalent relation
rf∪ (mo∪ rb) ; rf? [Lahav et al. 2017] in pscF, we have ⟨𝑓1, 𝑓2⟩ ∈ rf∨ ⟨𝑓1, 𝑓2⟩ ∈ mo ; rf? ∨ ⟨𝑓1, 𝑓2⟩ ∈

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:30 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

rb ; rf?. If ⟨𝑓1, 𝑓2⟩ ∈ rf, (no-LB) of vRC11Axiom is violated since ⟨𝑓1, 𝑓1⟩ ∈ rf ; sc. For the other two
cases, (sc-fence) of vRC11Axiom is violated. Therefore, there should be no such SC fence events 𝑓1
and 𝑓2, and thus, pscF ⊆ sc.

(RC11-atomicity). It follows from (atomicity) of vRC11Axiom-consistency.

(RC11-no-LB). It follows from (no-LB) of vRC11Axiom-consistency. □

Lemma C.4. If an vRC11Axiom-consistent execution graph 𝐺 is vRC11Axiom-racy, then it is also
RC11-racy.

Proof. It suffices to show that raceWW∪raceWR ⊆ conflict\(hb∪hb−1). From the definitions of

the derived relations, we have hb ⊆ pb and hb ⊆ (po∪rf)+ ⊆ exec. Therefore, raceWW∪raceWR ⊆
conflict \ (pb ∪ exec−1) ⊆ conflict \ (hb ∪ hb−1). □

Theorem C.5. For any program 𝑝𝑟𝑜𝑔, J𝑝𝑟𝑜𝑔K
vRC11

⊆ J𝑝𝑟𝑜𝑔K
RC11

.

Proof. It follows from Lemma C.3, Lemma C.4, and Thm. B.11. □

D THE FULL PSIR MODEL
The full PS

IR
model is given in Fig. 7. The notion of promises and the transitions manipulating

promises are introduced compared to vRC11 discussed in Appendix A. Next, we describe the

additional notions in this model (w.r.t. the simplified fragment presented in §4).

Reservation. A reservation 𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ ∈ Rsv is a valueless message. A thread can reserve a

timestamp interval of a certain location (see (reserve) rule) in order to prevent other threads from

writing to that interval. Later the thread may cancel its reservation (see (cancel) rule) and write to

the reserved space. A memory is naturally extended to be a set of messages and reservations.

Consistency. At every machine step, the thread taking the step should certify its promises

against a capped memory that abstracts the most restrictive possible future memory. A capped

memory of a memory𝑀 is given by:

(1) For every 𝑚1,𝑚2 ∈ 𝑀 where 𝑚1.loc = 𝑚2.loc = 𝑋 , 𝑚1 .to < 𝑚2 .from, and there is no

message 𝑚′ ∈ 𝑀 (𝑚1.loc) such that 𝑚1.to < 𝑚′ .to < 𝑚2.to, we include a reservation

⟨𝑋@(𝑚1.to,𝑚2.from]⟩ to𝑀 .

(2) To each location 𝑋 , we include a reservation ⟨𝑋@(𝑡𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 + 1]⟩ to 𝑀 where 𝑡𝑚𝑎𝑥 is the

maximal to-timestamp among the messages to 𝑋 .

Note that, given a memory 𝑀 , there always exists a unique capped memory of 𝑀 . A thread

configuration ⟨T , 𝑃𝐺 , 𝑆, 𝑀⟩ is called consistent if there exist T ′
, 𝑃𝐺

′
, 𝑆 ′, and𝑀 ′

such that:

⟨T , 𝑃𝐺 , 𝑆, 𝑀⟩ −→∗ ⟨T ′, 𝑃𝐺
′, 𝑆 ′, 𝑀 ′⟩ ∧ T ′ .prm = ∅

where T .prm denotes the set of promises of a thread state T .

E THE SEQUENTIAL MACHINE
The transition rules for the sequential machine SEQ are given in Fig. 8. The only rule changed

from the SEQ by Cho et al. [2022] is the transition for relaxed writes (highlighted in the figure).

Here, the transition rule for relaxed writes shares the rule for release writes since the semantics of

relaxed writes in PS
IR

is strengthened compared to that of PS
na

[Cho et al. 2022]. Consequently,

the strengthened SEQ in Fig. 8 forbids reordering a non-atomic access followed by a relaxed write.

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

Putting Weak Memory in Order via a Promising Intermediate Representation 183:31

𝑣 ∈ Val value

𝑋,𝑌, 𝑍 ∈ Loc location

𝑜R ∈ {na, rlx, acq} read access mode

𝑜W ∈ {na, rlx, rel} write access mode

𝑜F ∈ {acq, rel, acqrel, sc} fence access mode

𝜏 ∈ Tid ≜ {𝜏1, 𝜏2, ...} thread identifier

𝑓 , 𝑡 ∈ Time ≜ {0} ∪ Q+
timestamp

𝑉 ∈ View ≜ Loc → Time view

𝑉rel ∈ Loc → View release view

𝑉cur ∈ View current view

𝑉acq ∈ View acquire view

𝑆 ∈ View sc view

𝑃, 𝑃𝐺 ⊆ Loc promises set

𝑚 = ⟨𝑋@(𝑓 , 𝑡], 𝑣, 𝑜W,𝑉 ⟩ ∈ Msg message

𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ ∈ Rsv reserve

𝑅 ⊆ Rsv reserve set

𝑀 ⊆ Msg ∪ Rsv memory

𝜎 program state

V = ⟨𝑉rel,𝑉cur,𝑉acq⟩ thread view

T = ⟨𝜎,V, 𝑃, 𝑅⟩ ∈ Lts thread state

⟨T , 𝑃𝐺 , 𝑆, 𝑀⟩ thread configuration

T : Tid → Lts thread state mapping

⟨T , 𝑃𝐺 , 𝑆, 𝑀⟩ machine state

(read-helper)

𝑚 = ⟨𝑋@(_, 𝑡], _, _,𝑉m⟩
𝑉cur (𝑋) ≤ 𝑡 𝑉𝑠 = [𝑋 ↦→ 𝑡]

𝑉 ′
cur = 𝑉cur ⊔𝑉𝑠 ⊔ (𝑜R ⊒ acq ?𝑉m)

𝑉 ′
acq = 𝑉acq ⊔𝑉𝑠 ⊔ (𝑜R ⊒ rlx ?𝑉m)

⟨𝑉rel,𝑉cur,𝑉acq⟩
𝑜R,𝑚−−−→R ⟨𝑉rel,𝑉 ′

cur,𝑉
′
acq⟩

(write-helper)

𝑚 = ⟨𝑋@(𝑓 , 𝑡], _, _,𝑉m⟩ 𝑓 < 𝑡

𝑉cur (𝑋) < 𝑡 𝑉𝑠 = [𝑋 ↦→ 𝑡]
𝑉 ′
cur = 𝑉cur ⊔𝑉𝑠 𝑉 ′

acq = 𝑉acq ⊔𝑉𝑠
𝑉 ′
rel = 𝑉rel [𝑋 ↦→ 𝑉rel (𝑋) ⊔𝑉𝑠 ⊔ (𝑜W ⊒ rel ?𝑉 ′

cur)]
𝑉m = (𝑜W ⊒ rlx ? (𝑉 ′

rel (𝑋) ⊔𝑉𝑟))

⟨𝑉rel,𝑉cur,𝑉acq⟩
𝑜W,𝑉𝑟 ,𝑚−−−−−→W ⟨𝑉 ′

rel,𝑉
′
cur,𝑉

′
acq⟩

(race: promise)

𝑋 ∈ 𝑃𝐺 \ 𝑃
race(V, 𝑃, 𝑃𝐺 , 𝑀,𝑋, 𝑜)

(race: message)

⟨𝑋@(_, 𝑡], _, 𝑜W, _⟩ ∈ 𝑀

V .cur(𝑋) < 𝑡

𝑜W = na ∨ 𝑜 = na

race(V, 𝑃, 𝑃𝐺 , 𝑀,𝑋, 𝑜)

(fence-helper: non-sc)

V′ =


⟨𝑉rel,𝑉acq,𝑉acq⟩ 𝑜F = acq

⟨𝜆_.𝑉cur,𝑉cur,𝑉acq⟩ 𝑜F = rel

⟨𝜆_.𝑉acq,𝑉acq,𝑉acq⟩ 𝑜F = acqrel

⟨⟨𝑉rel,𝑉cur,𝑉acq⟩, 𝑆⟩
𝑜F−→F ⟨V′, 𝑆⟩

(fence-helper: sc)

𝑆 ′ = 𝑉acq ⊔ 𝑆

V′ = ⟨𝜆_.𝑆 ′, 𝑆 ′, 𝑆 ′⟩

⟨⟨𝑉rel,𝑉cur,𝑉acq⟩, 𝑆⟩
sc−−→F ⟨V′, 𝑆 ′⟩

(fulfill-helper)

𝑋 ∈ 𝑃

⟨𝑃, 𝑃𝐺 ⟩
𝑋,na−−−→ ⟨𝑃 \ {𝑋 }, 𝑃𝐺 \ {𝑋 }⟩

(silent)

𝜎 −→ 𝜎 ′

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩

(promise)

𝑋 ∉ 𝑃𝐺 𝑃 ′ = 𝑃 ∪ {𝑋 } 𝑃𝐺
′ = 𝑃𝐺 ∪ {𝑋 }

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎,V, 𝑃 ′, 𝑅⟩, 𝑃𝐺 ′, 𝑆, 𝑀⟩

(reserve)

𝑟 = ⟨𝑋@(𝑓 , 𝑡]⟩ 𝑓 < 𝑡 𝑀#𝑟

𝑅′ = 𝑅 ∪ {𝑟 } 𝑀 ′ = 𝑀 ∪ {𝑟 }
⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→ ⟨⟨𝜎,V, 𝑃, 𝑅′⟩, 𝑃𝐺 , 𝑆, 𝑀 ′⟩

(cancel)

𝑟 ∈ 𝑅 𝑅′ = 𝑅 \ {𝑟 } 𝑀 ′ = 𝑀 \ {𝑟 }
⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→ ⟨⟨𝜎,V, 𝑃, 𝑅′⟩, 𝑃𝐺 , 𝑆, 𝑀 ′⟩

(read)

𝜎
R(𝑋,𝑜R,𝑣)−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ ∈ 𝑀

V 𝑜R,𝑚−−−→R V′

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V′, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩

(write)

𝜎
W(𝑋,𝑜W,𝑣)−−−−−−−→ 𝜎 ′

𝑚 = ⟨𝑋@(_, _], 𝑣, _, _⟩ 𝑀#𝑚

V 𝑜W,𝜆_.0,𝑚−−−−−−−→W V′ 𝑀 ′ = 𝑀 ∪ {𝑚}

⟨𝑃, 𝑃𝐺 ⟩
𝑋,𝑜W−−−→

?

⟨𝑃 ′, 𝑃𝐺
′⟩

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V′, 𝑃 ′, 𝑅⟩, 𝑃𝐺 ′, 𝑆, 𝑀 ′⟩

(update)

𝜎
RMW(𝑋,𝑜R,𝑜W,𝑣𝑟 ,𝑣𝑤)
−−−−−−−−−−−−−−→ 𝜎 ′

𝑚𝑟 = ⟨𝑋@(_, 𝑡𝑟], 𝑣𝑟 , _,𝑉𝑟 ⟩ ∈ 𝑀

𝑚𝑤 = ⟨𝑋@(𝑡𝑟 , 𝑡𝑤], 𝑣𝑤, _, _⟩ 𝑀#𝑚𝑤

V 𝑜R,𝑚𝑟−−−−→R
𝑜W,𝑉𝑟 ,𝑚𝑤−−−−−−−→W V′ 𝑀 ′ = 𝑀 ∪ {𝑚}

⟨𝑃, 𝑃𝐺 ⟩
𝑋,𝑜W−−−→

?

⟨𝑃 ′, 𝑃𝐺
′⟩

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V′, 𝑃 ′, 𝑅⟩, 𝑃𝐺 ′, 𝑆, 𝑀 ′⟩

(racy-read)

𝜎
R(𝑋,𝑜R,undef)−−−−−−−−−−→ 𝜎 ′

race(V, 𝑃, 𝑃𝐺 , 𝑀,𝑋, 𝑜R)
⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩

(racy-write)

𝜎
W(𝑋,𝑜W,_)−−−−−−−→ _

race(V, 𝑃, 𝑃𝐺 , 𝑀,𝑋, 𝑜W)
⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨⊥,V, ∅, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩

(racy-update)

𝜎
RMW(𝑋,𝑜R,𝑜W,_,_)−−−−−−−−−−−−→ _

𝑜R = na ∨ 𝑜W = na∨
race(V, 𝑃, 𝑃𝐺 , 𝑀,𝑋, rlx)
⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨⊥,V, ∅, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩

(fence)

𝜎
F(𝑜F)−−−−→ 𝜎 ′

𝑜F ⊒ sc ⇒ 𝑃 = ∅
⟨V, 𝑆⟩ 𝑜F−→F ⟨V′, 𝑆 ′⟩

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩ −→
⟨⟨𝜎 ′,V′, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆 ′, 𝑀⟩

(syscall)

𝜎
Sys(𝑒)
−−−−−→ 𝜎 ′

𝑃 = ∅ ⟨V, 𝑆⟩ sc−−→F ⟨V′, 𝑆 ′⟩

⟨⟨𝜎,V, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆, 𝑀⟩
Sys(𝑒)
−−−−−→

⟨⟨𝜎 ′,V′, 𝑃, 𝑅⟩, 𝑃𝐺 , 𝑆 ′, 𝑀⟩

(machine: normal)

⟨T (𝜏), 𝑃𝐺 , 𝑆, 𝑀⟩ −→∗ 𝑒−→ ⟨T ′, 𝑃𝐺
′, 𝑆 ′, 𝑀 ′⟩

⟨T ′, 𝑃𝐺 , 𝑆, 𝑀⟩ −→∗ ⟨⟨_, _, ∅, _⟩, _, _, _⟩

⟨T , 𝑃𝐺 , 𝑆, 𝑀⟩ 𝑒−→ ⟨T [𝜏 ↦→ T ′], 𝑃𝐺 ′, 𝑆 ′, 𝑀 ′⟩

(machine: ub)

⟨T (𝜏), 𝑃𝐺 , 𝑆, 𝑀⟩ −→+ ⟨⟨⊥, _, _⟩, 𝑃𝐺 ′, 𝑆 ′, 𝑀 ′⟩
⟨T , 𝑃𝐺 , 𝑆, 𝑀⟩ −→ ⟨⊥, 𝑃𝐺 ′, 𝑆 ′, 𝑀 ′⟩

Fig. 7. The full PSIR model

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

183:32 Sung-Hwan Lee, Minki Cho, Roy Margalit, Chung-Kil Hur, and Ori Lahav

(silent)

𝜎 −→ 𝜎 ′

⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(choice/relaxed-read)

𝜎
𝑒−→ 𝜎 ′

𝑒 ∈ {choose(𝑣), Rrlx (𝑥, 𝑣)}

⟨𝜎, 𝑃, 𝐹,𝑀⟩ 𝑒−→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(na-read)

𝜎
Rna (𝑋,𝑣)
−−−−−−→ 𝜎 ′ 𝑋 ∈ 𝑃

𝑣 = 𝑀 (𝑋)
⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(na-write)

𝜎
Wna (𝑋,𝑣)
−−−−−−→ 𝜎 ′ 𝑋 ∈ 𝑃

𝐹 ′ = 𝐹 ∪ {𝑋 } 𝑀 ′ = 𝑀 [𝑋 ↦→ 𝑣]
⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 ′, 𝑀 ′⟩

(racy-na-read)

𝜎
Rna (𝑋,undef)
−−−−−−−−−−→ 𝜎 ′ 𝑋 ∉ 𝑃

⟨𝜎, 𝑃, 𝐹,𝑀⟩ −→ ⟨𝜎 ′, 𝑃, 𝐹 , 𝑀⟩

(racy-na-write)

𝜎
Wna (𝑋,_)
−−−−−−→ _ 𝑋 ∉ 𝑃

⟨𝜎, 𝑃, 𝐹, 𝑀⟩ −→ ⟨⊥, 𝑃, 𝐹 , 𝑀⟩

(acq-read)

𝜎
Racq (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

𝑃 ⊆ 𝑃 ′ dom(𝑉) = 𝑃 ′ \ 𝑃

𝑀 ′ = 𝜆𝑋 .

{
𝑉 (𝑋) 𝑋 ∈ 𝑃 ′ \ 𝑃
𝑀 (𝑋) otherwise

⟨𝜎, 𝑃, 𝐹,𝑀⟩
Racq (𝑥,𝑣,𝑃,𝑃 ′,𝐹 ,𝑉)
−−−−−−−−−−−−−→ ⟨𝜎 ′, 𝑃 ′, 𝐹 , 𝑀 ′⟩

(relaxed-write/rel-write)

𝜎
Wrel (𝑥,𝑣)
−−−−−−−→ 𝜎 ′

𝑃 ′ ⊆ 𝑃 𝑉 = 𝑀 |𝑃

⟨𝜎, 𝑃, 𝐹,𝑀⟩
Wrel (𝑥,𝑣,𝑃,𝑃 ′,𝐹 ,𝑉)
−−−−−−−−−−−−−→ ⟨𝜎 ′, 𝑃 ′, ∅, 𝑀⟩

Fig. 8. Transitions of SEQ

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 183. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Challenges and Key Ideas
	2.1 Optimizing Non-Atomics in an In-Order Semantics
	2.2 Mapping Relaxed Accesses to Modern Hardware

	3 The Source Model
	3.1 Relating vRC11 to RC11
	3.2 A Declarative Presentation

	4 The IR Model
	5 Mapping to Hardware
	5.1 Strong Stores in Hardware Models
	5.2 Implementing Strong Stores on Existing Hardware
	5.3 Mapping PSIR to Hardware

	6 Related Work
	Acknowledgments
	References
	A The Full vRC11 Model
	B Equivalence between vRC11 and the Declarative Presentation
	C Relating vRC11 to RC11
	D The Full PSIR Model
	E The Sequential Machine

