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Abstract

Local data-race-freedom guarantees, ensuring strong seman-
tics for locations accessed by non-racy instructions, provide
a fruitful methodology for modular reasoning in relaxed
memory concurrency. We observe that standard compiler
optimizations are in inherent conflict with such guarantees
in general fully-relaxed memory models.

Nevertheless, for a certain strengthening of the promising
model by Lee et al. that only excludes relaxed RMW-store
reorderings, we establish multiple useful local data-race-
freedom guarantees that enhance the programmability as-
pect of the model. We also demonstrate that the performance
price of forbidding these reorderings is insignificant. To the
best of our knowledge, these results are the first to identify
a model that includes the standard concurrency constructs,
supports the efficient mapping of relaxed reads and writes
to plain hardware loads and stores, and yet validates several
local data-race-freedom guarantees. To gain confidence, our
results are fully mechanized in Cogq.

CCS Concepts: « Theory of computation — Concur-
rency; Operational semantics; « Software and its en-
gineering — Semantics.
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1 Introduction

Designing a programming language shared-memory concur-
rency semantics, a.k.a. a weak memory model, is a complex
task. On the one hand, one aims to allow mappings to com-
modity modern architectures (such as x86, Power, Arm, and
RISC-V) that will not subvert the hardware’s extensive op-
timization efforts, as well as to validate certain compiler
optimizations that are unsound under a strong semantics
such as sequential consistency (SC). On the other hand, since
the introduction of weak memory semantics in programming
languages, it was clear that the majority of programmers will
need to program and reason about their code without under-
standing the full complexities of the underlying semantics.
Hence, to be useful and amenable to reasoning, a memory
model has to (i) ensure strong and intuitive semantics for
programs that follow certain programming disciplines; and
(ii) allow programmers to adhere to such disciplines even
without knowing the actual underlying weak semantics.

A fundamental programmability guarantee of this kind is
DREF-SC [3]. It ensures that data-race free programs (avoid-
ing races using locks or designated synchronization accesses)
only exhibit SC behaviors. Crucially, data-race freedom (DRF),
the premise of DRF-SC, is only required to hold under SC,
allowing programmers to use this guarantee knowing noth-
ing about the underlying complex model, but rather naively
imagining standard interleaving semantics that follows the
program order and employs a conventional memory.

Since SC is sometimes considered overly expensive to en-
sure efficient implementations (and as building blocks for
establishing DRF-SC), more refined DRF guarantees have
been studied in the last few years [12, 22]. Each of these guar-
antees is applicable on a different level of accesses—requiring
more restrictive race-freedom conditions and resulting in
stronger semantics guarantees. In particular, in models with
release/acquire (RA) accesses, one aims to ensure RA seman-
tics for programs that exhibit no races on accesses weaker
than RA accesses. This guarantee, called DRF-RA [22], al-
lows programmers to use (non-racy) weaker (and more ef-
ficient) accesses than RA accesses while knowing only the
RA semantics. The latter, although weaker than SC, is much
simpler than the full underlying model, and it admits several
verification methods and tools, including model checkers
and program logics [2, 21, 28, 29]. Similarly, on the level of
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“relaxed” accesses, which are weaker than RA ones and in-
tended to be compiled to plain machine loads and stores, a
DRF guarantee with respect to an “in-order” RC11-like [30]
semantics (with no load buffering behaviors) ensures in-
order semantics when, under the in-order semantics, races
on relaxed accesses are properly confined (see DRF-PF in
[22] and DRF-RLX in [12]). Again, the benefit is significant:
an in-order semantics like RC11 is significantly simpler than
an “out-of-order” model in which reads can read from later
writes, and like SC and RA, “in-order” models admit several
verification methods [13, 14, 24, 40].

Nevertheless, the global nature of all DRF guarantees men-
tioned above makes them only applicable when the whole
program admits the required race freedom premise. Software,
however, is modularly developed, often without access to
the full code. Moreover, benign races in carefully crafted
concurrency libraries make the DRF guarantees futile for
reasoning by clients that use these libraries, leaving them
with no formal assurances applicable without a complete
understanding of the underlying model (see Fig. 1 for an
illustrative example).

This drawback of the DRF guarantees is addressed by more
refined “local” guarantees that can be applied also on parts
of a given program [15, 16]. In particular, a local DRF (LDRF,
for short) guarantee allows one to conclude that accesses to
certain shared locations have stronger semantics provided
that when assuming stronger semantics to these locations, the
program exhibits no races on them. The important practical
consequence is that it is safe to assume that the client portion
of the code is running under the stronger semantics when
races are completely confined in the library code. Moreover,
clients may rely on the synchronization guarantees provided
by libraries to establish race freedom of their code while still
understanding only the stronger semantics.

Unfortunately, the negative observation of this paper is
that LDRF guarantees of this kind are inconsistent with com-
piler optimizations that are normally expected to be sound in
weak memory models. To demonstrate this, we present exam-
ples that, under very minimal assumptions on the underlying
model, are locally race free, but a sequence of program trans-
formations that are intended to be sound entails that they
must have a behavior that violates LDRF. Viewing these guar-
antees as essential for modular software development, we
believe that this reveals a severe limitation on the usefulness
of models that support the full range of optimizations.

On the positive side, we observe that by disabling a cer-
tain problematic compiler optimization, an LDRF guarantee
w.r.t. an “in-order” RC11-like semantics becomes achievable.
Concretely, we identify that RMW-store reordering’ is the

IRMW (read-modify-write) operations, such as compare-and-swap (CAS),
fetch-and-add (FADD) and atomic exchange (XCHG), atomically perform a
read followed by a write to the same location. Certain models—e.g., C11 [42],
the promising semantics [22], and Weakestmo [12]—allow the reordering of
non-acquire RMWs with subsequent relaxed writes to a different location.
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ro := pop_wait(S) r1 == pop_wait(S)

lock() lock()
process rp accessing X, Y process r1 accessing X, Y
unlock() unlock()

Two threads are popping “work items” from a wait-free (possibly,
relaxed) stack S, and use a lock to perform the work for avoiding
races on shared locations X and Y. The DRF-SC guarantee does
not allow the client to show that the accesses to X and Y inside the
locked regions do not have weak behaviors. Indeed, the program
is not race free due to benign races in the implementation of the
pop operation (in fact, if lock/unlock are not primitives, then the
implementation of the lock itself is racy as well). In contrast, a local
DRF-SC guarantee allows clients to use the specification of the lock
to conclude that the accesses to X and Y are not racy, and therefore,
they can safely assume SC semantics for X and Y.

Figure 1. A simple example demonstrating the weakness of
the global DRF-SC guarantee

source of the problem and show that by disabling only these
reorderings one is able to validate a critical LDRF guarantee.
In turn, for (naive formulations of) LDRF-RA/SC, disabling
RMW-store reordering does not suffice, and we address the
problem by slightly strengthening the (naive) race-freedom
premise. The resulting guarantees are useful for modular
reasoning (as demonstrated in §5), and we are not aware of
any non-contrived example where this strengthened race-
freedom condition makes a difference.

To establish that forbidding RMW-store reordering and
slightly strengthening the race-freedom premise suffice for
establishing the LDRF guarantees, we demonstrate a particu-
lar model that satisfies the desiderata. Concretely, we prove
that three LDRF guarantees are validated by PS2.1, a variant
of the promising semantics, mentioned as a possible simpli-
fication of PS2 in [31, §4.4], that supports all standard (local
and global) optimizations excluding RMW-store reordering.

In addition to the theoretical results, we empirically in-
vestigate the cost of forbidding RMW-store reorderings, and
observe that it is negligible in practice. Current standard
compilers are very conservative with reorderings of atomic
accesses [35], and mainstream architectures, except Armv8,
do not allow RMW-store reordering. Even in Armvg, it is rel-
evant only for non-acquire unconditional RMWs (i.e., FADD
or XCHG, but not CAS), for which a “fake” branch instruc-
tion is needed to prevent the reordering. Since FADDs and
XCHGs are not executed frequently and fake branching is
relatively cheap [35], we expect the implementation cost to
be negligible in practice. We have performed a sequence of
experiments that validate this hypothesis (§6).

As for the LDRF guarantees, we formulate three guaran-
tees, and prove them for PS2.1, where each of which provides
the key lemma for establishing the next one: (1) LDRF-PF
w.r.t. the promise-free (RC11-like) semantics allowing one to
restrict “promises”—a special mechanism that accounts for
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load-store reorderings in the promising semantics, which is
undoubtedly the most complicated and hard to reason about
component of the model; (2) LDRF-RA w.r.t. release/acquire
semantics; and (3) LDRF-SC w.r.t. SC semantics.?

To conclude, our contributions are summarized as follows:

1. We show that the full set of compiler optimizations is
inconsistent with local DRF guarantees (§2).

2. We establish the consistency of three local DRF guaran-
tees (LDRF-PF, LDRF-RA, and LDRF-SC) and all standard
optimizations excluding RMW-store reordering by prov-
ing that PS2.1 validates them all (§4).

3. We outline the applicability of local DRF for reasoning
about client code, as well as library code (§5).

4. We empirically observe that the performance impact of
disabling RMW-store reorderings is negligible (§6).

Our LDRF proofs in §4 are fully mechanized in Coq. The
formalization is available in the accompanying artifact.

2 Local DRF in Weak Memory Models

In this section we demonstrate the inherent tension between
local DRF guarantees and standard compiler optimizations.
While our results in the next sections are specific to the
promising semantics, the discussion in this section is general,
making its implications applicable in other models as well.

2.1 Local DRF w.r.t. an “In-Order” Semantics

By far, the most complicated aspect of a weak memory seman-
tics is related to allowing load-store reordering of possibly
racy independent relaxed accesses (a.k.a. load buffering be-
haviors). This is the source of the infamous “out-of-thin-air”
problem [7], the reason why per-execution declarative mod-
els cannot work and more complicated event-structure-based
models are needed instead [12, 37], and the only rationale be-
hind “promises” in the promising semantics. To circumvent
this complexity, one can use less efficient stronger models,
such as RC11 [30], that conservatively forbid load-store re-
orderings altogether (by disallowing cycles in the union of
the program order and the reads-from relation), and thus
cannot map relaxed accesses to plain machine loads and
stores in architectures like Arm.

We generally refer to RC11-like models as “in-order” mod-
els, as they are captured by transition systems that execute
memory accesses according to their program order while
ensuring that every read reads from a previously executed
write. More formally, this property is defined as follows:

Definition 2.1. A memory model M is in-order if every
behavior allowed by M corresponds to a trace of memory
accesses that respects the program order such that every

2 Although allowing races on SC accesses is essentially needed for global
DRF-SC (otherwise there are no means of synchronization), it is unnecessary
for local DRF-SC because synchronization is typically provided by library
methods. Thus, LDRF-SC is still applicable for the promising semantics,
which currently lacks specialized SC accesses.
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read r of value v from location X is justified by some write
w that writes v to X and appears in the trace before r.

This definition covers a wide variety of (not so weak)
memory models including RC11, TSO [36], causal consis-
tency [25, 26], the OCaml model in [15], and (of course)
SC. It ensures a conceptually simple semantics and enables
several verification approaches [13, 14, 24, 40].

A natural approach to allow “in-order” reasoning for a
given program in a model with (fully) relaxed accesses is to
use a DRF guarantee. When such guarantee is provided, one
is able to assume in-order semantics for programs that under
in-order semantics exhibit no races on accesses annotated as
relaxed (so that the guarantee can be applied knowing noth-
ing about the out-of-order part of the semantics). Moreover,
as demonstrated in §1, for being applicable in a modular
fashion (e.g., in the presence of unrelated races induced by
some library methods over which the client has no control),
this guarantee has to be local.

To give a more precise statement of such a local DRF
guarantee (but still keep the discussion general), consider
an arbitrary model M with relaxed reads/writes, intended
to be compiled to plain machine accesses, and “strong re-
laxed” writes, intended to be compiled with barriers to forbid
the hardware from reordering a load followed by a strong
relaxed write.> Strong relaxed writes provide “in-order” se-
mantics in the following sense: Every behavior allowed by M
corresponds to some trace of memory accesses that respects
the program order such that: (i) every read r of value v from
location X is justified by some write w that writes v to X
and appears in the trace; and (ii) if 7 is justified by w that is
strong relaxed, then w should appear before r in the trace.
(Note that M allows a read r to be justified by a relaxed write
that is executed after r.)

Then, a local DRF guarantee w.r.t. an in-order semantics
for M is stated as follows: For every set L of locations, every
behavior of a given program prog allowed by M is allowed by
M for prog when all writes to locations in £ are considered
strong relaxed, provided that under this assumption prog
exhibits no races involving writes to locations in £ that are
annotated as relaxed.

For example, this guarantee (for £ = {L}) allows one to
show that the annotated behavior in the following program
is disallowed in the model M without knowing anything
besides an in-order semantics:*

a=1L b=X /17

libfun; () || libfuns ()

XX .=g || ifb=1then L :=1else L3¥ := 1

(LDRF-LB)

3Strong relaxed accesses were introduced in [22] as a technical tool for
establishing the correctness of mapping to hardware. They are also use-
ful in the current discussion. Like release writes, they forbid reordering
with preceding reads; but unlike release writes, they are not intended to
synchronize with reads by other threads.

4We assume that all locations are initially 0, and that the “default” access
mode is relaxed (so we omit rlx annotations).
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The compiler may optimize Thread 1 as shown below:
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(0) (1) (2) (3) (4) (5)
Y:=0 Y:=0 Y:=0 Y :=0 Y =0 Y =0
c:=1L c:=1L c:=1L c:=1L c:=1L
if ¢ = 1 then if ¢ = 1 then if ¢ = 1 then if ¢ = 1 then
a=Y a=Y a=Yelsea:=Y a:=Yelsea:=0 a=Y a=Y
if a # 0 then if a # 0 then if a # 0 then if a # 0 then if a # 0 then if a # 0 then
b := CAS(X,0,42) b := CAS(X,0,42) b := CAS(X,0,42) b :=CAS(X,0,42) b := CAS(X,0,42) b := CASS™™X (X, 0,37)
if b = 0 then if b = 0 then if b = 0 then if b = 0 then if b = 0 then
c:=1L
if ¢ = 1 then if ¢ = 1 then if ¢ = 1 then if ¢ = 1 then (eliminated)
Xsrlx =137 Xsrlx =137 Xsrlx =137 Xsrlx =37 Xsrlx =137
elsea:=0 elsea:=0
(eliminated)

(1) reorder the read c := L to be second, after introducing the same read ¢ := L in the else-branches (when b # 0 or a = 0);

(2) insert a dummy if-then-else on ¢ = 1 and distribute the rest of the code to both branches (“trace-preserving” transformation);

(3) forward the write Y := 0 to the read a := Y in the else-branch, turning it into a := 0;

(4) distribute the branch on a # 0 to both prior branches on ¢ = 1 and optimize them: eliminate repeated redundant testing of ¢ = 1 in
the then-branch, and remove dead code in the else-branch (“trace-preserving” transformation);

(5) merge b := CAS(X,0,42) and if b = 0 then X°"* := 37 into b := CASS"1¥(X, 0, 37).

Now, the compiler may optimize Thread 2 as shown on the right:

(1) noticing that X # 42 is a global invariant (42 is never written to X),

optimize away the redundant test “if (d # 42) then”;
(2) reorder the independent CAS on X and write to L.

(0) (1) (2)
Y =1 Y =1 :
d:=CAS(X,0,1) | d := CAS(X,0,1)
if d # 42 then (eliminated)

L:=1 L:=1 d = CAS(X,0,1)

Figure 2. Program transformations on LDRF-PF-Fail (in the final transformed program, we may get d = 37 even under SC!)

where libfun;() and libfun,() are calls to some library
methods that execute racy relaxed code accessing a set of
locations disjoint from X and L. Indeed, assuming that L := 1
has strong relaxed semantics, all writes to X and L are strong
relaxed, and the in-order property easily entails that L := 1
(in the then-branch) is never executed and thus not involved
in a race. Then, the premise of the LDRF guarantee above
holds, and one concludes, again based on the in-order prop-
erty, that b = 1 is disallowed by M. Crucially, this reasoning
does not require any knowledge of how exactly M behaves
for (fully) relaxed writes (which, in fact, we have not spec-
ified). We also note that a global DRF guarantee cannot be
used due to the presence of racy code in the library methods.

Unfortunately, we observe that this LDRF guarantee is
actually inconsistent with program optimizations that are
standardly intended to be sound in weak memory models.
Indeed, the following example shows that any such model
M cannot validate both the LDRF guarantee and all standard
optimizations:

Y:=0
a=Y
if a # 0 then Y =1
b:= CAS(X,0,42) || d = CAS(X,0,1) /37 ? .
if b = 0 then if d # 42 then (LDRE-PF-Fail
c:=1L L:=1
if c = 1 then
Xsrix =37

SWe are not aware of a smaller example that can be used for this purpose.

where CAS(X, v1,v,) reads a value from X if it is equal to v;
(i.e., successful), writes v, to X ensuring atomicity between
the read and write, and otherwise (i.e., unsuccessful) does
nothing; and finally returns the read value.

Indeed, assuming that the write to L has strong relaxed
semantics, it is easy to see that no execution of the program
executes both ¢ := L and L := 1, and hence there is no race on
L. Specifically, if such execution is allowed by the model M,
then the CAS of the second thread must read 37 due to the
standard RMW atomicity (which implies that two successful
CAS instructions cannot read from the same write), and so
¢ := L must read 1. However, since 37 is written by a strong
relaxed write, it follows that XS™1% := 37 appears in the trace
before d := CAS(X, 0, 1). This implies that ¢ := L appears in
the trace before L := 1, which contradicts the assumption
that L := 1 has strong relaxed semantics.

Now we can demonstrate the inconsistency between the
local DRF guarantee above and program optimizations. Since
the premise of the guarantee is satisfied (for £ = {L}), if the
guarantee holds, we may assume that L := 1 has strong re-
laxed semantics, and conclude, by the exact same reasoning,
that the d = 37 outcome is disallowed (no execution executes
both ¢ := L and L := 1). Nevertheless, Fig. 2 shows that start-
ing from this program, a sequence of transformations, each
of which is intended to be sound in standard weak memory
models, may actually lead to the d = 37 outcome!
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As a concrete example for a model M, consider the PS2
model [31], which satisfies the above assumptions and val-
idates all transformations used in Fig. 2. (In PS2, strong re-
laxed writes correspond to relaxed writes that cannot be
promised ahead of their execution.) It follows that PS2 fails
to admit the above guarantee w.r.t. an in-order semantics.®

To locate the source of the problem, we observe that RMW-
store reordering (applied in the second thread’s code in Fig. 2)
is the transformation that breaks a key property, which we
call promise monotonicity (formally stated in §4.1), needed
for our proof. Indeed, one of the main ideas in proving lo-
cal DRF is to show that relaxed store hoisting (moving a
relaxed write to be before other instructions) does not al-
low more behaviors unless the store was racy before the
code motion. However, this property fails if reordering of
a relaxed RMW followed by a relaxed write to a different
location is allowed. For instance, in the program above, exe-
cuting d := CAS(X, 0, 1) before L := 1 prevents the behavior
executing both L := 1 and ¢ := L, but executing them in the
opposite order allows that behavior.

Accordingly, to accomplish our proof, we switched to
PS2.1, a variant of the PS2 model outlined in [31, §4.4], which
gives up RMW-store reordering for simplicity and better
meta-theoretic properties such as the absence of deadlock-
ing executions.” For PS2.1 we are able to prove LDRF-PF—a
local DRF guarantee with respect to the promise-free frag-
ment of the promising semantics (an in-order model), thus
establishing the consistency of such a local DRF guarantee
with all optimizations except for RMW-store reordering.

2.2 Local DRF w.r.t. RA and SC

For less advanced users, an in-order RC11-like semantics may
still be hard to reason with. Then, one needs local DRF prop-
erties w.r.t. stronger fragments like release/acquire semantics
(LDRF-RA) or even sequential consistency (LDRF-SC). Next,
we discuss the subtlety in stating and achieving these local
guarantees in a general model that supports load-store re-
ordering of relaxed accesses. We focus on LDRF-RA, but the
discussion is the same for LDRF-SC.

A naive notion of LDRF-RA can be naturally derived from
the global DRF-RA guarantee. The latter ensures that a pro-
gram has only RA behaviors provided that under RA se-
mantics it exhibits no races involving accesses annotated
as (strong) relaxed [22]. To “localize” this guarantee with
respect to a given set L of locations, we need to consider
“L-RA behaviors”—behaviors in which accesses to locations
in L are treated as RA accesses (even when annotated with
weaker modes), but other accesses are interpreted as an-
notated in the program. Then, a naive LDRF-RA guarantee

®The original promising model PS [22] does not admit global value-range
analysis, which is needed in the sequence of transformations in Fig. 2.
Nevertheless, in [1, Appendix A], we present a similar (yet more intricate)
counterexample for PS.

"We have formally established the absence of deadlocks in Coq [1].
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would say that a program has only £-RA behaviors provided
that its £-RA behaviors exhibit no races involving accesses
to locations in £ annotated with access modes weaker than
release and acquire.

We show that in any sensible weak memory model this
guarantee is actually inconsistent with standard program
optimizations (here, RMWs are not involved at all).
Specifically, the {L}-RA behav- =Y /17
iors of the program on the right ?f.a_ 1 thc;,n
exhibits no races on the location b=l
L, but a sequence of standard opti- X=b
mizations may lead to anon {L}-  e]se
RA behavior, which invalidates X =1
the naive LDRF-RA guarantee. (Naive-LDRF-RA-Fail)

To see this, we first claim that in any sensible model, as-
suming that the accesses to L are RA, the first thread cannot
read 1 from Y. Indeed, if a := Y reads 1, it easily follows that
b := L reads from L := 1. However, with the assumption
that the accesses to L are interpreted as RA accesses, the
latter implies a “happens-before” path from ¢ := X to X := b,
which implies that ¢ := X cannot read from X := b. In turn,
the value 1 is never written to Y.

Second, with the same assumption (that the accesses to
L are RA), the above reasoning also shows that there are
no races on L. In fact, the exact definition of a race does
not matter here: we actually know that the first thread will
not access L at all. Then, the naive LDRF-RA for £ = {L}
implies that the program has only {L}-RA behaviors, which,
as argued above, entails that the a = 1 outcome is disallowed.
Nevertheless, in Fig. 3, we show that starting from the above
program, a sequence of program transformations, each of
which is intended to be sound in standard weak memory
models, may actually lead to this outcome!

What went wrong? In the analysis above, we used a racy
access (to L) to establish synchronization, and then used this
synchronization to invalidate the racy execution itself. How-
ever, when the racy read is performed as a relaxed read it
does not induce synchronization, and nothing actually for-
bids the candidate racy execution. To solve this problem, we
have to strengthen the premise of LDRF-RA, so that synchro-
nization induced by racy reads (from locations in £) cannot
be used to eliminate races.

A possible way to do so is to weaken the semantics of
“racy reads” from locations in £ in the £-RA semantics,
and say that unlike standard acquire reads, these reads do
not induce synchronization. However, this solution would
require a precise definition of the semantics of racy reads,
which goes beyond standard RA semantics.

In this paper, we follow an alternative approach that in-
volves a certain over-approximation—we will say that a racy
read simply invokes undefined behavior (UB). Since UB in-
cludes any possible behavior, the race-freedom condition
based on racy reads invoking UB implies the one where racy

C:
L:
Y

1]
a = X
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The compiler may optimize Thread 1 as shown below:

(0) (1) ) (3) (4)

b:=L b:=L b:=L b:=1L
if b=1then |if b=1then|if b =1 then
a=Y a=Y a=Y a=Y X =1
ifa=1then|ifa=1then| ifa=1then| X:=1 a=Y
b:=L else
X:=b X:=b X:=b
else else else
X =1 X:=1 X =1
else ... else ...

(1) reorder the read b := L to be first, after introducing the same
read b := L in the else-branch (when a # 1);

(2) insert a dummy if-then-else on b = 1 and distribute the rest of
the code to both branches (“trace-preserving” transformation);

(3) in the then-branch on b = 1, substitute b with 1 and merge both
branches on a = 1 (“trace-preserving” transformation);

(4) reorder the independent read from Y and write to X.

In addition, the compiler may optimize (0) &

Thread 2 as shown on the right: c=X|L:=1
L=1|c=X

(1) reorder ¢ ;==X and L := 1. Ye—e|Y=c

Figure 3. Program transformations on Naive-LDRF-RA-Fail
(after the transformations, we may get a = 1 even under SC!)

reads do not induce synchronization. In other words, we will
say that a race occurs if some racy read is reachable ignoring
what happens after the racy read is executed. With this defini-
tion, relying on the previously mentioned LDRF-PF as a key
lemma, we proved LDRF-RA (and LDRF-SC) for PS2.1.2 Im-
portantly, unlike C11’s “catch-fire” semantics, UB for races is
not a part of the concurrency semantics (indeed, the promis-
ing semantics provides means to avoid “catch-fire”), but is
only used for defining races when establishing the premise
of LDRF-RA/SC. We note that a similar strengthening of the
race-freedom premise in LDRF-PF does not solve the problem
outlined in §2.1 (LDRF-PF-Fail is still a counterexample).

3 Preliminaries: The Promising Semantics

In this section we provide an introduction to the promising
semantics. We include only the necessary parts for keeping
our presentation self-contained, and refer the reader to [22,
31] for detailed explanations. Our focus is on the version
described in [31, §4.4], which we refer to as PS2.1.°

We present the fragment of the model containing: relaxed
reads and writes (r1x), strong relaxed writes (srlx), release
writes (rel), and acquire reads (acq). Read-modify-writes
(RMWs) carry two access modes—one for the read part and
one for the write part. To simplify the presentation, we omit
fences and release sequences. We also elide “system calls”,

8PS2 does not satisfy our LDRF-RA/SC theorems (LDRF-PF-Fail is a coun-
terexample for them as well).

9Most of the details, however, are identical for the original PS model and
for the PS2 model (the only difference has to do with the notion of “capped
memory” and reservations).
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used in [22, 31] to specify the observations of a given pro-
gram. Instead, as we did when analyzing the examples above,
we identify behaviors with final outcomes assigning values
to certain registers. Nevertheless, our formal development
in the artifact handles all features previously included in
[22, 31] and uses system calls to define observable behaviors.

Figure 4 summarizes the different domains and (implicitly
typed) metavariables. To define the machine states, besides
a set Loc of locations and a set Val of values, we assume a
set Time of timestamps which are rational numbers (totally
and densely) ordered by < with 0 being the minimum value.
A view, V € Loc — Time, records a timestamp for each
location. We represent half-open ranges of timestamps using
timestamp intervals denoted by (f,t] with f < tor f =t =0.
A machine state is a pair (7, M), where:

o M, called memory, is a finite set of messages and reser-
vations. A message m takes the form (Xe(f, t],v, V) where:
X € Loc, (f,t] is a timestamp interval (¢ is called the times-
tamp of m), v € Val, and V € View (called message view).
In turn, a reservation r = Xe(f, t] is defined like a message
but without a value and a view. For a memory to be well-
formed (as we implicitly assume henceforth), we require that
messages/reservations with the same location have disjoint
timestamp intervals; and that the view of each message is
pointing to a timestamp of an existing message for every
location. The initial memory consists of an initialization mes-
sage (X@(0,0],0, L) for every location X, where L = AX.0
denotes the bottom view.
e 7 is a mapping assigning a thread state T = (o, V, P) to
every thread 7 € Tid, where:
— o records the (thread-local) program state. To keep the pre-
sentation abstract, rather than introducing a concrete syntax,
we assume that the programming language is represented
as a transition system, with local transitions labeled with
the action that is performed. Each program state o consists
of the program code, the current program counter and local
register file. To run PS2.1 on a program prog, we initialize
the program state of each thread to include its part of prog
and the initial program counter and register file.
— V, called the thread view, records the highest timestamp
that the thread has observed for each location.
— P, called the thread promise set, is a set of messages and
reservations recording the thread’s outstanding promised
and reserved writes. Since every promise and reservation is
also added to the memory, we will always have P C M.
Importantly, we require thread states to be well-formed,
where for every location X, the current view of x for X is
lower than the timestamp of all of 7’s outstanding promised
writes for X (ie, (Xe(_t],_, ) € P = V(X) < t). This
condition, called promise-consistency in [31], is equivalent
to saying that a thread should always be able to fulfill its
promises by executing some sequence of operations (but not
necessarily the sequence dictated by the program).
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v € Val value
X,Y,Z L € Loc location
og € {rlx, acq}

f.t € Time £ Q*
(f,t] € Time X Time

€ Tid £ {my, my, ...} thread identifier |r = X@(f,t] € Rsv

read access mode |V € View £ Loc — Time
oy € {rlx,srlx,rel} write access mode |m = (X@(f,t],0,V) € Msg message
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M, P € Msg URsv memory/promise set

timestamp
timestamp interval o thread-local program state
view T =(0,V,P) € Lts thread state

(T, M) thread configuration
reservation T :Tid — Lts thread state mapping

(T, M) machine state

Figure 4. Domains and metavariables in PS2.1

(READ-HELPER) (WRITE-HELPER)

m=(Xe(_t], ,Vu) €M V(X)<t
op=rlx = V =VU[X - t]
op=acqg = V =VU[XHtlUV

oy trel = V=1

m=(Xe(_t],_, Va)

(FULFILL-HELPER)
m=(Xe(_t], ,L)eP
oy = rlx

V(X) <t V(X) <t

oy=rel = (Vu=VU[X ¥ t])A(P|VE =0)

X

Og,m

(V.M) ——>p V'

(READ) (WRITE)

R(0r.X,0) ’
O ———O0

m=<{(Xe(, _],u,_)

Wv,My 20 v’

(V,P, M) 2220 (VU [X > t], P, MW {m})

W(oy,X,0)
g ———>0

m=(Xe(,_],0,_)
v, P, My 2205 (V! P!, M)

(V,P, MY 22 (VU [X s ], P\ {m}, M)

(RMW)
RMW(0r,00. X, 00,00)
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mp = (XQ(_ t],vr, )

_ my = (XQ(t, _],ow, )
Ogr,Mg
(V,M) —r B

(Va, P, My 22250 (v, P M)

(o, V. Py MY 2 ! VP MY (o, Vo PY MY O (f VP MYY (0, VY, M) —OmOume ) [y pry
(PROMISE) / (RESERVE) (CANCEL) (FAIL) il
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Co V. Py MY BB e v P e M (xh) (0 Vo P, MY = (o, V, P\ {r}), M\ {r})

(0, V. P),M) — ((L,V, 0), M)

Figure 5. Thread configuration steps in PS2.1

Figure 5 provides the thread configuration steps:
READ. A thread with view V reads by picking a message
(Xe(f,t],v, Vu) € M provided that V(X) < ¢, and updating
its view for X to t. An acquire read operation incorporates
the message view Vj, in the thread view (the operator Ll “joins”
views by taking the pointwise maximum).

WRITE. A thread with view V writes by adding a message m
to the memory whose timestamp is greater than the thread’s
view of X (V(X) < t). Non-release writes set the message
view to the bottom view, whereas release writes record the
thread view in the message view. Instead of adding a message,
relaxed writes may fulfill outstanding promises by removing
messages from the thread’s set of promises. In addition, a
release write to a location X forbids the existence of out-
standing promises for X (denoted as P |§?Sg =0).

RMW. A thread performs an RMW by first reading a mes-
sage my = (X@(f,t],vr, V&), and then attaching a new mes-
sage to the read message, i.e., adding a message of the form
my = (Xe(t,t'], vy, Vy). This results in consecutive messages
(f,t], (t,t'], forbidding later writes from being placed be-
tween the two messages, which guarantees RMW atomicity.
PROMISE. The main novelty of the promising model lies in
its way to enable the reordering of a relaxed read followed by
a relaxed write (to a different location). It does so by allow-
ing threads to non-deterministically promise future (relaxed)
writes, by simply adding messages to memory. Outstanding
promises are recorded in the thread state, and removed when

promises are fulfilled. As described below, to prevent “out-
of-thin-air” behaviors (and validate DRF) the outstanding
promises at every step are confined by the machine that re-
quires certification—a thread that takes a step should always
be able to fulfill all its promises when executed in isolation.
RESERVE. To support register promotion and a more efficient
mapping of RMWs to Arm (see Example 3.3 below), PS2.1 (as
well as PS2, but unlike PS) allows threads to reserve times-
tamp intervals for their own future writes. Unlike promises,
reservations do not commit on the value that will be used to
fill the reserved interval, and thus cannot be read by other
threads. They are only used to “block” timestamp intervals
in the memory. As in the promise step, a thread adds the
reservation to both the memory and its promise set.
CANCEL. A thread may cancel any of its reservations by
simply removing it from the memory and its promise set.
FAIL. A thread can fail (modeling, e.g., division by 0 or an
assertion failure) and invoke UB. Since UB can be replaced by
any sequence of actions, this step is considered as fulfilling
all of the thread’s outstanding promises (here we need the
well-formedness assumption on thread states).

The machine steps interleave thread configuration tran-
sitions as follows:

| rsv

* *
(T (m), M) =5 5 2257 (1 )
(T’,M’) is consistent

(T, M) ”=l> (T [n > T'],M")
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At each machine step, one thread is performing one thread
step, possibly preceded by a sequence of reservation cancel-
lations and followed by a sequence of reservations. Crucially,
to ensure that promises do not make the semantics overly
weak, a thread cannot take a step unless it reaches a consistent
configuration, which is defined by:

Definition 3.1 (Consistency). A thread configuration (T, M)
is consistent if (T, M) —* ((_, _, 0), _) where M, called capped
memory, is the memory obtained from M as follows:

(i) For every message/reservation on X@(_, t;] and message/
reservation on X@(f;, _] with t; < f3, if there is no mes-
sage/reservation in M with location X and timestamp
t1 <t < fz, add a reservation Xo(ty, f;]; and

(ii) For every message/reservation on X@(_, fyax ] such that
there is no message/reservation on X@(_, t] with t > tpax,
add a reservation X@(tmnax, tmax + 1].

Roughly speaking, consistency requires certification: the
thread that took the step should be able to fulfill all its
promises when executed in isolation. The certification starts
from a capped version M of the current memory M, where all
timestamp intervals between existing messages and reserva-
tions are blocked by reservations and a “cap reservation” is
attached to the message with the highest timestamp for each
location. As demonstrated in Example 3.4 below, a conse-
quence of this is that promises cannot be made across RMW
operations. (This is where the PS2.1 and PS2 differ; see [31].)

Below, we denote by [prog]ps, ; the set of all behaviors of
a program prog that are allowed in the PS2.1 semantics.

Remark 1. In [31] the machine step consists of any se-
quence of thread steps. We observe (and proved in Coq) that
by using reservations and cancellations, it is possible to ob-
tain a “normal form” for machine steps: a (possibly empty)
sequence of cancellations, followed by a single thread step,
followed by a (possibly empty) sequence of reservations. This
normal form simplifies modular reasoning, as we can assume
a consistent state when control is passed between the library
code and the client code.

Next, we present several instructive examples involving
RMWs. We refer the reader to [22, 31] for more examples
related to the basic views and promises mechanisms.

Example 3.2. Two competing RMWs can never read from
the same message in memory, as the following annotated
program demonstrates:

a:=FADD(X,1) /0 || b:=FADD(X,1) /0 (Upd)

Like CAS, we assume that FADD returns the value read
before the update. Without loss of generality, suppose that
7 executes first. As it performs an RMW operation, it must
“attach” the message it adds to an existing message. Since
the only existing message in this stage is the initial one
(Xe(0,0],0, L), m; will add m = (Xe(0,¢],1, L) with some
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t > 0 to the memory. Then, the RMW of 7, cannot also
read from the initial message because this would require 7,’s
message to be attached to the initial message, which would
overlap with the (0, t] interval of m.

Example 3.3. The following annotated program illustrates a
drawback of the original PS that prevents register promotion
and the intended mapping to Armv8 [18]:

a=X /1 —Y /1
b := FADD?eL(Z.1) /0 ;'T_ ] (Arm-weak)
Y:=1 A_

The annotated behavior is allowed by Armv8 (for the com-
piled program), and can be also obtained if the thread-local
location Z is made a register. It is, however, disallowed by
PS. PS2 and PS2.1 solve this problem using reservations. To
observe a = 1, m; should be able to promise the write of 1
to Y at the beginning of the execution. This is not possible
without reservations because 7; cannot update Z during
the certification against the capped memory. However,
can reserve the interval (0, 1] for the FADD before making
the promise Y = 1. Then, it can certify the promise Y = 1
by using the reserved interval to perform the FADD. Intu-
itively speaking, while PS2.1 forbids the reordering of an
RMW followed by a store, using reservations, it enables the
reordering of the read part of the RMW before the read of X
and the write part of the RMW after the write of Y, which
more faithfully captures Arm’s load-linked/store-conditional
implementation.

Example 3.4. The following annotated program shows a
behavior forbidden by PS2.1 because of its stronger certifica-
tion requirement w.r.t. PS and PS2.

a:=FADD(X,1) /1| b:=Y

Yi=1 ¢ := FADD(X, b)
For m; to read 1 via its FADD, it has to promise Y = 1.
Unlike PS and PS2, this is not allowed in PS2.1 because
cannot perform FADD to X during the certification against
the capped memory. Promising the FADD or reserving a
space for it by 7y is impossible as well. Once x; promises its
FADD, it is committed to update X from 0 to 1. If 7y reserves
a timestamp interval (0, t] for its FADD, 7, cannot update
X from 0 to 1 since the X = 0 message is blocked by 7;’s
reservation, again forcing 7; to update X from 0 to 1.

(RMW-W)

4 Local DRF Guarantees

In this section we present our local DRF results for PS2.1.

We note that, unlike the conventional DRF theorems, write-
write races are only considered as races for LDRF-SC. The
other results, LDRF-PF and LDRF-RA only require the ab-
sence of certain read-write races.

The supplementary material includes the statements of
“time-wise” local DRF guarantees ([1, Appendix B]), which
we do not discuss in the main text. Roughly speaking, these
guarantees apply when no race occurs between two states
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in the machine trace and they ensure the stronger semantics
between these two states.

All results of this section (including time-wise LDRF) are
fully mechanized in Coq (~35K LoC altogether) [1].

4.1 Local DRF-PF

The first step for formulating LDRF-PF is to formally define
an “in-order” restriction of PS2.1 w.r.t. a given set £ of loca-
tions. This can be simply defined by forbidding promises to
the locations in L.

Definition 4.1. Given a set £ C Loc, the £-PF-machine is
the strengthening of PS2.1 obtained by forbidding the appli-
cation of the (ProMmisE) rule for locations in £. We denote by
[[progﬂé the set of all behaviors of a program prog allowed
by the £-PF-machine.

Next, we define what a racy execution in the £-PF-machine
is. Roughly, an execution is L-racy if it includes some thread
m taking a machine step writing a message m to a location
in £ by a relaxed write, immediately followed by another
thread s, taking a sequence of machine steps that ends with
reading the message m.

Definition 4.2. An execution in the £-PF-machine is £-
racy if it includes a sequence of machine steps of the form:

Ll e ¥ mol

with m; # m, 1 € {W(rlx,m),RMW(_,rlx,_,m)} and , €
{R(_,m),RMW(_, _,m,_)} for m € Msg with location L € L.

Then, LDRF-PF is formulated as follows.

Theorem 4.3 (LDRF-PF). If there is no L-racy execution of
prog in the L-PF-machine, then [prog] s, , = [[_prog]]lfF.

Remark 2. While the £-PF-machine forbids promises to
locations in £, it still allows making reservations to these
locations. Nevertheless, the £-PF-machine is an in-order se-
mantics w.r.t. £ since threads cannot read from reservations.
Moreover, the only purpose of making reservations to £
is to allow certain promises to locations not in £. Hence,
reservations to £ can be ignored in the typical use of LDRF
that over-approximates the behaviors of locations not in £
to be completely unconstrained.

Revisiting LDRF-PF-Fail, the argument outlined in §2 shows
that no execution of LDRF-PF-Fail in the {L}-PF-machine
is L-racy. Then, from Thm. 4.3, it follows that the d = 37
outcome is disallowed for that program under PS2.1.

Example 4.4. As an instructive example of an application
of LDRF-PF, we show that no execution of the following
program in the {X, Y}-PF-machine is {X, Y}-racy, and so

XY
[proglpss, = Hprog]]l{)l: g
X:=1 a=Y
yrel .= 1 || if a=1 then
Z:=1

b=7
if b = 1 then
c:=X

(MP2)
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Clearly, there is no race on Y since the program has no re-
laxed writes to Y (syntactically). Now, assuming no promises
on X and Y, the write to Z in m; can neither be promised nor
executed before 7; executes the write to Y. Similarly, the read
from X in 73 cannot be executed before 7, promises or exe-
cutes the write to Z. Therefore, the write to Y in 7; should be
first executed in order for 3 to execute the read from X, and
thus there is no X-racy execution in the {X, Y}-PF-machine.

Proof sketch of LDRF-PF. We highlight the main ideas in
the proof of Thm. 4.3, which is the most challenging among
our results. For its proof, we introduce an intermediate se-
mantics, called £-PRF-machine, and define the notion of race
in this machine (PRF stands for promise-read-free).

Definition 4.5. Given a set £ C Loc, the L-PRF-machine is
the strengthening of PS2.1 obtained by forbidding steps read-
ing from promises to locations in £. We denote by [prog] lfiu:
the set of all behaviors of a program prog allowed by the
L-PRF-machine. £-racy executions in the £-PRF-machine
are defined exactly as in Def. 4.2.

Then, we prove the following three lemmas for every
program prog, from which Thm. 4.3 directly follows:
0 [proglime < [proglze-
(IT) If there is no L-racy execution of prog in the L-PRF-
machine, then [proglps,; < [proglizs
(II) If there is an L-racy execution of prog in the £-PRF-
machine, then there is one in the £-PF-machine.

Next, we only discuss (II), and identify an essential prop-
erty of PS2.1, which we call promise monotonicity, that is
needed in our proof.

To prove (II), we use the following “reshuffling” mech-
anism: when thread 7; can take a sequence seq of thread
steps reading a promise m of another thread 7, to a location
L € L, we first execute m, following its certification until it
fulfills the promise m and then execute 7; following seq until
it reads m. What makes this possible is Lemma 4.6 below.
Using “reshuffling”, (II) is established as follows. Roughly
speaking, ignoring the consistency requirement, for the first
time a thread can read from a promise on a location in £,
we apply the above construction to get an L-racy execution
without reading any promise on £ (i.e., a L-racy execution
in the L-PRF-machine), which contradicts the premise of
(I). (To meet the consistency requirement, the proof requires
repeated applications of the reshuffling.)

Lemma 4.6 (Promise Monotonicity). Let (7, M) be a (con-
sistent) machine state with a promise m written by thread

1. Suppose that (T (m2), M) LN (T, _) for some thread
7y # 11, label I, and thread state T,. Then, there exist I,, €
{W(rlx,m),RMW(_, rlx, _,m)} and memory M; such that:

1lm

o (T, M) 25 2% ([ > ], M;); and

o (T(m), My) —>*5> (T, ).
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Remark 3. Promise consistency does not hold for PS and
PS2 since RMW-store reordering breaks it. For global DRF-PF,
a weaker property, which does hold for PS and PS2, suffices.
Specifically, the above reshuffling may break during the exe-
cution of 7; following the sequence seq (before it reads m)
only if 771 performs a racy RMW. Global DRF-PF follows from
the race on the RMW, but not LDRF-PF since the location of
the RMW may not be in L.

4.2 Local DRF-RA

To formulate LDRF-RA, we again start by defining a strength-
ening of PS2.1 w.r.t. a given set of locations.

Definition 4.7. Given a set £ C Loc, the L-RA-machine
is the strengthening of the £-PF-machine obtained by in-
terpreting all accesses to £ as if they have release/acquire
access modes (in (READ-HELPER) and (WRITE-HELPER)). We
denote by [[prog]]IfA the set of all behaviors of a program prog
that are allowed by the £-RA-machine.

Next, for stating the premise of LDRF-RA, we introduce the
“RA-race-detecting-machine”. For that we adopt a “happens-
before-based” notion of race, where a necessary condition
on the happens-before relation is expressed using the views
of the promising semantics. Roughly speaking, the RA-race-
detecting-machine invokes UB whenever the machine reaches
a state where (i) some thread 7 is about to read from a loca-
tion L € L; (ii) there exists a message m in memory written
by some write to L that does not “happen-before” the read
(which corresponds to the fact that the view of x for L is
strictly lower than the timestamp of m); and (iii) at least one
of the write or the read is not annotated as a release/acquire
access in the program. This is formalized as follows.

Definition 4.8. The L-RA-race-detecting-machine is the ma-
chine obtained from the £-RA-machine by adding following
thread configuration step:

A

A€ {R(op, L, ),RMW(or, ,L,, )} o=
V(L) <t m=(Le(_t],_, YeM

og = rlx V m was written by a non-release write

Lel

10

race

o, V,_ ), M)y —= {({L,V,0), M)

Remark 4. A similar view-based definition of a race can
be also used in LDRF-PF. However, such definition would
unnecessarily deem too many programs as racy, resulting in a
weaker guarantee. For example, with a view-based definition
of a race in LDRF-PF, we would not be able to show the
absence of {X, Y}-PF-racy executions for the program in
Example 4.4 (since there is no synchronization from the
write to X in m; to the read from X in 73).

LDRF-RA is formulated as follows.

10Formally, this requires to record the writing access mode in messages.
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Theorem 4.9 (LDRF-RA). If the race transition is never
enabled in runs of the L-RA-race-detecting-machine on prog,

then [prog]ps, ; = [proglis.

Remark 5. When £ = Loc, since the £-RA-machine can-
not make any promise, the race detecting step can be revised
as follows (where — is the thread step of the £-RA-machine):

(0, V. P), M) (o, V/, P'), M)
l'e {R(or, (L@(_, _], L, _)), RMW (o, _, (L@(_, _], L, ), )}
V(L) <t m=(Le(_t],_,_yeM
or = rlx V m was written by a non-release write

(o, V, Py, M) == (", V', P"y, M")
Then, the global DRF-RA guarantee follows from the local
one. The “naive” LDRF-RA discussed in §2.2 (which cannot
not hold together with all optimizations allowed in PS2.1)
formally means to use the above step for race detection in
the £-RA-race-detecting-machine.

Example 4.10. The following example is a variant of the
common “load-buffering” test. We show that, using LDRF-
RA, this program never exhibits the a = 1 outcome.

a=X J#+1||b:=Y

yrel .= 1 if b = 1 then
X:=1

(LB-COND)

Assuming RA semantics for X, both the writes to X and
to Y cannot be promised, and clearly a = 1 is not allowed.
Now, we show that the race transition is never enabled in
executions of this program in the {X}-RA-race-detecting-
machine. Indeed, since the write to X in m; can only be
executed after the write to Y in s is executed (which cannot
be promised because it is a release write), there cannot be
any message to X except for the initial message before the
read from X in m; is executed.

We note that our race condition is strictly stronger (iden-
tifying fewer programs as racy) than the standard “happens-
before”-based race notion. The latter would deem this pro-
gram as {X}-racy. as there is no “happens-before” relation
between the accesses to X (since the read of Y is relaxed).

Example 4.11. We apply LDRF-RA on a location with a
write-write race. In the following program, the first two
threads access X and Y and raise flags Z and W. The third
thread waits on both flags and then accesses X and Y.

while(Z29 + W29 < 2) do

a=X b:=X ki
Yi=a+2||Y:=b+4 ;‘l_pl

rel ._ rel ._ T
2= W= c:=Y J2or4

While there is a write-write race on Y, there is no write-
read race on X and Y, and so the race transition is never
enabled in executions of this program in the {X, Y }-RA-race-
detecting-machine. LDRF-RA ensures that it is safe to assume
RA semantics for X and Y. Then, knowing only RA semantics,
it follows that ¢ € {2, 4} holds when this program terminates.
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Remark 6. To simplify the presentation, we did not discuss
release/acquire fences. These allow fine-grained control on
the required synchronization, which can improve perfor-
mance, but results in more races involving relaxed accesses.
For the purpose of reasoning about fences using LDRF, we
observe that the following transformations do not affect the
possible behaviors in the promising semantics:

ro=X ry = X3 fence"! fenier61

: : Xo=ro X5t =10
=X = X Xosmr oo Xp=n
fence®d fence®d

— srlx ._
Xn=rp Xy =rp

Programmers may safely use the (better performant) left-
hand sides in programs, while assuming the (stronger) seman-
tics provided by the right-hand sides (also for establishing
the premise of the LDRF theorem).

4.3 Local DRF-SC

The final LDRF guarantee, LDRF-SC, provides the strongest
semantics for non-racy accesses, but also requires much
more for accesses to be considered non-racy. We note that,
unlike C/C++11 [6, 8, 30], the promising semantics does
not provide sequentially consistent accesses (it only has SC
fences). Thus, a global DRF-SC can only pointlessly ensure
SC semantics for programs that have no races whatsoever
(with no mechanism to actually avoid races). Nevertheless,
local DRF-SC is still meaningful as it only requires to avoid
races on certain locations.

As before, we first define the stronger semantics and the
notion of a race.

Definition 4.12. In the context of a machine state, we call
a message maximal if there does not exist a message with
the same location and higher timestamp. For £ C Loc, the
L-SC-machine is the strengthening of the £-RA-machine
obtained by requiring that for every L € L:

e reads from L read from maximal messages; and
e writes to L write maximal messages.

We denote by [[progﬂécc the set of all behaviors of a program
prog that are allowed by the £-SC-machine.

To state the premise of LDRF-SC, we introduce the “SC-
race-detecting-machine”. It is defined as the RA-race-detecting-
machine, except that races may also occur (i) between two
RA accesses, and (ii) between two writes.

Definition 4.13. The £-SC-race-detecting-machine is the
machine obtained from the £-SC-machine by adding follow-
ing thread step:

A
o —

Lef Ae{R(L )WL )RMW(, L )}

V(L) <t m=(Le(_t], , yeM

race

o, V, ), M) —= ((1,V,0), M)
Then, LDRF-SC is formulated as follows.
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Theorem 4.14 (LDRF-SC). If the race transition is never

enabled in runs of the L-SC-race-detecting-machine on prog,
L
then [prog] ps, ; = [proglse-

Example 4.15. Consider the message passing program:

D:=42 a = F<
Frel .= 1 || if a =1 then (MP)
a:=D /42

In all its executions in the {D}-SC-race-detecting-machine,
the view of 7, for D after reading 1 from F points to the
message D = 42 written by ;. Therefore, the race transi-
tion is never enabled for this program in the {D}-SC-race-
detecting-machine. Then, LDRF-SC with £ = {D} ensures
SC semantics on the location D.

5 Applying LDRF for Modular Reasoning

In this section, we outline several applications of the local
DRF guarantees (focusing on LDRF-RA) for client and library
developer reasoning. Roughly speaking, local DRF is essen-
tial for modular reasoning because it ensures the absence of
certain behaviors in which unrelated pieces of code affect
one another. Without a local DRF guarantee, it might be that
some completely orthogonal calls to library code (such as the
call to a logging function in the second example below) al-
low additional behaviors of the client’s code! We believe that
ignoring unrelated races in library calls (e.g., in the imple-
mentations of synchronization mechanisms or in debugging
code) is widely informally done in practice, and view the
local DRF guarantees as providing formal justifications for
this kind of intuitive reasoning.

We start by observing that the £-PF-machine and the
L-X-race-detecting-machines for X € {RA, SC} all enjoy a
useful locality property making it safe to completely ignore
code not accessing locations in £ when reasoning about
code only accessing locations in £. Indeed, since promises
to L are banned in those machines, a step that executes code
not accessing locations in £ can only increase the thread
view on locations in £, or add reservations for locations in
L. These two effects only decrease the possible behaviors
(including the ability to detect a race), so it is safe to ignore
them when reasoning about code only accessing L. (For
this reason, clients using the LDRF results do not need to
understand the notion of reservation.)

5.1 Reasoning About Client Code

We show typical cases of client RA-centric reasoning using
LDRF-RA.
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Synchronization with Lock. Consider the following pro-
gram that uses a lock and a collection libraries.

ro := pop_wait() || r; := pop_wait()

push(5) lock() lock()
ush(7) sp:=S s1:=S
p S:=so+r9 S:=s1+r11
unlock() unlock()

Suppose that lock() and unlock() are specified by the fol-
lowing RA specification (the implementation may be more
efficient, but the library guarantees that it behaves the same
as the following specification in PS2.1):

lock() =
do a := CAS2carel(1 o 1)
while (a # 0)

unlock() =
Lrel .= ¢

Further, suppose that the collection library guarantees that
push and pop_wait (syntactically) never access S and L, and
that when the same number of push and pop are invoked,
the values returned by pop_wait are in some one-to-one
correspondence with the values pushed by push.!!

To use LDRF-RA the client has to show that this pro-
gram has no racy execution in the {S, L}-RA-race-detecting-
machine. The reasoning is straightforward, and can be done
only knowing the RA semantics:

(i) By the locality property, we can safely ignore the impact
on S and L by push and pop_wait;

(ii) Since L is only accessed by RA accesses, we know that
there are not any races on L;

(iii) The lock specification (specifically the RA synchroniza-
tion from unlock() to lock()) ensures that a thread
accessing S always has the maximal view on S, so the
accesses to S are not racy as well.

Then, by LDRF-RA, the client may safely assume the
{S, L}-RA-machine. Hence, again by the locality property
and using the collection specification, it easily follows that
the final value of S is 12 (= 5+ 7).

We note that the above standard reasoning is only justified
by LDRF-RA. Since the collection library may not have an
RA-based specification (unlike the lock library), global DRF-
RA cannot be applied to reach the above conclusion.

Synchronization with Queue. Next, we consider an ex-
ample that uses a queue and a log libraries. For an array
U of size 32 X 64, the first thread repeats the following for
0 < i < 31: write some data to U[i X 64, ...,i X 64 + 63] via
write(U, i), put the index i in the queue via enque(i), and
log the result via log(s). Each other thread takes an index
from the queue via try_deque(), logs the result via log(i),
and if successful, uses the data in U[i X 64, ...,i X 64 + 63]
via use(U, i) that only reads from (and possibly writes to)
Uli X 64,...,i X 64 + 63]. Here log is an unspecified racy

1The library may assume that the client code does not invoke UB, which
is the case in our example.
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library function that accesses a disjoint set of locations.

for iin (0 to 31) || i = try_deque() i = try_deque()

write(U, i) log(i) log(i)
s:=enque(i) || if i >0 then if i > 0 then
log(s) use(U, i) use(U, i)

Suppose that enque and try_deque are specified by the
following RA specification (ignore the parentheses around
some acq and rel for now).

enque(d) = try_deque() =
lock() t:=TeA
t .= T(aca) b .= B3

if not b < t then
return empty
d := D[p]@¥
b’ := CAS2el(B b b+1)
return (b=>"7d : fail)

if not ¢t < 32 then
unlock(); return full

D[t](reD) .= 4

Trel =t 41

unlock(); return 0

The queue library uses a static (non-circular) buffer D of size
32 and two locations T and B (initialized to 0) that point to
the top and bottom indices of the queue, where enque(d)
puts the data d to the top and try_deque() takes a data from
the bottom. While try_deque is non-blocking, enque uses
the lock specified above to avoid race between enque’s.

To use LDRF-RA the client has to show that this pro-
gram has no racy execution in the {U, D, T, B, L}-RA-race-
detecting-machine. The reasoning is as follows only knowing
the RA semantics:

(i) By the locality property, we can safely ignore the impact
onU,D,T, B, L by log;

(ii) Since D, T, B, L are only accessed by RA accesses, there
are not any races on them;

(iii) The queue specification ensures a synchronization from
an enque writing to D[k] to a try_deque reading from
D[k] for any k via the accesses to T, since the enque
writes k+1 to T, the try_deque reads some k’ > k from
T, and all the writes to T are synchronized via lock()
and unlock();

(iv) Italso ensures that each successful try_deque returns a
unique index due to the atomicity of CAS in try_deque;

(v) From these, it follows that each use(U, i) accesses dis-
joint locations, and since the synchronization on T
ensures no races on U between write write(U, i) and
use(U, i), we avoid races on U as well.

Then, by LDRF-RA, the client may safely assume the
semantics provided by the {U, D, T, B, L}-RA-machine. We
again note that due to the presence of log, global DRF-RA
cannot be applied here.

5.2 Reasoning About Library Code

Next, we describe how LDRF-RA can be used to reason about
the implementation of the queue library above. We consider
an implementation of the above specification that simply
lowers the accesses in parentheses, (acq) and (rel), to be
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rlx accesses. (This optimization may be significant if the

size of each cell in D is large.)

By applying LDRF-RA for {D, T, B, L}, one shows that the
implementation meets the specification under an arbitrary
context that does not access D, T, B, L (again knowing noth-
ing beyond RA):

(i) By the locality property, we can safely ignore the impact

on D, T, B, L by the context;
(ii) Since B, L are only accessed by RA accesses, there are
not any races on them;

(iii) For T, the only possible race is between the rlx read
and the rel write in enque, which, however, reside in
the same locked region thereby avoiding race;

(iv) For D, the reasoning in §5.1(iii) for the client program
applies, thereby avoiding races on D[k] for any k.

Then, by LDRF-RA, the library developer may safely as-
sume the {D, T, B, L}-RA-machine, whose behaviors are in-
cluded in those of the queue specification, and thus we can
complete the verification. Note that since the context can be
racy, global DRF-RA cannot be applied here.

We note that by using LDRF-PF, it is possible to slightly im-
prove the above implementation, in the price of reasoning in
the PF-machine instead of the RA-machine. Indeed, the read
from B in try_deque() can be made relaxed, and the CAS
on B can be made rel (or srlx) because LDRF-PF does not
require any condition on reads. Then, for any program prog
that uses this implementation, a similar argument shows that
there are no {D, T, B, L}-racy executions in the {D, T, B, L}-

PF-machine, and it follows that [prog]ps, ; = [[_prog]]l{)FD’T’B’L}.

6 Mapping PS2.1 to Hardware

In this section we discuss the mapping from PS2.1 to main-
stream architectures, and evaluate the performance impact
of forbidding RMW-store reordering.

PS2.1 supports the intended compilation schemes to main-
stream architectures [11], but for Armv8, it requires an addi-
tional (fake) control dependency from the read part (“load-
linked”) of each fetch-and-add and exchange instruction with
relaxed read mode. The compilation schemes for these in-
structions along with the more optimal schemes are given in
[1, Appendix C].!? Lee et al. [31, Section 6.5] established (in
Coq) the correctness of these schemes from PS2 to hardware
models using the Intermediate Memory Model, IMM [39].
We observe here that their proof works as is for PS2.1.3
We note that compared to PS, PS2.1 still supports more ef-
ficient mapping of RMW operations, which for PS require
an “Id fence” barrier that is more expensive than a control
dependency (see Example 3.3).

20ur compilation schemes employ standard LL/SC-style RMW implemen-
tations. We leave to future work the evaluation of an implementation that
uses Armv8.1’s LSE (Large System Extension) for RMWs [4].

3The proof does not handle atomic exchange instructions, which are not
supported in IMM.
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Benchmark Scheme | Average (%)

) (A) -0.15 (+ 5.44)
libcds, 32 threads ®) 0.10 (< 5.53)

] (A) 0.03 (= 4.48)
libcds, 128 threads ®) 0.10 (= 451)

) @) 0.32 (x 2.81)

FADD litmus test ®) 1.05 (= 2.87)
N (A) ~0.09 (+ 3.56)
FADD-RW litmus test ®) 022 (£ 350)
. @A) | -0.71 (= 2.73)

XCHG litmus test ®) 20,00 (x 2.74)
XCHG-RW litmus test (A) 109 ( 3.97)
(®B) 0.22 (= 3.79)

Figure 6. Performance overhead for each benchmark (The
“Average” column denotes the arithmetic mean and the 95%
confidence interval.)

We believe that forbidding RMW-store reorderings only
mildly affects performance since: (i) standard compilers do
not aggressively reorder RMWs with atomic writes [35];
(ii) with the exception of Armv8, mainstream hardware
(x86-TSO, POWER, Armv7, and RISC-V) do not reorder such
accesses; and (iii) the performance overhead in Armv8 for
forbidding this optimization is negligible.

We demonstrate (iii) by evaluating 19 highly concurrent
data structures with extensive use of fetch-and-add and ex-
change operations selected from the CDS C++ library [23], as
well as four artificial “worst case litmus tests” that repeatedly
perform fetch-and-add and exchange operations. Specifically,
the four tests consist of following: FADD/XCHG tests where
each thread repeatedly performs FADD/XCHG to a single
location; and FADD-RW/XCHG-RW tests where each thread
repeatedly performs FADD/XCHG to a single location fol-
lowed by load/store to another location (n/2 threads load
and n/2 threads store).

The benchmarks are compiled with LLVM 10.0.0 with man-
ual insertion of fake conditional branches to fetch-and-add
and exchange instructions using two different schemes: (A)
direct branch on the loaded value; or (B) compare the loaded
value with itself and branch on the comparison result. The
latter requires an extra cmp instruction, but more likely to
be optimized by branch speculations as it jumps determinis-
tically. For the evaluation, we used 2 socket, 64-core 2.5GHz
ThunderX2 64-bit Armv8 server with 128GB memory. We
ran each benchmark 360 times and discarded the 30 fastest
and 30 slowest results among them.

Figure 6 summarizes the performance overhead for each
benchmark (see [1, Appendix C] for more detailed results).
We conclude that there is no statistical evidence for a no-
ticeable performance cost induced by the suboptimal RMW
compilation of PS2.1.

Remark 7. During the evaluation, we identified a bug in
LLVM’s compilation of exchange instructions to Armvs8.
When the value read by the exchange instruction is never
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used, LLVM 10.0.0 compiles C++11 relaxed exchange instruc-
tions into Arm’s plain store instructions. However, since an
acquire fence may induce synchronization when it follows
an exchange instruction, but not when it follows a store, this
optimization is unsound: it may introduce behaviors in the
compiled Armv8 assembly that are not allowed for the C++
source program. A concrete example of the miscompilation
is provided in [1, Appendix D].

7 Conclusion and Related Work

Studying local DRF guarantees in a fully relaxed semantics,
we have achieved a negative and a positive outcomes. The
negative one is an unfortunate impossibility result: standard
compiler optimizations are inconsistent with local DRF guar-
antees. On the positive side, local DRF can be achieved by
giving up certain RMW-store reorderings, which carries no
meaningful performance penalty. The positive result is estab-
lished constructively by showing a variant of the promising
semantics that satisfies the standard optimizations intended
to be sound in weak memory models except for RMW-store
reorderings, and validates several local DRF guarantees.

We believe that it may be useful to study existing and
novel models through the lens of our results also beyond the
context of the promising semantics. A “just right” program-
ming language shared-memory concurrency model that is
not too strong to allow efficient implementation and not
too weak to program with has been the subject of extensive
research in recent years (e.g., [7-9, 12, 15, 19, 20, 27, 30, 32—
34, 37, 38, 41-44]). While implementability is nowadays rel-
atively well-defined, the criteria for the programmability
aspect are much less evident. Since, as we argue in this pa-
per, local DRF guarantees facilitate modular software devel-
opment, these guarantees provide better programmability
desideratum than the standard global DRF properties. Our
impossibility result shows an inherent trade-off that has to
be considered when designing a memory model, while the
positive result assigns the blame on RMW-store reorderings.

Several papers have previously studied local DRF guaran-
tees. Dolan et al. [15] introduced local DRF-SC, and estab-
lished such guarantees for a model with two types of access.
Their guarantees account for two aspects of “locality™ (i) in
terms of “space”, which is similar to our location-wise LDRF
above and (ii) in terms of “time”, which we cover in [1, Ap-
pendix B]. However, their memory model is much stronger
than the one studied here. In particular, it is an “in-order”
model (see Def. 2.1), as even their weak accesses completely
forbid load-store reorderings (including RMW-store reorder-
ings), and cannot be compiled to plain machine accesses on
architectures like Arm. In addition, their strong accesses are
stronger than C11’s SC accesses, so that strong stores have
to be mapped to atomic exchanges even on x86.

Dongol et al. [16] established local DRF-SC guarantees
for a model more general than the one of [15] with multiple
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access modes. In their model, threads synchronize via soft-
ware transactions with RA semantics. While release/acquire
RMWs can be implemented as transactions, the problematic
relaxed RMWs are not expressible in the model of [16], so
that our impossibility result does not apply.

Recently, Jagadeesan et al. [19] presented a denotational
concurrency model and sketched (without full proofs) a time-
wise local DRF-SC guarantee for a fragment of this model
that does not include fences and RMWs. (They presented sev-
eral variants, and their reported LDRF result is for a version
that does not support irrelevant load introduction.) Their
model is multi-copy-atomic, and thus, unlike PS2.1, it cannot
be efficiently compiled to POWER or Armv7.

We note that the strengthening of accesses in the “SC
machines” (used for detecting races for the LDRF-SC premise)
in prior work [15, 16, 19] does not make them synchronizing
(inducing “happens-before” w.r.t. other locations). Thus, like
ours, previous local DRF-SC theorems are weaker than the
naive formulation discussed in §2.2.

Finally, while modular reasoning about libraries in weak
memory semantics has been studied in multiple papers, e.g.,
[5, 10, 17, 40], to the best of our knowledge, the observation
that location-wise local DRF guarantees are essential for such
reasoning is lacking in prior work. We leave to future work
the development of LDRF-based formal tools, which will
allow one to formalize (and possibly mechanize) reasoning as
we did in §5. In particular, our LDRF-PF paves the way for the
application of program logics for an "in-order" semantics (e.g.,
the logic in [13] that essentially targets the PF model), which
is significantly simpler than any semantics allowing load-
buffering behaviors. We also note that while the applications
in §5 are for RA-centric specifications, our local DRF results
are generally applicable for weaker library specifications as
well. Nevertheless, it is currently unclear how to formally
specify and verify libraries in memory models that allow
load buffering behaviors (as was studied in [40] for ‘in-order’
models). We leave this question as well for future work.
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A A Counterexample to Local DRF Guarantees in PS

In this section, we demonstrate a counterexample to LDRF-PF, LDRF-RA, and LDRF-SC in PS as well as in PS2. Though we
center our discussion around LDRF-PF, it should be clear that a similar narrative works for LDRF-RA and LDRF-SC. As in §2.1,

we first show a program that is £-PF-race-free for a given set of locations £ while a sequence of optimizations entails an
outcome that cannot occur in the £-PF-machine.

b=Z7
if b = 0 then
a:=X el:i =1
if a = 1 then
_:=FADD(W, 1) ¢= FADD(W,1) /0 (LDRF-Fail-PS)
if ¢ = 0 then
Y =1
7 =1 d=Y
’ X:=d
else
X =1

Here, we show that there is no {Y}-PF-racy execution of the LDRF-Fail-PS program in the {Y}-PF-machine (of PS or PS2.1).
Indeed, in any execution of the LDRF-Fail-PS program in {Y}-PF-machine, ¢ := FADD(W, 1) of 7, cannot read 0 from W. Thus,
tid, never reads from Y, and the program is {Y}-race-free. Specifically, in order for 7, to enter the else-branch on b = 0, 7,
should be able to read a non-zero value from Z. For this, 7, should first promise X = 1, allowing 7 to either promise or write
Z = 1. After promising X = 1, m, requires Y = 1 message in the memory in order to fulfill its promise X = 1 while entering the
if-branch on ¢ = 0. Since making a promise to Y is not allowed in the {Y}-PF-machine, 7r; should execute the FADD to W,
updating it from 0 to 1, before executing the write 1 to Y. Then, ¢ := FADD(W, 1) of x, can only read 1 from W, meaning that
d =Y cannot ever be executed. Therefore, LDRF-Fail-PS is {Y}-PF-race-free and ¢ := FADD(W, 1) of 7, can only read 1 from
W, but not 0.

However, the following sequence of transformations entails an execution where ¢ := FADD(W, 1) reads 0 from W:

The compiler may optimize Thread 1 as shown below:

(1) reorder the independent FADD on W and writes to Y and Z.

(1) (2) (3) (4) (5)
e:=7 e=27 e:=27 e:=7Z
if e = 0 then if e = 0 then if e = 0 then if e = 0 then
X:=1
f=Y f=Y f=Y f=Y
if f =1 then if f =1 then if f =1 then if f =1 then
b=Z7 b:=Z7 b=Z b:=Z7
if b = 0 then if b = 0 then if b = 0 then
X:=1 X =1 X:=1
else else else if b # 0 then
_ X:=1
=X ¢ := FADD(W, 1) ¢ == FADD(W, 1) ¢ := FADD(W, 1) ¢ := FADD(W, 1)
if a = 1 then . .
Y= 1 if ¢ = 0 then if ¢ = 0 then
71 d=Y (eliminated)
) X:=d X:=1
—=FADD(W, 1) else else
X:=1 X:=1
else else else
b=Z7 (eliminated)
if b = 0 then (eliminated)
X:=1 X:=1 X =1
else
(eliminated)
else else else else

Now, the compiler may optimize Thread 2 as shown above:
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(2) introduce reads e := Z and f := Y and insert dummy if-then-else branches on e = 0 and f = 1;

(3) forward the read f := Y to the read d := Y in the if-branch, turning X := d into X := 1, and forward the read e := Z to the
read b := Z in the else-branch, turning it into b := 0;

(4) merge the branch on ¢ = 0 and reorder the write X := 1 with ¢ := FADD(W, 1);

(5) hoist the common writes X := 1 in the branch on b = 0 and reorder it above f := Y.

The program after the transformation exhibits such a behavior in {Y}-PF-machine as follows:

(1) m, promises X = 1.

(2) m; reads 1 from X and writes Y = 1.

(3) m2 reads Z = 0, enters the if-branch on e = 0, fulfills the promise X = 1, reads Y = 1, and enters the if-branch on f = 1.
(4) 7y writes Z = 1.

(5) mp reads 1 from Z, enters if-branch on b # 0, and updates W from 0 to 1.

(6) The both threads execute the rest of their instructions.

Therefore, the LDRF guarantees do not hold for PS and PS2. Note that the problematic execution takes a different path to the
certification when a promise (X = 1) was made, like the OOTA4 example in Jagadeesan et al. [19] and the Coh-CYC example
in Chakraborty and Vafeiadis [12].

B Time-wise Local DRF Guarantees

In this section, we demonstrate generalized LDRF guarantees, namely “time-wise LDRF guarantees.” Specifically, we provide
two theorems, time-wise LDRF-PF (LDRF-PF-Time) and time-wise LDRF-SC (LDRF-SC-Time). Roughly speaking, time-wise
LDRF guarantees say that, given a machine state 3, the next possible machine steps in PS are equivalent to those in certain
stronger semantics provided that X is not a racy state in the stronger semantics. Since these guarantees are applied to a
machine state instead of the full execution of a program, they do not require race-freedom of the machine steps taken before
reaching the given machine state. Moreover, starting from a given machine state, one can assume a stronger semantics until it
reaches a racy machine state.

It is important to note that unlike Thm. 4.14 where the SC semantics denotes a strengthening of RA accessing only the
latest messages to each location, the SC semantics of LDRF-SC-Time is not RA-synchronizing, i.e,, it is a strengthening of PF
accessing only the latest messages to each location. Indeed, this is very similar to the local SC semantics of LDRF of Dolan et al.
[15]. Though we have another formulation of time-wise LDRF-SC with the SC semantics accompanying RA synchronization,
which we believe is provable, we do not present it as the theorem is too complicated due to the presence of RA synchronizations.
For the same reason, we do not present the “time-wise LDRF-RA” theorem as well.

B.1 Time-wise LDRF-PF
To formulate LDRF-PF-Time, we first define an L-racy machine state. Roughly, a machine state X is L-racy if (i) starting from

3, a thread can take multiple steps and write a message m to a location in L by a relaxed write; and (ii) immediately after m is
written, another thread can take multiple steps and read the message m.

Definition B.1. Given a set £ C Loc, a machine state ¥ = (7, M) is L-racy if there exist a location X € £, two different
threads 7; # 72, a memory M’, labels l1, I, and a message m such that:

o (7.M) 25" ()
o (T(m). M) =3 ()
o [y € {W(rlx,m),RMW(_,rlx, ,m)} Al € {R(_, m),RMW(_, _,m, )}

Using the above definition, LDRF-PF-Time is formulated as follows. The main difference of LDRF-PF-Time from LDRF-PF is
that it does not consider racy steps taken before reaching ¥, to which LDRF-PF-Time applies. Moreover, one can stop applying
LDRF-PF-Time whenever the machine reaches a racy state.

Theorem B.2 (LDRF-PF-Time). Given a set £ C Loc and a machine state (T, M) which has no promise to locations in L, if
(T, M) has some execution in the PS2.1 with a final outcome R, then one of the following holds.

e (7, M) has some execution in the L-PF-machine with the outcome R.
o (T, M) can reach a L-racy state (7', M’) in the L-PF-machine, and (T',M’) has some execution in the PS2.1 with the
outcome R.
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B.2 Time-wise LDRF-SC

As we previously described, the SC semantics of LDRF-SC-Time varies from that of Thm. 4.14. Therefore, we first define the
SC machine and the SC-race-detecting-machine of LDRF-SC-Time.

Definition B.3. Given a set L C Loc, the £-SC-machine is the strengthening of the £-PF-machine obtained by requiring that
forevery L € L:

e reads from L read from maximal messages; and
e writes to L write maximal messages.

Definition B.4. Given a set £ C Loc, the L-SC-race-detecting-machine is the machine obtained from the £-SC-machine by
adding following thread step invoking UB:

Le L

l
g— _

le {R(_LL _),W(_L _)RMW(_, L _,_)}
m=(Le(_t], ,_YeM V(L) <t

(o, V. My 22 (1 v, 0y, M)

Then, we define a racy machine state. Note that our definition of a racy machine state is weaker than that of Dolan et al.
[15] (i.e., our definition identifies more machine state to be racy than that of Dolan et al. [15]) due to the presence of promises.

Definition B.5. Given a set £ C Loc, a machine state % = (7, M) is L-racy if one of the following holds.
(i) There exist a location X € £ and two different threads m; # 7, thread state 7', memory M’ and a label [, and message
m such that:
i, * oyl
o (T.M)y == == (7', My)
o e {W(rlx,m),RMW(_, rlx,_,m)}
e (7', M) can take machine steps (7', My) SEEN

* g15,race(m) . . .
_ in the £-SC-race-detecting-machine.

(ii) There exist a thread 7 and message m such that:

,_ * mrace(m)
e (7, M) can take machine steps (7", M) 2oy 2T, _ in the £-SC-race-detecting-machine.

Finally, LDRF-SC-Time is formulated as follows.
Theorem B.6 (LDRF-SC-Time). Given a set L C Loc and a machine state (7", M) which has no promise on locations in L, if
(T, M) has some execution in the PS2.1 with a final outcome R, then one of the following holds.

o (T, M) has some execution in the L-SC-machine with the outcome R.
e (T,M) can reach a L-racy state (7', M’) in the L-SC-machine, and (7', M’) has some execution in the PS2.1 with the
outcome R.

C Full Results of the Performance Evaluation

The compilation schemes of FADD and XCHG instructions to Armv8 architecture are as follows:
Armv8 assembly

RMW operation

Optimal (LLVM 10.0.0)

PS2.1 (Scheme 1)

PS2.1 (Scheme 2)

¢ := FADD(X, a)

.L:

ldxr x1, [x2]
add x1, x1, x3
stxr wi, x1, [x2]
cbnz wi, .L

.L:

ldxr x1, [x2]
add x1, x1, x3
stxr wil, x1, [x2]
cbnz wi, .L

cbnz x1, .LFAKE

.L:

ldxr x1, [x2]
add x1, x1, x3
stxr wil, x1, [x2]
cbnz wi, .L

cmp x1, x1

¢ := XCHG(X, a)

.LFAKE: beq .LFAKE
.LFAKE:
.L: .L: .L:

ldxr x1, [x2]
stxr wi, x3, [x2]
cbnz wi, .L

ldxr x1, [x2]
stxr wi, x3, [x2]
cbnz wi, .L

cbnz x1, .LFAKE

.LFAKE:

ldxr x1, [x2]
stxr wil, x3, [x2]
cbnz wi, .L

cmp x1, x1

beq .LFAKE

.LFAKE:
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The code in red indicates manually inserted fake control dependencies. Note that the compiled Armv8 assembly assumes
that the address of the memory location X is stored in a register x2 and the value of a is stored in a register x3.

Detailed results of the performance evaluation in §6 is given in Fig. 7. The error bars in each figure represent 95% confidence
intervals.

D A Concrete Example of the LLVM Miscompilation

During the performance evaluation, we identified a bug in LLVM’s compilation of exchange instructions to Armv8. The
following example shows that the miscompilation introduces new behaviors.

Example D.1. To see a concrete example of the miscompilation, consider the following program and its mapping to Armv8
(for simplicity, we only show the mapping of T,):

_:=XCHG(X, 42) str x1, [x2]
r=1 . fence ~ dmb . ishld
— re 2 *
@ =FADD™XX, 1) /07| 'y oo ldr x0, [x3]

The annotated behavior a = 0 and b = 0 is not allowed in the source program following the C/C++11 memory model [8]. Once
Ty updates X from the initial value 0 to 1, T, can only exchange 1 with 42 due to the atomicity of the fetch-and-add instruction.
Then, the acquire fence induces happens-before order from Y = 1 write by T; to the read from Y by tid;. Therefore, T, is only
allowed to read 1 from Y, but not from the initial write 0. However, as the optimization entirely removed the effect of the read
by the exchange instruction, a = 0 and b = 0 is allowed in the compiled assembly by Armv8 semantics [18].
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Figure 7. Performance of benchmarks on 64-bit Armv8 machine
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