
Robustness against Release/Acquire Semantics
Ori Lahav

Tel Aviv University

Israel

orilahav@tau.ac.il

Roy Margalit

Tel Aviv University

Israel

roy.margalit@cs.tau.ac.il

Abstract
We present an algorithm for automatically checking robust-

ness of concurrent programs against C/C++11 release/acquire

semantics, namely verifying that all program behaviors un-

der release/acquire are allowed by sequential consistency.

Our approach reduces robustness verification to a reacha-

bility problem under (instrumented) sequential consistency.

We have implemented our algorithm in a prototype tool

called Rocker and applied it to several challenging concur-

rent algorithms. To the best of our knowledge, this is the first

precise method for verifying robustness against a high-level

programming language weak memory semantics.

CCS Concepts • Theory of computation→ Verification
bymodel checking;Concurrent algorithms; Program semantics;
Program verification; Program analysis; • Software and its
engineering→ Software verification.

Keywords weakmemorymodels, C/C++11, release/acquire,

robustness

ACM Reference Format:
Ori Lahav and Roy Margalit. 2019. Robustness against Release/

Acquire Semantics. In Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’19), June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,

21 pages. https://doi.org/10.1145/3314221.3314604

1 Introduction
Release/acquire (RA), the fragment of the C/C++11 mem-

ory model [14] consisting of release stores, acquire loads

and acquire-release read-modify-writes (RMWs), is a partic-

ularly useful and well-behaved weak memory model [36].

It is weaker than sequential consistency (SC) [40] and al-

lows higher performance implementations. For example,

x86-TSO [50] provides RA “for free” (its memory model is

stronger than RA), and POWER [45] implements RA using

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6712-7/19/06.

https://doi.org/10.1145/3314221.3314604

‘lightweight sync’ instructions rather than more expensive

‘full sync’ instructions which are needed for SC.

At the same time, since RA is designed to support the com-

mon “message passing” synchronization idiom, the guaran-

tees provided by RA suffice to implement various fundamen-

tal concurrent algorithms and synchronization mechanisms.

In fact, many useful programs are actually robust against
RA—the behaviors they exhibit under RA semantics are also

allowed under SC—or can be made robust by placing few

SC-fences or by strengthening certain reads and writes to be

RMW operations. Such modifications are sometimes neces-

sary, with the best known example being Dekker’s mutual

exclusion algorithm, whose RA (non-SC) behavior is harmful

for its correctness.

A natural question is thus whether one can automatically

verify robustness against RA. Our main contribution is a

decision procedure for this problem. Besides our theoretical

interest, we believe that this result can facilitate the develop-

ment of concurrent algorithms for RA. In particular, if we

are able to verify robustness against RA, various programs

designed for SC may be directly ported and verified with

more ordinary techniques assuming SC. Further, robustness

of non-robust programs may be enforced (by placing SC-

fences or RMW operations), and verifying the robustness of

the strengthened program.

To precisely state our result, it is crucial to carefully define

what constitutes a behavior of a concurrent program under

SC and under RA, which in turn determines what robustness

means. Here, it is natural to use operational presentations

of SC and RA as memory subsystems, formulated as labeled

transition systems (for RA one could use the timestamp ma-

chine introduced in [33]). Then, program behaviors corre-

spond to program states that are reachable when linked with

each of the memory subsystems. More precisely, thinking

about a concurrent program as a labeled transition system

(whose states compromise of the values of the thread-local

program counters and variables), one may identify SC (RA)

program behaviors with the set of states of the program that

are reachable in its runs when synchronized with runs of

the SC (RA) memory subsystems. This definition of program

behavior leads to what is known as state robustness, and cor-

responds to typical safety properties verification using local

assertions and global invariants that relate values of local

variables and program counters.

Nevertheless, following [24, Thm. 2.12], it is easy to show

that verifying state robustness against RA is as hard as the

https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1145/3314221.3314604

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

general state reachability problem under RA. The latter prob-

lem was recently shown to be undecidable [2]. Thus we

resort to a more informative definition of a behavior, lead-

ing to a stronger notion of robustness. By doing so, we fol-

low works on robustness against hardware models, TSO in

particular (e.g., [17, 19]), where state robustness—like state

reachability—is non-primitive recursive [11, 12]. For this mat-

ter, we use formulations of SC and RA as labeled transition

systems whose states are (C/C++11-like) execution graphs.
Execution graphs keep track of the full partially ordered his-

tory of the run (and thus in this presentation both SC and RA

are infinite state systems), including the reads-frommapping

(mapping each read to the write it read from) and the modi-

fication order (a total order on writes to the same location).

The difference between SC and RA is then reduced to the

transitions they allow. For instance, when adding reads to the

execution graph, SC requires that it reads from the write that

is maximal in the modification order, while RA places much

weaker restrictions. Now, we can identify program behaviors

with pairs of states of both the program and the memory

subsystem that are reachable in their synchronized runs. We

refer to the robustness notion induced by this definition as

execution-graph robustness.
Our main contribution is a decision procedure that checks

whether a given concurrent program is execution-graph ro-

bust against RA. To achieve this, we show how this verifica-

tion problem can be reduced to a state reachability problem

under a (finite state) instrumented SC memory. Roughly

speaking, this memory keeps track of the relevant parts of

the generated execution graph and uses this information for

monitoring that RA execution graphs cannot diverge from

SC ones. We prove that our approach is sound and precise.

In particular, it follows that this verification problem for

programs with bounded data domain is PSPACE-complete.

Our approach can be straightforwardly extended to handle

C/C++11’s non-atomic accesses. A data-race on a non-atomic

access is considered an undefined behavior, and, thus, robust-

ness of a program should also imply that it has no data-races

on non-atomic accesses. Since robust programs have only SC

executions, checking for data-races can be done using stan-

dard techniques. For completeness, we incorporated these

checks in our method simultaneously to the verification of

robustness against RA.

We have implemented our method in a prototype tool,

called Rocker , using Spin [31] as a back-end model checker

under SC. We used Rocker to verify the robustness of sev-

eral concurrent algorithms, including Peterson’s mutual ex-

ecution adaptations for RA [57], sequence locks [16] and

user-mode read-copy-update (RCU) implementations [26].

In particular, we observe that execution-graph robustness is

a useful property, allowing one, in many cases, to think in

terms of SC while running on a weaker model.

The rest of this paper is structured as follows. In §2 we

formally present the programming language and the notion

of state robustness. In §3 we present the RA concurrency se-

mantics. In §4 we define execution-graph robustness against

RA. In §5 we present our decision procedure. In §6 we extend

the decision procedure to support non-atomic accesses. In §7

we discuss the implementation and our experiments with it.

In §8 we discuss related work. Finally, in §9 we conclude and

outline directions for future work. Additional material and

proofs for the claims of this paper are available in [1]. The

prototype implementation and the examples it was tested

on are available in the artifact accompanying this paper.

2 Preliminaries: State Robustness
Given a (binary) relation R, dom(R) and codom(R) denote its
domain and codomain, and R?

, R+, and R∗
denote its reflexive,

transitive, and reflexive-transitive closures. The inverse of

a relation R is denoted by R−1
, and the (left) composition of

two relations R1,R2 is denoted by R1 ; R2. We denote by [A]
the identity relation on a set A. In particular, [A] ; R ; [B] =
R∩(A×B). For a strict total order R, we write R |imm to denote

the set of immediate R-edges, i.e., R |imm = R \ (R ; R).

2.1 Programming Language
Let Val, Loc, Reg be finite sets of values, (shared) locations,
and register names. We assume that Val contains a distin-
guished value 0, used as the initial value for all locations.

Figure 1 presents our toy programming language. Its expres-

sions are constructed from registers (local variables) and

values. Instructions include assignments and conditional

branching, as well as memory operations. Intuitively speak-

ing, an assignment r := e assigns the value of e to register r
(involving no memory access); if e goto n jumps to line n
of the program iff the value of e is not 0; a write x := e stores
the value of e in x ; a read r := x loads the value of x to regis-

ter r ; r := FADD(x, e) atomically increments x by the value of

e and loads the old value of x to r ; and r := CAS(x, eR � eW)
atomically loads the value of x to r , compares it to the value

of eR, and if the two values are equal, replaces the value of x
by the value of eW.

The less standard instructions wait and BCAS are blocking:
wait(x = e) blocks the current thread until it manages to

load the value of e from x ; and BCAS(x, eR � eW) blocks the
current thread until it performs a successful CAS of x from

the value of eR (to the value of eW). These instructions can
be easily implemented using loops (e.g., L : r := x ; if r ,
e goto L with fresh r for wait(x = e)). Nevertheless, as we
demonstrate in the end of this section, including them as

primitives leads to a more expressive notion of robustness.

In turn, a sequential program S ∈ SProg is a finite map

from N to instructions (we assume that 0 ∈ dom(S)), and a

concurrent program P is a top-level parallel composition of

sequential programs, defined as a mapping from a finite set

Tid ⊆ N of thread identifiers to SProg. In our examples, we

often write sequential programs as sequences of instructions

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

v ∈ Val Values

x ∈ Loc Locations

r ∈ Reg Registers

τ ∈ Tid ⊆ N Thread identifiers

Exp ∋ e ::= r | v | e + e | e = e | e , e | ...

Inst ∋ inst ::= r := e | if e goto n | x := e | r := x |

r := FADD(x, e) | r := CAS(x, e � e)
wait(x = e) | BCAS(x, e � e)

Sequential programs:

S ∈ SProg ≜ N
fin
⇀ Inst

Concurrent programs:

P : Tid → SProg

Figure 1. Domains and programming language syntax.

S(pc) = r := e
Φ′ = Φ[r 7→ Φ(e)]

⟨pc,Φ⟩ ϵ
−→ ⟨pc + 1,Φ′⟩

S(pc) = if e goto n
Φ(e) , 0

⟨pc,Φ⟩ ϵ
−→ ⟨n,Φ⟩

S(pc) = if e goto n
Φ(e) = 0

⟨pc,Φ⟩ ϵ
−→ ⟨pc + 1,Φ⟩

S(pc) = x := e
l = W(x,Φ(e))

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ⟩

S(pc) = r := x
l = R(x,v) Φ′ = Φ[r 7→ v]

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ′⟩

S(pc) = r := FADD(x, e)
l = RMW(x,v,v + Φ(e))

Φ′ = Φ[r 7→ v]

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ′⟩

S(pc) = r := CAS(x, eR � eW)
l = RMW(x,Φ(eR),Φ(eW))
Φ′ = Φ[r 7→ Φ(eR)]

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ′⟩

S(pc) = r := CAS(x, eR � eW)
l = R(x,v) v , Φ(eR)

Φ′ = Φ[r 7→ v]

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ′⟩

S(pc) = wait(x = e)
l = R(x,Φ(e))

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ⟩

S(pc) = BCAS(x, eR � eW)
l = RMW(x,Φ(eR),Φ(eW))

⟨pc,Φ⟩ l
−→ ⟨pc + 1,Φ⟩

Figure 2. Transitions of LTS induced by a sequential program S ∈ SProg.

delimited by line breaks, use ‘∥’ for parallel composition,

and refer to the program threads as τ1, τ2, ... following their

left-to-right order in the program listing.

2.2 From Programs to Transition Systems
A labeled transition system (LTS) A over an alphabet Σ is a

tuple ⟨Q, q0,−→⟩, whereQ is a set of states, q0 ∈ Q is the initial
state, and −→⊆ Q×Σ×Q is a set of transitions. We write

σ
−→ for

the relation {⟨q,q′⟩ | ⟨q,σ ,q′⟩ ∈ −→}, and −→ for

⋃
σ ∈Σ

σ
−→.

We denote by A.Q, A.q0 and −→A the three components of an

LTS A. A state q ∈ A.Q is called reachable in A if A.q0 −→∗
A q.

A symbol σ ∈ Σ is enabled in q (alternatively, q enables σ) if
q

σ
−→A q′ for some q′. A sequence σ1, ... ,σn is a trace of A if

A.q0
σ1
−−→A · ··

σn
−−→A q for some q.

Definition 2.1. A label l ∈ Lab is either R(x,vR) (read label),
W(x,vW) (write label), or RMW(x,vR,vW) (RMW label), where

x ∈ Loc and vR,vW ∈ Val. The functions typ, loc, valR, and
valW return (when applicable) the type (R/W/RMW), location,
read value, and written value of a given label.

A sequential program S ∈ SProg induces an LTS over

Lab ∪ {ϵ}, whose states are pairs ⟨pc,Φ⟩ where pc ∈ N
(called program counter) and Φ : Reg → Val (called store, and
extended to expressions in the obvious way). Its initial state

is ⟨0, λr . 0⟩, and its transitions are given in Fig. 2, following

the informal description above of the language constructs.

In the sequel we identify sequential programs with their

induced LTSs (when writing, e.g., S .Q and −→S).

Example 2.2. We present the LTS induced by a simple se-

quential program S . Let Val = {0, ... ,4}, Loc = {x} and

Reg = {r }. We use + to denote the possibly overflowing sum

(e.g., 2 + 4 = 1), and evaluate expressions of the form r < e

to be 1 if Φ(r) < Φ(e) and 0 otherwise.

0 : r := r + 1
1 : if r < 2 goto 0

2 : x := r

S .Q = {0, 1, 2, 3} × {[r 7→ v] | v ∈ Val}
S .q0 = ⟨0, [r 7→ 0]⟩

−→S is given by:

{⟨0, [r 7→ v]⟩
ϵ
−→S ⟨1, [r 7→ v + 1]⟩ | v ∈ Val} ∪

{⟨1, [r 7→ v]⟩
ϵ
−→S ⟨0, [r 7→ v]⟩ | v < 2} ∪

{⟨1, [r 7→ v]⟩
ϵ
−→S ⟨2, [r 7→ v]⟩ | v ≥ 2} ∪

{⟨2, [r 7→ v]⟩
W(x ,v)
−−−−−→S ⟨3, [r 7→ v]⟩ | v ∈ Val}

A concurrent program P induces an LTS over the alphabet

Tid × (Lab ∪ {ϵ}). Its states are tuples in
∏

τ ∈Tid P(τ).Q; its
initial state is λτ . P(τ).q0; and its transitions are interleaved

transitions of P ’s components, given by:

qτ
lϵ
−→P (τ) q

′
τ ∀π , τ .qπ = q

′
π

λπ .qπ
⟨τ ,lϵ ⟩
−−−−−→ λπ .q′π

In the sequel we identify concurrent programs with their

induced LTSs. We often use vector notation (e.g., q) to denote
states of concurrent programs.

2.3 Concurrent Systems and State Robustness
To give semantics to concurrent programs, we synchronize

them with memory subsystems, as defined next.

Definition 2.3. A memory subsystem is a (possibly infinite)

LTS over the alphabet N × Lab.

The labels here are pairs inN×Lab representing the thread
identifier and the label of the performed operation.

1

1
This formulation suffices for the purposes of this paper. In a broader context,

memory subsystems may also employ internal memory actions, such as

propagation from local stores to the main memory in TSO. Extending the

definitions to a more general notion of robustness is straightforward.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

The most well-known memory subsystem is the one of

sequential consistency, denoted here by SC. This memory

subsystem simply tracks the most recent value written to

each location. Formally, it is defined by SC.Q ≜ Loc → Val,
SC.q0 ≜ λx . 0, and −→SC is given by:

M ′ = M[x 7→ vW]
l = W(x,vW)

M
⟨τ ,l ⟩
−−−−→SC M ′

M(x) = vR
l = R(x,vR)

M
⟨τ ,l ⟩
−−−−→SC M

M(x) = vR
M ′ = M[x 7→ vW]
l = RMW(x,vR,vW)

M
⟨τ ,l ⟩
−−−−→SC M ′

Note that SC is oblivious to the thread that takes the action

(we haveM
⟨τ ,l ⟩
−−−−→SC M ′

iffM
⟨π ,l ⟩
−−−−→SC M ′

).

By synchronizing a concurrent program and a memory

subsystem, we obtain a concurrent system as defined next.

Definition 2.4. A concurrent system is a pair, denoted PM ,

where P is a concurrent program andM is a memory sub-

system. A concurrent system PM induces an LTS over Tid ×
Lab whose states are pairs in P .Q ×M .Q; its initial state is
⟨P .q0,M .q0⟩; and its transitions are given by:

q
⟨τ ,ϵ ⟩
−−−−→

∗

P
⟨τ ,l ⟩
−−−−→P

⟨τ ,ϵ ⟩
−−−−→

∗

P q′ qM
⟨τ ,l ⟩
−−−−→M q′

M

⟨q,qM⟩
⟨τ ,l ⟩
−−−−→PM ⟨q′,q′

M
⟩

In the sequel we identify concurrent systems with their in-

duced state machines.

We can now define state robustness against a given mem-

ory subsystem. This definition essentially identifies the be-

haviors of a program P under a memory subsystem M with

the first projection of the states that are reachable in PM .

Definition 2.5. A stateq of a concurrent program P is reach-
able under a memory subsystem M if ⟨q,qM⟩ is reachable in

the concurrent system PM for some qM ∈ M .Q.

Definition 2.6. A concurrent program P is state robust against
a memory subsystemM if every reachable state of P under

M is also reachable under SC.

We can now demonstrate the reason for including the

blocking instructions wait and BCAS as primitives. Consider

the following implementations of a “global barrier”:

0 : x := 1

1 : r1 := y
2 : if r1 , 1

goto 1

0 : y := 1

1 : r2 := x
2 : if r2 , 1

goto 1

x := 1

wait(y = 1)

y := 1

wait(x = 1)

(BAR)

While the two programs are functionally equivalent, only

the right program may be state robust against memory sub-

systems M that allow reading of “stale values” (such as

RA and TSO). Indeed, the state in which both threads are

in their last program line (pc
1
= pc

2
= 2) after reading 0

(Φ1(r1) = Φ2(r2) = 0) is reachable for the program on the left

under such memory subsystem, but clearly not under SC. In
many cases, such robustness violations are not harmful for

the safety of the program, as they only imply that under weak

memory the program may remain longer waiting in the busy

loop.
2
A corresponding state is not reachable for the program

on the right, and thus, using the blocking wait instruction,

one may mask such benign robustness violations.

Similar benign robustness violations when using CAS, e.g.,
in spin loops, can be avoided using the BCAS primitive. Han-

dling blocking instructions is essential to establish robust-

ness of some interesting examples (e.g., RCU), without hav-

ing more fences than actually necessary for program correct-

ness.

3 Release/Acquire Semantics
In this section, we introduce the RA memory subsystem.

RA’s original presentation, as a fragment of C/C++11 [14], is

declarative (a.k.a. axiomatic), i.e., it is formulated as a collec-

tion of formal consistency constraints that are used to filter

candidate execution graphs. In our proofs we use such a pre-

sentation (see [1, §A])), but for the current purpose we need

to define RA as an LTS. The declarative RA semantics can

be easily “operationalized”, as was done, e.g., in [54], so that

consistent execution graphs are incrementally constructed.

We will need this presentation as well (see §4.2), but since

execution-graph semantics is often considered unintuitive,

we present here an equivalent operational model, due to [33],

which is perhaps more natural as an operational semantics

for readers unfamiliar with the declarative style.

The memory in the RA operational model is a set of

timestamped messages, which record all previously exe-

cuted writes. Timestamps are taken to be natural numbers,

Time ≜ N. A timestamp and a location uniquely identify a

message (that is, there cannot coexist in memory two mes-

sages of the same location and timestamp). Each thread main-

tains its view of the memory, where T ∈ View is a function

Loc → Time. The thread’s view places lower bounds on

the set of messages that the thread may read, as well as the

timestamps it may pick when adding new messages to mem-

ory. Messages carry views as well, which record the thread’s

view at the time the message was added to memory. When a

message is read, its view is incorporated into the thread view,

which, roughly speaking, ensures that the thread becomes

aware of whatever the message it reads was aware of.

Formally, a message m ∈ Msg is a tuple of the form

⟨x=v@t, T ⟩ where x ∈ Loc, v ∈ Val, t ∈ Time, and T ∈

View. The states of the RA memory subsystem are given

by RA.Q ≜ P(Msg) × (N → View) (it consists of mem-

ory and thread views), with the initial state being RA.q0 ≜
⟨{⟨x=0@0, T0⟩ | x ∈ Loc}, λn. T0⟩, where T0 ≜ λx . 0 denotes
the initial view.

2
Without liveness guarantees, this program may not terminate under weak

memory semantics. In this paper, as most existing work on weak memory

specification and verification, we focus on finite traces and safety properties.

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

¬∃v ′, T ′. ⟨x=v ′@t, T ′⟩ ∈ M
T(τ)(x) < t

T = T(τ)[x 7→ t]
M ′ = M ∪ {⟨x=v@t, T ⟩}

T ′ = T[τ 7→ T]
l = W(x,v)

⟨M,T⟩
⟨τ ,l ⟩
−−−−→RA ⟨M ′,T ′⟩

⟨x=v@t, T ⟩ ∈ M
T(τ)(x) ≤ t

T ′ = T[τ 7→ T (τ) ⊔ T]
l = R(x,v)

⟨M,T⟩
⟨τ ,l ⟩
−−−−→RA ⟨M,T ′⟩

⟨x=vR@t, TR⟩ ∈ M T(τ)(x) ≤ t
¬∃v, T . ⟨x=v@t + 1, T ⟩ ∈ M
TW = T(τ)[x 7→ t + 1] ⊔ TR

M ′ = M ∪ {⟨x=vW@t + 1, TW⟩} T ′ = T[τ 7→ TW]
l = RMW(x,vR,vW)

⟨M,T⟩
⟨τ ,l ⟩
−−−−→RA ⟨M ′,T ′⟩

Figure 3. Transitions of the RA memory subsystem.

The transitions of RA are given in Fig. 3, where ⊔ denotes

pointwise maximum (T1 ⊔ T2 = λx . max{T1(x), T2(x)}). To
perform a write to x , thread τ (1) picks a timestamp that is

available for x in the current memory and is greater than the

timestamp in τ ’s view for x ; (2) updates its view to include

the new timestamp; (3) adds a message to the memory car-

rying τ ’s (updated) view. In turn, to read from x , τ may pick

any message of x in the memory whose timestamp is not

lower than the timestamp in τ ’s view for x . The view of the

read message is incorporated in τ ’s view. Finally, RMWs are

obtained as an atomic combination of a read and a write, but

crucially require that the timestamp of the added message

is the successor of the timestamp of the read message. This

guarantees that distinct RMWs never read from the same

message (see Ex. 3.5 below).

Next, we provide simple examples of runs of concurrent

programs under the RA memory subsystem, and analyze

their robustness. When writing views, we often write only

their non-zero elements.

Example 3.1 (Store buffer). The following program is the

simplest example of a weak behavior allowed by RA:

x := 1

a := y //0
y := 1

b := x //0 (SB)

Here and henceforth, we use comment annotations to denote

a particular program state. In this example, the annotations

denote the state in which both program counters point to

the end of the program, and the values of a and b are both 0.

To reach this state under RA (cf. Def. 2.5), τ1 may run first:

add ⟨x=1@1, [x 7→ 1]⟩ to the memory (this does not affect

the view of τ2), and read the initial message ⟨y=0@0, T0⟩.
Then, τ2 adds ⟨y=1@1, [y 7→ 1]⟩ to the memory, and it is free

read the initial message ⟨x=0@0, T0⟩. Under SC, this state

is clearly unreachable, and thus, this program is not state

robust against RA (cf. Def. 2.6).

Example 3.2 (Message passing). RA is designed to support

“flag-based” synchronization. That is, the following anno-

tated behavior is disallowed under RA:
x := 1

y := 1

a := y //1
b := x //0 (MP)

Indeed, τ2 can read 1 for y, only after τ1 executed the two

writes adding messagesmx = ⟨x=1@tx , [x 7→ tx]⟩ andmy =

⟨y=1@ty , [x 7→ tx ,y 7→ ty]⟩ to the memory with tx , ty > 0.

When reading my , τ2 increases its view of x to be tx , and
then, since tx > 0, it is unable to read the initial message of

x , and must readmx . Hence, it can be easily seen that this

program is state robust against RA. This example also shows

that a stronger definition of robustness, which requires that

PSC and PRA have the same traces, is too strong to be of any

use. Indeed, the transition ⟨τ2, R(y, 0)⟩ is allowed under RA
also after τ1 performed its twowrites, and thus, such stronger

condition would deem this program as non-robust.

Example 3.3 (Independent reads of independent writes).
Unlike TSO, RA is non-multi-copy-atomic. That is, different
threads may observe different stores in different orders. Thus,

RA allows the following behavior:

x := 1

a := x //1
b := y //0

c := y //1
d := x //0 y := 1 (IRIW)

Indeed, nothing in RA forbids a run in which the two writers

finished their execution, and then τ2 picks the message writ-

ten by τ1 for x and the initialization message for y, while τ3
picks the message written by τ4 for y and the initialization

message for x . The corresponding program state is unreach-

able under SC, and, thus, this program is not state robust

against RA. (It is, nevertheless, robust against TSO.)

Example 3.4. Unlike the SRA model [36], under RA, write
steps do not have to choose a globally maximal timestamp.

Thus, the following outcome is allowed [56], and the program

is not state robust against RA (it is robust against TSO):

x := 1

y := 2

a := y //1

y := 1

x := 2

a := x //1
(2+2W)

Indeed, to execute both writes, τ1 may add the messages

mx
1
= ⟨x=1@2, [x 7→ 2]⟩ andm

y
2
= ⟨y=2@1, [x 7→ 2,y 7→ 1]⟩,

and τ2 may add the messages m
y
1
= ⟨y=1@2, [y 7→ 2]⟩ and

mx
2
= ⟨x=2@1, [x 7→ 1,y 7→ 2]⟩. Now, τ1’s view for y is 1 and

it may readm
y
1
, and τ2’s view for x is 1 and it may readmx

1
.

Example 3.5. A crucial property of RMWs is that two (suc-

cessful) RMWs never read from the same message. Indeed,

this allows the standard implementation of lock acquisition

using RMWs. This property is guaranteed in RA by forcing

RMWs to use t + 1 as the timestamp for the added message,

where t is the timestamp of the message that was read. To

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

see how this works consider the following (robust) program

(the annotated behavior is disallowed under RA):

a := CAS(x, 0 � 1) //0 b := CAS(x, 0 � 1) //0 (2RMW)

W.l.o.g., if τ1 runs first, it reads from the initialization mes-

sage ⟨x=0@0, T0⟩ (it is the only message of x in the memory),

and it is forced to add a message with timestamp 1, namely

⟨x=1@1, [x 7→ 1]⟩. When τ2 runs, it may not read from the

initialization message, as it will again require adding a mes-

sage of x with timestamp 1, but such a message already exists

in memory. Thus, it may only read from the message that

was added by τ1, and the CAS will fail.

Example 3.6. RMWoperations to a distinguished otherwise-

unused location can force synchronization, practically serv-

ing as SC-fences [36, 37] (in fact, this is how we encode SC-

fences in our programming language). To see this, consider

the following modification of the SB program:

x := 1

r := FADD(f , 0)
a := y //0

y := 1

r := FADD(f , 0)
b := x //0

(SB+RMWs)

Here, the annotated program behavior is disallowed under

RA, and, consequently, this program is state robust against

RA. Indeed, suppose, w.l.o.g., that τ1 executes the FADD first

and adds the messagem = ⟨f =0@1, [x 7→ tx , f 7→ 1]⟩ (where

tx > 0). When τ2 executes its FADD, it has to read m, and

update its view of x to tx . Then, when it reads x it may not

pick the initial message. It is crucial to use the same location

in both FADDs: unlike TSO, under RA a single barrier (equiv-

alently, a single FADD instruction to an otherwise-unused

location) has no effect.

Finally, note that SC is clearly stronger than RA:

Lemma 3.7. If a state q of a concurrent program P is reach-
able under SC, then it is also reachable under RA.

Proof. RA can simulate SC: in read (and RMW) steps, read

the message with the maximal timestamp; and in write steps,

pick t to be greater than the maximal timestamp of the mes-

sages of the written location. □

4 Execution-Graph Robustness
While state robustness is a natural criterion, it is also very

fragile and hard to test. For instance, if we replace the two

written values in the SB program (Ex. 3.1) by 0’s (writing

once again the initial value), then the program becomes state

robust, simply because reachable program states cannot dis-

tinguish runs under RA from runs under SC. Similarly, if we

remove the two final reads in the 2+2W program (Ex. 3.4),

we obtain a “vacuously” state robust program. In this section,

we present a stronger notion of robustness, which we call

execution-graph robustness. (In particular, these two exam-

ples are not execution-graph robust.) In §5, we show how

execution-graph robustness can be decided. This leads to a

sound verification algorithm for state robustness.

Execution-graph robustness is based on different presenta-

tions of the SC andRAmemory subsystems, whichwe denote

by SCG and RAG, whose states are execution graphs captur-

ing (partially ordered) histories of executed actions. The fact

that the states of SCG and RAG are the same mathematical

objects allows us to easily compare program behaviors under

the two memory subsystems. In the rest of this section, we

present SCG and RAG, and define execution-graph robust-

ness. First, we define execution graphs, starting with their

nodes, called events.

Definition 4.1. An event e ∈ Event is a tuple ⟨τ , s, l⟩ ∈

(N ⊎ {⊥}) ×N × Lab, where τ is a thread identifier (or ⊥ for

initialization events), s is a serial number inside each thread

(0 for initialization events), and l is a label (as defined in

Def. 2.1). The functions tid, sn, and lab return the thread

identifier, serial number, and label of an event. The functions

typ, loc, valR, and valW are lifted to events in the obvious

way. We use R,W,RMW for the following sets of events:

R ≜ {e | typ(e) ∈ {R, RMW}} W ≜ {e | typ(e) ∈ {W, RMW}}

RMW ≜ {e | typ(e) = RMW}

We employ subscripts and superscripts to restrict sets of

events to certain location and thread identifier (e.g.,Wx =

{w ∈ W | loc(w) = x} and Eτ = {e ∈ E | tid(e) = τ }).

Definition 4.2. The set Init of initialization events is given
by Init ≜ {⟨⊥, 0, W(x, 0)⟩ | x ∈ Loc}. We say that a set E ⊆

Event is initialized if Init ⊆ E, and tid(e) , ⊥ and sn(e) , 0

for every e ∈ E \ Init.

Our representation of events induces a sequenced-before
partial order on events, where e1 < e2 holds iff (e1 ∈ Init
and e2 < Init) or (e1 < Init, e2 < Init, tid(e1) = tid(e2), and
sn(e1) < sn(e2)). That is, initialization events precede all

non-initialization events, while events of the same thread

are ordered according to their serial numbers.

In turn, an execution graph consists of a set of events, a

reads-from mapping that determines the write event from

which each read reads its value, and a modification order
which totally orders the writes to each location. In terms

of the model in §3, the modification order represents the

timestamp order on messages to each location.

Definition 4.3. An execution graph G ∈ EGraph is a tuple

⟨E, rf ,mo⟩ where:
1. E is an initialized finite set of events.

2. rf , called reads-from, is a relation on E satisfying:

• If ⟨w, r ⟩ ∈ rf then w ∈ W, r ∈ R, loc(w) = loc(r),
valW(w) = valR(r), andw , r .

• w1 = w2 whenever ⟨w1, r ⟩, ⟨w2, r ⟩ ∈ rf (each read

reads from at most one write).

• E∩R ⊆ codom(rf) (each read reads from somewrite).

3. mo, called modification order, is a disjoint union of

relations {mox }x ∈Loc, such that each mox is a strict

total order on E ∩Wx .

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

W(x , 0) W(y, 0)

M = {x 7→ 0, y 7→ 0}

VSC(1) = {x , y }
VSC(2) = {x , y }
WSC(x) = {x }
WSC(y) = {y }
MSC(x) = {x }
MSC(y) = {y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ ∅, y 7→ ∅}

W(x)(y) = ∅

W(y)(x) = ∅

⟨1,W(x ,1)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

mo

M = {x 7→ 1, y 7→ 0}

VSC(1) = {x , y }
VSC(2) = {y }
WSC(x) = {x , y }
WSC(y) = {y }
MSC(x) = {x , y }
MSC(y) = {y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ {0}, y 7→ ∅}

W(x)(y) = ∅

W(y)(x) = {0}

⟨1,W(y ,1)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

W(y, 1)

mo
mo

M = {x 7→ 1, y 7→ 1}

VSC(1) = {x , y }
VSC(2) = ∅

WSC(x) = {x }
WSC(y) = {x , y }
MSC(x) = {x }
MSC(y) = {x , y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ {0}, y 7→ {0}}

W(x)(y) = {0}

W(y)(x) = ∅

⟨2,R(y ,1)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

W(y, 1)

R(y, 1)

rf

mo
mo

M = {x 7→ 1, y 7→ 1}

VSC(1) = {x , y }
VSC(2) = {x , y }
WSC(x) = {x }
WSC(y) = {x , y }
MSC(x) = {x }
MSC(y) = {x , y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ ∅, y 7→ ∅}

W(x)(y) = {0}

W(y)(x) = ∅

⟨2,R(x ,1)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

W(y, 1)

R(y, 1)

R(x , 1)

rf

rf

mo
mo

M = {x 7→ 1, y 7→ 1}

VSC(1) = {x , y }
VSC(2) = {x , y }
WSC(x) = {x }
WSC(y) = {x , y }
MSC(x) = {x , y }
MSC(y) = {x , y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ ∅, y 7→ ∅}

W(x)(y) = {0}

W(y)(x) = ∅

W(x , 0) W(y, 0)

M = {x 7→ 0, y 7→ 0}

VSC(1) = {x , y }
VSC(2) = {x , y }
WSC(x) = {x }
WSC(y) = {y }
MSC(x) = {x }
MSC(y) = {y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ ∅, y 7→ ∅}

W(x)(y) = ∅

W(y)(x) = ∅

⟨1,W(x ,1)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

mo

M = {x 7→ 1, y 7→ 0}

VSC(1) = {x , y }
VSC(2) = {y }
WSC(x) = {x , y }
WSC(y) = {y }
MSC(x) = {x , y }
MSC(y) = {y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ {0}, y 7→ ∅}

W(x)(y) = ∅

W(y)(x) = {0}

⟨1,R(y ,0)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

R(y, 0)

mo

rf

M = {x 7→ 1, y 7→ 0}

VSC(1) = {x , y }
VSC(2) = {y }
WSC(x) = {x , y }
WSC(y) = {y }
MSC(x) = {x , y }
MSC(y) = {x , y }
V(1) = {x 7→ ∅, y 7→ ∅}

V(2) = {x 7→ {0}, y 7→ ∅}

W(x)(y) = ∅

W(y)(x) = {0}

⟨2,W(y ,1)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

R(y, 0)

W(y, 1)

mo

rf

mo

M = {x 7→ 1, y 7→ 1}

VSC(1) = {x }
VSC(2) = {x , y }
WSC(x) = {x }
WSC(y) = {x , y }
MSC(x) = {x }
MSC(y) = {x , y }
V(1) = {x 7→ ∅, y 7→ {0}}

V(2) = {x 7→ {0}, y 7→ ∅}

W(x)(y) = {0}

W(y)(x) = {0}

⟨2,R(x ,0)⟩
−−−−−−−−→

W(x , 0) W(y, 0)

W(x , 1)

R(y, 0)

W(y, 1)

R(x , 0)

mo

rf

mo

rf

Robustness

violation:

x ∈ VSC(2)

and

0 ∈ V(2)(x)

Figure 4. Illustrations of runs: (i) of SCG for the MP program (Ex. 3.2); and (ii) of RAG for the SB program (Ex. 3.1). Each

illustration is followed by the corresponding run of SCM for monitoring robustness as described in §5 (deltas from the previous

state are colored).

We denote the components of G by G .E, G .rf and G .mo. We

use G .po to denote the restriction of the order on events

to G .E (G .po ≜ [G .E];<; [G .E]). In addition, for a set E ′ ⊆

Event, we write G .E ′
for G .E ∩ E ′

(e.g., G .W = G .E ∩W).

Next, we define a general execution-graph-based memory

subsystem, called FG (standing for “Free Graphs”). Later, the

memory subsystems SCG and RAG are defined as restric-

tions of FG. To define FG, we use the following notation

that extends a given graph G with a new event e , placed
last in its thread, and either reading from a designated event

w or placed as the immediate successor of w in the modi-

fication order. When e is an RMW event, it is both reading

fromw , and placed as the immediate successor ofw in the

modification order. This is in accordance with the usual atom-

icity restriction in declarative semantics, according to which

RMWs read from their immediate mo-predecessors.

Notation 4.4. For G ∈ EGraph, τ ∈ N, l ∈ Lab and w ∈

W, add(G, τ , l,w) denotes the triple ⟨E ′, rf ′,mo′⟩ defined as

follows, where e = ⟨τ ,max{sn(e) | e ∈ G .Eτ } + 1, l⟩:

E ′ = G .E ∪ {e} rf ′ =

{
G .rf ∪ {⟨w, e⟩} e ∈ R
G .rf otherwise

mo′ =


G .mo ∪ dom(G .mo? ; [{w}]) × {e}

∪ {e} × codom([{w}] ;G .mo)
e ∈ W

G .mo otherwise

Definition 4.5. The initial execution graph G0 is given by

G0 ≜ ⟨Init, ∅, ∅⟩. The memory subsystem FG is defined by

FG.Q ≜ EGraph, FG.q0 ≜ G0, and −→FG is defined as follows:

w ∈ G .Wloc(l)
typ(l) ∈ {R, RMW} =⇒ valW(w) = valR(l)

G
⟨τ ,l ⟩
−−−−→FG add(G, τ , l,w)

The conditions in FG’s step ensure that add(G, τ , l,w) is

indeed an execution graph: mo should only relate events inW
of the same location; and rf goes fromW to R only between

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

events of the same location and matching values. Below, we

refer to the writew in such steps as the predecessor write.
Next, we present the memory subsystems SCG and RAG.

Both are based on execution graphs: SCG.Q = RAG.Q ≜

EGraph; SCG.q0 = RAG.q0 ≜ G0; and
⟨τ ,l ⟩
−−−−→SCG⊆

⟨τ ,l ⟩
−−−−→FG

and

⟨τ ,l ⟩
−−−−→RAG⊆

⟨τ ,l ⟩
−−−−→FG for every τ ∈ N and l ∈ Lab.

4.1 The Memory Subsystem SCG

The steps of SCG are uniformly given by:

typ(l) ∈ {R, RMW} =⇒ valW(G .w
max
loc(l)) = valR(l)

G
⟨τ ,l ⟩
−−−−→SCG add(G, τ , l,G .wmax

loc(l))

where G .wmax
x denotes the G .mo maximal write to x in G

(G .wmax
x ≜ maxG .moG .Wx).

SCG steps require the predecessor write to be G .wmax
loc(l):

added write events are placed last in G .mo, and read events

read from the latest added write. Figure 4 illustrates an ex-

ample of a run of the MP program (Ex. 3.2) under SCG.

Lemma 4.6. SCG and SC have the same traces.

Proof (outline). Define thememory of a givenG ∈ EGraph by
M(G) ≜ λx . valW(G .w

max
x). It is easy to show that SC.q0 =

M(G0) and {⟨M(G),G⟩ | G ∈ EGraph} is a bisimulation rela-

tion between SC and SCG. □

4.2 The Memory Subsystem RAG

To define the transitions of RAG, we use the following stan-

dard derived “happens-before” relation:

G .hb ≜ (G .po ∪G .rf)+

Roughly speaking,G .hb abstracts RA’s execution order: any

run of the timestamp machine in §3 follows some lineariza-

tion of hb, and, conversely, all linearizations of hb induce

runs of the timestamp machine. Using hb, the steps of RAG
are uniformly given by:

w ∈ G .Wloc(l)
typ(l) ∈ {R, RMW} =⇒ valW(w) = valR(l)

w < dom(G .mo ;G .hb? ; [G .Eτ])
typ(l) ∈ {W, RMW} =⇒ w < dom(G .mo|imm ; [RMW])

G
⟨τ ,l ⟩
−−−−→RAG add(G, τ , l,w)

The first two conditions in the step are the general conditions

of FG (see Def. 4.5). The third and fourth conditions restrict

the choice of the predecessor writew . Unlike in SCG,w is not

necessarily G .wmax
loc(l). Instead, it is subject to two conditions.

First, the thread that takes the action must not have observed

an mo-later write, where observed writes are writes that have
a (possibly empty) hb-path to (some event of) the thread

(w < dom(G .mo ;G .hb? ; [G .Eτ])). Referring to the timestamp

machine, this is in accordance with the choice of the message

to read in read steps and the new added messages in write

steps (their timestamp cannot be smaller than the last times-

tamp observed by the thread for the location). Second, when

writing (by a write or an RMW), the predecessor writew can-

not be the immediate mo-predecessor of some (other) RMW

event (w < dom(G .mo|imm ; [RMW])). In the timestamp ma-

chine, this corresponds to the fact that timestamp of the mes-

sage added by an RMW must be the immediate successor of

the timestamp of the message read by the RMW. Note that in

graphs generated by RAG, RMWs always read from their im-

mediate mo-predecessor (G .rf ;[RMW] = G .mo|imm ;[RMW]),

which is the usual atomicity condition in declarative weak

memory semantics.

It is easy to see that SCG is more restrictive than RAG
(and thus, the run of SCG for the MP program in Fig. 4 is

also allowed under RAG):

Lemma 4.7. If G
⟨τ ,l ⟩
−−−−→SCG G ′, then G

⟨τ ,l ⟩
−−−−→RAG G ′.

Proof. Pickw = G .wmax
loc(l) as the predecessor write. By defini-

tion we havew ∈ G .Wloc(l),w < dom(G .mo ;G .hb? ; [G .Eτ]),
andw < dom(G .mo|imm ; [RMW]). □

Figure 4 illustrates an example of a run of the SB program

(Ex. 3.1) under RAG. The last step there is disallowed by

SCG—the predecessor write is not the mo-maximal one.

Next, we state the equivalence between RAG and RA. A
proof outline is provided in [1, §B].

Lemma 4.8. RAG and RA have the same traces.

4.3 Execution-Graph Robustness
Next, we define execution-graph robustness and show that

it implies state robustness.

Definition 4.9. A concurrent program P is execution-graph
robust against RA if every reachable state ⟨q,G⟩ in the con-

current system PRAG is also reachable in PSCG.

Proposition 4.10. If P is execution-graph robust against RA
then it is state robust against RA.

Proof. Let q be a state of P that is reachable under RA. Let
⟨M,T⟩ ∈ RA.Q such that ⟨q, ⟨M,T⟩⟩ is reachable in PRA. By
Lemma 4.8, ⟨q,G⟩ is reachable in PRAG for some G. Since P
is execution-graph robust against RA, it follows that ⟨q,G⟩
is reachable in PSCG. By Lemma 4.6, ⟨q,M⟩ is reachable in

PSC for someM ∈ SC.Q, and so q is reachable under SC. □

Execution-graph robustness, as we demonstrate below, is

not overly strong for establishing state robustness in a vari-

ety of concurrent algorithms. In particular, the state robust

litmus tests mentioned in §3 (MP,2RMW,SB+RMWs) are also

execution-graph robust.

5 Verifying Execution-Graph Robustness
In this section, we present our approach to the verification of

execution-graph robustness against RA. First, Thm. 5.1 below

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

reduces this problem to reachability of certain configurations

in PSCG. To state this theorem, we require two more standard

derived relations in execution graphs:

G .fr ≜ (G .rf−1 ;G .mo) \ [G .E] (from-read/reads-before)

G .hbSC ≜ (G .hb ∪G .mo ∪G .fr)+ (SC-happens-before)

The from-read relation, fr, relates every read event r to all

writes that are mo-later than the write that r reads from (iden-

tity is subtracted to avoid self loops in RMW events). The

SC-happens-before relation,G .hbSC, following [51], abstracts
SC’s execution order: to yield certain executionG, the SCG
memory subsystem must follow G .hbSC. Thus, runs of SCG
can yield an execution graph G iff G .hbSC is irreflexive.

Theorem 5.1. Let P be a concurrent program. Call a tuple
⟨q,G, τ , l,w⟩ ∈ P .Q × EGraph × Tid × Lab × Event a non-

robustness witness for P if the following hold:
• ⟨q,G⟩ is reachable in the concurrent system PSCG.
• q enables ⟨τ , l⟩ (in the LTS induced by P).
• w , G .wmax

loc(l).

• G
⟨τ ,l ⟩
−−−−→RAG add(G, τ , l,w).

• G .wmax
loc(l) ∈ dom(G .hbSC ; [G .Eτ]).

Then, P is execution-graph robust against RA iff there does not
exist a non-robustness witness for P .

Theorem 5.1 reduces execution-graph robustness of a pro-

gram P to the existence of a reachable state in the concurrent

system PSCG that satisfies certain properties. More precisely,

P is not robust iff there exist a reachable state ⟨q,G⟩ of PSCG
and a transition ⟨τ , l⟩ that is enabled in q, such that: (a) there
is an hbSC-path in G fromwmax

loc(l) to (some event of) thread

τ ; and (b) G enables the transition ⟨τ , l⟩ in RAG with a pre-

decessor writew , G .wmax
loc(l).

The proof is given in [1, §A]. Roughly speaking, we utilize

purely declarative presentations of SCG and RAG, and show
that the existence of a non-robustness witness allows RA
executions to diverge w.r.t. SC ones, and that given a “mini-

mal” such divergence, one can construct a non-robustness

witness. The latter has generally a similar structure to proofs

establishing the DRF (data-race-freedom) guarantee [6, 29].

We note that DRF for RA can be easily obtained as a

corollary of Thm. 5.1. Indeed, if a program P is race-free

(under SC), then all reachable states ⟨q,G⟩ in PSCG satisfy

G .mo∪G .fr ⊆ G .hb. It follows thatG .hbSC ⊆ G .hb, and thus,
G .wmax

loc(l) ∈ dom(G .hbSC ; [G .Eτ]) implies that only G .wmax
loc(l)

may serve as the predecessor write in RAG transitions from

G. Therefore, P cannot have a non-robustness witness, and

Thm. 5.1 ensures that it is execution-graph robust.

Similarly, it follows that a program with no concurrent

writes under SC cannot have weak behaviors allowed by

RA (as was established in [7] for a certain variant of causal

consistency). Indeed, if P has no concurrent writes (under

SC), then all reachable states ⟨q,G⟩ in PSCG satisfy [W] ;

G .hbSC ⊆ G .hb (use hb to reach the last write in the hbSC-
path and from that point on no mo and fr edges are used).

Again, Thm. 5.1 ensures that P is execution-graph robust.

It remains to show that the condition in Thm. 5.1 can be

automatically checked. Since SCG is not finite (execution

graphs of programs with loops may grow unboundedly), we

cannot naively explore traces of PSCG. The key idea is to

define a finite memory subsystem, which we call SCM (for

SC with Monitors), that simulates SCG (so that they have

the same traces) and precisely track the properties of SCG’s
execution graphs that are needed for monitoring the above

condition.

Next, we gradually present SCM’s states, which are com-

posed of eight components in total, and the transitions be-

tween them. Figure 4 provides detailed examples of runs of

SCM for the MP and SB programs, together with the corre-

sponding runs of SCG. Below, we use I as a metavariable

for states of SCM and write I (G) for the SCM state that

corresponds to an execution graph G.

Memory (I .M). The basic building block for SCM is the (fi-

nite) memory subsystem SCwhose states are simple location-

value mappings (see §2.3). Thus, a state I of SCM has a mem-

ory component, denoted I .M, which is a function from Loc to
Val storing the value written byG .wmax

x for every location x .
Formally, we have

I (G).M = λx . valW(G .w
max
x).

The transitions of SCM are subject to the same constraints

as SCwith respect to this component. The other components

of the states of SCM are used to track more properties of G,
and do not restrict SCM’s traces. Thus, the fact that SCM
has the same traces as SCG directly follows from Lemma 4.6.

hbSC-tracking (I .VSC, I .MSC, I .WSC). For checking condition

(a) above, we need to know for every thread τ and loca-

tion x whether τ is “hbSC-aware” of w
max
x . To include and

maintain this information in a state I of SCM, we use three

components, denoted by I .VSC, I .MSC and I .WSC.
The first, I .VSC, is a function in Tid → P(Loc) tracking

precisely this property. Formally, we have:

I (G).VSC = λτ . {x | G .wmax
x ∈ dom(G .hbSC

?
; [Init ∪G .Eτ])}.

Having x ∈ I (G).VSC(τ) means that τ is hbSC-aware ofw
max
x ,

i.e.,G .wmax
x is an initialization write (of which all threads are

aware) or ⟨G .wmax
x , e⟩ ∈ G .hbSC

?
for some e ∈ G .Eτ .

In turn, to maintain I .VSC, we include two additional com-

ponents, I .MSC and I .WSC, both of which are functions in

Loc → P(Loc). Consider first an SCG-step that adds a write

(or RMW) eventw to location x in thread τ . Following SCG,
w is placed it last in mo, which means that every event access-

ing x becomes hbSC beforew (writes to x have mo tow and

reads from x have fr tow). In turn, the thread τ in whichw
is added will have (additional) hbSC-paths from everywmax

y
that previously had an hbSC-path to some event accessing x .

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

⟨τ , W(x , v)⟩ or
⟨τ , RMW(x , vR, vW)⟩

⟨τ , R(x , v)⟩

V′SC = λπ .

{
VSC(τ) ∪ MSC(x) π = τ
VSC(π) \ {x } π , τ

{
VSC(τ) ∪ WSC(x) π = τ
VSC(π) π , τ

M′SC = λy .

{
MSC(x) ∪ VSC(τ) y = x
MSC(y) \ {x } y , x

{
MSC(x) ∪ VSC(τ) y = x
MSC(y) y , x

W′SC = λy .

{
MSC(x) ∪ VSC(τ) y = x
WSC(y) \ {x } y , x

WSC(y)

Figure 5. Maintaining VSC, MSC and WSC in SCM transitions.

To properly reflect this in I .VSC(τ), we maintain I .MSC that

tracks for every x ∈ Loc the set of locations y such thatwmax
y

has an hbSC-path to some event accessing x . In steps that

write to x in thread τ , we incorporate I .MSC(x) into I .VSC(τ).
Second, similarly, when an SCG-step adds a read event r

of location x in thread τ , it reads fromwmax
x , and so we have

⟨wmax
x , r ⟩ ∈ hbSC. In turn, thread τ will have (additional)

hbSC-paths from every wmax
y that previously had an hbSC-

path to wmax
x . Accordingly, the I .WSC component tracks for

every x ∈ Loc the set of locations y such that G .wmax
y has

an hbSC-path towmax
x . In steps that read from x in thread τ ,

we incorporate I .WSC(x) into I .VSC(τ). Note that, while y ∈

I .MSC(x) iff wmax
y has an hbSC-path to some event accessing

x , we have y ∈ I .WSC(x) iff wmax
y has an hbSC-path to wmax

x
(equivalently, to some write event accessing x). This implies,

in particular, that we always have I .WSC(x) ⊆ I .MSC(x).
Formally, the meaning of these two “helper” components

is given by:

I (G).MSC = λx . {y | G .wmax
y ∈ dom(G .hbSC

?
; [G .Ex])}

I (G).WSC = λx . {y | ⟨G .wmax
y ,G .wmax

x ⟩ ∈ G .hbSC
?}

Initially, we take SCM.q0.VSC = λτ . Loc and SCM.q0.MSC =
SCM.q0.WSC = λx . {x}.

Figure 5 presents themaintenance of I .VSC, I .MSC and I .WSC
(primed components denote the corresponding components

after the transition mentioned in the column headers). In

particular, note that when a write (or RMW) to x is per-

formed it becomes the new wmax
x and it has no hbSC-paths

to other events in the execution graph. Thus, we remove

x from I .VSC(π) for every thread π except for the one that

performed the write, as well as from I .MSC(y) and I .WSC(y)
for every y , x . In addition, when accessing location x in

thread τ , I .MSC(x) inherits I .VSC(τ) (every event that had

hbSC-path to thread τ now has hbSC-path to an event access-

ing x), and when writing to location x in thread τ , I .WSC(x)
inherits I .VSC(τ) (every event that had hbSC-path to thread

τ now has hbSC-path towmax
x).

RAG-tracking (I .V, I .W, I .VRMW, I .WRMW). It remains to extend

the instrumentation, so that we can check for every thread τ
and label l , whether the transition ⟨τ , l⟩ in enabled in RAG
with a predecessor write that is not wmax

loc(l) (condition (b)

above). For this matter, we include four additional compo-

nents in the state I of SCM. Two of them, I .V and I .VRMW, are
functions in (Tid × Loc) → P(Val) and are the ones used to

check the above condition. The other two, I .W and I .WRMW, are
functions in (Loc × Loc) → P(Val) and, as before, are used
to properly maintain I .V and I .VRMW.
To understand these components, recall the transition of

RAG in §4.2:

Read: Consider first a read transition ⟨τ , l⟩ with l = R(x,vR).
By definition, an execution graph G enables ⟨τ , l⟩ with a

predecessor write w ∈ G .Wx if valW(w) = vR and w <
dom(G .mo ;G .hb? ; [G .Eτ]). To be able to check this condi-

tion, we use I .V to track for every τ ∈ Tid and x ∈ Loc
the set of values that are written by some w ∈ G .Wx that

is not G .wmax
x and satisfies w < dom(G .mo ;G .hb? ; [G .Eτ]).

Then, to check condition (b) above, we check whether vR ∈
I .V(τ)(x). In other words, I .V(τ)(x) tracks the set of values
that can be read by thread τ from x under RAG, excluding the
case of reading fromwmax

x (which is also allowed by SCG).
As before, to maintain I .V, we use another component

in I . When thread τ reads (or performs an RMW to) x in a

transition of SCG, it induces an mo ;hb-path to thread τ from

any write that had mo ; hb-path to wmax
x . Thus, after such

transition, I .V(τ)(y) should be restricted to values written

by some w ∈ G .Wy such that ⟨w,G .wmax
x ⟩ < G .mo ; G .hb?.

Accordingly, I .W tracks for every pair x,y ∈ Loc the set of
values that are written by some writew ∈ G .Wy that is not

G .wmax
y and satisfies ⟨w,G .wmax

x ⟩ < G .mo ;G .hb?.

Write and RMW: Awrite (or RMW) transition is similar, but

it is subject to an additional constraint in RAG: the prede-
cessor writew should not be an mo-immediate predecessor

of an RMW event in G (equivalently,w should not be read

by an RMW event). For this condition, we use I .VRMW, that, as
I .V, tracks for every τ ∈ Tid and x ∈ Loc the set of values
that are written by somew ∈ G .Wx that is not G .wmax

x and

satisfiesw < dom(G .mo ;G .hb? ; [G .Eτ]), but further requires
that w < dom(G .mo|imm ; [RMW]). To maintain I .VRMW, we
use I .WRMW, which is similar to I .W with the same additional

condition onw (i.e.,w < dom(G .mo|imm ; [RMW])).

Formally, the meaning of these components is given by:

I (G).V = λτ , x . valW[W \ dom(R ; [G .Eτ])]

I (G).W = λy, x . valW[W \ dom(R ; [{G .wmax
y }])]

I (G).VRMW = λτ , x . valW[W \ dom(R ; [G .Eτ] ∪ RRMW)]

I (G).WRMW = λy, x . valW[W \ dom(R ; [{G .wmax
y }] ∪ RRMW)]

whereW = G .Wx \ {G .wmax
x }, R = G .mo ;G .hb? and RRMW =

G .mo|imm ; [RMW] (the function valW is extended to sets of

events in the obvious way). Initially, since each location has

only one write in the initial graph, these four components

all return the empty set of values. Figure 6 presents our

maintenance of these components.

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

⟨τ , W(x,v)⟩ where vR = M(x) ⟨τ , R(x,v)⟩ ⟨τ , RMW(x,vR,vW)⟩

V′ = λπ ,y.


∅ π = τ , y = x

V(π)(x) ∪ {vR} π , τ , y = x

V(π)(y) y , x

{
V(τ)(y) ∩ W(x)(y) π = τ

V(π)(y) π , τ


V(τ)(y) ∩ W(x)(y) π = τ

V(π)(x) ∪ {vR} π , τ , y = x

V(π)(y) π , τ , y , x

W′ = λz,y.


V(τ)(y) z = x, y , x

W(z)(x) ∪ {vR} z , x, y = x

W(z)(y) otherwise

W(z)(y)


W(x)(y) ∩ V(τ)(y) z = x, y , x

W(z)(x) ∪ {vR} z , x, y = x

W(z)(y) otherwise

V′RMW = λπ ,y.


∅ π = τ , y = x

VRMW(π)(x) ∪ {vR} π , τ , y = x

VRMW(π)(y) y , x

{
VRMW(τ)(y) ∩ WRMW(x)(y) π = τ

VRMW(π)(y) π , τ

W′RMW = λz,y.


VRMW(τ)(y) z = x, y , x

WRMW(z)(x) ∪ {vR} z , x, y = x

WRMW(z)(y) otherwise

WRMW(z)(y)

{
WRMW(x)(y) ∩ VRMW(τ)(y) z = x, y , x

WRMW(z)(y) otherwise

Figure 6. Maintaining V, W, VRMW, and WRMW in SCM transitions.

Putting all pieces together, the states of SCM are tuples

I = ⟨M,VSC,MSC,WSC,V ,W ,VRMW,MRMW⟩. Its transitions are

obtained by instrumenting the transitions of SC (which gov-

ern theM component) with the transformations in Figures 5

and 6. The next lemma (which we proved in Coq) ensures

that they track the intended properties.

Lemma 5.2. The following hold:
• SCM.q0 = I (G0).

• If G
⟨τ ,l ⟩
−−−−→SCG G ′, then I (G)

⟨τ ,l ⟩
−−−−→SCM I (G ′).

• If I (G)
⟨τ ,l ⟩
−−−−→SCM I ′, thenG

⟨τ ,l ⟩
−−−−→SCG G ′ and I (G ′) = I ′

for some G ′ ∈ EGraph.

Our main result easily follows from Thm. 5.1 and Lemma 5.2:

Theorem 5.3. P is execution-graph robust against RA iff for
every reachable state ⟨q, I ⟩ in PSCM, the following hold for
every ⟨τ , l⟩ that is enabled in q and satisfies loc(l) ∈ I .VSC(τ),
where x = loc(l) and vR = valR(l):

• if typ(l) = W then I .VRMW(τ)(x) = ∅.
• if typ(l) = R then vR < I .V(τ)(x).
• if typ(l) = RMW then vR < I .VRMW(τ)(x).

PSPACE-completeness (assuming bounded data domain

as we defined in §2) easily follows:

Corollary 5.4. Verifying execution-graph robustness against
RA for a given input program is PSPACE-complete.

Proof (outline). For the upper bound, we can (gradually) guess
a run of PSCM and check the conditions of Thm. 5.3 at each

step. The memory required for storing a state is polynomial

in the size of P . The lower bound is established as the one

in [19] for TSO, by a reduction from reachability under SC
(which is PSPACE-complete [35]): A program can be made

robust by adding fences (as in Ex. 3.6) between every two

instructions, and an artificial robustness violation (e.g., in the

form of SB) can be addedwhen the target state is reached. □

Note that for verifying robustness we generate one reach-

ability query, and since we only monitor traces, we do not

add additional non-determinism w.r.t. reachability under SC.
However, the instrumentation in SCM creates dependencies

between instructions (e.g., both a write to x and a write to

y , x require to update the bit representing y ∈ MSC(x)),
which may hinder partial order reduction.

5.1 Abstract Value Management
The V and VRMW (and, consequently, W and WRMW) components

in SCM states are often “too elaborate” for what is actually

needed to verify robustness. For example, for a program

P without CAS, wait and BCAS instructions, whether PRAG
enables a transition or not does not depend on the value

being read. In such case, we only need to check whether

I .V(τ)(x) is empty (for reads) and whether I .VRMW(τ)(x) is
empty (for writes and RMWs). More generally, we only need

to track values that may affect PRAG transitions (e.g., block a

thread from executing or make an RMW succeed). Next, we

use this observation to reduce the metadata size in SCM. To

do so, we first define critical values.

Definition 5.5. A value v ∈ Val is called a critical value of
x ∈ Loc in a sequential program S if at least one of the follow-
ing hold for some q ∈ S .Q: (1) q enables R(x,v) but there ex-
ists v ′

such that q does not enable R(x,v ′) and RMW(x,v ′,vW)
for every vW; (2) q enables RMW(x,v,vW) for some vW ∈ Val
but there exists v ′

such that q does not enable RMW(x,v ′,v ′
W)

for every v ′
W. We call v a critical value of x in a (concurrent)

program P if it is a critical value of x in P(τ) for some τ ∈ Tid,
and denote by Val(P, x) the set of critical values of x in P .

For instance, if wait(x = 1) is included in a program P
then 1 is a critical value ofx in P . Similarly, r := CAS(x, 0 � 1)

(e.g., for implementing spin locks) makes 0 a critical value of

x . A program without CAS, wait and BCAS instructions has

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

no critical values. On the other hand, in a program including

an instruction like r := CAS(x, r ′ � e) (where the expected
value is not a constant), we have Val(P, x) = Val (in which

case, our proposed optimization does not change anything).

Now, the V, VRMW, W, WRMW components can be restricted to

record information only about the critical values (so, we have

V, VRMW : Tid →
∏

x ∈Loc P(Val(P, x)) and W, WRMW : Loc →∏
x ∈Loc P(Val(P, x))), and additional components CV,CVRMW :

Tid → P(Loc) andCW,CWRMW : Loc → P(Loc) (disjunctively)
summarize all non-critical values. The latter are formally

interpreted as follows (using the interpretations above):

I (G).CV = λτ . {y | I (G).V(τ)(y) \ Val(P,y) , ∅}

I (G).CVRMW = λτ . {y | I (G).CVRMW(τ)(y) \ Val(P,y) , ∅}

I (G).CW = λx . {y | I (G).W(x)(y) \ Val(P,y) , ∅}

I (G).CWRMW = λx . {y | I (G).WRMW(x)(y) \ Val(P,y) , ∅}

That is, CV(τ) (respectively, CVRMW(τ)) contains all locations
y for which there exist at least one non-critical value that

is written by a non-mo-maximal write to y that can serve as

the predecessor write in an RAG read (respectively, write or

RMW) step. The maintenance of these components (given in

[1, §C]) is straightforwardly derived from the maintenance

of V, VRMW, W, WRMW.
In turn, three conditions are added to Thm. 5.3:

• if typ(l) = W then x < I .CVRMW(τ).
• if typ(l) = R and vR < Val(P, x) then x < I .CV(τ).
• if typ(l) = RMW and vR < Val(P, x) then x < I .CVRMW(τ).

This construction results in smaller instrumentation (and

fewer operations to maintain the instrumentation), where

the size (number of bits) of the monitoring metadata is

3|Tid| |Loc| + 4|Loc|2 + 2(|Tid| + |Loc|)
∑
x ∈Loc

|Val(P, x)|.

In particular, for programs without CAS, wait and BCAS
instructions the metadata size is 3|Tid| |Loc| + 4|Loc|2, while
in the worst case (when all values are critical) we will have

|Loc|(|Tid| + 2|Loc| + 2|Val|(|Tid| + |Loc|)). In some of the

examples we checked, this optimization dramatically reduce

the verification time (e.g., the ‘ticketlock4’ example in §7

is x9 faster). In addition, it may be beneficial for programs

with infinite data domains but finite sets of critical values,

where the (generally undecidable) reachability problem in

PSCM can be solved using abstraction techniques. (This is left

for future work.)

6 Extension with Non-atomic Accesses
In this section, we describe an extension of our approach

to handle C/C++11’s non-atomic accesses, typically used

for “data variables” (unlike “synchronization variables”). A

data-race on a non-atomic access is considered an undefined

behavior, and thus non-atomic accesses allow very efficient

implementation. In turn, robustness of a program should

imply that it has no data-races on non-atomic accesses.

For this extension, we assume that Loc = Locra ⊎ Locna
is composed from a set of release/acquire locations and a

disjoint set of non-atomic locations (we do not consider re-

lease/acquire and non-atomic accesses to the same location).

The programming language Fig. 1 is extended with instruc-

tions xna := e and r := xna for xna ∈ Locna, e ∈ Exp, and
r ∈ Reg. The rest of the instructions only apply to locations

in Locra (in particular, there are no RMW instructions for

non-atomic locations).

The SC and SCG systems ignore the type of the loca-

tion, while RAG is extended to detect races on non-atomic

locations. We refer to the extended memory subsystem as

RAG+NA. The state of RAG+NA are execution graphs (as in

RAG) as well as a special state, denoted by⊥, that the system
enters once a race is detected. To define RAG+NA’s transi-
tions, hb is modified so that only rf-edges on release/acquire
accesses synchronize:

G .hb ≜ (G .po ∪
⋃

x ∈Locra

[Wx] ;G .rf ; [Rx])+

Now, the transitions of RAG+NA extend the transitions of

RAG (which govern the release/acquire locations) with the

following steps for non-atomic accesses:

xna = loc(l) xna ∈ Locna
typ(l) = R =⇒ valW(G .w

max
xna) = valR(l)

G .wmax
xna ∈ dom(G .hb? ; [G .Eτ])

G
⟨τ ,l ⟩
−−−−→RAG+NA add(G, τ , l,G .wmax

x)

loc(l) ∈ Locna G .wmax
loc(l) < dom(G .hb? ; [G .Eτ])

G
⟨τ ,l ⟩
−−−−→RAG+NA ⊥

Thus, for a thread to successfully perform a non-atomic

access to location xna, it must have observed (in hb) the mo-
maximal (equivalently, hb-maximal) write to xna. Otherwise,
the system moves to the ⊥ state.

Execution-graph robustness against RAG+NA is defined

just as against RA (cf. Def. 4.9), and it implies state robustness

against RAG+NA. Since PSCG never reaches states of the

form ⟨q,⊥⟩, execution-graph robustness against RAG+NA
implies that such states are not reachable in PRAG+NA. Next,
Theorem 5.1 is extended as follows:

Definition 6.1. A stateq of a concurrent program is racy ifq
enables both ⟨τ , l1⟩ and ⟨π , l2⟩ for some τ , π and l1, l2 ∈ Lab
with loc(l1) = loc(l2) ∈ Locna and W ∈ {typ(l1), typ(l2)}.

Theorem 6.2. A concurrent program P is execution-graph ro-
bust against RAG+NA iff there does not exist a non-robustness
witness ⟨q,G, τ , l,w⟩ for P with loc(l) ∈ Locra (as defined in
Thm. 5.1), and there does not exist a reachable state ⟨q,G⟩ in
PSCG such that q is racy.

The SCM system can be easily adapted for monitoring the

conditions of Thm. 6.2. The memory component in SCM’s

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Program Res #T LoC Time SC

Trencher TSO

Res Time

barrier (BAR) ✓ 2 11 1.6 (100%) 1.1 ✗⋆ -

dekker-sc ✗ 2 43 4.2 (100%) 1.3 ✗ 5.9

dekker-tso ✓ 2 49 5.2 (100%) 1.3 ✓ 5.9

peterson-sc ✗ 2 28 2.5 (100%) 1.2 ✗ 5.6

peterson-tso ✗ 2 30 3.3 (100%) 1.3 ✓ 5.6

peterson-ra ✓ 2 44 5.8 (100%) 1.2 ✓ 5.8

peterson-ra-dmitriy ✓ 2 36 4.3 (100%) 1.2 ✓ 5.5

peterson-ra-bratosz ✗ 2 28 3.4 (100%) 1.1 ✗ 5.6

lamport2-sc ✗ 2 65 9.1 (100%) 1.3 ✗ 8.0

lamport2-tso ✗ 2 69 13.7 (100%) 1.3 ✓ 8.2

lamport2-ra ✓ 2 79 18.9 (99%) 1.4 ✓ 7.8

lamport2-3-ra ✓ 3 123 215.6 (21%) 6.1 ✗⋆ -

spinlock ✓ 2 34 1.6 (100%) 1.2 ✓ 5.4

spinlock4 ✓ 4 66 6.4 (80%) 1.6 ✓ 6.8

ticketlock ✓ 2 25 2.6 (100%) 1.1 ✓ 5.8

ticketlock4 ✓ 4 49 22.6 (25%) 7.5 ✓ 23.4

seqlock ✓ 4 49 20.7 (16%) 3.4 ✓ 8.9

nbw-w-lr-rl ✓ 4 50 5.7 (100%) 1.2 ✓ 8.6

rcu ✓ 4 74 67.6 (10%) 2.2 ✗⋆ -

rcu-offline ✓ 3 215 137.9 (50%) 18.3 ✗⋆ -

cilk-the-wsq-sc ✗ 2 57 5.0 (100%) 1.2 ✗ 9.6

cilk-the-wsq-tso ✓ 2 59 6.1 (100%) 1.3 ✓ 11.7

chase-lev-sc ✗ 3 55 3.8 (100%) 29.5 ✗ 15.3

chase-lev-tso ✗ 3 57 4.9 (100%) 31.3 ✓ 128.1

chase-lev-ra ✓ 3 61 67.1 (8%) 38.1 ✓ 108.3

Figure 7. Experiments with Rocker

states is extended in the obvious way to track the latest

value of non-atomic locations as well. Since non-atomic in-

structions do not affect inter-thread synchronization, the

monitoring instrumentation in §5 requires no change (it

only applies to the locations in Locra). Since SCM and SCG
have the same traces, the additional condition about races

can be checked on SCM runs.

7 Implementation and Evaluation
We implemented our algorithm in a prototype tool called

Rocker (for RObustness ChecKER), which uses Spin [31]

as a back-end model checker. The implementation and the

examples it was tested on are available in the artifact accom-

panying this paper. Rocker takes as input a program in our

toy programming language, and converts it to Promela code

(Spin’s input language) with appropriate instrumentation

and assertions that check for execution-graph robustness

against RA. Thus, our implementation is actually using the

SC memory subsystem, and implements the monitoring of

SCM by instrumenting the input program. When a robust-

ness violation is detected, one can use Spin’s output to see

the trace leading to this violation. In addition, since in any

case we explore traces of the input program under SC, Rocker
allows one to include standard assertions, which will be ver-

ified as well by the model checker.

We performed a series of experiments on litmus tests, ex-

amples from [5, 17], and additional concurrent algorithms.

Figure 7 summarizes the running times on some of the ex-

amples when executed on an Intel
®
Core™ i5-6300U CPU @

2.40GHz GNU/Linux machine. Columns ‘Res’, ‘#T’, and ‘LoC’

respectively present the robustness of the input program,

the number of threads, and total number of lines of code.

Column ‘Time’ shows the verification time (in seconds), and

the percentage of that time that was dedicated to compiling

Spin’s verifier (using gcc with -O2). The latter often com-

pletely dominates the total time. Generating the input for

Spin is negligibly fast (<0.1s), as well as Spin’s verifier gen-
eration in C (<0.2s). Column ‘SC’ provides, for the sake of

comparison, the verification duration using Spin with no in-

strumentation whatsoever. In this mode, only the assertions

in the input are verified assuming SC semantics.

For some of the examples Fig. 7 provides several versions

of the same algorithm: The ‘-sc’ suffix denotes an original

algorithm as designed for SC; the ‘-tso’ suffix denotes its

strengthening with fences to ensure robustness against TSO;

and, when needed, the ‘-ra’ suffix is a further strengthening

that ensures robustness against RA. For instance, it is well
known that Peterson mutual exclusion algorithm (‘peterson-

sc’) is not robust against relaxed memory. For TSO, placing

one fence in each thread suffices to ensure robustness. For

RA, more fences are needed (‘peterson-ra’). Alternatively,

as noted in [57], one may replace certain write operations

by RMWs (‘peterson-dmitriy’). The choice of these writes is

critical—Rocker correctly identified that a different version

is incorrect (‘peterson-bratosz’). Other algorithms, which

were designed with relaxed memory considerations in mind,

e.g., Seqlocks [16] and a user-level RCU [26], do not require

fences at all. Note that we have also verified robustness of

a more involved RCU implementation (‘rcu-offline’), where

the writer is not a unique thread, and threads may declare

that they are going offline, stop the communication with the

writer and return online later on.

Finally, column ‘Trencher’ provides the (total) running

time of Trencher, a tool for verifying robustness against

TSO [17], which also uses Spin for model checking. (A newer

version of Trencher that implements its own model checker

crashed on some of these examples.) Their notion of robust-

ness is similar to execution-graph robustness, but it should

be noted that Rocker and Trencher solve different problems:

TSO and RA are fundamentally different models, where RA
is weaker and non-multi-copy atomic. Thus, this comparison

is of limited significance (see also §8). The input language

is different as well. In particular, Trencher does not han-

dle blocking instructions. For this reason, Trencher reports

some examples as non-robust (marked with
⋆
), while no

additional fences are needed for them to function correctly

under TSO. We note that Trencher can be used in parallel

to Rocker for verifying robustness against RA: a violation

detected by Trencher implies non-robustness against RA.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

8 Related Work
Robustness against weak memory semantics was studied

before for hardware models, especially in the context of auto-

matically enforcing robustness by inserting memory fences

and other synchronization primitives (see, e.g., [9, 21, 24, 25],

as well as [8] for a practical approximate generic approach).

In particular, robustness against TSO (and its PSO vari-

ant) [10, 32, 50] received considerable attention, e.g., [4, 5, 17–

19, 22, 23, 30, 41–43, 49]. Generally speaking, the closest

to our approach is Burckhardt and Musuvathi [22], imple-

mented in a tool called Sober, which reduces robustness

against TSO to reachability under SC in an instrumented

program that verifies that TSO executions cannot diverge

w.r.t. SC ones.
3
In addition, verifying (trace based) robust-

ness against TSO was shown by Bouajjani et al. [19] to be

PSPACE complete—the same complexity, as we show, as

verifying execution-graph robustness against RA.
Except for the fact that RA is strictly weaker than TSO (see

the 2+2W and IRIW programs above), there are crucial dif-

ferences between TSO and RA that do not allow one to apply

the approaches developed for TSO when targeting RA. First,
TSO’s operational model provides a simple description of its

runs, identifying a TSO run with an SC run where global ef-

fects of write instructions may be delayed. This presentation

of TSO plays a key role in the characterization, verification

and enforcement of robustness against TSO (see, e.g., [5, 17–

19]). RA does not admit a similar presentation, and in fact,

since RA is non-multi-copy-atomic (see Ex. 3.3), unlike TSO,

RA cannot be explained by program transformations (in-

struction reorderings and eliminations) on top of SC [38].

Second, RMW operations in RA provide much weaker guar-

antees than in TSO, where even a failed CAS (when a CAS

instruction is included as a primitive, as in [43]) serves as

a memory fence. As described in §5, handling RMWs in RA
(where, in particular, a failed CAS is nothing more than a

plain read) requires certain technical novelties.

Less work was devoted to robustness against a program-
ming language concurrency semantics. The well-known DRF

guarantee [6, 29] is a simple robustness criterion, e.g., for

a strengthened version of C11 [13, 39], but it is too weak,

as (low-level) synchronizations naturally involve data-races,

and often do not imply non-robustness. Meshman et al. [46]

proposed an (approximate and incomplete) method that uses

CDSchecker [48] for restricting non-SC behaviors of C11 pro-

grams. For a particular class of “server client programs”, it

was shown in [36] that certain simple fence insertion strategy

ensures robustness. However, in this paper we are interested

in precise robustness verification for arbitrary programs.

Verification under RA has also received significant atten-

tion. This includes works on program logics, e.g., [27, 33, 37,

3
However, as Burnim et al. [23] observed (and as was verified in [44]), the

declarative TSO model in [22] is broken (it mishandles internal reads-from

edges), rendering Sober unsound.

53–55], which require manual proofs, and (bounded) model

checkers, e.g., [3, 34, 48], which provide limited guarantees

for programs with loops. These methods can be used to ver-

ify programs that are not necessarily robust against RA. The
verification problem of programs with loops under RA (i.e.,

given a program P and a state q ∈ P .Q, is q reachable un-

der the concurrent system PRA?) was recently shown to be

undecidable [2]. (For TSO, this problem is decidable but non-

primitive recursive [11, 12].) As shown in [24, Thm. 2.12], this

immediately entails the undecidability of state robustness.

Finally, robustness was also studied, e.g., in [15, 20, 28, 47],

in the context of distributed systems, where SC is replaced by

serializability. Unlike the current work, these works are fo-
cused on practical over-approximations, and do not provide

provably precise general verification methods.

9 Conclusion
We have presented a method to verify execution-graph ro-

bustness against release/acquire concurrency semantics, in

particular, establishing the decidability of this problem. Our

method works by exploring only runs of the program under

SC while monitoring certain properties for the detection of

robustness violations. We believe that our result can play an

important role in verification and development of concur-

rent algorithms for weak memory semantics, alongside with

other existing methods.

In the future, we plan to study the applicability of our ap-

proach for different and extended models, such as RC11 [39],

WeakRC11 [34], SRA [36], as well as transactional consis-

tency models, such as PSI [52]. In addition, we are interested

in deriving efficient and precise methods for automatic ro-

bustness enforcement (such as fence insertion) as were de-

veloped before for hardware models; as well as in handling

parametrized programs with arbitrary number of threads.

Acknowledgments
We thank the PLDI’19 reviewers for their helpful feedback.

This research was supported by the Israel Science Founda-

tion (grant number 5166651), and by Len Blavatnik and the

Blavatnik Family foundation. The first author was also sup-

ported by the Alon Young Faculty Fellowship.

References
[1] Ori Lahav and Roy Margalit. 2019. Supplementary material for this

paper. https://www.cs.tau.ac.il/~orilahav/papers/pldi19full.pdf
[2] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and Shankara-

narayanan Krishna. 2019. Verification of programs under the release-

acquire semantics. In PLDI (to appear).
[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and

Tuan Phong Ngo. 2018. Optimal stateless model checking under the

release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA,
Article 135 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276505

[4] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lång, and

Tuan Phong Ngo. 2015. Precise and sound automatic fence insertion

https://www.cs.tau.ac.il/~orilahav/papers/pldi19full.pdf
https://doi.org/10.1145/3276505

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

procedure under PSO. In NETYS. Springer International Publishing,
Cham, 32–47.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo.

2015. The best of both worlds: Trading efficiency and optimality in

fence insertion for TSO. In ESOP. Springer-Verlag New York, Inc., New

York, 308–332. https://doi.org/10.1007/978-3-662-46669-8_13
[6] Sarita V. Adve andMark D. Hill. 1990. Weak ordering—a new definition.

In ISCA. ACM, New York, 2–14. https://doi.org/10.1145/325164.325100
[7] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and

Phillip W. Hutto. 1995. Causal memory: definitions, implementation,

and programming. Distributed Computing 9, 1 (1995), 37–49.

[8] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. 2017.

Don’t sit on the fence: a static analysis approach to automatic fence

insertion. ACM Trans. Program. Lang. Syst. 39, 2, Article 6 (May 2017),

38 pages. https://doi.org/10.1145/2994593
[9] Jade Alglave and Luc Maranget. 2011. Stability in weak memory

models. In CAV. Springer-Verlag, Berlin, Heidelberg, 50–66. http:
//dl.acm.org/citation.cfm?id=2032305.2032311

[10] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding

cats: modelling, simulation, testing, and data mining for weak memory.

ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74 pages.

https://doi.org/10.1145/2627752
[11] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and

Madanlal Musuvathi. 2010. On the verification problem for weak

memory models. In POPL. ACM, New York, 7–18. https://doi.org/10.
1145/1706299.1706303

[12] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and

Madanlal Musuvathi. 2012. What’s decidable about weak memory

models?. In ESOP. Springer-Verlag, Berlin, Heidelberg, 26–46. https:
//doi.org/10.1007/978-3-642-28869-2_2

[13] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-

Pharabod, and Peter Sewell. 2015. The problem of programming

language concurrency semantics. In ESOP. Springer, Berlin, Heidel-
berg, 283–307. https://doi.org/10.1007/978-3-662-46669-8_12

[14] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ concurrency. In POPL. ACM, New York,

55–66. https://doi.org/10.1145/1925844.1926394
[15] Giovanni Bernardi and Alexey Gotsman. 2016. Robustness against con-

sistency models with atomic visibility. In CONCUR. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:15. https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.7

[16] Hans-J. Boehm. 2012. Can Seqlocks get along with programming

language memory models?. In MSPC. ACM, New York, 12–20. https:
//doi.org/10.1145/2247684.2247688

[17] Ahmed Bouajjani, Egor Derevenetc, and RolandMeyer. 2013. Checking

and enforcing robustness against TSO. In ESOP. Springer-Verlag, Berlin,
Heidelberg, 533–553. https://doi.org/10.1007/978-3-642-37036-6_29

[18] Ahmed Bouajjani, Constantin Enea, Suha Orhun Mutluergil, and Ser-

dar Tasiran. 2018. Reasoning about TSO programs using reduction

and abstraction. In CAV. Springer, Cham, 336–353.

[19] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Deciding

robustness against total store ordering. In ICALP. Springer, Berlin,
Heidelberg, 428–440.

[20] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev.

2018. Static serializability analysis for causal consistency. In PLDI.
ACM, New York, 90–104. https://doi.org/10.1145/3192366.3192415

[21] Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007.

CheckFence: Checking consistency of concurrent data types on re-

laxed memory models. In PLDI. ACM, New York, 12–21. https:
//doi.org/10.1145/1250734.1250737

[22] Sebastian Burckhardt and Madanlal Musuvathi. 2008. Effec-

tive program verification for relaxed memory models. In CAV.
Springer-Verlag, Berlin, Heidelberg, 107–120. https://doi.org/10.1007/
978-3-540-70545-1_12

[23] Jabob Burnim, Koushik Sen, and Christos Stergiou. 2011. Sound and

complete monitoring of sequential consistency for relaxed memory

models. In TACAS. Springer, Berlin, Heidelberg, 11–25.
[24] Egor Derevenetc. 2015. Robustness against relaxed memory models.

Ph.D. Dissertation. University of Kaiserslautern. http://kluedo.ub.
uni-kl.de/frontdoor/index/index/docId/4074

[25] Egor Derevenetc and Roland Meyer. 2014. Robustness against Power

is PSpace-complete. In ICALP. Springer, Berlin, Heidelberg, 158–170.
[26] Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Da-

genais, and Jonathan Walpole. 2012. User-level implementations of

read-copy update. IEEE Trans. Parallel Distrib. Syst. 23, 2 (Feb. 2012),
375–382. https://doi.org/10.1109/TPDS.2011.159

[27] Simon Doherty, Brijesh Dongol, Heike Wehrheim, and John Derrick.

2019. Verifying C11 programs operationally. In PPoPP. ACM, New

York, 355–365. https://doi.org/10.1145/3293883.3295702
[28] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil,

and Dennis Shasha. 2005. Making snapshot isolation serializable. ACM
Trans. Database Syst. 30, 2 (June 2005), 492–528. https://doi.org/10.
1145/1071610.1071615

[29] Kourosh Gharachorloo, Sarita V. Adve, AnoopGupta, John L. Hennessy,

andMark D. Hill. 1992. Programming for different memory consistency

models. J. Parallel and Distrib. Comput. 15, 4 (1992), 399 – 407. https:
//doi.org/10.1016/0743-7315(92)90052-O

[30] Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. 2012.

Show no weakness: sequentially consistent specifications of TSO li-

braries. In DISC. Springer-Verlag, Berlin, Heidelberg, 31–45. https:
//doi.org/10.1007/978-3-642-33651-5_3

[31] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions
on software engineering 23, 5 (1997), 279–295.

[32] SPARC International Inc. 1994. The SPARC architecture manual (version
9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[33] Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and

Viktor Vafeiadis. 2017. Strong logic for weak memory: Reasoning

about release-acquire consistency in Iris. In ECOOP. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 17:1–17:29.

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
[34] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-

tor Vafeiadis. 2017. Effective stateless model checking for C/C++ con-

currency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec. 2017),
32 pages. https://doi.org/10.1145/3158105

[35] Dexter Kozen. 1977. Lower bounds for natural proof systems. In SFCS.
IEEE Computer Society, Washington, 254–266. https://doi.org/10.
1109/SFCS.1977.16

[36] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming

release-acquire consistency. In POPL. ACM, New York, 649–662. https:
//doi.org/10.1145/2837614.2837643

[37] Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries reasoning for

weak memory models. In ICALP. Springer-Verlag, Berlin, Heidelberg,
311–323. https://doi.org/10.1007/978-3-662-47666-6_25

[38] Ori Lahav and Viktor Vafeiadis. 2016. Explaining relaxed memory

models with program transformations. In FM. Springer, Cham, 479–495.

https://doi.org/10.1007/978-3-319-48989-6_29
[39] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI.
ACM, New York, 618–632. https://doi.org/10.1145/3062341.3062352

[40] Leslie Lamport. 1979. How to make a multiprocessor computer that

correctly executes multiprocess programs. IEEE Trans. Computers 28,
9 (1979), 690–691.

[41] Alexander Linden and Pierre Wolper. 2011. A verification-based ap-

proach to memory fence insertion in relaxed memory systems. In

SPIN. Springer-Verlag, Berlin, Heidelberg, 144–160. http://dl.acm.org/
citation.cfm?id=2032692.2032707

[42] Alexander Linden and Pierre Wolper. 2013. A verification-based ap-

proach to memory fence insertion in PSO memory systems. In TACAS.
Springer-Verlag, Berlin, Heidelberg, 339–353. https://doi.org/10.1007/

https://doi.org/10.1007/978-3-662-46669-8_13
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/2994593
http://dl.acm.org/citation.cfm?id=2032305.2032311
http://dl.acm.org/citation.cfm?id=2032305.2032311
https://doi.org/10.1145/2627752
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/1925844.1926394
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.7
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1145/2247684.2247688
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1145/3192366.3192415
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1145/1250734.1250737
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1007/978-3-540-70545-1_12
http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074
http://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1145/3293883.3295702
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1016/0743-7315(92)90052-O
https://doi.org/10.1016/0743-7315(92)90052-O
https://doi.org/10.1007/978-3-642-33651-5_3
https://doi.org/10.1007/978-3-642-33651-5_3
https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3158105
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1007/978-3-319-48989-6_29
https://doi.org/10.1145/3062341.3062352
http://dl.acm.org/citation.cfm?id=2032692.2032707
http://dl.acm.org/citation.cfm?id=2032692.2032707
https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1007/978-3-642-36742-7_24

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

978-3-642-36742-7_24
[43] Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, and

Eran Yahav. 2012. Dynamic synthesis for relaxed memory models.

In PLDI. ACM, New York, 429–440. https://doi.org/10.1145/2254064.
2254115

[44] Sela Mador-Haim, Rajeev Alur, and Milo M K. Martin. 2010. Generat-

ing litmus tests for contrasting memory consistency models. In CAV.
Springer-Verlag, Berlin, Heidelberg, 273–287. https://doi.org/10.1007/
978-3-642-14295-6_26

[45] Luc Maranget, Susmit Sarkar, and Peter Sewell. 2012. A tutorial

introduction to the ARM and POWER relaxed memory models.

http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf.

[46] Yuri Meshman, Noam Rinetzky, and Eran Yahav. 2015. Pattern-based

synthesis of synchronization for the C++ memory model. In FMCAD.
FMCAD Inc, Austin, TX, 120–127. http://dl.acm.org/citation.cfm?id=
2893529.2893552

[47] Kartik Nagar and Suresh Jagannathan. 2018. Automated detection of

serializability violations under weak consistency. In CONCUR 2018,
Vol. 118. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,

Germany, 41:1–41:18. https://doi.org/10.4230/LIPIcs.CONCUR.2018.
41

[48] Brian Norris and Brian Demsky. 2013. CDSchecker: checking concur-

rent data structures written with C/C++ atomics. In OOPSLA. ACM,

New York, 131–150. https://doi.org/10.1145/2509136.2509514
[49] Scott Owens. 2010. Reasoning about the implementation of concur-

rency abstractions on x86-TSO. In ECOOP. Springer-Verlag, Berlin,

Heidelberg, 478–503.

[50] Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86

memory model: x86-TSO. In TPHOLs. Springer, Heidelberg, 391–407.
https://doi.org/10.1007/978-3-642-03359-9_27

[51] Dennis Shasha and Marc Snir. 1988. Efficient and correct execution

of parallel programs that share memory. ACM Trans. Program. Lang.
Syst. 10, 2 (April 1988), 282–312. https://doi.org/10.1145/42190.42277

[52] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011.

Transactional storage for geo-replicated systems. In SOSP. ACM, New

York, 385–400. https://doi.org/10.1145/2043556.2043592
[53] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and

Viktor Vafeiadis. 2018. A separation logic for a promising semantics.

In ESOP. Springer International Publishing, Cham, 357–384.

[54] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: Navigat-

ing weak memory with ghosts, protocols, and separation. In OOPSLA.
ACM, New York, 691–707. https://doi.org/10.1145/2660193.2660243

[55] Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation

logic: A program logic for C11 concurrency. In OOPSLA. ACM, New

York, 867–884. https://doi.org/10.1145/2509136.2509532
[56] John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constan-

tinides. 2017. Automatically comparing memory consistency models.

In POPL. ACM, New York, 190–204. https://doi.org/10.1145/3009837.
3009838

[57] Anthony Williams. 2008. Peterson’s lock with C++0x atomics. Re-

trieved October 26, 2018 from https://www.justsoftwaresolutions.co.
uk/threading/petersons_lock_with_C++0x_atomics.html

https://doi.org/10.1007/978-3-642-36742-7_24
https://doi.org/10.1145/2254064.2254115
https://doi.org/10.1145/2254064.2254115
https://doi.org/10.1007/978-3-642-14295-6_26
https://doi.org/10.1007/978-3-642-14295-6_26
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://dl.acm.org/citation.cfm?id=2893529.2893552
http://dl.acm.org/citation.cfm?id=2893529.2893552
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.4230/LIPIcs.CONCUR.2018.41
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1145/42190.42277
https://doi.org/10.1145/2043556.2043592
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html
https://www.justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_atomics.html

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

A Proof of Theorem 5.1
In this section, we prove Thm. 5.1. To do so, we use declarative presentations of SCG and RAG, where program
behaviors are identified with consistent execution graphs. In §A.1 we present these presentations, and §A.2

provides the proof of Thm. 5.1.

A.1 Declarative Semantics
Definition A.1. A set E ⊆ Event is generated:
1. by a sequential program S for thread identifier τ ∈ Tid with final state q ∈ S .Q if there exist l1, ... ,ln ∈ Lab

such that E = {⟨τ , i, li ⟩ | 1 ≤ i ≤ n} and

S .q0
ϵ
−→

∗
S
l1
−→S

ϵ
−→

∗
S
l2
−→S

ϵ
−→

∗
S ...

ϵ
−→

∗
S
ln
−→S

ϵ
−→

∗
S q.

2. by a sequential program S for thread identifier τ ∈ Tid if it is generated by S for τ with some final state q.
3. by a concurrent program P with final state q ∈ P .Q if for every τ ∈ Tid, the set Eτ is generated by P(τ) for τ

with final state q(τ).
4. by a concurrent program P if it is generated by P with some final state q ∈ P .Q.

Definition A.2. A memory subsystemM is based on execution graphs ifM .Q = EGraph,M .q0 = G0, and
σ
−→M⊆

σ
−→FG for every σ ∈ Tid × Lab (see Def. 4.5).

SCG and RAG, defined in §4, are both based on execution graphs. The following lemma directly follows from

our definitions:

Lemma A.3. Let M be a memory subsystem that is based on execution graphs. If ⟨q,G⟩ is reachable in the
concurrent system PM , then G .E \ Init is generated by P with final state q.

Lemma A.4. LetG be an execution graph, and e1, ... ,en be an enumeration ofG .E \ Init that respectsG .po (i.e.,
i < j whenever ⟨ei , ej ⟩ ∈ G .po). For every 1 ≤ k ≤ n, let τk = tid(ek) and lk = lab(ek). Then, G .E \ Init is
generated by a concurrent program P with final state q iff

P .q0
⟨τ1,ϵ ⟩
−−−−→

∗

P
⟨τ1,l1 ⟩
−−−−−→P

⟨τ1,ϵ ⟩
−−−−→

∗

P · ··
⟨τn ,ϵ ⟩
−−−−−→

∗

P
⟨τn ,ln ⟩
−−−−−→P

⟨τn ,ϵ ⟩
−−−−−→

∗

P q.

Proof. The right-to-left direction easily follows from our definitions by projecting the given trace on

each thread identifier. We prove the left-to-right direction. For every τ ∈ Tid and k ≥ 1, let i(τ ,k)
be the index of the k-th event in e1, ... ,en with thread identifier τ (or ⊥ if such event does not ex-

ist), and nτ be the maximal k such that i(τ ,k) , ⊥. Since G .E \ Init is generated by P with fi-

nal state q, for every τ ∈ Tid, there exist qτ
0
, ... ,qτnτ −1 such that qτ

0
= P(τ).q0, q

τ
nτ = q(τ) and

qτ
0

ϵ
−→

∗
S
li (τ ,1)
−−−−→P (τ)

ϵ
−→

∗
P (τ) q

τ
1

li (τ ,2)
−−−−→P (τ)

ϵ
−→

∗
P (τ) q

τ
2
...

ϵ
−→

∗
P (τ) q

τ
nτ −1

li (τ ,nτ)

−−−−−→P (τ)
ϵ
−→

∗
P (τ) q

τ
nτ . For every 0 ≤ k ≤ n,

let qk = λτ .qτ
| {j≤k | tid(ej)=τ } |

. In addition, we have q
0
= P .q0 and qn = q. Now, the defini-

tion of −→P entails that qk−1
⟨τk ,ϵ ⟩
−−−−−→

∗

P
⟨τk ,lk ⟩
−−−−−→P

⟨τk ,ϵ ⟩
−−−−−→

∗

P qk for every 1 ≤ k ≤ n. Hence, we have

P .q0
⟨τ1,ϵ ⟩
−−−−→

∗

P
⟨τ1,l1 ⟩
−−−−−→P

⟨τ1,ϵ ⟩
−−−−→

∗

P · ··
⟨τn ,ϵ ⟩
−−−−−→

∗

P
⟨τn ,ln ⟩
−−−−−→P

⟨τn ,ϵ ⟩
−−−−−→

∗

P q. □

The following notation and notion of an execution prefix are useful below.

Definition A.5. Let G be an execution graph, and let E ⊆ G .E that is downward closed w.r.t. G .hb (i.e.,

dom(G .hb ; [E]) ⊆ E) and contains the initialization events (Init ⊆ E). The execution G ∩ E is given by:

(G ∩ E).E = E, (G ∩ E).rf = [E] ;G .rf ; [E] and (G ∩ E).mo = [E] ;G .mo ; [E]. If G ′ = G ∩ E for some set E
that satisfies the above conditions, we say that G ′

is a prefix of G. If G ′
is a prefix of G and G ′ , G, we say

that G ′
is a proper prefix of G. Given a G .hb-maximal event e ∈ G .E, G \ {e} denotes the execution graph

G ∩ (G .E \ {e}).

It is easy to see that when E ⊆ G .E satisfies the above conditions, we have (G ∩ E).X = [E] ;G .X ; [E] for the
derived relations X ∈ {fr, hb, hbSC} as well.

Lemma A.6. If G .E \ Init is generated by concurrent program P , then so is G ′.E \ Init for every prefix G ′ of G.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

A.1.1 Declarative semantics for SC
Definition A.7 ([10]). An execution graph G is called SC-consistent if G .hbSC is irreflexive.

Lemma A.8. If G is reachable in SCG, then G is SC-consistent.

Proof. Proved in Coq (lemma SCG_run_consistency). □

Lemma A.9. Let G be an SC-consistent execution graph. Let e be a G .hbSC-maximal event in G .E \ Init. Let

τ = tid(e) and l = lab(e). Then: G \ {e}
⟨τ ,l ⟩
−−−−→SCG G.

Proof. Proved in Coq (lemma SCG_can_take_step). □

Lemma A.10. Let G be an SC-consistent execution graph. Let e1, ... ,en be an enumeration of G .E \ Init that
respects G .hbSC (i.e., i < j whenever ⟨ei , ej ⟩ ∈ G .hbSC). For every 1 ≤ k ≤ n, let τk = tid(ek) and lk = lab(ek).
Then:

G0
⟨τ1,l1 ⟩
−−−−−→SCG · ··

⟨τn ,ln ⟩
−−−−−→SCG G .

Proof. For every 0 ≤ k ≤ n, let Gk = G ∩ ({e1, ... ,ek } ∪ Init). Note that G0 = G0 and Gn = G. In addition,

for every 1 ≤ k ≤ n, we have that ek is Gk .hbSC-maximal event in Gk .E \ Init and Gk−1 = Gk \ {ek }. By

Lemma A.9, it follows that Gk−1
⟨τk ,lk ⟩
−−−−−→SCG Gk for every 1 ≤ k ≤ n. □

Lemma A.11. ⟨q,G⟩ is reachable in a concurrent system PSCG iffG is SC-consistent andG .E \ Init is generated
by P with final state q.

Proof. The (⇒) direction follows from Lemmas A.3 and A.8. We prove (⇐). Let e1, ... ,en be an enumeration of

G .E \ Init that respects G .hbSC. For every 1 ≤ k ≤ n, let τk = tid(ek) and lk = lab(ek). Since G .po ⊆ G .hbSC,
by Lemma A.4, we have:

P .q0
⟨τ1,ϵ ⟩
−−−−→

∗

P
⟨τ1,l1 ⟩
−−−−−→P

⟨τ1,ϵ ⟩
−−−−→

∗

P · ··
⟨τn ,ϵ ⟩
−−−−−→

∗

P
⟨τn ,ln ⟩
−−−−−→P

⟨τn ,ϵ ⟩
−−−−−→

∗

P q.

In addition, by Lemma A.10, we have:

G0
⟨τ1,l1 ⟩
−−−−−→SCG · ··

⟨τn ,ln ⟩
−−−−−→SCG G .

Then, our definitions ensure that ⟨q,G⟩ is reachable in PSCG. □

A.1.2 Declarative semantics for RA
RA-consistency is defined as follows.

Definition A.12 ([36]). An execution graph G is RA-consistent if the following hold:

• G .hb is irreflexive. (hb)

• G .mo ;G .hb is irreflexive. (write coherence)

• G .fr ;G .hb is irreflexive. (read coherence)

• G .fr ;G .mo is irreflexive. (atomicity)

Using the fact that mo is a total order on writes to each location, it is routine to show that RA-consistency can

be equivalently defined by weakening the irreflexivity condition in SC-consistency to only consider hb-edges
between accesses to the same location:

Lemma A.13. An execution graph G is RA-consistent iff (G .hb|loc ∪ G .mo ∪ G .fr)+ is irreflexive, where
G .hb|loc = {⟨a,b⟩ ∈ G .hb | loc(a) = loc(b)}.

Next, we establish similar properties as before to relate RAG with the declarative RA semantics.

Lemma A.14. If G is reachable in RAG, then it is RA-consistent.

Proof. Proved in Coq (lemma RAG_run_consistency). □

Lemma A.15. Let G be an RA-consistent execution graph. Let e be a G .hb-maximal event in G .E \ Init. Let

τ = tid(e) and l = lab(e). Then: G \ {e}
⟨τ ,l ⟩
−−−−→RAG G.

Proof. Proved in Coq (lemma RAG_can_take_step). □

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Lemma A.16. Let G be an RA-consistent execution graph. Let e1, ... ,en be an enumeration of G .E \ Init that
respectsG .hb (i.e., i < j whenever ⟨ei , ej ⟩ ∈ G .hb). For every 1 ≤ k ≤ n, let τk = tid(ek) and lk = lab(ek). Then:

G0
⟨τ1,l1 ⟩
−−−−−→RAG · ··

⟨τn ,ln ⟩
−−−−−→RAG G .

Proof. The proof is similar to the proof of Lemma A.10 (using Lemma A.15 instead of Lemma A.9). □

Lemma A.17. ⟨q,G⟩ is reachable in a concurrent system PRAG iffG is RA-consistent andG .E \ Init is generated
by P with final state q.

Proof. The proof is similar to the proof of Lemma A.11 (using Lemmas A.14 and A.16 instead of Lemmas A.8

and A.10). □

Lemma A.18. If G is RA-consistent, then every prefix of G is RA-consistent.

A.2 Proof of Theorem 5.1
Theorem 5.1. Let P be a concurrent program. Call a tuple ⟨q,G, τ , l,w⟩ ∈ P .Q × EGraph × Tid × Lab × Event
a non-robustness witness for P if the following hold:
• ⟨q,G⟩ is reachable in the concurrent system PSCG.
• q enables ⟨τ , l⟩ (in the LTS induced by P).
• w , G .wmax

loc(l).

• G
⟨τ ,l ⟩
−−−−→RAG add(G, τ , l,w).

• G .wmax
loc(l) ∈ dom(G .hbSC ; [G .Eτ]).

Then, P is execution-graph robust against RA iff there does not exist a non-robustness witness for P .

Using the declarative semantics, we prove Thm. 5.1.

(⇒) Suppose that there exists a non-robustness witness ⟨q,G, τ , l,w⟩ for P . We show that P is not execution-

graph robust against RA. First, since ⟨q,G⟩ is reachable in PSCG, using Lemma 4.7, it is also reachable in

PRAG.
Let G ′ = add(G, τ , l,w). We claim that G ′

is not SC-consistent. To see this, let

e = ⟨τ ,max{sn(e) | e ∈ G .Eτ } + 1, l⟩ (the event added to G to obtain G ′
). Let x = loc(l). Since

G .wmax
x ∈ dom(G .hbSC ; [G .Eτ]), we have ⟨G .wmax

x , e⟩ ∈ G ′.hbSC. Now, if typ(l) ∈ {W, RMW}, then since

w , G .wmax
x , we have ⟨e,G .wmax

x ⟩ ∈ G ′.mo ⊆ G ′.hbSC, and thus ⟨e, e⟩ ∈ G ′.hbSC. Otherwise (typ(l) = R), we
have ⟨w, e⟩ ∈ G ′.rf. Since ⟨w,G .wmax

x ⟩ ∈ G .mo ⊆ G ′.mo, we have ⟨e,G .wmax
x ⟩ ∈ G ′.fr ⊆ G ′.hbSC Thus, we

have ⟨e, e⟩ ∈ G ′.hbSC in this case as well. In any case, we obtain that G ′.hbSC is not irreflexive, and soG ′
is

not SC-consistent.

Let q′ ∈ P .Q such that q
⟨τ ,l ⟩
−−−−→ q′. By Lemma A.8, the fact that G ′

is not SC-consistent implies that ⟨q′,G ′⟩ is

not reachable in PSCG. In addition, we clearly have that ⟨q′,G ′⟩ is reachable in PRAG. Indeed, ⟨q,G⟩ is reachable

in PRAG, and since q
⟨τ ,l ⟩
−−−−→ q′ and G

⟨τ ,l ⟩
−−−−→RAG G ′

, we have by definition that ⟨q,G⟩
⟨τ ,l ⟩
−−−−→PRAG ⟨q′,G ′⟩.

(⇐) Suppose that P is not execution-graph robust against RA. Let G be the set of execution graphs G for

which there exists q ∈ P .Q such that ⟨q,G⟩ is reachable in PRAG but not in PSCG. Since P is not execution-graph

robust against RA, G is not empty. Let G ′
be a minimal element in G, in the sense that every proper prefix of

G ′
is not in G. Let q′ ∈ P .Q such that ⟨q′,G ′⟩ is reachable in PRAG but not in PSCG.

Claim A.18.1: G ′
is RA-consistent but not SC-consistent.

Proof. Since ⟨q′,G ′⟩ is reachable in PRAG, by Lemma A.17, G ′
is RA-consistent and G ′.E \ Init is generated

by P with final state q′. By Lemma A.11, since ⟨q′,G ′⟩ is not reachable in PSCG and G ′.E \ Init is generated
by P with final state q′, we also have that G ′

is not SC-consistent. ◁
Claim A.18.2: Every proper prefix of G ′

is SC-consistent.
Proof. LetG be a proper prefix ofG ′

. By Lemma A.17,G ′.E\ Init is generated by P . By Lemma A.6,G .E\ Init
is generated by P as well. Let q ∈ P .Q such that G .E \ Init is generated by P with final state q. Since G ′

is

RA-consistent and G is a prefix of G ′
, by Lemma A.18, G is also RA-consistent. By Lemma A.17, it follows

that ⟨q,G⟩ is reachable in PRAG. The minimality of G ′
ensures that ⟨q,G⟩ is also reachable in PSCG. By

Lemma A.11, it follows that G is SC-consistent. ◁

Consider the last step ⟨q,G⟩
⟨τ ,l ⟩
−−−−→PRAG ⟨q′,G ′⟩ in the run of PRAG reaching ⟨q′,G ′⟩. Let w ∈ G .W such that

G ′ = add(G, τ , l,w).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Ori Lahav and Roy Margalit

We claim that ⟨q,G, τ , l,w⟩ is a non-robustness witness for P . The first four conditions easily follow from our

construction:

• The minimality of G ′
and the fact that ⟨q,G⟩ is reachable in PRAG imply that ⟨q,G⟩ is reachable in PSCG.

• Since ⟨q,G⟩
⟨τ ,l ⟩
−−−−→PRAG ⟨q′,G ′⟩, we have by definition that q enables ⟨τ , l⟩.

• Since ⟨q′,G ′⟩ is not reachable in PSCG, it cannot be the case that G
⟨τ ,l ⟩
−−−−→SCG G ′

, and so we cannot have

w = G .wmax
loc(l).

• Since ⟨q,G⟩
⟨τ ,l ⟩
−−−−→PRAG ⟨q′,G ′⟩ and G ′ = add(G, τ , l,w), by definition, we have G

⟨τ ,l ⟩
−−−−→RAG add(G, τ , l,w).

It remains to show that G .wmax
loc(l) ∈ dom(G .hbSC ; [G .Eτ]). Let b = ⟨τ ,max{sn(e) | e ∈ G .Eτ } + 1, l⟩ (so that

G ′.E = G .E ∪ {b}), and x = loc(l).
Claim A.18.3: ⟨b,b⟩ ∈ G ′.hbSC.
Proof. Suppose otherwise. Since G ′

is not SC-consistent, we have ⟨a,a⟩ ∈ G ′.hbSC for some a ∈ G ′.E.
Since ⟨b,b⟩ < G ′.hbSC, it follows that ⟨a,a⟩ ∈ G .hbSC. This contradicts the fact that G is SC-consistent (by
Claim A.18.2). ◁

Claim A.18.4: ⟨a,b⟩ ∈ G ′.hbSC for every a ∈ G ′.E.
Proof. Suppose otherwise, and let a ∈ G ′.E such that ⟨a,b⟩ < G ′.hbSC. Since G

′
is RA-consistent, we

have that G ′.hb is a (strict) partial order. Let c be a G ′.hb-maximal event such that ⟨a, c⟩ ∈ G ′.hb?. Since
⟨a,b⟩ < G ′.hbSC, we also have ⟨c,b⟩ < G

′.hbSC. LetGc = G
′\{c}. Since ⟨c,b⟩ < G ′.hbSC and ⟨b,b⟩ ∈ G ′.hbSC

(by Claim A.18.3), we have ⟨b,b⟩ ∈ Gc .hbSC, and so Gc is not SC-consistent. This contradicts Claim A.18.2.

◁
Claim A.18.5: ⟨b,G .wmax

x ⟩ ∈ G ′.mo ∪G ′.fr.
Proof. By Claim A.18.3, we have ⟨b,b⟩ ∈ G ′.hbSC. Since b is G ′.hb maximal, there exists c ∈ G .E such that

⟨b, c⟩ ∈ G ′.mo ∪G ′.fr. The G .mo-maximality of G .wmax
x implies that ⟨c,G .wmax

x ⟩ ∈ G .mo? ⊆ G ′.mo?, and so

⟨b,G .wmax
x ⟩ ∈ (G ′.mo∪G ′.fr) ;G ′.mo?. SinceG ′.fr ;G ′.mo? ⊆ G ′.fr∪ [G ′.E] (this holds in every execution

graph), and b , G .wmax
x , we have ⟨b,G .wmax

x ⟩ ∈ G ′.mo ∪G ′.fr. ◁
Claim A.18.6: ⟨G .wmax

x ,b⟩ < G
′.po ∪G ′.rf ∪G ′.mo ∪G ′.fr.

Proof. Suppose otherwise. ByClaimA.18.5, it follows that ⟨b,b⟩ ∈ (G ′.mo∪G ′.fr);(G ′.po∪G ′.rf∪G ′.mo∪G ′.fr).
This contradicts the fact that G ′

is RA-consistent. ◁
We now prove that G .wmax

x ∈ dom(G .hbSC ; [G .Eτ]). By Claim A.18.4, we have ⟨G .wmax
x ,b⟩ ∈ G ′.hbSC. Let

a ∈ G ′.E such that ⟨G .wmax
x ,a⟩ ∈ G .hbSC

?
and ⟨a,b⟩ ∈ G ′.po ∪G ′.rf ∪G ′.mo ∪G ′.fr. By Claim A.18.6, we

cannot have a = G .wmax
x , and so ⟨G .wmax

x ,a⟩ ∈ G .hbSC. We claim that we must have ⟨a,b⟩ ∈ G ′.po. Indeed,
suppose otherwise, and distinguish the following cases:

• ⟨a,b⟩ ∈ G ′.rf ∪ G ′.mo: In this case, we have a ∈ G .Wx , and hence ⟨a,G .wmax
x ⟩ ∈ G .mo. Since

⟨G .wmax
x ,a⟩ ∈ G .hbSC, this contradicts the fact that G is SC-consistent.

• ⟨a,b⟩ ∈ G ′.fr: Let c such that ⟨c,a⟩ ∈ G .rf and ⟨c,b⟩ ∈ G ′.mo. We have c ∈ G .Wx , and hence

⟨c,G .wmax
x ⟩ ∈ G .mo?. If c = G .wmax

x , then ⟨G .wmax
x ,b⟩ ∈ G ′.mo, which contradicts Claim A.18.6. Hence,

c , G .wmax
x , and so ⟨c,G .wmax

x ⟩ ∈ G .mo, and it follows that ⟨a,G .wmax
x ⟩ ∈ G .fr?. Since ⟨G .wmax

x ,a⟩ ∈ G .hbSC,
this contradicts the fact that G is SC-consistent.

Now, since ⟨a,b⟩ ∈ G ′.po, we have a ∈ Init ∪G .Eτ . If a ∈ G .Eτ , then we are clearly done. Otherwise, a ∈ Init,
but then we have ⟨a,G .wmax

x ⟩ ∈ G .po, which again contradicts the fact that G is SC-consistent.

B Proof Outline for Lemma 4.8
Lemma 4.8. RAG and RA have the same traces.

Proof (outline). We call a function θ : G .W → Time a timestamp assignment for an execution graph G if

θ (w1) < θ (w2) whenever ⟨w1,w2⟩ ∈ G .mo and θ (u) = θ (w) + 1 whenever ⟨w,u⟩ ∈ G .rf ; [RMW]. We say

that execution graph G relates to a state ⟨M,T⟩ ∈ RA.Q (denoted ⟨M,T⟩ ∼ G) if there exists timestamp

assignment θ for G such that the following hold:

• M = {⟨loc(w)=valW(w)@θ (w), Tθ
G (w)⟩ | w ∈ G .W}where Tθ

G (w) ≜ λx . maxθ [dom([G .Wx] ;G .hb
?
; [{w}])]

and

• T = λτ . λx . maxθ [G .Wx ∩ (Init ∪ dom(G .hb? ; [G .Eτ])].

It is straightforward to show that RA.q0 ∼ G0 and ∼ is a simulation relation from RA to RAG (and so, the

traces of RA are also traces of RAG); and that dom(∼ ;[G0]) = {RA.q0}, and ∼−1
is a backward simulation

relation (see [?]) from RAG to RA (and so, the traces of RAG are also traces of RA). □

Robustness against Release/Acquire Semantics PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

C Maintaining CV, CW, CVRMW, and CWRMW in SCM transitions

⟨τ , W(x,v)⟩ where vR = M(x) ⟨τ , R(x,v)⟩ ⟨τ , RMW(x,vR,vW)⟩

CV′ = λπ .


CV(τ) \ {x} π = τ

CV(π) ∪ {x} π , τ , vR < Val(P, x)

CV(π) π , τ , vR ∈ Val(P, x)

{
CV(τ) ∩ CW(x) π = τ

CV(π) π , τ


CV(τ) ∩ CW(x) π = τ

CV(π) ∪ {x} π , τ , vR < Val(P, x)

CV(π) π , τ , vR ∈ Val(P, x)

CW′ = λy.


CV(τ) \ {x} y = x

CW(y) ∪ {x} y , x, vR < Val(P, x)

CW(y) y , x, vR ∈ Val(P, x)

CW(y)


CW(x) ∩ CV(τ) y = x

CW(y) ∪ {x} y , x, vR < Val(P, x)

CW(y) y , x, vR ∈ Val(P, x)

CV′RMW = λπ .


CVRMW(τ) \ {x} π = τ

CVRMW(π) ∪ {x} π , τ , vR < Val(P, x)

CVRMW(π) π , τ , vR ∈ Val(P, x)

{
CVRMW(τ) ∩ CWRMW(x) π = τ

CVRMW(π) π , τ

CW′RMW = λy.


CVRMW(τ) \ {x} y = x

CWRMW(y) ∪ {x} y , x, vR < Val(P, x)

CWRMW(y) y , x, vR ∈ Val(P, x)

CWRMW(y)

{
CWRMW(x) ∩ CVRMW(τ) y = x

CWRMW(y) y , x

	Abstract
	1 Introduction
	2 Preliminaries: State Robustness
	2.1 Programming Language
	2.2 From Programs to Transition Systems
	2.3 Concurrent Systems and State Robustness

	3 Release/Acquire Semantics
	4 Execution-Graph Robustness
	4.1 The Memory Subsystem SCG
	4.2 The Memory Subsystem RAG
	4.3 Execution-Graph Robustness

	5 Verifying Execution-Graph Robustness
	5.1 Abstract Value Management

	6 Extension with Non-atomic Accesses
	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proof of thm:main
	A.1 Declarative Semantics
	A.2 Proof of thm:main

	B Proof Outline for lem:rag
	C Maintaining CV, CW, CVRMW, and CWRMW in SCM transitions

