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Abstract

Gentzen-type sequent calculi and their natural extensions (such as many-sided sequent
and hypersequent calculi) provide suitable proof-theoretic frameworks for a huge variety
of logics, starting from classical logic and intuitionistic logic, and including modal logics,
substructural logics, many-valued logics, fuzzy logics, and paraconsistent logics. In many
important cases they suggest an “algorithmic presentation” of a logic, which is particu-
larly useful in practical applications of it, as well as for studying its properties. Thus in
the last decades Gentzen-type calculi frequently arise for handling and introducing new
non-classical logics. Each such calculus requires a soundness and completeness theorem
with respect to its corresponding logic, and its proof-theoretic properties should be veri-
fied. Traditionally, this is done each time from scratch. In many cases the fundamental
theorem of cut-elimination is proved. This implies the redundancy of the well-known cut
rule, something which usually ensures the usefulness of the calculus. Another desirable
property of Gentzen calculi is analyticity, namely the fact that proofs may consist only
of syntactic material contained in the sequent to be proved. Often it is an immediate
corollary of cut-elimination, but in various cases cut-elimination fails, and the calculus
can still be shown to be analytic. This calls for an investigation of Gentzen-type calculi

as mathematical objects in their own right.

This thesis aims at such a systematic general investigation of a wide variety of sequent
and hypersequent calculi for many logics of different natures. Our main contribution is
a semantic analysis of several general families of propositional Gentzen-type sequent and
hypersequent calculi, that consists of the following:

1. We provide a uniform (possibly non-deterministic) semantic characterization for
each calculus in the families we study. This has the form of general and modular
soundness and completeness results that establish strong connections between the
syntactic ingredients of a given Gentzen calculus and semantic restrictions on the
corresponding set of models. The semantics provides a complementary view on
Gentzen calculi, and, as we show, for certain general families of calculi it is also
effective, naturally inducing a semantic decision procedure for the corresponding

calculi.

2. We apply this semantic presentation (refining and extending it, when needed) for
investigating crucial proof-theoretic properties of the calculi we study. This includes

general notions of cut-admissibility, analyticity, and axiom-expansion. Indeed, an
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illuminating contribution of a semantic study of proof systems is the ability to
provide semantic proofs (or refutations) of syntactic properties. Even when a tra-
ditional syntactic proof exists, in many cases the semantic proofs are much simpler
and easier to check. Thus we characterize these properties from a semantic point
of view, providing general tools that can be applied in semantic proofs of these
properties. In some of the families we study, this naturally leads to simple and

decidable exact criteria for important proof-theoretic properties.

In addition, to demonstrate the applicability of our ideas and methods beyond the
propositional level, we consider two particular hypersequent calculi for first-order and
second-order Godel logic. By extending the semantic analysis of propositional hyperse-
quent calculi, we prove that these two calculi are indeed sound and complete for first-order
and second-order Godel logic (respectively), and that they enjoy cut-admissibility. In the
case of the calculus for first-order Godel logic this provides a semantic alternative account
for a known result (proven syntactically in other works). In contrast, to the best of our
knowledge cut-elimination was not proved before for the calculus for second-order Godel

logic.
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Chapter 1
Introduction

Ever since the introduction of sequent calculi for classical and intuitionistic logic by
Gentzen [56], sequent calculi have been widely applied in the fields of proof theory, math-
ematical logic, and automated deduction. These systems and their natural extensions
(such as many-sided sequent and hypersequent calculi) provide suitable proof-theoretic
frameworks for a huge variety of non-classical logics, including modal logics [96], substruc-
tural logics [55], many-valued logics [61], fuzzy logics [76], and paraconsistent logics [13].
In many important cases they suggest an “algorithmic presentation” of a logic, which is
particularly useful in practical applications of it, as well as for studying its properties,
such as decidability (for propositional logics), consistency, interpolation, the Herbrand
theorem (for first-order logics) and others. Thus in the last decades Gentzen-type calculi
frequently arise for handling and introducing new non-classical logics. Each such calculus
requires a soundness and completeness theorem with respect to its corresponding logic,
and its proof-theoretic properties should be verified. Traditionally, this is done each time
from scratch. In many cases the fundamental theorem of cut-elimination is proved. This
implies the redundancy of the well-known cut rule, something which usually ensures the
usefulness of the calculus. Another desirable property of Gentzen calculi is analyticity,
namely the fact that proofs may consist only of syntactic material contained in the se-
quent to be proved. Often it is an immediate corollary of cut-elimination, but in various

cases cut-elimination fails, and the calculus can still be shown to be analytic.

This thesis aims at a systematic investigation of Gentzen-type systems as mathemat-
ical objects in their own right. We study a wide variety of sequent and hypersequent
calculi for many logics of different natures. Our main contribution is a semantic anal-
ysis of several general families of propositional Gentzen-type sequent and hypersequent

calculi, that, generally speaking, consists of the following:

1. We provide a uniform and general semantic characterization for each system in the
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families we study. Thus each calculus G corresponds to a certain set of semantic
structures Vg; and the consequence relation induced by Vg (using an appropriate
notion of when a semantic structure in Vg is a model of a given sequent or hyper-
sequent) is shown to be identical to g, the provability relation of G. For each
family of calculi, we present a general uniform method for extracting the set Vg for
a given system G in this family. In many important cases the soundness and com-
pleteness of some known Gentzen-type system with respect to its usual semantics is
then obtained as a particular instance of the proposed general method. The seman-
tics provides a complementary view on Gentzen systems. In addition, we identify
certain families of systems for which the obtained semantics is also effective, i.e.
it naturally induces a semantic decision procedure for the calculi in that family.
Thus we derive new general decidability results for large families of propositional

Gentzen-type systems.

2. We apply this semantic presentation of calculi (and extend and refine it, when
needed) for investigating crucial proof-theoretic properties of the systems we study.
This includes general notions of cut-admissibility, analyticity, and axiom-expansion.
Indeed, an illuminating contribution of a semantic study of proof systems is the
ability to provide semantic proofs (or refutations) of syntactic properties. Even
when a traditional syntactic proof exists, in many cases the semantic proofs are
much simpler and easier to check. Thus we characterize these properties from a
semantic point of view, providing general tools that can be applied in semantic
proofs of these properties. In some of the families we study, these characterizations
naturally lead to simple and decidable exact criteria for the aforementioned proof-

theoretic properties.

Our investigation is carried out in the following five families of propositional fully-
structural Gentzen-type systems (i.e., systems that include all the usual structural rules:

exchange, contraction, and weakening):

Pure Sequent Calculi. These are sequent calculi, whose derivation rules do not enforce
any limitation on the context formulas. In addition to usual two-sided sequent
calculi, we include here also calculi that employ one-sided sequents or many-sided
ones. This family of calculi provides a suitable proof-theoretic framework for several
important propositional logics, including classical logic, many well-studied many-
valued logics, and various paraconsistent logics. In the definition of this family, we
do not assume any predefined set of cut rules or identity axioms, and thus handle

any possible combination of these rules.



Canonical Calculi. This is a subfamily of pure sequent calculi, in which each logical
rule introduces exactly one logical connective, where all formulas in the premises
of a rule are immediate subformulas of the formula introduced in its conclusion.
Such “well-behaved” logical rules (called: canonical rules), have a philosophical
motivation: they naturally serve a guiding principle in the philosophy of logic, due
to Gentzen [56], according to which the meanings of the connectives are determined
by their derivation rules. Like in the more general case of pure sequent calculi,
we again include here many-sided sequent systems with arbitrary combinations of
cut rules and identity axioms. Since this family of calculi is a subfamily of pure
sequent calculi, all results concerning the semantics of pure sequent calculi and
the semantic characterizations of their proof-theoretic properties can be applied for
canonical calculi as well. However, we show that for this more restricted family
of calculi we are always able to obtain simple and effective semantics, as well as

decidable characterizations of their proof-theoretic properties.

Quasi-canonical Calculi. This is another subfamily of pure sequent calculi, that ex-
tends the family of canonical calculi. Here we allow also logical rules in which
unary connectives precede the connective to be introduced in conclusions of logi-
cal rules (allowing, e.g., the introduction of a formula of the form —(p1 A ¢3)), as
well as the formulas in the premises. Calculi of this family are particularly useful
for many-valued logics (e.g. for the relevance logic of first degree entailment [I])
and paraconsistent logics (see, e.g., [I3]). Our investigation of these calculi is not
direct: instead of studying the semantics of quasi-canonical calculi, we show how
to translate each quasi-canonical calculus to a canonical equivalent one, and then

exploit the results concerning canonical calculi.

Basic Calculi. These are multiple-conclusion two-sided sequent calculi whose derivation
rules may allow certain restrictions and manipulations on the context formulas (and
for that reason they are not pure sequent calculi). Various sequent calculi that seem
to have completely different natures belong to this family. Thus it includes all
standard sequent calculi for modal logics, as well as the usual multiple-conclusion

systems for intuitionistic logic, its dual, and bi-intuitionistic logic.

Canonical Hypersequent Calculi. We import the ideas behind canonical sequent cal-
culi to hypersequent calculi, and define a general structure of a canonical hyper-
sequential logical rule. Here there are many options concerning the additional
hypersequential structural rules. To demonstrate our methods, we choose to study
single-conclusion canonical hypersequent calculi that are based on the communica-

tion rule. The prototype example here is the hypersequent calculus for propositional
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Godel logic (see [22]), and thus, we call the calculi of this family canonical Gédel
hypersequent calculi. In particular, it is possible to introduce in these calculi new
non-deterministic connectives and add them to Gédel logic. Note that hypersequent
calculi are now the main proof-theoretic framework for fuzzy logics [76], but Godel
logic is the only fundamental fuzzy logic that has a fully-structural hypersequent

calculus (and thus falls in the scope of this work).

While the aforementioned families of calculi are all propositional, the ideas and meth-
ods for them are applicable for first-order and higher-order calculi as well. We demon-
strate this in two specific calculi: the hypersequent calculus HIF for standard first-order
Godel logic [30], and its extension, that we call HIF? for Henkin-style second-order
Godel logic. In particular, by extending the semantic methods developed for the family
of (propositional) canonical Godel hypersequent calculi, we are able to prove that the
cut rule is admissible in HIF and HIF2. In the case of HIF this provides a semantic
alternative account for the fact that HIF admits cut-elimination (proven syntactically
in [30, 22]). In contrast, to the best of our knowledge cut-elimination was not proved for
HIF? before.

A crucial feature of a systematic procedure relating proof systems and semantics
should be its modularity — the correspondence between semantics and proof systems
should be based on local equivalences between semantic ingredients (requirements from
the semantic structures) and their syntactic counterparts (derivation rules). Such a
correspondence can allow, e.g., to predict the semantic impact of employing the same
rule in different proof systems, or to provide an appropriate rule for a given semantic
condition added to different logics. In particular, all semantic characterizations of cut-
admissibility in each of the families of calculi listed above are based on identifying the
semantic impact of the cut rule(s), and comparing the semantics of the calculi with and
without the cut rule(s). These tasks are of course impossible when the proof system
and its semantics are considered as a whole, and there is no possibility to separate
between the different semantic effects of each particular rule. The major key to have
this modularity, as well to provide semantics to every calculus in the families that we
study, is the use of non-deterministic semantics. Thus, following [I7, 2], we relax the
principle of truth-functionality, and allow cases in which the truth value of a compound
formula is not uniquely determined by the truth values of its subformulas. By allowing
non truth-functional semantic structures, we are able to separately analyze the semantic
effect of each component of the syntactic machinery (each derivation rule, and in fact
also each ingredient of a rule). The full semantics of the calculus is then obtained by
joining the semantic effects of all of its components. For this matter, we develop several

frameworks of non-deterministic semantics:



Many-Valued Systems. These provide a semantic framework for specifying sets of
valuations — functions assigning truth values to formulas of a given propositional
language. Each many-valued system includes a set of semantic conditions, that can
be easily read off the derivation rules of a pure sequent calculi, and used to restrict
its corresponding set of valuations (e.g. “If ¢; has some truth value u;, and -
has some truth value ug, then —=(¢1 A ¢1) should have the truth value us”). This
framework generalizes the “bivaluation semantics” [34, 40], many-valued matrices
[93], [61], and non-deterministic many-valued matrices [17, 21], and is used here to

provide semantics for pure sequent calculi.

Partial Non-deterministic Matrices. These form a special case of many-valued sys-
tems that serve as a simpler semantic framework for canonical and quasi-canonical
calculi. Thus in partial non-deterministic matrices, the semantic conditions for
specifying restrictions on valuation functions can be arranged in generalized truth
tables. Usual logical matrices are particular instances, while non-determinism is in-
troduced as done in non-deterministic matrices (see [17, 21]), by possibly allowing
several options in some entries of the truth tables (thus the value of o(py,...,p,)
is restricted, but not uniquely determined, by the values of py,...,p,). However,
to handle arbitrary canonical and quasi-canonical calculi we had to slightly extend
the framework of non-deterministic matrices by allowing also the option of having
an empty set of options in the entries of the truth tables (which intuitively mean

that certain combinations of truth values are disallowed).

Non-deterministic Kripke Valuations. For basic sequent systems, we introduce a
generalization of Kripke-style semantics for modal and intuitionistic logic, that we
call Kripke valuations. As Kripke models, these semantic structures employ a set of
possible worlds and accessibility relations, and certain conditions connect the truth
value assigned to a formula in each world w with values assigned to other formulas

in the worlds accessible from w.

We show that Kripke valuations that are based on three or four truth values can
be used in semantic characterizaions of basic sequent systems with restricted cut

rule and/or identity axiom (as needed e.g for characterizing cut-admissibility).

Non-deterministic Godel Valuations. For canonical Godel hypersequent calculi, we
introduce Godel valuations. These consist of some linearly ordered set of truth
values, and a function assigning a pair of truth values from this set to each formula
of a given propositional language. Intuitively, the first element in the pair of truth

values assigned to some formula ¢ is used for occurrences of ¢ on the left sides
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of sequents, while the second element in the pair is used for occurrences of ¢
on the right sides. We show that the cut rule and the identity axiom “connect”
these two elements: if they are both available for some formula ¢, then the two
elements in the pair of truth values of ¢ must be equal. In addition, the two
values assigned to each compound formula of the form o(¢1, ..., ¢,) must lie within
certain intervals whose edges are computed from the values assigned to 1, ..., .
The usual algebraic semantics of Godel logic is a particular instance, in which all
of these pairs and intervals are degenerate, and thus the value of o(¢1, ..., @,) is
uniquely determined by the values of ¢q,...,¢,. In turn, we provide a general
construction of the functions for computing these intervals for o-formulas given

some (canonical) rules for introducing each connective .

Outline

The structure of this thesis is as follows. Chapter 2]is devoted to precise definitions of pure
sequent calculi and their proof-theoretic properties, as well as some basic consequences of
these properties. Chapter |3|introduces the semantic framework of many-valued systems,
and provides a method to obtain a many-valued system for any given pure sequent
calculus. Based on this semantics, in Section |3.3] we present necessary and sufficient
semantic conditions for analyticity, cut-admissibility and axiom-expansion in pure calculi.

Chapter [4] discusses canonical sequent calculi which are defined as pure sequent calculi
with additional restrictions on the structure of the logical introduction rules. In turn, in
Section we present the corresponding (effective) semantic framework of partial non-
deterministic matrices, as a special restricted instance of many-valued systems. Based on
the results of Chapter [3| we then show that canonical sequent calculi can be character-
ized by partial non-deterministic matrices, and that the aforementioned proof-theoretic
properties can be easily checked using this alternative semantic presentation.

In Chapter 5| we introduce quasi-canonical sequent calculi, and show that each such
calculus can be translated into an equivalent canonical one. In certain important cases,
this translation may be used to obtain a characteristic partial non-deterministic matrix
for a given quasi-canonical calculus.

In Chapter [6] we go beyond the scope of pure sequent calculi by introducing basic
sequent calculi, in which derivation rules may include limitations on the context formulas
used in their applications. Then we show that each basic calculus induces a set of
generalized Kripke valuations for which it is strongly sound and complete. In Section 6.3
we derive characterization of proof-theoretic properties of basic calculi based on this
Kripke semantics. Their nature is similar to the corresponding characterizations from

Section [3.3] We demonstrate their applicability in various examples, including sequent



calculi for modal logics and a sequent calculus for bi-intuitionistic logic.

In Chapter 7| we define and study hypersequent Gédel calculi from a similar angle.
The semantics in this chapter is based on Gaodel valuations, that generalize the usual
many-valued semantics of propositional Godel logic.

Chapters[§land [9 are of a completely different nature, as each of them is devoted to one
particular calculus for one particular logic. Chapter |8|discusses the hypersequent calculus
HIF for first-order Godel logic, and provides a semantic proof for cut-admissibility in
this calculus. Chapter [J] introduces an extension of HIF with usual rules for second-
order quantifiers, called HIF2. We show that HIF? is sound and complete for second-
order Godel logic, and that it enjoys cut-admissibility. Note that the fact that HIF
enjoys cut-admissibility actually follows from the fact that HIF? does. Nevertheless, as
a preparation and for the convenience of the reader, we provide first a full account for
HIF, that is relatively easier to follow than the one for HIF?2.

Finally, in Chapter we conclude with a discussion of some directions for further

research.

Some Related Works

Usually, the study of Gentzen-type systems is tailored to a specific logic or family of

logics. Several notable exceptions include the following:

e [34] studies a general family of sequent systems, and shows that (possibly non-truth
functional) bivaluation semantics can be read off the sequent rules for any given
system in this family. This work is close to what we do in Chapter |3l However, the
sequent systems studied in [34] are just a particular subset of the pure sequent cal-
culi that we study here, as they all employ the usual cut rules and identity axioms.
In addition, [34] does not study at all the effectiveness of this semantic framework,
as well as semantic characterizations of syntactic properties of the studied calculi.
Therefore besides a new look on the sequent calculus, the semantics proposed in

[34] does not seem to have much practical or proof-theoretic applications.

e The introduction and first semantic investigation of canonical sequent calculi were
done in [I7]. That work considered only two-sided sequent calculi with arbitrary
canonical rules and the usual cut rule and identity axiom. It was shown that each
such calculus can be characterized by a non-deterministic matrix (Nmatrix). That
Nmatrix can in turn be used to check whether the calculus is analytic and whether
it enjoys cut-admissibility. Later, in [I9] that work was extended to many-sided
canonical sequent calculi (see also [21]). Our study of canonical calculi in Chapter

considers more general family of systems, with arbitrary set of “primitive rules”
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(these include the cut rules and the identity axioms). In fact, the main results
for previously studied canonical calculi (as the characterization of analyticity and

cut-admissibility) can be easily obtained from the more general theorems given in

Chapter

e [20] studies from a semantic point of view another general family of sequent sys-
tems, which is a proper subfamily of our canonical sequent calculi. The semantic
framework employed there is truth-functional (based on usual logical many-valued
matrices), and thus many sequent calculi cannot be semantically characterized in
this framework. By allowing non-deterministic semantics we are able to cover much
more general family of calculi, and it can be shown that for the calculi studied in

[26] we practically obtain the same (deterministic) semantics.

e A variety of works studies the connection between syntax and semantics in sequent
and hypersequent substructural calculi, with a focus on developing semantic and
algebraic conditions for cut-admissibility in such systems (e.g. [44],[32],[91]). In
this thesis we only consider fully structural Gentzen-type calculi, but nevertheless,
some (obviously, not all) of the calculi in the families that we study fall in the scope
of these works, and their semantic criteria for cut-admissibility are applicable in
these cases. However, the semantic frameworks used in these works (particularly,
phase semantics) is significantly more abstract and complex than the semantic

frameworks that we employ.

At this point it should be noted that the idea of using non-deterministic semantics
for proving cut-admissibility of a sequent system has a very long history. Indeed, in
the quest to verify Takeuti’s conjecture [89] (that was open for several years) regarding
cut-admissibility in the calculus for second-order classical logicﬂ Schiitte developed a
three-valued non-deterministic semantics for the cut-free fragment of this calculus [85].
This provided a semantic equivalent to Takeuti’s conjecture, that was verified by Tait a
few years later [87], when it was shown that it is possible to extract a usual (two-valued)
counter-model from every three-valued non-deterministic Schiitte’s counter-model. As a
simple consequence, one obtains that if there is no cut-free proof of a certain sequent,
then there is no proof at all (see also [58]). Basically, our semantic characterizations of
cut-admissibility, as well as the cut-admissibility proofs in Chapters [7]to[d] are based on

a similar (generalized) approach.

'More precisely, Takeuti’s conjecture concerned full type-theory, namely, the completeness of the
cut-free sequent calculus that includes rules for quantifiers of any finite arity. However, the proof for
second-order fragment was the main breakthrough. Note that the usual syntactic arguments to prove
cut-elimination dramatically fail when it comes to higher-order logic.



Finally, besides the aforementioned works on canonical calculi, we are not aware of
any works aiming to study analyticity of general Gentzen-type systems, regardless of
cut-admissibility. In many cases our criteria of analyticity turn out to be much simpler
than those of cut-admissibility.

Publications Related to this Dissertation

Most of the contributions described in this thesis have first appeared in other publications.

They are roughly divided as follows:

Chapters 4-5:

[6
e Chapter 6: [15], [73].
e Chapter 7: [71], [69].
e Chapter 8: [16], [72].

The material in Chapters 2,3 and 9 was not published before.
More details about the connections between these publications and this thesis will be

given in the beginning of each chapter.



Chapter 2
Pure Sequent Calculi

In this chapter we introduce the family of pure sequent calculi. These will be the object of
a semantic investigation in the next chapter. Roughly speaking, pure sequent calculi are
propositional fully-structural sequent calculi (sequent calculi that include all the usual
structural rules: exchange, contraction, and weakening), whose derivation rules do not
enforce any limitation on the side formulas (following [5], the adjective pure stands for
this requirement). This family of calculi provides a suitable proof-theoretic framework for
several important propositional logics, including classical logic, important many-valued
logics, and various paraconsistent logics. Our scope is broader than what is usually

considered as a sequent system:

e We consider many-sided sequents, rather than just ordinary two-sided ones. This

allows us to naturally capture a large family of many-valued logics (see, e.g., [67]).

e We do not presuppose that all systems include identity axioms or cut rules of a
given form. This will play a major role in the semantic characterizations of proof-
theoretic properties of these systems (e.g., we will be able to compare the semantics

of a given system with cut, and the semantics of the same system without cut).

This chapter is organized as follows. We start by defining the notion of a propositional
logic in Section [2.1] Then, we precisely formulate the framework of pure sequent calculi,
and the logics they induce (Section . In Section we introduce some fundamental
proof-theoretic properties of pure sequent calculi that we will study later from a semantic

perspective.

Publications Related to this Chapter

The material in this chapter was not published before.
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2.1. PRELIMINARIES 11

2.1 Preliminaries

Definition 2.1.1. A propositional language L consists of a countably infinite set of
variables at; = {p1, ps, ...} (whose elements are called atomic formulas), and a finite set
& of propositional connectives. Each ¢ € {, has a fixed finite arity ar(¢) > 0. The set
of all n-ary connectives of £ (for n > 0) is denoted by 7.

Note that propositional constants are considered as nullary connectives.

Notation 2.1.2. We shall specify proportional languages by a set of connectives, and
indicate their arities in superscripts. For example, {—!, A?} denotes a language with two

connectives: a unary one denoted by —, and a binary one denoted by A.

Given a propositional language £, L-formulas are constructed as usual. We usually
use ¢, 1 as metavariables for L-formulas, I'; A for finite sets of L-formulas, and T, F, C for
(possibly infinite) sets of L-formulas. Henceforth, £ stands for an arbitrary propositional
language. We shall usually identify the set of £-formulas with £ itself, e.g. when writing

“p € L7 instead of “p is an L-formula”.

Definition 2.1.3. An L-substitution is a function o : at; — L. It is recursively extended
to £7 by 0(0(9017 sevy Spar(O))) = 0(0@01)7 70-(g0ar(<>))) for every ¢ € <>L-

We follow [21] in taking the following definitions of Tarskian consequence relations

and Tarskian propositional logics:
Definition 2.1.4. A relation I between sets of £-formulas and £-formulas is{]

Reflexive:  if T IF ¢ whenever p € T.

Monotone: if T' I+ ¢ whenever T I+ ¢ and T C T".

Transitive: if T,T" Ik ¢ whenever T I and T, ¢ IF .

Structural: if o(T) IF o(p) for every L-substitution o whenever T I ¢.

Definition 2.1.5. A relation between sets of L-formulas and L-formulas which is re-
flexive, monotone and transitive is called a Tarskian consequence relation (tcr) for L. A
(Tarskian propositional) logic is a pair (L, ), where L is a propositional language, and
IF is a structural tcr for L.
Definition 2.1.6. A logic (£,IF) is finitary if T’ IF ¢ for some finite I' C T whenever
T IF .

The most important (and popular) propositional logic is of-course classical logic. Its

language is {—', A% Vv? D?} and it is denoted below by L4. The well-known ter of
classical logic will be denoted by I (see Example [2.2.20)).

"'We use the symbol IF to relate sets of formulas and formulas. The usual symbol - will be used to
denote derivability of a sequent from a set of sequents.
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2.2 Pure Calculi

Usual sequent systems are two-sided, and sequents are often written as expressions of the
forms @1, ..., ©n = Y1, ..., . Dealing with many sided-sequents, we find it convenient
to use a (finite) set of labels, for specifying the position(s) inside the sequent in which a
certain formula occurs. Thus, in what follows £ denotes a finite non-empty set of labels.
We usually use x as a metavariable for a label in £, and X for sets of such labels. Sequents

are defined as follows:

Definition 2.2.1. An £-labelled L-formula is an ordered pair (x,¢), denoted by x:¢p,
where x € £ and ¢ € L. An (L, £)-sequent is a finite set of £-labelled L£-formulas.

We usually use «, 5 as metavariables for labelled formulas, and s,c for sequents.
Substitutions are extended to labelled formulas, sequents, sets of sequents, etc. in the

obvious way. In particular, o(0)) = 0.

Notation 2.2.2. For X C £ and ¢ € L, the expression (X:p) denotes the sequent
{x:p | x € X}.

Notation 2.2.3. Usual two-sided sequents can be seen as (L, £2)-sequents, where £
denotes the set of labels {f,t}. The labels f,t denote the “left side” and the “right

side” respectively. The more usual notation ¢i,...,¢, = ¥1,...,%,, is interpreted as
{£:01, ..., £:0n, 1, oty )

The use of £ and t at this point is just a matter of tradition, as the labels should
not be confused with truth values! Only in certain specific (important) cases, the truth
values employed in the semantic characterization presented in Chapter [3| have one-to-one

correspondence with the set £ of labels.

Remark 2.2.4. For our purposes, we find it most convenient to define sequents using
sets. In particular, the (£, £2)-sequents {f:p,t:pa}, {tipa, 01}, {f:p1, f:p1, tipa} are
all the same object. This immediately entails that the exchange rule, the contraction
rule and the expansion rule (the converse of contraction) are all built-in in all sequent
calculi that we study. To have a fully-structural system, we should only further require

the presence of the weakening rules (one weakening rule for each label, as defined below).
Next, we define the form of derivation rules that are allowed in pure sequent systems.

Definition 2.2.5. A pure (L, £)-rule is a pair of the form §/s, where S is a finite set
of (L, £)-sequents, and s is a single (L, £)-sequent. The elements of S are called the

premises of the rule, and s is called the conclusion of the rule. To improve readability, we
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usually drop the set braces of the set of premises. An application of a pure (L, £)-rule
S1, ..., 8y /s is any inference step of the following form:
o(s1)Uecr ... o(sp)Ucy
o(s)UcU...Ug,

where o is an L-substitution, and ¢; is an (£, £)-sequent for every 1 < i < n. The

sequents o(sy)Ucy,...,0(s,) Uc, are called the premises of the application, while the
sequent o(s)Ucy U...Ug, is called the conclusion of the application. In addition, the

sequents ¢y, ..., ¢, are called the context sequents (of the application).

Note that the propositional variables of the “object language” L are also employed
in the formulation of the rules. In particular, meta-variables (which are usually used
to represent derivation rules by schemes) are not used. Roughly speaking, applications
of some rule are obtained by applying a substitution on the premises si, ..., s, and the

conclusion s of the rule, and freely adding context formulas.

Example 2.2.6. Suppose that £ contains the binary “implication” connective D. The

following pure (L, £3)-rules are usually used for introducing this connective:

{t:p1}, {f:p2}/{f:p1 D p2} and {f:p1,t:pa}/{t:p1 D P2}
Their applications have (respectively) the forms:
{t:tp1} U {f:p} Ucy and {f:p1, 2} Uc

{f:p1 D2} UciUcy {t:p1 Do} Uc
In [62], a different implication connective is used, whose introduction rules can be easily

formulated as pure rules. The f-rule (whose conclusion is {f:p; D ps}) is the same rule
as above, but the t-rule has the form: {t:po}/{t:p1 D pa}. Its applications have the form:
{tip2} Uc
{t:p1 Do} Uc

Example 2.2.7. Suppose that £ contains the binary “implication” connective D, and
let £3={f,i,t}. The following pure (L, £3)-rules are used for introducing O in the

calculus for three-valued Lukasiewicz’s logic presented in [97]:
{tipi}, {£:p2}/{£:p1 D po}
({1, t}p1), {dmp, Lipaf, {Eep1, £ipo} /{i:p1 D pa}
({f, 1}:p1) U{t:pa}, {£:p1) U ({1, t1:p2)/{E2p1 D 2}

Example 2.2.8. The following rule scheme appears in a sequent system from [12] for da
Costa’s paraconsistent logic Cy:
F'=¢p,A T'=-p A
L _‘(90 A _‘SD) = A
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This rule scheme can be formulated as the following pure (£, £2)-rule (where = € {7}
and A € $2):

{tp}s {t=pap/{£:=(p1r A —p1) }-

Convention 2.2.9. Obviously the names of the variables in pure (£, £)-rules are imma-
terial (e.g., {t:p2}/{t:p1 D pa} is completely equivalent to {t:ps}/{t:ps D ps3}). To avoid
further technical complications, we assume that a unique representative is chosen from
every equivalence class of rules in some reasonable way, and only these representatives
are considered as pure (£, £)-rules. For example, when only one variable is involved in

a rule (as in Example [2.2.8)), we may suppose that this variable is p;.

A special family of pure rules is the family of primitive rules. These rules are used
to perform simple manipulations on the labels, and they do not mention any specific

connective of the language £. Formally they are defined as follows:

Notation 2.2.10. Given an £-labelled £L-formula «, we denote by frm[a] the £-formula
appearing in «.. frm is extended to sets of £-labelled L-formulas, sets of sets of £-labelled

L-formulas, etc. in the obvious way.

Definition 2.2.11. A primitive £-rule is any pure (L, £)-sequent rule S/s such that
Jrm[S U {s}] = {p:1}.

By definition, all primitive £-rules have the form (Xi:p1), ..., (X,:p1)/(X:p1) for some
X1,..., X, X € £. An application of the primitive £-rule (Xi:p1), ..., (X,:p1)/(X:p1) is any
inference steps of the following form:

(X)) Uer .. Xnp) U,
(X:p)Ucr U...Ug,
where ¢ is an L-formula, and ¢; is a (£, £)-sequent for every 1 <i <mn.

Example 2.2.12. Let £ = {f,i,t}, and consider the primitive £-rule

{£:p1}, {2}/ ({1, 0):p).
This rule allows to infer ({i,t}:¢) Ucy Ucy from {f:p}Uc; and {i:¢p} U ey for every two
(L, £)-sequents c1, ¢ and L-formula .

The following primitive rules are usually present in Gentzen-type systems:

Weakening Rules For each x € £, the weakening rule (x:weak) is the primitive £-rule
{0} /{x:p1}. Tts applications have the form:

{x:p}Uc
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Cut Rules These are primitive £-rules of the form (Xi:p1), ..., (X,:p1)/0 for non-empty

X1, ..., X,. An application of a cut rule of this form has the form:
(Xi:p)Uer oo (Xnip) Ucy,
caU...Uc,

@ is called the cut-formula of the application. Two-sided sequent systems usually
employ {f:p1}, {t:p1}/0 as the only cut rule. We denote this rule by (cut).

Identity Axioms These are primitive £-rules of the form §)/(X:p;) for non-empty X. An

application of an identity axiom of this form has the form:

(X:p)
@ is called the id-formula of the application. Note that applications of identity
axioms do not include context formulas. However, when the weakening rules are
available for every x € £, it is possible to derive (X:p) U ¢ from (X:p) for every
sequent ¢. Two-sided sequent systems usually employ 0/{f:p1,t:p1} as the only
identity axiom. We denote this rule by (id).

Remark 2.2.13. Note that there are several useful options for cut rules and identity
axioms when |£]| > 2. For example, the systems in [27] have a cut rule {x:p;}, {y:p1}/0
for every x # y in £, and (0/(£:p,) is their only identity axiom; while the systems in [24]
employ one cut rule of the form {{x:p1} | x € £}/0, and an identity axiom 0/({x,y}:p1)
for every x # y in £. Other useful combinations arise when quasi-canonical systems are

translated into canonical ones (see Chapter [3)).

Next, we define the family of pure sequent calculi. In addition to the structural rules
of contraction, exchange and expansion that are implicit in our calculi, we also require
that pure sequent calculi contain all weakening rules. Thus we refer to these systems as

fully-structural.

Definition 2.2.14. A pure (L, £)-calculus consists of a finite set of pure (L, .£)-rules,
that includes (x:weak) for every x € £. A proof in a pure (L, £)-calculus G of an
(L, £)-sequent s from a set S of (L, £)-sequents (called assumptions) is a finite listf] of
(L, £)-sequents ending with s, such that every sequent in the list is either an element of
S, or a conclusion of some application of some rule of G, provided that all premises of

this application appear before. We write S kg s to denote the existence of such a proof.

Convention 2.2.15. Henceforth, we assume that G does not include the (trivial) pure

(L, £)-rule 0/0.

2Similarly, one can use finite trees or DAGs.



16 CHAPTER 2. PURE SEQUENT CALCULI

Notation 2.2.16. Given a pure (L, £)-calculus, we denote by Pg and Rg the set of
primitive £-rules of G except for the weakening rules, and the set of non-primitive rules

of G (respectively).
The following simple observations will be useful in the sequel.
Proposition 2.2.17. Let G be a pure (£, £)-calculus.

1. fSU{s} g ¢, then SU{sUc} g s Uc for every (L, £)-sequent c.
2. If Skqg s then 0(S) kg o(s) for every L-substitution o.

Recall that sequent calculi are a tool to characterize logics. As defined below, each

pure (£, £)-calculus naturally induces 2/4! logics, each of which is based on some subset

of £.

Definition 2.2.18. Let G be a pure (£, £)-calculus, and X C £ a set of labels. The
ter induced by G and X, denoted by IS, is the relation between sets of £-formulas and
L-formulas defined by: T IFg ¢ iff {(X:0) | ¥ € T} Fa (Xip).

It is easy to verify that for every G and X, IF§ is indeed a ter (see Definition [2.1.4]).

In fact, we have the following:
Proposition 2.2.19. For every G and X as above, (£,IF) is a finitary logic.

Proof. The fact that IFY is structural directly follows from Proposition [2.2.17] The fact
that it is finitary follows from the definitions. m

Example 2.2.20. The most important sequent calculus is the fundamental Gentzen’s
system LK for classical logic [56]. Its propositional fragment can be straightforwardly
presented as a pure (L, £3)-calculus, which we denote by LK. The rules of LK are
presented in Figure 2.1} The consequence relation I, of propositional classical logic is
equal to Il—ité — the logic induced by LK and the set {t}.

Remark 2.2.21. In the case of LK, there is another natural way to define the induced
logic: T Ik @ iff Frx {f:¢0 | ¥ € T} U {t:p} for some finite I' C T. It is easy to see that
in LK, and actually in every pure (L, £2)-calculus G such that Pg = {(cut), (id)}, we
have that T H;} ¢ (according to Deﬁnition iff g {f:00 | ¥ € I'}U{t:p} for some
finite I' C 7. Therefore, the two alternatives to define I, are equivalent. However, the
formulation we gave in Definition is more general, as it ensures that we obtain a

logic for every pure calculus with arbitrary primitive rules.
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fiweak) {0}/{f:p1} tiweak) {0} /{t:p:}

( (

(cut) {f:p1}, {tp1}/0 (id 0/{f:p1,t:p1}

(7)) {ep/{fp) (t=) £}/ {tp}

(£:N) {f:p1, £:p2}/{f:p1 A D2} (t:A) {t:p1}, {tp2}/{t:p1 A pa}
(£:V)  Afpp AEp}/{Ep Vipey  (8V) {tipntipe}/{tp Vi)

( (t:

Hh
U
~—
ct

{tipi}, {£:p2}/{£:p1 D p2} D) AL, tip}/{tp1 D pa}

Figure 2.1: The pure (L, £2)-calculus LK

In addition to LK, the family of canonical calculi, that was defined and studied in
[17], falls under the definition of pure calculi. Many other previously studied useful
sequent calculi can be naturally presented as pure calculi. This includes all calculi for
paraconsistent logics from [12], all labelled calculi for finite valued logics from [26], and

the signed calculi from [20].

Example 2.2.22. In [12] a pure (L, £2)-calculus for da Costa’s historical paraconsistent
logic C; was introducedﬁ This calculus, denoted here by Gg,, is obtained from LK by
discarding the rule (f:—) and adding the following rules:
(£:mm)  {fp}/{f:pi}
=AY e {eop /{E (o0 A )}

) A e H{E (0 Ap2)}
£V {fpu ), {£:pe, £}/ {E:0(p1 V po) }

) AL, froput {foe b /{0 (1 Vip2) }
Y AL} {£:pe, fiopa} /{E (01 D p2)}
) Afpy £} {f o} {E (01 D o)}

Remark 2.2.23. One can choose to define sequents using lists (as in the original work of
Gentzen) or multisets, and explicitly include contraction and exchange in the definition of
a pure sequent calculus. Obviously, this would not affect the derivability relation Fqg. In
fact, for all aspects of proof systems studied in this thesis (semantics, cut-admissibility,
analyticity, etc.) this choice is immaterial, since any result in one formulation trivially
holds in the other. Of course, this might not be the case when studying other properties
(like e.g. in [49]). Similarly, we formulated the applications of rules as multiplicative
(context-independent) rather than additive (context-sharing) applications (see [57],[92]).
Clearly, in the presence of all structural rules, the multiplicative version and the additive

one are interderivable. Again, this decision does not affect any property we discuss below.

3Here and henceforth, when we say that a two-sided calculus G is a calculus for a logic L, we mean
that IF{Gf Vs equal to the consequence relation of the logic L.
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2.3 Proof-Theoretic Properties

In this section we define several important proof-theoretic properties of pure calculi. In

the next chapter we will provide a semantic counterpart for each of these properties.

2.3.1 Analyticity

Analyticity is a crucial property of fully-structural propositional proof systems, as it
usually implies its decidability and consistency (the fact that the empty sequent is not
derivable) . Roughly speaking, a sequent calculus is analytic if whenever a sequent s is
provable in it, then s can be proven using only the syntactic material available inside s.
Now, there is more than one way to precisely define the “material available within some
sequent”. Usually, it is taken to consist of all subformulas occurring in the sequent, and
then analyticity amounts to the global subformula property (i.e., if there exists a proof
of a sequent s, then there exists a proof of s using only its subformulas). However, it is
also possible (and sometimes necessary, see, e.g., Example to consider analyticity
properties that are based on different relations defining the “material available within
sequents”. While these substitutes might be weaker than the global subformula property,
they still suffice to imply the consistency and the decidability of a proof system. Next

we define a generalized analyticity property, based on an arbitrary safe partial order.

Definition 2.3.1. Let < be a partial order on L. For every formula ¢, we denote by
1= [p] the set {» € L | ¥ < ¢}. This notation is extended to sets of formulas, sequents,
and sets of sequents in the natural way: |S[T]| = Uper 1=[p] for a set T of formulas;
1=[s] = L= [frm[s]] for a sequent s; and |=[S] = [J,cs 1= [s] for a set S of sequents. < is
called safe if |=[y] is finite for every ¢ € £, and Ap € L.]=[p] is computable.

Henceforth, < denotes an arbitrary safe partial order on £. A particularly important
one is the subformula relation (here we mean the reflexive-transitive closure of the direct

subformula relation). For this relation we employ the following notation:

Notation 2.3.2. We denote by sub the subformula relation between formulas. In the

case of sub, we simply write sub[ -] instead of }*“[-].

Definition 2.3.3. Given a set F of L-formulas, a formula ¢ is called an F-formula if
¢ € F. In turn, an £-labelled F-formula is an £-labelled L-formula x:¢ with ¢ € F;
and an (F, £)-sequent is an (L, £)-sequent consisting only of £-labelled F-formulas.

Notation 2.3.4. For a pure (£, £)-calculus G, we write S % s if there is a proof in G
of s from S consisting only of (F, £)-sequents.
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Definition 2.3.5. A pure (£, £)-calculus G is <-analytic if for every (L, £)-sequent s:
g s implies that I—g[s] s.

The above notion of analyticity considers only proof from empty set of assumptions

(speaking only about the theorems of the system). A strong version is defined as follows:

Definition 2.3.6. A pure (L, £)-calculus G is strongly <-analytic if for every set S of
(L, £)-sequents and (L, £)-sequent s: S Fg s implies that S l_éﬁ[w{s}] s.

In the next chapters we focus only on strong <-analyticity. Obviously, <-analyticity
follows from strong <-analyticity (take S = ()). Next, we show that in the simple (and
most common) case of two-sided calculi that include (cut) and (id) these two properties
are actually equivalent. The main idea of this proof appeared already [6], where it was
proved that cut-admissibility implies strong cut-admissibility (see definition below) for

the specific case of LK.

Theorem 2.3.7. Let G be a pure (£, £3)-calculus, that includes (cut) and (id). If G is
<-analytic then it is strongly <-analytic.

Proof. Suppose that G is <-analytic. We show that S Fg s implies & l_g[&){s}] S
Clearly, it suffices to prove this for finite S (otherwise, take a finite subset S* of S
such that §* Fg s). We use induction on the number of (£, £3)-sequents in S. The
case that S is empty follows from our assumption. Suppose the claim holds when
the number of sequents in S is n, and let S" = {so,..., s} be a set of n + 1 (L, £2)-
sequents, such that &’ g s. Proposition implies that {syUc,sy,...,8,} Fg sUc,
for every (L, £2)-sequent c. In particular, for every £s-labelled L-formula x:p € s,
{s0o U{Z:¢}, 81, ..., 80} Fa s U {X:p}, where £ = t and T = £. Now, for every x:p € s,
the sequent sy U {X:p} is derivable in G using only (id) and weakenings, and there-
fore we have {s1,...,s,} Fa s U {x:i¢p}. By the induction hypothesis we obtain that
{s1,.,Sn} I—g[SU{SH s U{x:p} for every £x-labelled L-formula x:¢p € sg. The sequent
s can then be inferred from these sequents and sy by |sg| applications of (cut) without

introducing any formulas outside |=[S U {s}]. O
The following are three major consequences of (strong) <-analyticity.

Proposition 2.3.8 (Consistency). Let G be pure (£, £)-calculus, which is <-analytic

for some safe partial order <. Then, g 0.

Proof. Assume that g (. Since G is <-analytic, there exists a proof of the empty
sequent using no formulas at all. The only way to have this is using the rule (}/(); which
was disallowed in pure systems (Convention [2.2.15)). [
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Proposition 2.3.9 (Conservativity). Let £; and £y be two propositional languages,
such that £, is an extension of £; by some set of connectives. Let G1 and Gg be a pure
(Lq, £)-calculus and a pure (Lo, £)-calculus (respectively). Assume that G is obtained
from G; by adding to the latter rules involving connectives in £, \ £ (i.e., at least one
connective in £y \ £1 appears in each rule in G \ G1). Let < be a safe partial order
on L, such that £; is closed under < (i.e., |S[£y] = £;). If G is strongly <-analytic,
then Gg is a conservative extension of Gy (i.e., if frm[SU{s}] C Ly then S F¢g, s iff
Ska, s).

Proof. Obviously, § g, s implies § Fg, s. For the converse, assume that S kg, s.
Since Gy is strongly <-analytic, there exists a proof in Gg of s from § consisting of
15 [S U {s}]-formulas only. Since frm[S U {s}] C L, and L; is closed under <, this is
also a proof in G, and so § F¢g, s. O]

Proposition 2.3.10 (Decidability). Let G be a pure (L, £)-calculus. Suppose that
G is strongly <-analytic for some safe partial order <. Then, given a finite set S of

(L, £)-sequents and an (L, £)-sequent s, it is decidable whether S g s or not.

Proof. Exhaustive proof-search is possible. Since G is strongly <-analytic, S Fqg s iff
there exists a proof in G of s from S consisting of |=[S U {s}]-sequents only. Since < is
safe, one can construct the (finite) set S’ of all |=[S U {s}]-sequents. Clearly, S Fq s iff
there exists a proof in G of s from S of length less than or equal to |S’|, consisting only
of sequents from &’. Thus one can construct all possible candidates. By definition G is
finite, and hence it is possible to check whether a certain candidate is indeed a proof in
G of s from S. O

2.3.2 Cut-Admissibility

Usual two-sided sequent calculi include the rule (cut), which is very problematic from a
proof-search perspective. The admissibility of (cut) (i.e. the fact that for every sequent
s, Fg s implies that there is a cut-free proof in G of s) is then desirable. However,
forbidding all applications of cut rules seems to be too strong while dealing with arbitrary
pure (L, £)-calculi. Indeed, consider applications of a cut rule in which the cut-formula
occurs inside the context sequents (i.e. inferring a sequent of the form ¢; U ... U ¢, from
the sequents (Xy:0) U cq, ..., (Xn:) U ¢, where ¢ € frmc; U ... U ¢,]). Such applications
are not harmful for proof-search, as every formula in the conclusion of the application
also occurs (as is) in one of its premises. These considerations lead to the following

formulation of cut admissibility in pure calculi:
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Definition 2.3.11. A pure (£, £)-calculus G enjoys cut-admissibility if for every (L, £)-
sequent s: Fg s implies that there exists proof P of s in G such that the cut-formula
of every application of a cut rule in P occurs in one of the context sequents of that

application.

As for analyticity, this notion of cut-admissibility refers only to proofs without as-
sumptions (i.e., proofs from (). Obviously, we cannot expect full cut-admissibility when
the set of assumptions is not empty (in usual calculi, the only way to derive the empty
sequent from {f:p;} and {t:p;} is using (cut)). Thus we consider the property called

strong cut-admissibility in [6], which is formulated as follows in our framework:

Definition 2.3.12. A pure calculus G enjoys strong cut-admissibility if S g s implies
that there exists a proof P of s from § in G such that the cut-formula of every application

of a cut rule in P occurs either in one of the context sequents of that application or in

frm[S].

Obviously, cut-admissibility follows from strong cut-admissibility (take S = 0).

Equivalent definition of cut-admissibility and strong cut-admissibility are obtained
by considering an enrichment of G with non-cut rules, so that all applications of the cut
rules in which the cut-formula occurs in the context can be replaced by applications of

the new rules. This is done as follows:

Definition 2.3.13. Let G be a pure (L, £)-calculus. s(G) denotes the pure (L, £)-
calculus obtained by augmenting G with the primitive £-rules (Xi:p1), ..., (X.:p1)/{x:p1}
for every cut rule (X1:p1), ..., (X,:p1)/0 of G and x € £ such that {x} & {Xi,...,X,}.

Example 2.3.14. Let £ = {f,1,t} and suppose that is {£:p1}, {i:p1}/0 is the only cut
rule of G. s(G) is obtained by adding to G the primitive rule {f:p;}, {i:p1}/{t:p1}.

Note that for a pure (£, £3)-calculus G whose only cut rule is (cut), we have that
s(G) = G.

Proposition 2.3.15. tyg)=F¢g for every pure (£, £)-calculus G.

Proof. All applications of the new rules in s(G) can be simulated in G by applications

of the corresponding cut rule, followed by an application of a weakening rule. O

Notation 2.3.16. Given a pure (£, £)-calculus G, we denote by G.s the calculus ob-
tained from G by discarding all cut rules of G. In particular, s(G).r is the calculus
obtained from G by replacing every cut rule of the form (X1:p1), ..., (Xn:p1)/0 with all
rules of the form (Xy:p1), ..., (Xn:p1)/{x:p1} such that x € £ and {x} & {Xy,..., X, }.
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Notation 2.3.17. Given a set C C L, a pure (£, £)-calculus G, a set S of (L, £)-
sequents, and an (L, £)-sequent s, we write S F&C s if there exists a proof in G of s

from S in which the cut-formula of every application of a cut rule is an element of C.
Proposition 2.3.18. Let G be a pure (£, £)-calculus.

1. G enjoys cut-admissibility iff Fyq), ;S whenever yq) s.

2. G enjoys strong cut-admissibility iff S I—g?g;ﬁm[s] s whenever S Fyq) s.
Proof. Note that every application of a cut rule in G in which the cut-formula occurs
in the context sequents can be simulated in s(G).s (by using its new primitive rules
or weakening). Similarly, every application of a new primitive £-rule in s(G).; can be
simulated in G by applying weakening and the corresponding cut rule where the cut-

formula occurs in the context sequents. The claims then follow from the definitions. [

It follows that a pure (L, £3)-calculus G whose only cut rule is (cut) (and thus
s(G) = G) enjoys cut-admissibility iff FgClq,,. Such a calculus enjoys strong cut-
admissibility iff S Fg s implies that there exists a proof of s from & in G such that
the cut-formula of every application of a cut rule is an element of frm[S]. Hence Def-
inition and Definition indeed generalize the known notions for ordinary
two-sided sequent calculi. In addition, in ordinary two-sided calculi that include (cut)

and (id) cut-admissibility is equivalent to strong cut-admissibility (like in the case of
analyticity, see Theorem [2.3.7)).

Theorem 2.3.19. Let G be a pure (L, £2)-calculus, that includes (cut) and (id). If G

enjoys cut-admissibility then G enjoys strong cut-admissibility.

Proof. Similar to the proof of Theorem [2.3.7] O

2.3.3 Axiom-Expansion

Another property which is often studied in two-sided sequent calculi (that include (id)) is
the property of axiom-expansion [44]. This property means that non-atomic applications
of (id) (deriving sequents of the form {f:p,t:¢} where ¢ is not atomic) are redundant ff

In our broader context it can be formulated as follows:

Notation 2.3.20. Given a pure (£, £)-calculus G, G,y denotes the pure (£, £)-calculus
obtained from G by discarding all identity axioms of G.

4The term “axiom-expansion” is commonly used, but it is somewhat unfortunate. In fact, this
property concerns the reducibility of arbitrary axioms to atomic ones.
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Definition 2.3.21. A pure (£, £)-calculus G enjoys aziom-expansion if

{(X:p) | 0/(X:p1) € Pa,p € ate} ba,, (Yip)
for every 0/(Y:p;) € Pg and ¢ € L.

It is easy to see that we have the following:

Proposition 2.3.22. A pure (£, £)-calculus G enjoys aziom-expansion if

{Xeps) | 0/(Xep1) € Pa, 1 <i < ar(o)} Fa,, (Yio (D1, s Pare)))
for every 0/(Y:p;) € Pg and ¢ € .

Proof. A simple inductive argument (using Proposition [2.2.17)) suffices. m
Thus, following [44], we define this property for a given connective as follows:

Definition 2.3.23. A connective ¢ € {, admits aziom-expansion in a pure (L, £)-
calculus G if {(X:p;) | 0/(X:p1) € Pg,1 <i < ar(o)} Fa,, (Y: 0 (p1y - Par(e))) for every
0/(Y:p1) € Pg.

Remark 2.3.24. Unlike [44], we do not require that there exists a cut-free proof of
(Y: % (plv 7par(<>)))~

Note that a pure (£, £)-calculus G enjoys axiom-expansion iff each connective of £

admits axiom-expansion in G.

Example 2.3.25. It is easy to see that each connective of £, admits axiom-expansion

in LK, and thus LK enjoys axiom-expansion.



Chapter 3
Semantics for Pure Sequent Calculi

In this chapter we introduce a method for providing (possibly non-deterministic) many-
valued semantics for any given pure calculus. The semantics is then used to characterize
the proof-theoretic properties of pure calculi that were introduced in the previous chap-
ter. It should be noted that while dealing with the general framework of pure calculi,
one cannot expect to obtain effective semantics in all cases. Indeed, the proposed se-
mantics is quite close to the input proof system. However, it provides a complementary
presentation of pure calculi, sheds light on their syntactic properties, reveals deep useful
connections between semantics and proof theory, and turns out to be useful for proving
these properties in particular examples. In addition, applying the tools of this chapter
for narrower families of pure calculi (as done in the next chapter for canonical calculi)

leads to effective semantics and decidable criteria for proof-theoretic properties/l]

Publications Related to this Chapter

The material in this chapter was not published before.

3.1 The Semantic Framework

The proposed semantic framework is a denotational semantics, based on valuations, which

are simply functions whose domain is L:

IThis inherent limitation of an investigation of such general frameworks was summarized by J.Y.
Béziau in [34] as follows:

“What is involved in this paper is mainly general abstract nonsense. The main dif-
ficulty of our results is rather conceptual. But what we show is that when this general
abstract nonsense is rightly organized we can get meaningful results with a lot of powerful
applications.”

24
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Definition 3.1.1. An L-valuation is a function v from £ to some set U of truth values.

We denote by I'm, the image of v.

Note that we do not specify what are truth values, and in fact anything can serve as a

truth value. To define restrictions on L-valuations we introduce L-semantic conditions.
Definition 3.1.2. Let U be some set of truth values.

1. An L-semantic disjunction over U is a finite set of pairs (p, u), denoted by ¢ = u,
where u € U and ¢ € L. L-substitutions are naturally extended to L-semantic
disjunctions by o(I) = {o(¢) =u | p =u € I}.

2. An L-semantic condition over U is a pair (Z, ), denoted by Z = I, where Z is a
finite set of L-semantic disjunctions over U, and [ is a single £-semantic disjunction
over U.

3. An L-valuation v with Im, C U satisfies:

(a) an L-semantic disjunction I over U if p = v(p) € I for some ¢ € L.

(b) an L-semantic condition T = I over U if for every L-substitution o, v satisfies

o(I) whenever it satisfies o(I") for every I’ € T.

(c) a set A of L-semantic conditions over U if it satisfies every Z = I € A.

We write v = X to denote that v satisfies X, where X is either an £-semantic disjunction,

an L-semantic condition, or a set of L-semantic conditions ]

Example 3.1.3. Suppose that o,> € $%, and let U = {u;,us}. Consider the semantic
disjunctions: I} = {p1 = uy,ps = us}, and Iy = {p; ©ps = uy,p2>p1 =u1}. Let v be
an L-valuation with I'm, C U. Then, v = I iff v(p1) = uy or v(ps) = uz. v | Iy iff
v(p1 © pa) = ug or v(pa > pr) = uy. v satisfies the L-semantic condition {I;} = I, iff for
every o1, o € L: if v(p1) = uy or v(ps) = ug, then v(py © o) = uy or V(s > Y1) = uy.

Example 3.1.4. Obviously, restrictions arising from “truth tables” can be represented
as semantic conditions. For example, to capture the classical truth table of implica-
tion, we use the following conditions over {f,t}: {{p1 =t},{p2 = f}} = {p1 D p2 = [}
and {{p1 = f,p2 =t}} = {p1 D p2 =t}. An L-valuation satisfies these two L-semantic

conditions iff it respects the usual truth table of D.

To obtain semantic characterizations of logics we introduce a class of structures called
many-valued systems, that generalizes the usual notion of a many-values matrix (see, e.g.,

[93]), by allowing arbitrary semantic conditions.

ZNote that v |= ) is ambiguous: it holds for the empty set of £-semantic conditions, and does not
hold for the empty L-semantic disjunction.
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Definition 3.1.5. A many-valued system M for L consists of:

1. A set V\ of truth values.
2. A subset Uy C Vi of legal truth values.
3. A subset Dy € Vv of designated truth values.

4. A set Ay of L-semantic conditions over V.
M is called finite if so are Vi and Apyg.
Definition 3.1.6. Let M be a many-valued system for L.

1. An L-valuation v is called M-legal if Im, C Up and v = A
2. An L-valuation v is said to be a model (with respect to M) of:

(a) an L-formula ¢, written v M o, if v(p) € Dy
(b) a set T of L-formulas, written v EM T, if v M ¢ for every ¢ € T.

3. An L-formula ¢ follows from a set T of L-formulas with respect to M (denoted by:
T Ikam ) if for every M-legal L-valuation v: v EM ¢ whenever v M T

Proposition 3.1.7. For every many-valued system M for £, (£, IFy) is a logic.

Proof. Easily follows from the definitions. To prove that IFy; is structural, note that if v

is an M-legal L-valuation, then so is v o ¢ for every L-substitution o. O

Example 3.1.8. Classical logic (L4, IFy) is obtained by taking a many-valued system
M, with Vs, = Unm, = {f,t}, Dm, = {t}, and A, consist of the semantic conditions
over {f,t} that correspond to the classical truth tables (e.g. as in Example [3.1.4)).

Example 3.1.9. Many-valued systems generalize the notion of a logical many-valued
matrix [93, 61]. Thus any many-valued logic that is defined by such a matrix is captured
in this general framework. In addition, non-deterministic many-valued matrices [17), 21]

can be easily presented as particular cases of many-valued systems. This will be discussed
in Chapter

Example 3.1.10. The framework of bivaluations [34, 40] corresponds to two-valued
systems (that is, many-valued systems with |V | = [Un| = 2 and |Dy| = 1. In addition,

the dyadic semantics of [39] is also a subclass of two-valued many-valued systems.

In many cases in the sequel, we need a many-valued system M just to specify a set
of (M-legal) valuations, rather than to define a logic. The set Dy of designated truth
values is redundant in these cases, and can be discarded. The obtained structures will

be called many-valued pre-systems:
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Definition 3.1.11. A many-valued pre-system M for L is defined exactly like a many-
valued system (Definition [3.1.5)), except that we exclude the set Dy of designated truth

values.

Remark 3.1.12. Evidently, it suffices to consider many-valued systems with Uy = V.
Indeed, given a many-valued system M, we can always define a many-valued system M’
by Vmr = Uny = Unt, Dy = Dy N UM, and Ay is obtained from Ay by discarding all
occurrences of pairs ¢ = u with u € Uy from the semantic conditions. Clearly, M-legal
L-valuations are exactly M’'-legal L-valuations, and we also have IFy=IFyy. However,
we find the distinction between Uy; and Vi technically convenient, as it allows us to
change the set of legal truth values in many-valued (pre-) systems, without changing any
of its other components. This is mainly beneficial for the modularity of the constructions

below.

3.1.1 Partial Valuations and Semantic Analyticity

An important attractive property that we would like a semantic framework to have is
effectiveness, namely the fact that it can be used to provide a semantic decision procedure
for the logics it induces. The framework of many-valued systems is too wide to have
this property in general. In this section we identify a sufficient condition for the the
effectiveness of a many-valued system. This condition will also play a main role below

for characterizing <-analyticity in pure sequent calculi.

Generally speaking, the naive approach to check whether I' IFy; ¢ for a many-valued
system M (given a finite set of formulas I and a formula ¢) would be to consider one by
one all possible M-legal L-valuations, and return “true” iff none of them is a counter-
model — a model of I but not of ¢ (with respect to M). Obviously, this cannot serve as
a decision procedure since there are infinitely many L-valuations to check, and each of
them is infinite. Thus, as is usually done in decision procedures based on denotational
semantic frameworks, one has to consider partial valuations defined only on the syntactic
material included in I" and (. This, however, requires that the existence of a counter-
model in the form of a partial valuation always indicates the existence of an (infinite) full
counter-model. Obviously, this requirement holds when every partial valuation can be
extended to a full one. Next, we define partial valuations, and precisely formulate these

observations.

Definition 3.1.13. A partial L-valuation is a function v from some set Dom, C L to

some set U of truth values. We denote by Im, the image of v.

The previous notions for L£-valuations are adapted to partial £-valuations as follows:
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Definition 3.1.14. A partial L-valuation v satisfies:
1. an L-semantic disjunction I if ¢ = v(p) € I for some ¢ € Dom,,.

2. an L-semantic condition T = I if for every L-substitution ¢ such that o(¢) € Dom,,
and for every ¢ that occurs in Z = I, v satisfies o(I) whenever it satisfies o(1") for
every I' € T.

3. a set A of L-semantic conditions if it satisfies every Z = I € A.

We write v = X to denote that v satisfies X, where X is either an £-semantic disjunction,

an L-semantic condition, or a set of L-semantic conditions.

Given a many-valued pre-system M for £, M-legal partial L£-valuations are defined
exactly as M-legal (full) L-valuations (i.e. Im, C Upn and v = Am). Note that Def-
initions and generalize the corresponding notions defined above for (full)
L-valuations. Indeed, by taking Dom, = L, we obtain exactly the definitions for L-

valuations.

Definition 3.1.15. Let v and v" be two partial £L-valuations. We say that v" extends v
if Dom,, C Dom,, and v'(y) = v(p) for every ¢ € Dom,,.

Definition 3.1.16. Let < be a partial order on £. A many-valued (pre-) system M is
called <-analytic if any M-legal partial L-valuation whose domain is finite and closed

under < can be extended to an M-legal (full) £-valuation.

Example 3.1.17. Revisiting the many-valued system M, from Example for classi-
cal logic, we note that this system is sub-analytic. Indeed, M-legal partial £ -valuation,
whose domain is finite and closed under <, are usual classical partial valuations which

can be obviously extended to full classical valuations (i.e. M-legal L -valuations).

Note that we use the same term “<-analytic” in two different contexts. When referring
to many-valued (pre-) systems as <-analytic we mean the semantic extension property
defined above (the term “analyticity” was used to describe a similar property in previous
works, see e.g. [21]). On the other hand, we call a pure sequent system <-analytic if
it satisfies the syntactic property given in Definition In Theorem below we

establish a correspondence between these two notions of analyticity.

Next, we prove that <-analyticity (for a safe relation <) suffices for the effectiveness

of a given many-valued system.

Theorem 3.1.18. Let M be a finite many-valued system for £. Suppose that M is
<-analytic for some safe partial order < on L. Given a finite set I of L-formulas and an

L-formula ¢, it is decidable whether I" Iy ¢ or not.
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Proof. Since < is safe, |<[I'U{p}] is finite. Thus, to decide whether T' IFp; o one
can enumerate all partial £-valuations v with Dom, = |= [T U {¢}] and Im, = Uy, and
check if one of them satisfies the following three conditions: (1) v is M-legal; (2) v EM T;
and (3) v M . Each of these conditions is obviously decidable for a given v. We claim
that ' IFpg o iff such a function is not found. To see this, note that if I' ¥y ¢, then by
definition there exists an M-legal L-valuation v’ such that " EM T" but v M . Its
restriction to }=[['U {p}] is a function v : [= [ U {p}] — U satisfying the conditions
above. On the other hand, if there exists such a function v, then since M is <-analytic,
v can be extended to an M-legal (full) L-valuation v'. Clearly, v EM T but v M .
Consequently, I' ¥pp ¢ in this case. O

Examining the proof above, we are able to provide a slightly weaker requirement:

Theorem 3.1.19. Let M be a finite many-valued system for £, and < a safe partial
order on L. Suppose that given an M-legal partial £-valuation v, whose domain is finite
and closed under <, it is decidable whether v can be extended to an M-legal (full) £-
valuation or not. Then, given a finite set I' of L-formulas and an L-formula ¢, it is

decidable whether I' IFys ¢ or not.

Proof. The proof goes as the proof of Theorem [3.1.18 with the addition of a forth

condition: (4) v can be extended to an M-legal L-valuation. O

In Chapters [4] and [5| we will use this theorem to prove the decidability of a large
family of logics induced by many-valued systems of a certain restricted form (of which
many-valued matrices and their non-deterministic counterparts are particular instances).
The decidability of important subfamilies of pure sequent calculi will be obtained as a

consequernce.

Remark 3.1.20. In the literature of non-deterministic matrices (see, e.g., [9]) effective-
ness is usually identified with (semantic) analyticity. However, the observations above
show that this property is not a necessary condition for decidability. To guarantee the
latter, instead of requiring that all partial valuations are extendable, it is sufficient to

have an algorithm that establishes which of them are.

3.2 Semantics for Pure Sequent Calculi

In this section we show that the logics induced by pure calculi can be semantically
characterised by finite many-valued systems. Thus, our goal is to construct a finite
many-valued system M for a given pure (£, £)-calculus G and a set of labels X C £,

for which we would have IFg=IFyp, . To obtain this, we begin with a construction of a



30 CHAPTER 3. SEMANTICS FOR PURE SEQUENT CALCULI

many-valued pre-system Mg for a given pure (£, £)-calculus G, together with a definition
of when an Mg-legal L-valuation v is a model of an (L, £)-sequent s. Then we show
that Mg induces the same consequence relation between sequents that is induced by
the calculus G. Our construction is modular: each syntactic ingredient corresponds to
a certain semantic component, and the semantics of the whole calculus is obtained by

joining all semantic components. We start with precise definitions of each component.

Truth Values Intuitively, the truth value assigned to an L-formula ¢ should carry
enough information to determine for which labels x € £ the £-labelled L-formula x:¢ is
“true”. In general, there can be 2/€l options for that. Thus we take the truth values in
the many-valued system for a given pure (£, £)-calculus G to be the subsets of £ (that

is, Vme = 2%), and use the following definition:

Definition 3.2.1. An L-valuation v with Im, C 2¢ is said to be a model of an £-labelled
L-formula x:p, written v = x:p, if x € v(p).

Note that the last definition concerns an L-valuation v with Im, C 2¢ regard-
less of a many-valued system. Clearly, given such an L-valuation v and a formula ¢,
v(ip) = {x € £ |v E x¢}. Thus if we have a many-valued system M for £ with
Vm = 2%, then v M ¢ (according to Definition iff the set {x € £ | v Ex:p} isin
Dn. In turn, sequents are intuitively interpreted as disjunctions of labelled formulas, and

sets of sequents (that constitute the sets of assumptions) are conjunctions of sequents.
Definition 3.2.2. An L-valuation v with Im, C 2% is said to be a model of:

1. an (L, £)-sequent s, written v |= s, if v |= a for some « € s.
2. a set S of (L, £)-sequents, written v = S, if v |= s for every s € S.

These notions naturally lead to the following definition of the consequence relation

between sequents induced by a many-valued (pre-) system with Vyy = 2¢:

Definition 3.2.3. Let M be a many-valued (pre-) system for £ with Vg = 2. An
(L, £)-sequent s follows from a set S of (L, £)-sequents with respect to M (denoted by:

S b s) if every M-legal L-valuation which is a model of S is also a model of s.

Remark 3.2.4. The general framework of many-valued (pre-) systems presented above
allows anything to serve as a truth value. However, a semantic consequence relation Fpp
between sequents is defined here only for many-valued (pre-) systems whose truth values

consist of sets of labels (Vi = 2%).
The soundness of the weakening rules directly follows from the definitions:

Proposition 3.2.5. {s} Fn s U {a} for every many-valued (pre-) system M for £ with
Vm = 2%, (L, £)-sequent s, and £-labelled L-formulas a.
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Legal Truth Values While Vg, is taken to be all subsets of £, the set Un, of
legal truth values (those that are actually allowed to be used in Mg-legal valuations) is
determined according to the primitive rules of G. Indeed, each primitive rule of G forbid
some of the 21€l options. For example, say that f,1 € £, and consider the primitive rule
{f:p1}/{i:p1}. Semantically, this rule means that an £-labelled £-formula of the form
i:p should be “true” whenever f:¢ is “true”. This semantic requirement can be easily
reflected by disallowing truth values that include the label £ but not i. We will denote
by £(r) the set of subsets of £ that are not forbidden by the primitive rule r. Formally,
£(r) is defined as follows:
Definition 3.2.6. Let r = (X;:p1), ..., (Xu:p1)/(X:p1) be a primitive £-rule. Then:
L£r)={YC £|XNY=0 for some1<i<norXNY=#({}.
This definition is naturally extended to sets R of primitive £-rules by: £(R) = (,c5 £(7).
Example 3.2.7. Let £ = {f,1,t}. For a primitive £-rule r = ({£,t}:p1), {i:p1}/{t:p1},
£(r) consists of all subsets of £ except for {f,1i}.
Example 3.2.8. For a cut rule r = (X;:p1), ..., (Xn:p1)/0,
Lr)y={YC £ |XNY=0 for some1<i<n}.

For an identity axiom r = 0/(X:p),

Lr)y={YC £|XNY#0D}.
In particular, £(0/(£:p1)) = 2\ {0}. Note that if a pure (£, £)-calculus G has at least

one cut rule then £ ¢ £(Pg), and similarly, if G has at least one identity axiom then
0 ¢ £(Pc).
For a given pure (£, £)-calculus G, we will take Uy, = £(Pg) (recall that Pg denotes

the set of primitive rules of G).

Example 3.2.9. For a pure (£, £3)-calculus G with Pg C {(cut), (id)} we have:
({1} {e}) Pa = {(cut), (id)}

{0, {2}, {t}} Pg = {(cut)}

{{t}. {e}.{f,t}}  Pc={(id)}

{0 {£}, {e}.{f,t}} Pc=10

Thus for an ordinary pure (£, £2)-calculus with Pg = {(cut), (id)} we get a two-valued

£(Pg) =

semantics; for pure (£, £3)-calculus with Pg = {(id)} or Pg = {(cut)} we get a three-

valued semantics; and if Pg = () we obtain a four-valued semantics.

Semantic Conditions The semantic conditions in Ay, are straightforwardly derived
from the rules in Rg according to the next definitions (recall that Rg denotes the set of

non-primitive rules of G):
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Definition 3.2.10. I(-), the L-semantic disjunction over 2% induced by:
1. an £L-labelled L-formula x:p, is defined by I(x:p) = {p =X | {x} CX C £}.

2. an (L, £)-sequent s, is defined by I(s) = ., [ ().

acs
Definition 3.2.11. The L-semantic condition over 2% induced by a pure (L, £)-rule
S/s, denoted by Sem(S/s), is defined by:
Sem(S/s) ={I(s') | s € S} = I(s).
This definition is extended to sets R of pure (£, £)-rules in the obvious way:
Sem(R) = {Sem(r) | r € R}.
Example 3.2.12. Suppose that D€ (2%, and consider the usual (£, £3)-rules for D:
(f: D) = {1}, {£:p2}/{£:p1 D p2} and (t: D) = {f:p1, t:p2}/{t:p1 D p2} (see Exam-
ple [2.2.6). Then:
Sem((f: D)) = {{pl = {t}7p1 = {fat}}a {pQ = {f}apZ = {fat}}} =
{p1 D p2 = {f},p1 Dp2 = {£,t}}.
Sem((t: 2)) = {{p = {£hp1 = (£t} = {8} = {£,8}}} =
{p1 D p2 = {t},p1 Dp2 = {£,t}}.
Note that an L-valuation v (with Im, C 2%) satisfies these two semantic £-conditions

iff for every @1, 0 € L£: (1) if t € v(p1) and £ € v(p2), then £ € v(p; D pa); and (2) if
f cv(pr)ort € v(ps), then t € v(p; D o).

Example 3.2.13. Suppose that A € $% and — € . For the (L, £2)-rule from Exam-
ple2.2.8 r = {1}, {t:p1 }/{f:=(p1 A —p1)}, Sem(r) is
{pr = {ttm ={t. e}, {m = {t}, - = {£,t}}} =
{=(pr A=p1) = {£}, =21 A —p1) = {£,t}}.
Note that an L-valuation v (with I'm, C 2%) satisfies this semantic L-conditios iff for
every p € L: if t € v(p) and t € v(—gp), then £ € v=(p A —p)).

To conclude, Mg is defined as follows:

Definition 3.2.14. Let G be a pure (£, £)-calculus. The many-valued pre-system Mg
is defined by: Vi, = 2%, Ung = £(Pg), and Ay, = Sem(Rg).

The following theorem establishes the connection between pure calculi and their cor-

responding many-valued pre-systems. Its proof is given in Section [3.4]

Theorem 3.2.15. Let G be a pure (£, £)-calculus. Then Fg=Fpn. In other words:
there exists a proof in G of an (£, £)-sequent s from a set S of (£, £)-sequents, iff every

Mg-legal L-valuation which is a model of § is also a model of s.
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Corollary 3.2.16. Let G be a pure (£, £)-calculus. and < a safe partial order on L.
Suppose that given an Mg-legal partial £-valuation v, whose domain is finite and closed
under <, it is decidable whether v can be extended to an Mg-legal (full) L-valuation
or not. Then, given a finite set S of (£, £)-sequents and a single (£, £)-sequent s, it is
decidable whether S g s or not.

Proof. Construct Mg according to the definitions above. Then, enumerate all partial £-
valuations v : | =[S U {s}] = Uni, and check if one of them is Mg-legal, can be extended
to an Mg-legal (full) £-valuation, and is model of S but not of s. As in Theorem [3.1.19]

we have that & b s iff such a partial L-valuation is not found. O

Now, to obtain a many-valued system for the logic induced by G and a set X of labels,
one should take the designated truth values to be subsets of £ that contain at least one
label from X:

Definition 3.2.17. Let G be a pure (L, £)-calculus, and let X € £. The many-
valued system MY is obtained by augmenting the many-valued pre-system Mg with
Dy, ={X' C £ [X'NX#0D}.

Corollary 3.2.18. Let G be a pure (£, £)-calculus, and X C £ a set of labels. Then

F=lrag,

Proof. Note that an Mg-legal valuation v is a model of a sequent of the form (X:p) iff it
is a model of ¢ with respect to M¥. Therefore, the claim is an immediate corollary of
Theorem [3.2.15] For the convenience of the reader, we prove one direction with all details:
Suppose that T IF%, ¢. Then, by Definition 2.2.18] {(X:¢) | v € T} g (X:¢). By Theo-
rem [3.2.15] we have that every Mg-legal £-valuation which is a model of {(X:¢0) | ¢ € T},
is also a model of (X:). We prove that T Ibyp, ¢. Thus, by Definition we should
show that for every M¥4-legal L-valuation v: v =Mé ¢ whenever v EM& T Let v be
an MX-legal L-valuation such that v =M¢ 7. By definition, v(¢)) € Dyp, for every
Y € T. Now, the definition of Dy, entails that v(¢)) NX # () for every ¢ € T. It follows,
according to Definitions [3.2.1 and [3.2.2] that v = (X:)) for every ¢ € T. Consequently,
v {(X)) [ ¢ € T}, and so v = (Xip). Thus v(p) NX # 0, and so v(p) € Dy, It
follows that v =Me . O

Example 3.2.19. As a particular instance we obtain the soundness and completeness
of LK and {t} for classical logic. Indeed, consider the pure (L, £2)-calculus LK from
Example [2.2.20, By Corollary |3.2.18, we have II—Eézll—Mﬁ.
verify that Myk-legal valuations are practically classical two-valued valuations. Indeed,
since LK includes both (cut) and (id), we have Unt, . = {{f},{t}}. The semantic L.-

conditions arising from the non-primitive rules of LK provide the usual definition of truth

It is straightforward to
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values of compound formulas in classical logic (the rules for each connective enforce its

usual truth table, see, e.g., Example |3.2.12)).

Example 3.2.20. By applying Corollary to the pure (L., £2)-calculus G, from
Example and X = {t}, we obtain effective semantics for da Costa’s paraconsistent
logic C;. The many-valued system M = Mg(}jl is given by: Unr = {0, {£},{t}, {f,t}};

= {{£},{t}}; Dm = {{t}}; and Am consists of one L.-semantic condition over
VM for each non-primitive rule of Gg,. For example, for the rule (f:=A') we have the
semantic condition given in Example Similarly, (£:=—) and (f:=A?) yield the
following L.-semantic conditions:

Sem((f:-7)) = {{p1 = {£},p1 = {£, t}}} = {=w1 = {£}, 1 = {£,t}}
Sem((£:=A%)) = {{=p1 = {£}, -1 = {£,t}}, {=p2 = {£}, 2 = {£,t}}} =
{_'(pl /\p2) = {f}’ _'(pl /\p2) = {f7t}}

It is easy to see that the conditions in Ay (including the ones mentioned above) dictate

the following requirements from M-legal L -valuations v for every formula w:ﬁ

(t:m) If p = =~ and £ € v(yp), then t € v(P).

(£:A) If ¢ =1 Ao and (f € v(gpy) or £ € v(pa)), then £ € v(1).

(t:A) I h = o1 Ao, t €v(p1) and t € v(ips), then t € v(1).

(£:V) If 1 = @1 V o, £ € v(¢p1) and £ € v(pa), then £ € v(¢).

(t:V) If ¢ = @1 Vo and (t € v(p1) or t € v(p2)), then t € v(¢).

(£: D) If 1 = 1 D 2, t € v(p1) and £ € v(p2), then £ € v(¢).

(t: D) If ¢ =1 D g and (f € v(p1) or t € v(pa)), then t € v(v).

(f:==) If ¢ = ==y and £ € v(p), then £ € v(¢)).

(f:=AY) Tf Y = =(p A=), t € v(p) and t € v(—gp), then £ € v(v).

(£:2A2) TEp = = (p1 A o), £ € v(—py) and £ € v(—ps), then £ € v(v).

(f:=VY) Tf ¢ = = (1 V o), £ € v(—p1) and (f € v(yps) or £ € v(—yy)), then £ € v(v).
(£:=V2) I p = = (1 V a), (£ €v(p1) or £ € v(—py)) and £ € v(—gps), then £ € v(v).
(£:= DY) I = =(pp1 D o), £ € v(p1) and (£ € v(py) or £ € v(—ps)), then £ € v(1).
(f:= 2%) If¢p = =1 D 2), (f €Ev(ip1) or £ € v(—py)) and £ € v(—py), then £ € v(1).

It is easy to verify that these requirements correspond exactly to the conditions on C}-
bivaluations described in [34].

Now, M is not sub-analytic (see Definition . Indeed, consider the partial £-
valuation v with Dom,, = {p1, p2, =p1, =2, 71, 7p1 A =p2, ~(—p1 A —p2) }, and:

3Note that since Upg = {{£}, {t}}, we can write v(¢) = {x} instead of x € v(p) (for x € {£,t}). We
prefer the latter since we will reuse this list of conditions in Example [3.3.10| where {f,t} is also included
in UM
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o v(p1) =v(p2) = v(——p1) = {£},

o v(=p1) = v(=p2) = v(=p1 A 7p2) = v(=(=p1 A p2)) = {t}.

Dom, is finite and closed under subformulas, and v is M-legal. Now, assume for a
contradiction that there is an M-legal (full) £-valuation v that extends v. (f:——) enforces
that v'(=—p2) = {£}. On the other hand, if v'(=—ps) = {£}, then (£:-A?) enforces that
o ((p1 A pa)) = {£}. But, o/(~(=p1 A ~p2)) = v(~(p1 A p2)) = {t}.

Nevertheless, it can be shown that M is nsub-analytic, where nsub denotes the tran-
sitive closure of subU{(—¢;, =(p1 0 9a)) | v1,92 € L,0 € {A,V,D},i =1,2}. Indeed, let
v be an M-legal partial L. -valuation, whose domain is finite and closed under nsub. We
construct an M-legal (full) Ly -valuation v’ that extends v. Let t,1s,... be an enu-
meration of all £, formulas such that: i < j whenever (¢;,1;) € nsub. We recursively
construct v’. Let ¢ > 1, and suppose that v'(¢;) was defined for every j < i. v'(¢;) is
defined as follows. First, if ¢»; € Dom,, then v'(¢;) = v(1);). Otherwise, if ¢; is an atomic
formula v'(¢;) = {£} (say). Otherwise, 1; is a compound formula and then v'(1;) is set
to be either {£} or {t} based on “classical logic reasoning” using the subformulas of 1
(for example, if ¢; = —1); then v/(v);) = {£} if V/(¢);) = {t}, and otherwise v'(¢;) = {t}).
Obviously, v" extends v. It remains to show that v" is M-legal. For that we prove by
induction on i that all the properties above hold for v' and ¢ = 1);. Suppose they hold

for ¢; for every j < i. We do here several cases (the others are similar):

(t:=) Suppose that ) = = and v'(p) = {£}. If » € Dom,, then ¢ € Dom, as well, and
V() = {t} follows since v is M-legal. Otherwise, v'(¢) = {t} as well, but this
time because of the classical truth tables.

(f:7=) Suppose that ¢» = ——p and V() = {£}. If ¥ € Dom,, then ¢ € Dom, as
well, and v'(¢) = {£} follows since v is M-legal. Otherwise, v'(=p) = {t} (by the
induction hypothesis since ¢ = 1, for some j < 4, and the condition (t:—)), and
thus v'(¢) = {f} according to the classical truth tables.

(f:=AY) Suppose that ¥ = =(¢ A =), v'(p) = {t} and v'(=p) = {t}. If ¥ € Dom,,
then ¢, —¢ € Dom, as well, and v'(1)) = {£} follows since v is M-legal. Otherwise,
V(¢ A —p) = {t} (by the induction hypothesis since p A =¢p = 1); for some j < i,
and the condition (t:A)), and so v'(¢) = {f} according to the classical truth tables.

(£f:=A?) Suppose that 1 = = (1 A @2), V(=) = {£} and v'(—p2) = {£}. If b € Dom,,
then =1, =g € Dom,, as well, and v'(¢)) = {£} follows since v is M-legal. Other-
wise, v'(¢1) = v'(¢2) = {t} according to the classical truth tables (by the induction
hypothesis since —p; = 1);, and =gy = 1, for some ji,jo < 4, and the condition
(t:=)). Thus v'(¢1 A w2) = {t} (by the induction hypothesis since @1 A @y = 1; for
some j < 7, and the condition (t:A)), and so v'(¢) = {£} according to the classical
truth tables.
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Note that nsub is safe, and thus it follows that M provides an effective semantics for
the logic da Costa’s paraconsistent logic C;. We note that a semantic decision for this
logic was included in [47]. While its formulation is completely different than ours, the
procedure in [47] is based on similar ideas. In particular, a notion equivalent to nsub-

analyticity plays a major role there as well.

3.3 Characterization of Proof-Theoretic Properties

In this section we use the above general soundness and completeness theorem (and pro-
vide some extensions of it) for deriving semantic characterizations of the proof-theoretic

properties of pure calculi discussed in Section [2.3]

3.3.1 Strong Analyticity

Analyticity for a given calculus is traditionally obtained as a corollary of cut-admissibility
(this was the case in the seminal work of Gentzen [50]). Indeed, if all rules in a pure calcu-
lus system (except for (cut)) admit the local subformula property (i.e., the premises of each
rule consist only of subformulas of the formulas its conclusion), then cut-admissibility
implies sub-analyticity[] However, there are many cases in which a calculus does not
enjoy cut-admissibility, and it is analytic nevertheless. Thus we provide a semantic char-
acterization of strong analyticity which is independent of cut-admissibility. To do so, we
need to identify semantics for proofs in which only some formulas may appear. This can
be easily done by considering partial valuations (see Definition , whose domain

consists of all formulas that may be used in proofs.

First, Definitions [3.2.1] and |3.2.2] are adapted to partial L£-valuations as follows:

Definition 3.3.1. A partial £-valuation v with Im, C 2¢ is said to be a model of:

1. an £L-labelled L-formula x:¢ if ¢ € Dom,, and x € v(yp).
2. an (L, £)-sequent s if s is a (Dom,,, £)-sequent and v is a model of some « € s.

3. asetS of (L, £)-sequents if v is a model of every (Dom,, £)-sequent s € S.

We write v = X to denote that v is a model of X, where X is either an £-labelled
L-formula, an (£, £)-sequent, or a set of (£, £)-sequents.

4 Quoting Ono [79]:
“The most important proof-theoretic property is the subformula property, and the most

convenient way of showing the subformula property is to show the cut elimination theorem.”

Generally, we agree with the first observation (though, we believe that other notions of analyticity based
on different relation than “subformula” have similar importance). However, we aim to show that in
many cases cut elimination is not necessarily “the most convenient” technique.
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Obviously, Definitions [3.2.1] and [3.2.2] are obtained from Definition by taking

Dom, = L. Note also that in Item [2| a partial L-valuation v can only be a model of

sequents consisting solely of formulas in Dom,,. Nevertheless, it can be a model of a set of
sequents containing formulas which are not in Dom,,, because only (Dom,,, £)-sequents

are considered in Ttem [3]

Now, the following theorem strengthens Theorem [3.2.15 by showing that proofs that
consist only of formulas from a set F precisely correspond to the semantics given by

partial valuations whose domain is F.

Theorem 3.3.2. Let G be a pure (£, £)-calculus, F a set of L-formulas, S a set of
(L, £)-sequents, and s an (F, £)-sequent. Then, S F§ s (i.e. there exists a proof in G
of s from S consisting only of (F, £)-sequents, see Notation [2.3.4) iff for every Mg-legal

partial L-valuation v with Dom, = F: if v is a model of S then it is also a model of s.

The proof is given in Section 3.4, We can now establish the connection between

the (syntactic) strong <-analyticity of G and the (semantic) <-analyticity of Mg (see

Definition (3.1.16)).

Theorem 3.3.3. A pure (£, £)-calculus G is strongly <-analytic iff Mg is <-analytic.

Proof. (=) Suppose that Mg is not <-analytic. Let v be an Mg-legal partial £-valuation
whose domain is finite and closed under <, but there does not exist an Mg-legal L-
valuation that extends v. Let S and s be the set of (£, £)-sequents and the (£, £)-sequent
defined by:

S = {{x¢} | ¢ € Dom,,x € v(p)}, s={xwp | ¢ € Dom,,x € v(p)}.

Then, by definition v = S and v [~ s. By Theorem we have S /2™ s. We
show that S g s. Since Dom, is closed under <, |=[S U {s}] = Dom,, and it would
follow that G is not strongly <-analytic. Let v’ be an Mg-legal L-valuation. Our
assumption entails that v does not extend v. Therefore there is some ¢ € Dom, such
that v'(¢) # v(p). Thus, at least one of the following holds: (i) there is some x € £, such
that x € V() and x € v(p); (ii) there is some x € £, such that x € v(¢) and x & v'(y).
If (7) holds, then v’ |= s. If (i) holds, then v' = {x:p}, and thus v' = S. It follows that
v’ is either a model of s, or not a model of S. Consequently, every Mg-legal L-valuation
which is a model of S is also a model of s. Hence Theorem |3.2.15 implies that S g s.

(<) Suppose that Mg is <-analytic. We show that G is strongly <-analytic. Let
S U {s} be a set of (£, £)-sequents. Suppose that S (/& s for F = [S[SU{s}]. We
show that S /g s. It suffices to show that for every finite subset &’ C S, 8§’ /g s. Let
S’ C S be a finite subset. Obviously, S’ /g s for ' = |=[S' U {s}]. By Theorem m
(note that s is an (F’, £)-sequent), there is some Mg-legal partial L-valuation v with
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Dom, = F', which is a model of &' but not of s. F’ is finite and closed under <, and
thus our assumption entails that there exists an Mg-legal L-valuation v’ that extends v.

By definition, v’ is a model of some (Dom,,, £)-sequent s iff v is a model of s'. It follows
that v’ is a model of &’ but not of s. Hence Theorem |3.2.15implies that S’ Fg s. O

Example 3.3.4. Consider again the pure (L, £2)-calculus G¢, from Example .
Following Example , the many-valued pre-system Mg, is not sub-analytic. Thus,
by Theorem [3.3.3] G, is not strongly sub-analytic. However, in the same example
we showed that Mg, is nsub-analytic for the (safe) partial order nsub defined there.
Therefore Theorem implies that G, is strongly nsub-analytic. Note that we prove
below that G, enjoys strong cut-admissibility (using another semantic characterization,
see Example [3.3.10). The fact that it is strongly nsub-analytic follows from this proof
too since all rules of G, except for (cut) are closed under nsub (that is, for each formula

¢ in a premise of a rule, there is some 4 in its conclusion such that (p,v) € nsub).

Example 3.3.5. Suppose that £ consists of one binary connective ¥. Let G be a pure
(L, £)-calculus, with Pg = {(cut), (id)}, and the following pure (L, £5)-rules:

(EX) {f:pi} {T:po}/{Epipo} (800 {t:p1}, {e:p2}/{t:ppa}
(sym) 0/{£:p1Xpa, t:po¥p }
Then partial £-valuations (whose domain is closed under subformulas) are Mg-legal iff

they satisfy the following conditions:
o v(p) € {{f}, {t}} for every p € Dom,,.

o If XXy € Dom, for some 1, s € L, then:

— If v(p1) = v(p2) = {£} then v(piXp2) = {£}.
— It v(p1) = v(p2) = {t} then v(p1Xp2) = {t}.
— If poXXpy € Dom,, then v(p1Xpa) = V(X1 ).

To see the reason for the last condition, note that
Sem((sym)) = 0 = {pp2 = {£}, pip2 = {£,t}, p2Xip1 = {t}, p2Xp1 = {£,t}}.

A partial L-valuation v with Im, C {{f},{t}} satisfies Sem((sym)) if for every L-
substitution o such that {o(p1Xp2), o(p2Xp1)} € Dom,, we have that £ € v(o(p;Xp2)) or
t € v(o(p2Xp1)). Equivalently, v satisfies Sem((sym)) if for every L-formulas ¢, and @9
such that {p1Xpa, paXX@1} € Dom,,, we have that v(p1Xpe) = {f} or v(p2Xp1) = {t}.
By “switching the roles of ¢1 and ¢y”, we obtain that v satisfies Sem((sym)) if for every
L-formulas @1 and ¢y such that {1 X2, p2Xp1} € Dom,, we have that (v(p1Xps) = {£}
or v(paXp1) = {t}) and (v(p2Xp1) = {£} or v(w1Xpa) = {t}). The last condition above

is equivalent to this requirement.
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Using Theorem [3.3.3] it easily follows that G is strongly sub-analytic. Roughly speak-
ing, given an Mg-legal partial £-valuation v (whose domain is closed under subformu-
las), we can recursively extend v to an L-valuation by setting v(p1Xg2) = v(p;) if
v(p1) = v(p2); otherwise v(p1Xp2) = v(paXXpy) if v(P2Xp1) was defined before; and
v(p1Xpe) = {£} (say) otherwise.

3.3.2 Strong Cut-Admissibility

To obtain a simple semantic characterization of strong cut-admissibility, we slightly ex-
tended Theorem [3.2.15 by: (a) considering “extended sequents” that may be infinite;
and (b) restricting the truth values of certain formulas (those on which cut is allowed) to

a certain subset of V.

Definition 3.3.6. An extended (L, £)-sequent is a (possibly infinite) set of £-labelled
L-formulas. An L-valuation v with I'm, C 2% is said to be a model of an extended

(L, £)-sequent p, written v |= p, if v = « for some a € p.

Definition 3.3.7. Let M be a many-valued pre-system for £, U C Vy a set of truth
values, and C a set of L-formulas. An M-legal L-valuation v is called (U, C)-restricted

v(p) € U for every ¢ € C.

Theorem 3.3.8. The following are equivalent for every pure (£, £)-calculus G, set C of
L-formulas, set S of (£, £)-sequents, and extended (L, £)-sequent p:

o SHUSC s for some (L, £)-sequent s C u (recall that S &S s denotes that there
exists a proof in G of s from S in which the cut-formula of every application of a
cut rule is an element of C).

e Every (Unmg,C)-restricted Mg,,-legal L-valuation which is a model of S is also a
model of p (recall that G is the calculus obtained from G by discarding all cut

rules).

The proof is given in Section [3.4l Using this soundness and completeness theorem, we

obtain the following semantic characterization of strong cut-admissibility in pure calculi.

Theorem 3.3.9. A pure (£, £)-calculus G enjoys strong cut-admissibility iff for every

M (q).,-legal L-valuation v, there exists an Myq),,-legal L-valuation v’ such that for
every o € L: v'(p) = v(p) iff v(p) # L]

Recall that for a pure (£, £3)-calculus G whose only cut rule is (cut), we have that s(G) = G (see
Definition [2.3.13). In this case M(q),, can be replaced by Mg,
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Before proving this theorem, we demonstrate its usefulness in the particular case of

Go,.

Example 3.3.10. Consider again the pure (L, £2)-calculus G¢, from Examples
and In [12] it was shown that Gg, enjoys cut-admissibility (and thus, by The-
orem it enjoys strong cut-admissibility as well). We use Theorem to show
that this fact can be obtained by our semantic criterion above. The only cut rule of
G, is (cut), and thus s(Gc,) = Gg,. The many-valued pre-system M = Mg .,
has Uy = {{f}, {t}, {f,t}}. The conditions in Ay = Sem(Rg,,) are those described
in Example [3.2.20f Now, let v be an M-legal L -valuation. We construct an M-legal
L -valuation v’ that satisfies the condition in Theorem [3.3.9] Let 11, s, ... be an enumer-
ation of all £, formulas such that ¢ < j whenever (¢, ;) € nsub (see Example for
the definition of nsub). We recursively construct v'. Let ¢ > 1, and suppose that v'(1);)
was defined for every j < i. v'(¢;) is defined as follows. First, if v(¢;) # {f,t}, then
v'(1;) = v(1;). Otherwise, if 1; is an atomic formula v/(1);) = {f} (say). Otherwise,
is a compound formula and then v/(1);) is set to be either {£} or {t} based on “classical
logic reasoning” using the subformulas of ¢; (for example, if ¢; = =t); then v/(¢);) = {£}
if v'(1;) = {t}, and otherwise v'(3;) = {t}). Obviously, v'(¢) = v(yp) iff v(p) # {£f,t}.
It remains to show that v’ is M-legal. For that we prove by induction on 7 that all the
requirements of Ay (listed in Example hold for v" and ¢ = ;. Suppose they hold
for 9, for every j < 1.

(t:7) Suppose that ¢ = —p and £ € V'(¢) (i.e. v'(p) = {£f}). Then £ € v(p),
and since v is M-legal, v() is either {t} or {f,t}. In the first, case we have
V() = v(v) = {t}. In the latter, v'(¢)) = {t} as well, but this time because of
the classical truth tables.

(f:-—) Suppose that » = ——p and £ € V/(p) (i.e. v'(p) = {£f}). Then £ € v(yp),
and since v is M-legal, v(¢) is either {f} or {f,t}. In the first, case we have
V() = v(®) = {£f}. In the latter, we have v'(=p) = {t} (by the induction
hypothesis since -¢ = ; for some j < 4, and the condition (t:=)), and thus
v'(1p) = {£} according to the classical truth tables.

(f:=A!) Suppose that ¢ = —(p A =), t € V'(p) and t € V'(~p) (ie. V' (p) = {t}
and v'(=p) = {t}). Then t € v(p) and t € v(—y). Since v is M-legal, v(v)) is
either {f} or {f,t}. In the first, case we have v'(¢)) = v(v0) = {£}. In the latter,
V(¢ A =p) = {t} (by the induction hypothesis since p A =¢p = 1); for some j < i,
and the condition (t:A)), and so v'(¢)) = {f} according to the classical truth tables.

(£:=A?) Suppose that 1) = =(¢1 A ¢2), £ € V'(—p1) and £ € V(=) (ie. v'(—p1) = {£}
and v'(—pe) = {£f}). Then £ € v(—yp;) and £ € v(—ps). Since v is M-legal, v(v))
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is either {f} or {f,t}. In the first, case we have v'(¢)) = v(¢)) = {£f}. In the
latter, v'(¢1) = {t} and v'(p2) = {t} according to the classical truth tables (by
the induction hypothesis since -, = 1;, and —gy = 1;, for some ji,jo < 7, and
the condition (t:=)). Thus v'(¢1 A ¢2) = {t} (by the induction hypothesis since
1 Ao = 1p; for some j < 4, and the condition (t:A)), and so v'(¢)) = {f} according
to the classical truth tables.

(£:V!) Suppose that ¢ = =(p1 V 2), £ € V'(mg1) (e v'(mg1) = {£}) and (£ € v'(¢2)
or £ € v'(—ps2)). Then £ € v(—¢p;) and (£ € v(p2) or £ € v(—gy)). Since v is M-
legal, v(1)) is either {£} or {f,t}. In the first, case we have v'(¢)) = v(¢)) = {£f}. In
the latter, v'(¢1) = {t} (by the induction hypothesis since —p; = 1; for some j < i,
and the condition (t:—)). Thus v'(p1Ves) = {t} (by the induction hypothesis since
1 Vg = 1, for some j < 4, and the condition (t:V)), and so v'(¢)) = {f} according
to the classical truth tables.

The other cases are similar. It follows that G¢, enjoys strong cut-admissibility.
To prove Theorem |[3.3.9, we use the following lemma.

Lemma 3.3.11. Let G be a pure (£, £)-calculus.

L Un,g,,, = Un,e U{L}-
2. An L-valuation v is Myg)-legal iff it is M) ,-legal and v'(¢) # £ for every
peL.

Proof. 2 directly follows from 1 since the only difference between Myq) and M), ;18
in the set of legal truth values. We prove 1. Since Pyaq)., € Psq), we obviously have
Uni, ) & uMs(Gw
r € Pya),,, and thus £ € UMS<G)cf. Now, let X € MMS(G)Cfv and suppose that X € Un, g, -
We show that X = £. By definition, X C £. To show that £ C X, let x € £. Since
XgUn, g X & L(r) for some r € Pyq). The fact that X € UMS(G)Cf entails that r» must
be a cut rule, namely r = (X1:p1), ..., (Xn:p1)/0 for some Xy, ..., X,, C £. Since X & Unt, )
we have X; N X # () for every 1 < i < n. Now, if {x} € {Xi,...,X,}, then we have that
x € X and we are done. Otherwise, by definition, s(G).; includes the primitive £-rule
e = (Xi:p1), -y, Xip1)/{x:p1}. The fact that X € uMs«;)cf then entails that X € £(ry).
It follows that {x} N X # 0, and thus x € X. O

. In addition, since there are no cut rules in s(G).r, £ € £(r) for every

Proof of Theorem[3.3.9. (=) Suppose that v is an M;q).,-legal L-valuation, and there
does not exist an Mygq),,-legal L-valuation v" such that for every ¢ € L: v'(p) = v(p)
iff v(p) # £. Let S and u be the set of (£, £)-sequents and the extended (L, £)-sequent
defined by:

S={{xp} [peLivlp) # L,xcv(p)} and p={xp|peL,x&v(p)}
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Then, by definition v = S and v F£ p. Now, frm[S] C {p € L |v(p) # £}, and
thus v is (Unm,g,, frm[S])-restricted (using Lemma |3.3.11). By Theorem we have
S b(z(uésﬁm[s] s for every (L, £)-sequent s C p. We show that S Fyq) s for some (L, £)-
sequent s C p. By Proposition [2.3.18] it would then follow that G does not enjoy
cut-admissibility. Let v’ be an Mg)-legal L-valuation. By Lemma , it is Myq).,

legal and v'(y) # £ for every ¢ € L. Thus our assumpt