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Ever since the introduction of sequent calculi for classical and intuition-
istic logic by Gentzen [20], sequent calculi have been widely applied in the
fields of proof theory, computational logic, and automated deduction. These
systems and their natural generalizations (such as many-sided sequent and
hypersequent calculi) provide suitable proof-theoretic frameworks for a huge
variety of non-classical logics, including intermediate logics [18, 16], modal
logics [37], substructural logics [19], many-valued logics [23], fuzzy logics [26],
and paraconsistent logics [6]. In many important cases they suggest an “al-
gorithmic presentation” of a logic, which is particularly useful in automated
reasoning tasks, as well as for studying its properties, such as decidability
and computational complexity (mainly for propositional logics), consistency,
interpolation, the Herbrand theorem (for first-order logics). Thus in the
last decades Gentzen-type calculi have been frequently used for introducing,
handling, comparing, investigating and using new and existing non-classical
logics. Each such calculus usually requires a soundness and completeness
theorem with respect to its corresponding logic, and its proof-theoretic prop-
erties should be verified. Traditionally, this is done each time from scratch.
In many cases the fundamental theorem of cut-elimination is proved, i.e., the
redundancy of the well-known cut rule, which usually ensures the usefulness
of the calculus. Another desirable and computationally crucial property of
Gentzen calculi is analyticity. Roughly speaking, a calculus is analytic if
whenever a sequent s is provable in it, then s can be proved using only
the syntactic material available inside s. Often analyticity is an immediate
corollary of cut-elimination, but in many cases cut-elimination fails, and the
calculus can still be shown to be analytic.

This thesis aims at a systematic investigation of Gentzen-type systems as
mathematical objects in their own right. We study a wide variety of sequent



and hypersequent calculi for many logics of different natures. Our main
contribution is a semantic analysis of several general families of Gentzen-
type sequent and hypersequent calculi, that, generally speaking, consists of
the following:

1. We provide a uniform, general and modular semantic characterization
for the systems in the families we study. Thus each calculus G corre-
sponds to a certain set of semantic structures Vg ; and the consequence
relation induced by Vg (together with an appropriate definition of
when a structure in Vg is a model of a given sequent or hypersequent)
is shown to be identical to Fqg, the derivability relation of G. For each
family of calculi, we present a general method for extracting the set Vg
from a given system G in this family. Soundness and completeness of
many known Gentzen-type systems with respect to their usual seman-
tics is obtained as a particular instance of the proposed method. The
semantics provides a complementary dual view on Gentzen systems,
and for certain families of propositional calculi it is also effective, i.e.
it naturally induces a semantic decision procedure for derivability in
the corresponding calculus. Thus we derive new general decidability
results for large families of Gentzen-type systems, and hence, also for
the logics they induce.

2. We apply this semantic presentation of calculi (and extend and refine
it, when needed) for investigating and characterizing crucial proof-
theoretic properties of the systems we study. This includes general
notions of cut-admissibility, analyticity, and axiom-expansion. Indeed,
an illuminating contribution of a semantic study of proof systems is the
ability to provide semantic proofs (or refutations) of syntactic prop-
erties. Even when a traditional syntactic proof exists, it is usually
a tedious and error-prone inductive argument that is specifically tai-
lored to a certain system. On the other hand, semantic proofs tend to
be simpler and easier to check. Thus we characterize these properties
from a semantic point of view, providing a general “semantic toolbox”
that can be applied to prove (or refute) these properties. In some of
the families we study, these characterizations naturally lead to sim-
ple and decidable exact criteria for the aforementioned proof-theoretic
properties.

A crucial feature of a systematic procedure relating proof systems and
semantics should be its modularity — the correspondence between semantics
and proof systems should be based on local equivalences between semantic
ingredients (requirements from the semantic structures) and their syntac-
tic counterparts (derivation rules). Among others, such a correspondence
allows one to predict the semantic impact of employing the same rule in dif-
ferent proof systems, or to provide an appropriate rule for a given semantic



condition added to different logics. In particular, our semantic characteri-
zations of cut-admissibility in each of the families of calculi that we study
are based on identifying the semantic effect of the cut rule(s), and compar-
ing the semantics of the calculi with and without the cut rule(s). These
tasks are of course impossible when the proof system and its semantics are
considered as a whole, and there is no possibility to separate between the
semantic conditions imposed by each particular rule.

The major key to have this modularity, as well as to provide seman-
tics to ewvery calculus in the families that we study, is the use of non-
deterministic semantics. Thus, following [8, 9], we relax the principle of
truth-functionality, and allow cases in which the truth value of a compound
formula is not uniquely determined by the truth values of its subformu-
las. By allowing non truth-functional semantic structures, we are able to
separately analyze the semantic effect of each component of the syntac-
tic machinery (each derivation rule, and in fact also each ingredient of a
rule). The full semantics of the calculus is then obtained by joining the
semantic effects of all of its components. In fact, we show that non truth-
functional semantics is unavoidable for characterizing the cut-free and the
identity-axiom-free fragments of calculi, as needed in order to obtain se-
mantic conditions for cut-admissibility and axiom-expansion. Pursuing this
approach, we develop several frameworks of non-deterministic semantics,
including generalized non-deterministic versions of finite-valued semantics,
real-valued algebraic semantics, and Kripke semantics. The modular seman-
tics sheds light on the syntactic properties of the corresponding calculus,
reveals deep useful connections between semantics and proof theory, and
turns out to be useful for proving these properties in particular examples.

The notion of analyticity of a proof system plays a central role in this the-
sis. Analyticity is perhaps the most important property of fully-structural
propositional proof systems, as it usually implies its decidability and con-
sistency (the fact that the empty sequent is not derivable). As mentioned
above, a sequent calculus is analytic if whenever a sequent s is provable in
it, then s can be proved using only the syntactic material available within
the sequent s. However, there is more than one way to precisely define the
“material available within some sequent”. Usually, it is taken to consist of
all subformulas occurring in the sequent, and then analyticity amounts to
the global subformula property (i.e., if there exists a proof of a sequent s,
then there exists a proof of s using only its subformulas). However, it is
also possible (and sometimes necessary) to consider analyticity properties
that are based on different relations defining the “material available within
sequents”. While these substitutes might be weaker than the global subfor-
mula property, they still suffice to imply the consistency and the decidability
of many proof systems. Therefore, we define and study a generalized ana-
lyticity that is based on arbitrary partial orders whose properties ensure the



usefulness of the corresponding analyticity property. In addition, the seman-
tic methods allow us to study analyticity of general Gentzen-type systems,
regardless of cut-admissibility, which leads in many cases to much simpler
criteria for analyticity. Besides previous works on the particular family of
canonical sequent calculi (see [9]), we are not aware of any investigation of
analyticity in general Gentzen-type systems that was done independently of
cut-admissibility, or any previously known semantic account for this crucial
syntactic property.

Next, we briefly describe the families of Gentzen-type systems that are
studied in this thesis, their corresponding developed semantic framework,
and the main contributions obtained for each of them. Note that our scope
includes only fully-structural calculi, i.e., systems that include the usual
structural rules of exchange, contraction, and weakening.

Pure Sequent Calculi

The first family of calculi introduced in this thesis is the family of pure se-
quent calculi. These are propositional sequent calculi, whose derivation rules
do not enforce any limitation on the side formulas (also known as: context
formulas). This family of calculi provides a suitable proof-theoretic frame-
work for several important propositional logics, including classical logic,
many well-studied many-valued logics, and various paraconsistent logics.
Our scope here is broader than what is usually considered as a sequent
system:

e We consider many-sided sequents, rather than just ordinary two-sided
ones. This allows us to naturally capture a large family of many-valued
logics (see, e.g., [25]).

e We do not presuppose that all systems include identity axioms or cut
rules of a given form. Instead, we allow arbitrary combinations of
these rules. This plays a major role in the semantic characterizations
of proof-theoretic properties of these systems. For example, it makes
it possible to compare the semantics of a given system with cut, and
the semantics of the same system without cut, in order to derive a
semantic characterization of cut-admissibility.

On the semantic side, we define many-valued systems and use them to se-
mantically characterize pure calculi. Many-valued systems provide a seman-
tic framework for specifying sets of valuations — functions assigning truth
values to formulas of a given propositional language. Each many-valued
system includes a set of semantic conditions, that can be easily read off the
derivation rules of a pure sequent calculi, and used to restrict its correspond-
ing set of valuations (e.g. “If ¢ has some truth value u;, and —¢; has some



truth value ug, then =(p1 A1) should have the truth value us”). This frame-
work generalizes the “bivaluation semantics” [12, 15], many-valued matrices
[35, 23], and non-deterministic many-valued matrices [8, 9], and is used here
to provide semantics for pure sequent calculi.

We further show that many-valued systems suggest a semantic account
for analyticity of pure calculi. Indeed, given a pure calculus G, its corre-
sponding many-valued system Mg is not only sound and complete for G,
but also enjoys the following stronger property: derivations in G that con-
sist only of formulas from some set F precisely correspond to the semantics
given by partial valuations in Mg whose domain is this set F. It then
follows that analyticity of G is equivalent to the fact that certain partial
valuations in Mg can be extended to full ones. The most simple and well-
known example here is (the propositional fragment of) Gentzen’s calculus
LK for classical logic. The fact that this calculus admits the subformula
property was originally obtained as a direct consequence of cut-elimination.
Using our method, one can derive the subformula property for LK from
the fact that usual classical two-valued partial valuation functions that are
defined on some set of formulas that is closed under subformulas can be
extended to full classical valuations. Proving the latter fact is trivial. In
fact, it is so trivial, so that many logic textbooks take it for granted, and do
not even bother to mention it!

As a running example we take the sequent calculus for da Costa’s histor-
ical paraconsistent logic Cy that was introduced in [5], present the many-
valued semantics obtained for it by using the general method, show its ef-
fectiveness for deciding this logic, and use the developed general semantic
criteria to reprove cut-admissibility for this calculus, as well as independently
prove that it enjoys a certain generalized subformula property.

Canonical Calculi

The family of canonical calculi is a subfamily of pure sequent calculi, that
was introduced in [8]. The idea behind canonical systems implicitly underlies
a long tradition in the philosophy of logic, established by Gentzen in his
seminal paper [20]. According to this tradition, the meaning of a connective
¢ is determined by the derivation rules which are associated with it. For
that matter, one should have rules of some “ideal” type, in each of which ¢
is mentioned exactly once, and no other connective is involved. Formulating
this idea, [8] introduced the notion of a “canonical (introduction) rule”,
and, in turn, “canonical propositional Gentzen-type systems” were defined
as two-sided sequent systems in which: (i) all logical rules are canonical
rules; and (i) the usual cut rule, identity-axiom and all structural rules
are included. As we did for pure sequent calculi, our work relaxes (ii) and
includes systems without cut and identity. More generally, we study many-
sided canonical sequent systems with arbitrary combinations of cut rules



and identity axioms.

Since this family of calculi is a subfamily of pure sequent calculi, the
results concerning the semantics of pure sequent calculi and the semantic
characterizations of their proof-theoretic properties can be applied for canon-
ical calculi as well. However, we show that for this more restricted family
of calculi we are always able to obtain much simpler semantics. This se-
mantics takes the form of a partial non-deterministic matriz, a special case
of a many-valued system, in which the semantic conditions for specifying
restrictions on valuation functions can be arranged in generalized truth ta-
bles. Usual logical matrices are particular instances, while non-determinism
is introduced as done in non-deterministic matrices (see [8, 9]) by possibly
allowing several options in some entries of the truth tables (thus the value
of o(¢1, ..., ¢n) is restricted, but not uniquely determined, by the values of
©1, -+, Pn). However, to handle arbitrary canonical calculi we slightly extend
the framework of non-deterministic matrices by allowing one also to have
empty sets of options in some entries of the truth tables. This intuitively
mean that certain combinations of truth values are disallowed.

We show that the semantics of partial non-deterministic matrix is always
effective, and thus canonical sequent calculi are all decidable. Furthermore,
from the constructed matrix one can easily decide whether the calculus is
analytic, whether it enjoys cut-admissibility, and what connectives admit
axiom-expansion. In other words, partial non-deterministic matrices pro-
vide simple decidable characterizations of these proof-theoretic properties of
canonical calculi. An interesting corollary of this semantic study is that the
subformula property is actually equivalent to cut-admissibility in this family
of calculi.

Quasi-Canonical Calculi

The family of quasi-canonical calculi is another subfamily of pure sequent
calculi, that extends the family of canonical calculi. Here we allow also
logical rules in which unary connectives precede the connective to be intro-
duced in conclusions of logical rules (allowing, e.g., the introduction of a
formula of the form —(¢1 A ¢2)), as well as the formulas in the premises.
Calculi of this family are particularly useful for many-valued logics (e.g. for
the relevance logic of first degree entailment [1]) and paraconsistent logics
(particularly, for C-systems [15], [6]). Our investigation of these calculi is in-
direct: instead of studying the semantics of quasi-canonical calculi, we show
how to translate each quasi-canonical calculus into an equivalent canonical
one, and then utilize the results concerning canonical calculi. In particular,
this translation is used to show that quasi-canonical calculi are all decid-
able. The idea behind this translation is to use sequents with more “sides”
to encode the information related to the unary connectives that violate the
canonicity requirements. We see this as a generalization of the original idea



behind two-sided sequents in classical logic. Indeed, often one-sided sequents
are translated to two-sided ones by differentiating the negated formulas from
the non-negated ones by employing two different sides.

Basic Calculi

For various important propositional non-classical logics, such as modal logics
and intuitionistic logic, there is no known (analytic or cut-free) pure calculus.
Indeed, a major restriction in pure calculi is that unlimited context formulas
may be used in all inference steps. Well-known sequent calculi for modal
logics and intuitionistic logic do not meet this requirement, and thus they do
not belong to the family of pure calculi. For example, consider the following
schemes of rules written in the usual notation of two-sided sequents:

o1 = @2 U = ¢ =
1 2) —————— 3) ———F——
(1) I'= @1 D9 (2) O = Oy (3) O = Oy

These schemes demonstrate different possibilities regarding context formu-
las, and non of them can be presented as a rule of a pure calculus:

1. Scheme (1) allows only left context formulas and is employed in the
multiple-conclusion sequent calculus for intuitionistic logic [33].

2. Scheme (2) again allows only left context formulas, but all of them
should begin with [J. This scheme is employed in the usual sequent
calculus for the modal logic S4 [37].

3. Scheme (3) exhibits more complicated treatment of the context for-
mulas: each formula ¢ on the left-hand side of the premise “becomes”
Oe in the conclusion. This scheme is employed in the usual sequent
calculus for the modal logic K.

Basic calculi provide a general framework of sequent calculi, generalizing
pure calculi, that allow certain context restrictions (including those demon-
strated above). Unlike in the previous cases, we restrict our attention
only to two-sided sequent calculi. Various sequent calculi that seem to
have completely different natures can be directly presented as basic cal-
culi. This includes all standard sequent calculi for modal logics, as well as
the usual multiple-conclusion systems for intuitionistic logic, its dual, and
bi-intuitionistic logic.

We carry out a general and uniform semantic study of these systems,
that provide generalized Kripke-style semantics for them. As Kripke mod-
els, these semantic structures consist of a set of possible worlds and acces-
sibility relations, and certain conditions connect the truth value assigned
to a formula in each world w with values assigned to other formulas in the
worlds accessible from w. The main idea is to formally differentiate between



the context part and the non-context part of a rule application (see [34]),
and separately analyze their semantic effects. It is shown that each syntac-
tic ingredient imposes a certain constraint on Kripke models, that restricts
the interpretation of the connectives and modalities or the properties of the
accessibility relations. By taking all of these constraints together, we get a
set of models for which the calculus is sound and complete. Furthermore,
by using three or four truth values we characterize basic sequent systems
with restricted cut rule and/or identity axiom. Then, we provide semantic
criteria for the proof-theoretic properties of basic calculi, and demonstrate
their usefulness in a variety of important cases. One interesting example is
the (straightforward) application of these criteria to prove that a natural
sequent system for bi-intuitionistic logic admits the subformula property.
This answers a question raised in [27].}

Canonical Hypersequent Calculi

Hypersequents constitute a natural generalization of ordinary sequents, in-
troduced independently by Pottinger [29] and Avron [3]. Hypersequents are
defined to be finite sets (or multisets) of usual sequents (usually denoted as
' = A |Te= As |...] T, = A,), that intuitively stand for disjunction
of sequents. This simple and straightforward modification significantly in-
creases the expressive power of ordinary Gentzen apparatus, and shown to
be very useful in building cut-free formalization of many non-classical logics,
including modal, relevant, many-valued, and intermediate logics (see, e.g.,
[4, 10]). In particular, replacing ordinary sequents with hypersequents made
possible obtaining different cut-free systems for the modal logic S5 (see, e.g.,
Poggiolesi [28]), as well as for Gddel logic (known also as Godel-Dummett
logic), that is perhaps the most prominent intermediate logic, and one of
the three fundamental fuzzy logics (see, e.g., [24]). Avron [2] introduced
a simple hypersequent calculus, called HG, for propositional Gdédel logic,
whose logical rules are practically the same rules as in LJ, the well-known
single-conclusion sequent calculus for intuitionistic logic. In addition, this
calculus includes the communication rule that allows “exchange of informa-
tion” between two hypersequents [4]. More recently, hypersequents became
the main proof-theoretic framework for fuzzy logics [26].

Our work on hypersequent calculi generalizes the investigation of the cal-
culus HG for propositional Godel logic. We import the ideas behind canon-
ical sequent calculi to hypersequent calculi, and define a general structure
of a canonical hypersequential logical rule. The idea, just like in canoni-
cal sequent calculi, is to allow any “ideal” logical rules for introducing the
logical connectives. Here there are many options concerning the additional

!Note that the system presented in [27] does not admit cut-elimination. Cut-free calculi
for bi-intuitionistic logic were devised in [22] and [27]. These systems do not employ the
standard notion of a sequent, but more complicated data-structures.



hypersequential structural rules. To demonstrate our methods, we choose
to study single-conclusion canonical hypersequent calculi that are based on
the communication rule (of which the prototype example is HG).

As in the other cases, we study canonical Godel calculi from a semantic
point of view. First and foremost, our study includes a general method to
obtain a sound and complete semantics for every canonical Godel calculus.
This semantics is based on totally ordered algebraic structures with (pos-
sibly) non-deterministic interpretations of the different connectives. Thus
the truth value of each compound formula of the form o(¢p1, ..., ¢,) must lie
within a certain interval whose edges are computed from the values assigned
to ¢1,...,pn. The logical rules of ¢ induce the two functions (from V" to
V, where V is the linearly ordered set of truth values) that determine these
intervals. We provide a general construction of these functions given some
(canonical) rules for introducing ¢. In particular, we show that it is pos-
sible to augment Godel logic with new non-deterministic connectives. For
example, one may introduce a new connective X, that combines the left in-
troduction rule of disjunction and the right introduction rule of conjunction.
The resulting semantics would force the truth value of a formula of the form
p1Xp2 to lie between the minimum of the values of ¢; and @2 and their
maximum. When the truth values of ¢; and ¢y are different, this requires
a non-deterministic choice.

We also consider the semantic effect of the cut rule and the identity ax-
iom, and obtain semantics for canonical Godel calculi in which these rules
are restricted to apply only on some given set of formulas. For this mat-
ter, we introduce new semantic structures called Gddel valuations. In these
structures, the valuation functions assigns a pair of truth values (from a
linearly ordered set) to each formula of the propositional language. Intu-
itively, the first element in the pair of truth values assigned to some formula
 is used for occurrences of ¢ on the left sides of sequents, while the second
element in this pair is used for occurrences of ¢ on the right sides. The
cut rule and the identity axiom relate the two elements. Intuitively, the
(cut) and the identity axiom (id) have opposite semantic roles — if (cut) is
allowed on ¢ (i.e., ¢ may serve as a cut formula) then the left value of ¢
should be greater than or equal to the right value; and if (id) is allowed on
¢ (i.e., ¢ = ¢ may serve as an initial hypersequent) then the left value of ¢
should be lower than or equal to the right value. If they are both available
for some formula ¢, then the two elements in the pair of truth values of ¢
must be equal. The usual algebraic semantics of Godel logic is a particular
instance, in which all of these pairs are degenerate, as well as the intervals
that bound the interpretations of compound formulas. This semantics is
then used to characterize proof-theoretic properties of canonical Godel cal-
culi, and particularly to identify the “good” ones, namely those that enjoy
cut-admissibility. We further show that the simple coherence criterion of
[8, 7] characterizes (strong) cut-admissibility in canonical Gédel calculi as



well.

Hypersequent Calculi for First and Second Order Godel Logic

So far we have discussed logics and calculi only at the propositional level.
However, the ideas and methods described above are applicable for first-
order and higher-order calculi as well. To demonstrate this, we further study
two specific hypersequent calculi: a calculus for standard first-order Goédel
logic [11], and its extension for Henkin-style second-order Godel logic. This
contribution is of a completely different nature, as it is devoted to particular
calculi for particular logics.

First, we demonstrate the applicability of our approach for the hyper-
sequent calculus HIF for standard first-order Gédel logic (standard means
that the real interval [0, 1] can be used as the underlying set of truth values).?
HIF, introduced in [11], is obtained from HG (the original hypersequent
calculus for propositional Godel logic) by adding standard (hypersequential
versions of) rules for the quantifiers V and 3. It was proved in [11] that
HIF is sound and complete for standard first-order Godel logic by show-
ing its equivalence to an Hilbert system for this logic. Furthermore, it was
shown in [11] that HIF admits cut-elimination. In fact, the first (syntactic)
proof in [11] of cut-elimination was erroneous. A corrected (still syntac-
tic) proof appear in [10]. As a corollary, one obtains Herbrand theorem
for the prenex fragment of this logic [26]. Using the same technique de-
veloped for canonical hypersequent calculi, we obtain alternative semantic
proofs for completeness and cut-admissibility. These proofs are tied together
and involve two stages: (i) We present a non-deterministic semantics and
show its completeness for the cut-free fragment of HIF; (i7) It is shown
that from every non-deterministic counter-model, one can extract a usual
counter-model. From these two facts together, it easily follows that HIF en-
joys cut-admissibility, and that it is complete for standard first-order Godel
logic.

Next, we study HIF?, namely the extension of HIF with usual rules for
second-order quantifiers. These are single-conclusion hypersequent version of
the rules for introducing the second-order quantifiers in the ordinary sequent
calculus for classical logic (see, e.g., [21, 33]). To the best of our knowledge,
this system is studied in this thesis for the first time. Our main results is
that HIF? is sound and complete for second-order Gédel logic, and that the
cut rule is admissible in HIF2. It should be noted that like in the case of
second-order classical logic, the obtained calculus characterizes Henkin-style
second-order Godel logic. Thus second-order quantifiers range over a domain
(of fuzzy sets) that is directly specified in the second-order structure, and
this domain should admit full comprehension. This is in contrast to what

2Note that Godel logic is the only fundamental fuzzy logic whose first-order version is
recursively axiomatizable.

10



is called the standard semantics, where second-order quantifiers range over
all subsets of the universe. Hence HIF? is practically a system for two-
sorted first-order Godel logic together with the comprehension axiom (see
also [13]).

Our approach in proving cut-admissibility for HIF? is (of course) se-
mantic, and it is similar to the one taken for HIF. Note that unlike in
first-order calculi, usual syntactic arguments for cut-elimination dramati-
cally fail for the rules of second-order quantifiers. Thus the first proof of
cut-admissibility for the extension of LK (Gentzen’s original sequent cal-
culus for first-order classical logic) with rules for second-order quantifiers
was also semantic, and, in fact, it also used non-deterministic semantics.
Indeed, in the quest to verify Takeuti’s conjecture [32] (that was open for
several years) regarding cut-admissibility in the calculus for second-order
classical logic, Schiitte developed a three-valued non-deterministic seman-
tics for the cut-free fragment of this calculus [30]. This provided a semantic
equivalent to Takeuti’s conjecture, that was verified by Tait a few years later
[31], when it was shown that it is possible to extract a usual (two-valued)
counter-model from every three-valued non-deterministic Schiitte’s counter-
model. As a simple consequence, one obtains that if there is no cut-free
proof of a certain sequent, then there is no proof at all (see also [21]). Our
proof of cut-admissibility for HIF? (as well as the proof for HIF) has a
similar basic general structure.

From a different perspective, our results concerning HIF? provide initial
steps in the proof-theoretic study of higher-order fuzzy logics. Fuzzy logics,
and Godel logic in particular, provide a reasonable model of certain very
common vagueness phenomena. Both their propositional and first-order
versions are well-studied by now (see, e.g., [24]). Clearly, for many inter-
esting applications (see, e.g., [14] and Section 5.5.2 in Chapter I of [17]),
propositional and first-order fuzzy logics do not suffice, and one has to use
higher-order versions. These are much less developed (see, e.g., [36] and
[17]), especially from the proof-theoretic point of view. We believe that a
proof-theoretic study of higher-order fuzzy logics is a prerequisite for the de-
velopment of automated deduction methods for these logics. Furthermore,
a semantic approach to perform this study seems to be adequate and even
necessary.

Publications Related to this Dissertation

Most of the contributions included in this thesis have been separately pre-
sented and published in conference proceedings and/or journals:

3More precisely, Takeuti’s conjecture concerned full type-theory, namely, the complete-
ness of the cut-free sequent calculus that includes rules for quantifiers of any finite order.
However, the proof for second-order fragment was the main breakthrough.
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