From Frame Properties to Hypersequent Rules in Modal Logics

Ori Lahav

Tel Aviv University

LICS 2013
Ever since the introduction of relational semantics for modal logics, the assembling of a new modal logic for particular applications often begins by locating relevant frame properties.

Examples:

- \(K4 = K + \) transitivity
- \(S4 = K4 + \) reflexivity
- \(S4.3 = S4 + \) linearity
- \(KDBC_8 = K + \text{seriality} + \text{cardinality} \leq 8 \)

and many more...

Our goal is to uniformly obtain proof-theoretic characterizations for modal logics defined by frame properties.
Sequent Calculi

- There is a well-studied strong correspondence between frame properties and Hilbert-style systems (correspondence theory).
- Hilbert-style systems are hardly useful for proof-search and proof-theoretic investigations.
- On the other hand, Gentzen-style calculi are particularly suitable for these purposes.
There is a well-studied strong correspondence between frame properties and Hilbert-style systems (correspondence theory).

Hilbert-style systems are hardly useful for proof-search and proof-theoretic investigations.

On the other hand, Gentzen-style calculi are particularly suitable for these purposes.

Definition

A sequent is an ordered pair of finite set of formulas, denoted by

\[\Gamma \Rightarrow \Delta. \]

Intuitively,

\[\Gamma \Rightarrow \Delta \iff \bigwedge \Gamma \supset \bigvee \Delta. \]
Gentzen Calculi for Modal Logics

The calculus G_K

\begin{align*}
(IW \Rightarrow) & \frac{\Gamma \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} & (\Rightarrow IW) & \frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A} \\
(id) & \frac{A}{A \Rightarrow A} & (cut) & \frac{\Gamma \Rightarrow A, \Delta, \Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \Delta} \\
(\supset \Rightarrow) & \frac{\Gamma \Rightarrow \Delta, A_1, \Gamma, A_2 \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, A_1 \supset A_2 \Rightarrow \Delta} & (\Rightarrow \supset) & \frac{\Gamma, A_1 \Rightarrow A_2, \Delta}{\Gamma \Rightarrow A_1 \supset A_2, \Delta} \\
(\bot \Rightarrow) & \frac{\bot}{\bot \Rightarrow} & (\Rightarrow \Box) & \frac{\Gamma \Rightarrow A}{\Box \Gamma \Rightarrow \Box A}
\end{align*}

Facts

1. A is a theorem of K iff $\Rightarrow A$ is provable in G_K.
2. (cut) is admissible.
Hypersequent Calculi

1. For many important modal logics (e.g. $\textbf{S}5 = \text{universal accessibility relation}$) there is no known (cut-free) sequent calculus.

2. It is possible to characterize $\textbf{S}5$ by going “one step further” — from sequents to hypersequents [Pottinger ‘83, Avron ‘87].

Definition

A *hypersequent* is a finite set of sequents, denoted by

$$
\Gamma_1 \Rightarrow \Delta_1 \mid \Gamma_2 \Rightarrow \Delta_2 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n.
$$

Intuitively, a hypersequent is a disjunction of sequents:

$\Gamma_1 \Rightarrow \Delta_1 \mid \ldots \mid \Gamma_n \Rightarrow \Delta_n$ is true in some Kripke model if *some* $\Gamma_i \Rightarrow \Delta_i$ is true in all worlds.
Hypersequent Calculus for $\text{S}5$

\[
(IW \Rightarrow) \quad \frac{H | \Gamma \Rightarrow \Delta}{H | \Gamma, A \Rightarrow \Delta} \quad (\Rightarrow IW) \quad \frac{H | \Gamma \Rightarrow \Delta}{H | \Gamma \Rightarrow \Delta, A} \quad (EW) \quad \frac{H}{H | \Gamma \Rightarrow \Delta}
\]

\[
(id) \quad \frac{H | A \Rightarrow A}{H | \Gamma \Rightarrow A \Rightarrow A} \quad (cut) \quad \frac{H | \Gamma \Rightarrow A, \Delta}{H | \Gamma \Rightarrow \Delta}
\]

\[
(\Rightarrow \Rightarrow) \quad \frac{H | \Gamma \Rightarrow \Delta, A_1 \quad H | \Gamma, A_2 \Rightarrow \Delta}{H | \Gamma, A_1 \Rightarrow \Delta \quad A_2 \Rightarrow \Delta} \quad (\Rightarrow \Rightarrow) \quad \frac{H | \Gamma, A_1 \Rightarrow A_2, \Delta}{H | \Gamma \Rightarrow A_1 \Rightarrow A_2, \Delta}
\]

\[
(\perp \Rightarrow) \quad \frac{H | \perp \Rightarrow}{H | \Gamma \Rightarrow \perp} \quad (\Rightarrow \Box) \quad \frac{H | \Gamma \Rightarrow A}{H | \Box \Gamma \Rightarrow \Box A} \quad (S5) \quad \frac{H | \Gamma, \Gamma' \Rightarrow \Delta}{H | \Box \Gamma' \Rightarrow \Gamma \Rightarrow \Delta}
\]

The calculus $\text{HG}_{\text{S}5}$

Facts

1. A is a theorem of $\text{S}5$ iff $\Rightarrow A$ is provable in $\text{HG}_{\text{S}5}$.
2. (cut) is admissible.
Derivation of $\Rightarrow \Diamond A \supset \Box \Diamond A$ in HG_{S5}

\[
\begin{array}{c}
\frac{A \supset \bot \Rightarrow A \supset \bot}{\Rightarrow A \supset \bot \ | \ \Box (A \supset \bot) \Rightarrow} \quad (id) \\
\frac{\Rightarrow A \supset \bot \ | \ \Box (A \supset \bot) \Rightarrow}{\Rightarrow \Box (A \supset \bot) \ | \ \Box (A \supset \bot) \Rightarrow} \quad (S5) \\
\vdots \\
\frac{\Box (A \supset \bot) \supset \bot \Rightarrow \Rightarrow \Box (A \supset \bot) \supset \bot}{\Box (A \supset \bot) \supset \bot \Rightarrow \Rightarrow \Box (\Box (A \supset \bot)) \supset \bot} \quad (\Rightarrow \Box) \\
\vdots \\
\frac{\Box (A \supset \bot) \supset \bot \Rightarrow \Rightarrow \Box (\Box (A \supset \bot)) \supset \bot}{\Box (A \supset \bot) \supset \bot \Rightarrow \Rightarrow \Box (\Box (A \supset \bot)) \supset \bot} \quad (\Rightarrow \Box) \\
\Rightarrow (\Box (A \supset \bot) \supset \bot) \supset \Box (\Box (A \supset \bot)) \supset \bot) \quad (\Rightarrow \Box)
\end{array}
\]
Main Contribution

Questions

- What is the full power of hypersequent calculi for modal logics?
- What frame properties can be characterized?

(Partial) Answers:

- We recognize a class of frame properties, called *simple frame properties*, for which it is possible to construct a hypersequent calculus.
- We provide the method to construct these calculi, and uniformly prove soundness and completeness, and cut-admissibility.
Remark

There are other proof-theoretical frameworks for modal logics. E.g.:

- Semantic tableaus
- Display calculi
- Tree-hypersequent calculi and nested sequent calculi
- Labelled calculi

We are interested in (fully-structural) hypersequent calculi:

- Very close to Gentzen’s approach.
- Kripke semantics is not explicitly involved in derivations.
- Useful for many other logics of different natures.
- Decidability follows from cut-admissibility (in the propositional level).
Simple Frame Properties

- We use classical first-order language to formulate the frame properties.
 - For example, $\forall w. wRw$ captures reflexivity.

Simple frame properties are formulated by formulas of the form

$$\forall w_1 \ldots \forall w_n \exists u \varphi$$

where φ consists of:

- Atomic formulas of the form $w_i Ru$ or $w_i = u$.
- Conjunctions and disjunctions.

- Reflexivity is simple:
 $$\forall w_1 \exists u (w_1 Ru \land w_1 = u)$$
Examples

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seriality</td>
<td>$\forall w_1 \exists u \ (w_1 Ru)$</td>
</tr>
<tr>
<td>Directedness</td>
<td>$\forall w_1 \forall w_2 \exists u \ (w_1 Ru) \land (w_2 Ru)$</td>
</tr>
<tr>
<td>Degenerateness</td>
<td>$\forall w_1 \forall w_2 \exists u \ (w_1 = u \land w_2 = u)$</td>
</tr>
<tr>
<td>Universality</td>
<td>$\forall w_1 \forall w_2 \exists u \ (w_1 Ru \land w_2 = u)$</td>
</tr>
<tr>
<td>Linearity</td>
<td>$\forall w_1 \forall w_2 \exists u \ (w_1 Ru \land w_2 = u) \lor (w_2 Ru \land w_1 = u)$</td>
</tr>
<tr>
<td>Bounded Cardinality</td>
<td>$\forall w_1 \ldots \forall w_n \exists u \ \bigvee_{1 \leq i < j \leq n} (w_i = u \land w_j = u)$</td>
</tr>
<tr>
<td>Bounded Top Width</td>
<td>$\forall w_1 \ldots \forall w_n \exists u \ \bigvee_{1 \leq i < j \leq n} (w_i Ru \land w_j Ru)$</td>
</tr>
<tr>
<td>Bounded Width</td>
<td>$\forall w_1 \ldots \forall w_n \exists u \ \bigvee_{1 \leq i, j \leq n; i \neq j} (w_i Ru \land w_j = u)$</td>
</tr>
</tbody>
</table>
From Simple Frame Properties to Hypersequent Rules

(1) Extract the normal form of $\forall w_1 \ldots \forall w_n \exists u \varphi$

A set $\{\langle R_1, E_1 \rangle, \ldots, \langle R_m, E_m \rangle\}$ such that

$$\varphi \equiv \bigvee_{1 \leq i \leq m} \left(\bigwedge_{j \in R_i} w_j Ru \land \bigwedge_{j \in E_i} w_j = u \right)$$

$$\forall w_1 \forall w_2 \exists u (w_1 Ru) \land (w_2 Ru) \quad \{\langle\{1, 2\}, \emptyset\rangle\}$$

$$\forall w_1 \forall w_2 \exists u (w_1 Ru \land w_2 = u) \quad \{\langle\{1\}, \{2\}\rangle\}$$

$$\forall w_1 \forall w_2 \exists u (w_1 Ru \land w_2 = u) \lor (w_2 Ru \land w_1 = u) \quad \{\langle\{1\}, \{2\}\rangle, \langle\{2\}, \{1\}\rangle\}$$

$$\forall w_1 \ldots \forall w_n \exists u \bigvee_{1 \leq i < j \leq n} (w_i = u \land w_j = u) \quad \{\langle\emptyset, \{i, j\}\rangle \mid 1 \leq i < j \leq n\}$$
(2) For a normal form \(\{ \langle R_1, E_1 \rangle, \ldots, \langle R_m, E_m \rangle \} \) construct the following rule and add it to \(\mathcal{HG}_K \):

\[
\begin{align*}
\frac{H \mid \Gamma_{E_1}, \Gamma'_{R_1} \Rightarrow \Delta_{E_1} \quad \ldots \quad H \mid \Gamma_{E_m}, \Gamma'_{R_m} \Rightarrow \Delta_{E_m}}{H \mid \Gamma_1, \Box \Gamma'_{1} \Rightarrow \Delta_1 \quad \ldots \quad H \mid \Gamma_n, \Box \Gamma'_{n} \Rightarrow \Delta_n}
\end{align*}
\]

Notation: \(\prod_{\{i_1, \ldots, i_k\}} := \prod_{i_1, \ldots, \prod_{i_k}} \)
(2) For a normal form \(\{\langle R_1, E_1 \rangle, \ldots, \langle R_m, E_m \rangle\} \) construct the following rule and add it to \(\mathbf{HG}_K \):

\[
\frac{H | \Gamma_{E_1}, \Gamma'_{R_1} \Rightarrow \Delta_{E_1} \ldots H | \Gamma_{E_m}, \Gamma'_{R_m} \Rightarrow \Delta_{E_m}}{H | \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1 | \ldots | \Gamma_n, \Box \Gamma'_n \Rightarrow \Delta_n}
\]

Notation: \(\Pi_{\{i_1, \ldots, i_k\}} := \Pi i_1, \ldots, \Pi i_k \)

In the presence of the weakening rules, \(\Gamma_i, \Gamma'_i, \Delta_i \)'s that appear only in the conclusion can be discarded.

\[
\frac{H | \Gamma'_1, \Gamma'_2 \Rightarrow}{H | \Box \Gamma'_1 \Rightarrow | \Box \Gamma'_2 \Rightarrow}
\text{Directedness}
\]

\[
\frac{H | \Gamma_2, \Gamma'_1 \Rightarrow \Delta_2}{H | \Box \Gamma'_1 \Rightarrow | \Gamma_2 \Rightarrow \Delta_2}
\text{Universality}
\]

\[
\frac{H | \Gamma_2, \Gamma'_1 \Rightarrow \Delta_2 \quad H | \Gamma_1, \Gamma'_2 \Rightarrow \Delta_1}{H | \Gamma_1, \Box \Gamma'_1 \Rightarrow \Delta_1 | \Gamma_2, \Box \Gamma'_2 \Rightarrow \Delta_2}
\text{Linearity}
\]

\[
\left\{H | \Gamma_i, \Gamma_j \Rightarrow \Delta_i, \Delta_j \mid 1 \leq i < j \leq n\right\}
\frac{H | \Gamma_1, \Rightarrow \Delta_1 | \ldots | \Gamma_n \Rightarrow \Delta_n}{H | \Gamma_1, \Rightarrow \Delta_1 | \ldots | \Gamma_n \Rightarrow \Delta_n}
\text{Bounded Cardinality}
\]
Main Result

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
</table>
| **Theorem**
The constructed hypersequent calculus is *sound and complete* for the modal logic, and it enjoys *cut-admissibility*. |

- Uniform semantic proof for all calculi of this form.
Main Result

Theorem

The constructed hypersequent calculus is sound and complete for the modal logic, and it enjoys cut-admissibility.

- Uniform semantic proof for all calculi of this form.

Strong Soundness and Completeness

\[
\Gamma \vdash_{Local} A \quad \text{A holds in every world in which } \Gamma \text{ holds} \\
\Gamma \vdash_{Global} A \quad \text{A holds in every world if } \Gamma \text{ holds in every world} \\
\{ \Rightarrow B \mid B \in \Gamma \} \vdash \Rightarrow A
\]

Strong Cut-Admissibility

(cut) can be confined to apply only on formulas that appear in the assumptions.
Decidability

Corollary

All modal logics characterized by finite sets of simple frame properties are decidable.

Proof.

Cut-admissibility \rightarrow Subformula property \rightarrow

We can check one by one all possible proofs candidates.
Simple frame properties are formulated by formulas of the form

$$\forall w_1 \ldots \forall w_n \exists u \varphi$$

where φ consists of:

- Atomic formulas of the form $w_i Ru$ or $w_i = u$.
- Conjunctions and disjunctions.

- Simple properties are *monotone increasing* (preserved under enrichment of R).
- Transitivity and symmetry are not simple.
Transitivity and Symmetry

Simple frame properties are formulated by formulas of the form

\[\forall w_1 \ldots \forall w_n \exists u \varphi \]

where \(\varphi \) consists of:

- Atomic formulas of the form \(w_iRu \) or \(w_i = u \).
- Conjunctions and disjunctions.

- Simple properties are **monotone increasing** (preserved under enrichment of \(R \)).
- Transitivity and symmetry are not simple.
- We have to change the basic calculus:

\[
\begin{align*}
H \mid \Gamma & \Rightarrow A \\
\frac{H \mid \Box \Gamma \Rightarrow \Box A}{H \mid \Box \Gamma \Rightarrow \Box A} & \text{K} \\
\frac{H \mid \Gamma, \Box \Gamma \Rightarrow A}{H \mid \Box \Gamma \Rightarrow \Box A} & \text{K4} \\
\frac{H \mid \Gamma \Rightarrow A, \Box \Delta}{H \mid \Box \Gamma \Rightarrow \Box A, \Delta} & \text{KB}
\end{align*}
\]
Transitivity

For a normal form \{\langle R_1, E_1 \rangle, \ldots, \langle R_m, E_m \rangle \} construct the rule:

\[
\begin{align*}
H \mid \Gamma_{E_1}, \Gamma'_{R_1}, \Box \Gamma'_{R_1} &\Rightarrow \Delta_{E_1} & \ldots & \quad H \mid \Gamma_{E_m}, \Gamma'_{R_m}, \Box \Gamma'_{R_m} &\Rightarrow \Delta_{E_m} \\
H \mid \Gamma_1, \Box \Gamma'_{1} &\Rightarrow \Delta_1 & \ldots & \quad \Gamma_n, \Box \Gamma'_{n} &\Rightarrow \Delta_n
\end{align*}
\]

For example:

\[
\begin{align*}
H \mid \Gamma_{2}, \Gamma'_{1}, \Box \Gamma'_{1} &\Rightarrow \Delta_2 & H \mid \Gamma_{1}, \Gamma'_{2}, \Box \Gamma'_{2} &\Rightarrow \Delta_1 \\
H \mid \Gamma_1, \Box \Gamma'_{1} &\Rightarrow \Delta_1 & \Gamma_2, \Box \Gamma'_{2} &\Rightarrow \Delta_2
\end{align*}
\]

Linearity

Again, we show:

- Strong soundness and completeness.
- Strong cut-admissibility.
- Decidability.
Symmetry

For a normal form \(\{ \langle R_1, E_1 \rangle, \ldots, \langle R_m, E_m \rangle \} \) construct the rule:

\[
\begin{align*}
H \mid \Gamma E_1, \Gamma' R_1 &\Rightarrow \Delta E_1, \Box \Delta' R_1 \\
&\ldots \\
H \mid \Gamma E_m, \Gamma' R_m &\Rightarrow \Delta E_m, \Box \Delta' R_m \\
H \mid \Gamma_1, \Box \Gamma' &\Rightarrow \Delta_1, \Delta'_1 \\
&\ldots \\
H \mid \Gamma_n, \Box \Gamma' &\Rightarrow \Delta_n, \Delta'_n
\end{align*}
\]

For example:

\[
\begin{align*}
H \mid \Gamma' &\Rightarrow \Box \Delta'_1 \\
H \mid \Box \Gamma' &\Rightarrow \Delta'_1 \\
H \mid \Gamma_1, \Gamma' &\Rightarrow \Delta_1, \Box \Delta'_1 \\
H \mid \Gamma_1, \Box \Gamma' &\Rightarrow \Delta_1, \Delta'_1
\end{align*}
\]

- Cut-admissibility does not hold (even for the basic calculus).
- All constructed calculi still enjoy the subformula property.
- Decidability still follows.
Conclusions and Further Research

- **Correspondence** between Kripke semantics and Gentzen-type calculi:

 \[\text{simple frame property} \Leftrightarrow \text{simple hypersequent rule} \]

- Well-behaved Gentzen-type calculi can be constructed for all (transitive) (symmetric) modal logics characterized by simple frame properties.

 E.g. \(\text{KT, KD, S4, S5, K4D, K4.2, K4.3, S4.3, KBD, KBT, KBC}_n, \text{KBW}_n, \text{KBTW}_n \).

- These calculi may be helpful for investigating and using the logics (e.g. decidability).

Further work and open questions:

- Proof-search.
- Multi-modal logics.
- Non-simple properties. *E.g.* \(\text{K5} \) (euclidean), \(\text{BD}_n \) (bounded depth).
- Negative results?

Thank you!