Effective Semantics for the Modal Logics K and KT via Non-deterministic Matrices

Ori Lahav, Tel Aviv University Yoni Zohar, Bar Ilan University

IJCAR 2022

The Modal Logic K

Axiomatic System

- Axiom K: $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- Necessitation Rule: $\frac{\psi}{\Box \psi}$ when ψ is a theorem
- extensions: T: $\Box \varphi \rightarrow \varphi$ / 4: $\Box \varphi \rightarrow \Box \Box \varphi$

Standard Semantics – Kripke Models (W, R, V)

- W is a set (of worlds)
- R is an accessibility relation
- $v: W \to P$ is a valuation
- restrictions: reflexivity / transitivity

"For I do not think there are such things as possible worlds. . ."

4-valued Semantics for KT

But...

$$v(p) = f$$
, $v(\neg p) = t$, $v(p \lor \neg p) = t$, $v(\Box(p \lor \neg p)) = f$

Levels

A more satisfactory definition follows.

A 0th-level T-valuation of L_0 is a function which assigns one of T, t, f, F to each sentence of L_0 in a manner consistent with the matrices.

Let $\mathscr Y$ be an *m*th-level T-valuation of L_0 . $\mathscr Y$ is an m+1 st level T-valuation of L_0 iff $\mathscr Y$ assigns T to every sentence A which is true (which has value T or t) for every *m*th-level T-valuation.

After Kearns

Related Work

- Simplification, extension, connection to NMatrices [Omori & Skurt 2016]
- More Extensions [Coniglio, del Cerro, Peron 2015]
- Missing ingredient: effectiveness
- Recent: S4 and KT with 3 values, effective [Grätz 2022]

Our Contribution: Semantics for K and KT

- Effective
- Basic truth tables are more intuitive
- KT emerges by deleting a truth value
- Connection to sequent calculi

Four Values

Intuition

Holds in acc. worlds Doesn't hold in acc. worlds

Holds here
Doesn't hold here

t

F

$$\mathcal{V}_4 \stackrel{\text{def}}{=} \{\mathsf{T},\mathsf{t},\mathsf{f},\mathsf{F}\}$$

$$\mathcal{D} \stackrel{\scriptscriptstyle\mathsf{def}}{=} \{\mathsf{T},\mathsf{t}\}$$

Truth Tables: Classical Connectives

Four Values

Intuition

Holds in acc. worlds Doesn't hold in acc. worlds

Holds here
Doesn't hold here

F

t

$$\mathcal{V}_4 \stackrel{\text{\tiny def}}{=} \{T,t,f,F\}$$

$$\mathcal{D} \stackrel{\mathsf{def}}{=} \{\mathsf{T},\mathsf{t}\}$$

Truth Tables: □

$$\begin{array}{c|c} x & \widetilde{\square}x \\ \hline T & \mathcal{D} \\ t & \overline{\mathcal{D}} \\ F & \mathcal{D} \\ f & \overline{\mathcal{D}} \\ \end{array}$$

Intuition:

$$v(\varphi) \in \{\mathsf{T}, \mathsf{F}\} \text{ iff } v(\Box \varphi) \in \mathcal{D}$$

Levels

NMatrices Are Not Enough

A formula that is entailed from a set of formulas that hold in all acc. worlds should hold in all acc. worlds

$$(*) \ v^{-1}[\{\mathsf{T},\mathsf{F}\}] \vdash \varphi \implies v(\varphi) \in \{\mathsf{T},\mathsf{F}\}$$

Example

$$v(p) \stackrel{\cdot}{=} \mathsf{T}, v(q) = \mathsf{T} \Longrightarrow v(p \land q) = \mathsf{T}$$

Levels To The Rescue

$$\mathbb{V}_{\mathtt{K}}^{0} \stackrel{\mathsf{def}}{=} \{ v \mid v \text{ respects } \mathsf{M}_{\mathtt{K}} \}$$

$$\mathbb{V}_{\mathtt{K}}^{m+1} \stackrel{\mathsf{def}}{=} \{ v \in \mathbb{V}_{\mathtt{K}}^{m} \mid \forall \varphi. \ v^{-1}[\{\mathsf{T},\mathsf{F}\}] \vdash^{\mathbb{V}_{\mathtt{K}}^{m}} \varphi \implies v(\varphi) \in \{\mathsf{T},\mathsf{F}\} \}$$

 $\bigcap_{m\in\mathbb{N}}\mathbb{V}_{\mathtt{K}}$ is a maximal set satisfying (*)

Levels

NMatrices Are Not Enough

A formula that is entailed from a set of formulas that hold in all acc. worlds should hold in all acc. worlds

$$(*) \ v^{-1}[\{\mathsf{T},\mathsf{F}\}] \vdash \varphi \implies v(\varphi) \in \{\mathsf{T},\mathsf{F}\}$$

Example

$$v(p) \stackrel{\cdot}{=} \mathsf{T}, v(q) = \mathsf{T} \Longrightarrow v(p \land q) = \mathsf{T}$$

Levels To The Rescue

$$\mathbb{V}_{\mathtt{K}}^{\mathcal{F},0} \stackrel{\mathsf{def}}{=} \{ v \mid v \text{ respects } \mathsf{M}_{\mathtt{K}} \text{ with domain } \mathcal{F} \}$$

$$\mathbb{V}_{\mathtt{K}}^{\mathcal{F},m+1} \stackrel{\mathsf{def}}{=} \{ v \in \mathbb{V}_{\mathtt{K}}^{\mathcal{F},m} \mid \forall \varphi \in \mathcal{F}. \ v^{-1}[\{\mathsf{T},\mathsf{F}\}] \vdash^{\mathbb{V}_{\mathtt{K}}^{\mathcal{F},m}} \varphi \implies \textit{v}(\varphi) \in \{\mathsf{T},\mathsf{F}\} \}$$

$$\bigcap_{m\in\mathbb{N}}\mathbb{V}_{\mathtt{K}}^{\mathcal{F}}$$
 is a maximal set satisfying $(*)$

Main Results

Satisfaction And Consequence

- $v \models \varphi \text{ if } v(\varphi) \in \mathcal{D}$
- $\mathcal{T} \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi \colon \forall \ v \in \mathbb{V}_{\mathbb{K}}$, if $v \models \mathcal{T}$ then $v \models \varphi$ $(\mathbb{V}_{\mathbb{K}} \stackrel{\mathsf{def}}{=} \bigcap_{m > 0} \mathbb{V}_{\mathbb{K}}^m)$

Thm. (Soundness and Completeness) φ follows from \mathcal{T} in K iff $\mathcal{T} \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$

Thm. (Effectiveness)

For each φ there is a computable $m_{\varphi} \in \mathbb{N}$ such that:

$$\varphi$$
 is $\mathbb{V}_{\mathbb{K}}$ -SAT iff it is $\mathbb{V}_{\mathbb{K}}^{sub(\varphi),m_{\varphi}}$ -SAT

First Result: Soundness and Completeness

Thm. (Soundness and Completeness) φ follows from $\mathcal T$ in K iff $\mathcal T \vdash^{\mathbb V_{\mathbb K}} \varphi$

Sequent Calculus

- We did not translate Kripke to Kearns (future work)
- We did not work with the Hilbert Calculus
- Instead: went through a sequent calculus for K
- Bonus: connection between levels and applications of rule K

Sequent Calculus

The Sequent Calculus G_K

$$(\text{Weak}) \; \frac{\Gamma \Rightarrow \Delta}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'} \; (\text{id}) \; \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \varphi, \Delta} \; (\text{cut}) \; \frac{\Gamma \Rightarrow \varphi}{\Gamma \Rightarrow \Delta} \; (K) \; \frac{\Gamma \Rightarrow \varphi}{\Box \Gamma \Rightarrow \Box \varphi}$$

$$(\neg\Rightarrow) \frac{\Gamma\Rightarrow\varphi,\Delta}{\Gamma,\neg\varphi\Rightarrow\Delta} \ (\Rightarrow\neg) \frac{\Gamma,\varphi\Rightarrow\Delta}{\Gamma\Rightarrow\neg\varphi,\Delta} \ (\supset\Rightarrow) \frac{\Gamma,\psi\Rightarrow\Delta}{\Gamma,\psi\Rightarrow\Delta} \ (\Rightarrow\supset) \frac{\Gamma,\varphi\Rightarrow\psi,\Delta}{\Gamma\Rightarrow\varphi\supset\psi,\Delta}$$

$$(\land\Rightarrow) \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \land \psi \Rightarrow \Delta} \ (\Rightarrow\land) \frac{\Gamma \Rightarrow \varphi, \Delta}{\Gamma \Rightarrow \varphi \land \psi, \Delta} \ (\lor\Rightarrow) \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi \lor \psi \Rightarrow \Delta} \ (\Rightarrow\lor) \frac{\Gamma \Rightarrow \varphi, \psi, \Delta}{\Gamma \Rightarrow \varphi \lor \psi, \Delta}$$

Properties

- Sound and complete for K
- Subformula Property

Derivations and Levels

Theorem:

$$\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi \quad \mathrm{iff} \vdash_{\mathsf{G}_{\mathbb{K}}} \Gamma \Rightarrow \varphi$$

Definition

- $\vdash_{\mathsf{G}_{\mathtt{K}}}^{\mathcal{F},m}\Gamma\Rightarrow\Delta$: The sequent $\Gamma\Rightarrow\Delta$ is deribable:
 - using only \mathcal{F} -formulas
 - max number of K applications in each branch is m

Derivations and Levels

Theorem:

$$\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}^{\mathbf{m}}} \varphi \quad \text{iff} \quad \vdash^{\mathbf{m}}_{\mathsf{G}_{\mathbb{K}}} \Gamma \Rightarrow \varphi$$

Definition

- $\vdash_{\mathsf{G}_{\mathtt{K}}}^{\mathcal{F},m}\Gamma\Rightarrow\Delta$: The sequent $\Gamma\Rightarrow\Delta$ is deribable:
 - ullet using only ${\mathcal F}$ -formulas
 - max number of K applications in each branch is m

Derivations and Levels

Theorem:

$$\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m}} \varphi \text{ iff } \vdash^{\mathcal{F},m}_{\mathsf{G}_{\mathbb{K}}} \Gamma \Rightarrow \varphi$$

Definition

- $\vdash_{\mathsf{G}_{\mathsf{K}}}^{\mathcal{F},m}\Gamma\Rightarrow\Delta$: The sequent $\Gamma\Rightarrow\Delta$ is deribable:
 - \bullet using only \mathcal{F} -formulas
 - max number of K applications in each branch is m

Second Result: Effectiveness

Thm. (Effectiveness)

For each φ there is a computable $m_{\varphi} \in \mathbb{N}$ such that:

$$\varphi$$
 is $\mathbb{V}_{\mathbb{K}}\text{-SAT}$ iff it is $\mathbb{V}_{\mathbb{K}}^{sub(\varphi),m_{\varphi}}\text{-SAT}$

- Motivation: Decision procedure based on the semantics
- Cannot iterate through all valuations
- \bullet Cannot even check if a valuation is in \mathbb{V}_K (or even in $\mathbb{V}_K^{\mathcal{F}})$

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

- 1: for $v: \mathcal{L} \to \{\mathsf{T}, \mathsf{t}, \mathsf{F}, \mathsf{f}\}$ do
- 2: **if** $v \in \mathbb{V}_{K}$ and $v \models \Gamma$ and $v \not\models \varphi$ **then**
- 3: return "NO"
- 4: return "YES"

Justification

Soundness and Completeness

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

- 1: $\mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})$
- 2: for $v: \mathcal{F} \rightarrow \{T, t, F, f\}$ do
- 3: **if** $v \in \mathbb{V}_{K}^{\mathcal{F}}$ and $v \models \Gamma$ and $v \not\models \varphi$ **then**
- 4: return "NO"
- 5: return "YES"

Justification

- 1. $v \models_{\mathcal{D}} \Gamma$ and $v \not\models_{\mathcal{D}} \varphi \Longrightarrow (def.)$
- 2. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F}}} \varphi \Longrightarrow \text{(completeness)}$
- 3. $\not\vdash_{\mathsf{G}_{\mathtt{K}}}^{\mathcal{F}} \Gamma \Rightarrow \varphi \Longrightarrow \text{(subformula property)}$
- 4. $\not\vdash_{\mathsf{G}_{\mathsf{K}}} \mathsf{\Gamma} \Rightarrow \varphi \Longrightarrow \mathsf{(soundness)}$
- 5. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

- 1: $\mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})$
- 2: $m \leftarrow md(\mathcal{F})$
- 3: for $v: \mathcal{F} \to \{T, t, F, f\}$ do
- 4: **if** $v \in \mathbb{V}_{\kappa}^{\mathcal{F},m}$ and $v \models \Gamma$ and $v \not\models \varphi$ **then**
- 5: **return** "NO"
- 6: return "YES"

Justification

- 1. $v \models_{\mathcal{D}} \Gamma$ and $v \not\models_{\mathcal{D}} \varphi \Longrightarrow (def.)$
- 2. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m}} \varphi \Longrightarrow \text{(completeness)}$
- 3. $\not\vdash_{\mathsf{G}_{\mathsf{K}}}^{\mathcal{F},m} \Gamma \Rightarrow \varphi \Longrightarrow (\mathsf{modal\ depth})$
- 4. $\not\vdash_{\mathsf{G}_{\mathsf{K}}}^{\mathcal{F}} \Gamma \Rightarrow \varphi \Longrightarrow \text{(subformula property)}$
- 5. $\not\vdash_{\mathsf{G}_{\mathsf{K}}} \mathsf{\Gamma} \Rightarrow \varphi \Longrightarrow \mathsf{(soundness)}$
- 6. $\Gamma \not\vdash^{\mathbb{V}_{K}} \varphi$

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

- 1: $\mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})$
- 2: $m \leftarrow md(\mathcal{F})$
- 3: **for** $v : \mathcal{F} \rightarrow \{\mathsf{T}, \mathsf{t}, \mathsf{F}, \mathsf{f}\}$ **do**
- 4: **if** $v \in \mathbb{V}_{K}^{\mathcal{F},m}$ and $v \models \Gamma$ and $v \not\models \varphi$ **then**
- 5: return "NO"
 - 6: return "YES"

Justification

- 1. $v \models_{\mathcal{D}} \Gamma$ and $v \not\models_{\mathcal{D}} \varphi \Longrightarrow \text{(def.)}$
- 2. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m}} \varphi \Longrightarrow \text{(completeness)}$
- 3. $\not\vdash_{\mathsf{GK}}^{\mathcal{F},m} \Gamma \Rightarrow \varphi \Longrightarrow (\mathsf{modal\ depth})$
- 4. $\not\vdash_{\mathsf{G}_{\mathtt{K}}}^{\mathcal{F}} \mathsf{\Gamma} \Rightarrow \varphi \Longrightarrow \text{(subformula property)}$
- 5. $\not\vdash_{\mathsf{G}_{\mathsf{K}}} \mathsf{\Gamma} \Rightarrow \varphi \Longrightarrow$ (soundness)
- 6. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

- 1: $\mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})$
- 2: $m \leftarrow md(\mathcal{F})$
- 3: for $v: \mathcal{F} \to \{\mathsf{T}, \mathsf{t}, \mathsf{F}, \mathsf{f}\}$ do
- 4: **if** $v \in \mathbb{V}_{\kappa}^{\mathcal{F},m}$ and $v \models \Gamma$ and $v \not\models \varphi$ **then**
- 5: return "NO"
 - 6: return "YES"

Justification

- 1. $v \models_{\mathcal{D}} \Gamma$ and $v \not\models_{\mathcal{D}} \varphi \Longrightarrow (\text{def.})$
- 2. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m}} \varphi \Longrightarrow \text{(completeness)}$
- 3. $\not\vdash_{\mathsf{G}_{\mathsf{K}}}^{\mathcal{F},m} \Gamma \Rightarrow \varphi \Longrightarrow (\mathsf{modal\ depth})$
- 4. $\not\vdash^{\mathcal{F}}_{\mathsf{G}_{\mathtt{K}}} \Gamma \Rightarrow \varphi \Longrightarrow$ (subformula property)
- 5. $\not\vdash_{\mathsf{G}_{\mathsf{V}}} \Gamma \Rightarrow \varphi \Longrightarrow (\mathsf{soundness})$
- Γ ⊬^{V_K} φ

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

- 1: $\mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})$
- 2: $m \leftarrow md(\mathcal{F})$

▷ modal depth

- 3: for $v: \mathcal{F} \rightarrow \{\mathsf{T}, \mathsf{t}, \mathsf{F}, \mathsf{f}\}$ do
- 4: **if** $v \in \mathbb{V}_{\kappa}^{\mathcal{F},m}$ and $v \models \Gamma$ and $v \not\models \varphi$ **then**
- 5: **return** "NO"
- 6: return "YES"

Justification

- 1. $v \models_{\mathcal{D}} \Gamma$ and $v \not\models_{\mathcal{D}} \varphi \Longrightarrow (def.)$
- 2. $\Gamma \not\vdash^{\mathbb{V}_{\mathbb{K}}^{\mathcal{F},m}} \varphi \Longrightarrow \text{(completeness)}$
- 3. $otag \mathcal{F}^{\mathcal{F},m}_{\mathsf{G}_{\mathtt{K}}} \Gamma \Rightarrow \varphi \Longrightarrow (\mathsf{modal\ depth})$
- 4. $\not\vdash_{\mathsf{G}_{\mathsf{K}}}^{\mathcal{F}} \mathsf{\Gamma} \Rightarrow \varphi \Longrightarrow \text{(subformula property)}$
- 5. $\not\vdash_{\mathsf{G}_{\mathsf{K}}} \mathsf{\Gamma} \Rightarrow \varphi \Longrightarrow (\mathsf{soundness})$
- Γ ⊬^{V_K} φ

Model Generation

- Often YES/NO is not enough
- Model generation
- Is v a "real" model?

Algorithm Deciding $\Gamma \vdash^{\mathbb{V}_{\mathbb{K}}} \varphi$.

```
1: \mathcal{F} \leftarrow sub(\Gamma \cup \{\varphi\})

2: m \leftarrow 4^{|\mathcal{F}|}

3: for v : \mathcal{F} \rightarrow \{\mathsf{T},\mathsf{t},\mathsf{F},\mathsf{f}\} do

4: if v \in \mathbb{V}_{\mathsf{K}}^{\mathcal{F},m} and v \models \Gamma and v \not\models \varphi then

5: return "NO", v

6: return "YES"
```

Justification

- ullet $\mathbb{V}_{\mathtt{K}}^{\mathcal{F},m}=\mathbb{V}_{\mathtt{K}}^{\mathcal{F}}$
- Every $v \in \mathbb{V}_{\mathtt{K}}^{\mathcal{F}}$ can be extended to some $v' \in \mathbb{V}_{\mathtt{K}}$

Conclusion

We Have Seen

- 4-valued semantics for K
- Based on NMatrices (RNMatrices [Coniglio & Toledo 2021])
- Effective, model constructing
- Also KT

Future Work

- More modal logics
- Complexity
- Implementation using a SAT solver

Conclusion

We Have Seen

- 4-valued semantics for K
- Based on NMatrices (RNMatrices [Coniglio & Toledo 2021])
- Effective, model constructing
- Also KT

Future Work

- More modal logics
- Complexity
- Implementation using a SAT solver

