Non-deterministic Connectives in Propositional Gödel Logic

Ori Lahav Arnon Avron

Tel Aviv University

EUSFLAT 2011

Background and Motivation

- Current fuzzy logics follow the principle of truth-functionality, and fuzziness is limited to the level of the atomic formulas.
- Non-deterministic semantics [Avron,Lev '01] relaxes the truth-functionality principle, and allows uncertainty also on the level of the connectives.
- However, non-deterministic semantics has not yet been applied for fuzzy logics.
- We provide a first step towards a theory of non-deterministic semantics for fuzzy logics, by identifying a family of non-deterministic connectives that can be added to Gödel logic.

$$\frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \land \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \land \psi, \Delta}$$

$$\frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \wedge \psi, \Delta}$$

		Ň
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

$$\frac{\Gamma,\varphi,\psi\Rightarrow\Delta}{\Gamma,\varphi\wedge\psi\Rightarrow\Delta}\qquad\frac{\Gamma\Rightarrow\varphi,\Delta\quad\Gamma\Rightarrow\psi,\Delta}{\Gamma\Rightarrow\varphi\wedge\psi,\Delta}$$

		Ñ
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

$$\frac{\Gamma,\varphi,\psi\Rightarrow\Delta}{\Gamma,\varphi\wedge\psi\Rightarrow\Delta}\qquad\frac{\Gamma\Rightarrow\varphi,\Delta\quad\Gamma\Rightarrow\psi,\Delta}{\Gamma\Rightarrow\varphi\wedge\psi,\Delta}$$

		ñ
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Proof-theoretically, the meaning of a connective is determined by its derivation rules in some "ideal" deduction system.

$$\frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \wedge \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \wedge \psi, \Delta}$$

$$\frac{\Gamma,\varphi\Rightarrow\Delta\quad\Gamma,\psi\Rightarrow\Delta}{\Gamma,\varphi\vee\psi\Rightarrow\Delta}\qquad\frac{\Gamma\Rightarrow\varphi,\psi,\Delta}{\Gamma\Rightarrow\varphi\vee\psi,\Delta}$$

Т	Т	Т		
Т	F	F		
F	Т	F		
F	F	F		
		V		
Т	Т			

T F F T F F

$$\frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \land \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \land \psi, \Delta}$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \varphi \vee \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \psi, \Delta}{\Gamma \Rightarrow \varphi \vee \psi, \Delta}$$

		Ñ
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

		V
Τ	Т	Т
Т	F	Т
F	Т	Т
F	F	F

$$\frac{\Gamma,\varphi\Rightarrow\Delta\quad\Gamma,\psi\Rightarrow\Delta}{\Gamma,\varphi\circ\psi\Rightarrow\Delta}\qquad\frac{\Gamma\Rightarrow\varphi,\Delta\quad\Gamma\Rightarrow\psi,\Delta}{\Gamma\Rightarrow\varphi\circ\psi,\Delta}$$

		ő
Т	Т	
Т	F	
F	Т	
F	F	

$$\frac{\Gamma, \varphi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \varphi \circ \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \circ \psi, \Delta}$$

		ő
Т	Т	
Т	F	
F	Т	
F	F	F

$$\frac{\Gamma, \varphi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \varphi \circ \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \circ \psi, \Delta}$$

		ő
T	Т	Т
Т	F	
F	Т	
F	F	F

$$\frac{\Gamma, \varphi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \varphi \circ \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \circ \psi, \Delta}$$

		ő
Т	Т	Т
Т	F	F, T
F	Т	F, T
F	F	F

$$\frac{\Gamma, \varphi \Rightarrow \Delta \quad \Gamma, \psi \Rightarrow \Delta}{\Gamma, \varphi \circ \psi \Rightarrow \Delta} \qquad \frac{\Gamma \Rightarrow \varphi, \Delta \quad \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \circ \psi, \Delta}$$

$$\mathbf{v}(\varphi \circ \psi) \in \tilde{\circ} (\mathbf{v}(\varphi), \mathbf{v}(\psi))$$

Proof-Theory of Gödel Logic

- The only known "ideal" (in the above sense) system for Gödel logic is the single-conclusion hypersequent system HG [Avron '91].
- A single-conclusion hypersequent is a set of single-conclusion sequents denoted by:

$$\Gamma_1 \Rightarrow E_1 \mid \Gamma_2 \Rightarrow E_2 \mid \ldots \mid \Gamma_n \Rightarrow E_n$$

Proof-Theory of Gödel Logic

- The only known "ideal" (in the above sense) system for Gödel logic is the single-conclusion hypersequent system HG [Avron '91].
- A single-conclusion hypersequent is a set of single-conclusion sequents denoted by:

$$\Gamma_1 \Rightarrow E_1 \mid \Gamma_2 \Rightarrow E_2 \mid \ldots \mid \Gamma_n \Rightarrow E_n$$

• The communication rule:

$$\frac{H \mid \Gamma, \Delta \Rightarrow E_1 \quad H \mid \Gamma, \Delta \Rightarrow E_2}{H \mid \Gamma \Rightarrow E_1 \mid \Delta \Rightarrow E_2} \ (com)$$

Proof-Theory of Gödel Logic

- The only known "ideal" (in the above sense) system for Gödel logic is the single-conclusion hypersequent system HG [Avron '91].
- A single-conclusion hypersequent is a set of single-conclusion sequents denoted by:

$$\Gamma_1 \Rightarrow E_1 \mid \Gamma_2 \Rightarrow E_2 \mid \ldots \mid \Gamma_n \Rightarrow E_n$$

• The communication rule:

$$\frac{H \mid \Gamma, \Delta \Rightarrow E_1 \quad H \mid \Gamma, \Delta \Rightarrow E_2}{H \mid \Gamma \Rightarrow E_1 \mid \Delta \Rightarrow E_2} \ (\textit{com})$$

 All logical rules are the single-version hypersequent version of classical rules. E.g.

$$\frac{H \mid \Gamma, \varphi, \psi \Rightarrow E}{H \mid \Gamma, \varphi \land \psi \Rightarrow E} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \land \psi}$$

New Connectives in Gödel Logic

• Example:

$$\begin{array}{c|c} H \mid \Gamma, \varphi \Rightarrow E \quad H \mid \Gamma, \psi \Rightarrow E \\ \hline H \mid \Gamma, \varphi \circ \psi \Rightarrow E \end{array} \qquad \begin{array}{c|c} H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma \Rightarrow \psi \\ \hline H \mid \Gamma \Rightarrow \varphi \circ \psi \end{array}$$

New Connectives in Gödel Logic

• Example:

$$\begin{array}{c|c} \underline{H \mid \Gamma, \varphi \Rightarrow E \quad H \mid \Gamma, \psi \Rightarrow E} \\ \hline H \mid \Gamma, \varphi \circ \psi \Rightarrow E \end{array} \qquad \begin{array}{c|c} \underline{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma \Rightarrow \psi} \\ \hline H \mid \Gamma \Rightarrow \varphi \circ \psi \end{array}$$

 In general, new connectives can be added to Gödel logic by adding to HG rules of the following forms:

$$\frac{\{H \mid \Gamma, \Pi_i \Rightarrow E_i\}_{1 \leq i \leq m} \quad \{H \mid \Gamma, \Sigma_i \Rightarrow E\}_{1 \leq i \leq k}}{H \mid \Gamma, \diamond(\psi_1, \dots, \psi_n) \Rightarrow E} \qquad \frac{\{H \mid \Gamma, \Pi_i \Rightarrow E_i\}_{1 \leq i \leq m}}{H \mid \Gamma \Rightarrow \diamond(\psi_1, \dots, \psi_n)}$$

where $\Pi_i, E_i, \Sigma_i \subseteq \{\psi_1, \dots, \psi_n\}$

Gödel valuation

- Non-empty linearly ordered set $\langle V, \leq \rangle$ with a maximal element 1 and a minimal element 0
- A valuation function $v : Frm_{\mathcal{L}} \rightarrow V$

Gödel valuation

- Non-empty linearly ordered set $\langle V, \leq \rangle$ with a maximal element 1 and a minimal element 0
- A valuation function $v : Frm_{\mathcal{L}} \to V$

The set of rules for each connective imposes interval-restrictions on v.

Gödel valuation

- Non-empty linearly ordered set $\langle V, \leq \rangle$ with a maximal element 1 and a minimal element 0
- A valuation function $v : Frm_{\mathcal{L}} \rightarrow V$

The set of rules for each connective imposes interval-restrictions on v. For example:

$$\frac{H \mid \Gamma, \varphi \Rightarrow E \quad H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \circ \psi \Rightarrow E} \quad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \circ \psi}$$

$$v(\varphi \circ \psi) \in [\min(v(\varphi), v(\psi)), \max(v(\varphi), v(\psi))]$$

In general:

$$v(\diamond(\psi_1,\ldots,\psi_n))\in [F_\diamond(v(\psi_1),\ldots,v(\psi_n)),G_\diamond(v(\psi_1),\ldots,v(\psi_n))]$$

where F_{\diamond} and G_{\diamond} involve min, max, and \to

In general:

$$v(\diamond(\psi_1,\ldots,\psi_n)) \in [F_\diamond(v(\psi_1),\ldots,v(\psi_n)),G_\diamond(v(\psi_1),\ldots,v(\psi_n))]$$

where F_{\diamond} and G_{\diamond} involve min, max, and \rightarrow

$$\frac{\{H \mid \Gamma, \Pi_i \Rightarrow E_i\}_{1 \leq i \leq m}}{H \mid \Gamma \Rightarrow \diamond(\psi_1, \dots, \psi_n)} \qquad \frac{\{H \mid \Gamma, \Theta_i \Rightarrow F_i\}_{1 \leq i \leq l} \quad \{H \mid \Gamma, \Sigma_i \Rightarrow E\}_{1 \leq i \leq k}}{H \mid \Gamma, \diamond(\psi_1, \dots, \psi_n) \Rightarrow E}$$

$$F_{\diamond}(x_1,\ldots,x_n) = \min_{1 < i < m} (\min x(\Pi_i) \to \max x(E_i))$$

$$G_{\diamond}(x_1,\ldots,x_n) = \min_{1 \leq i \leq l} (\min x(\Theta_i) \to \max x(F_i)) \to \max_{1 \leq i \leq k} (\min x(\Sigma_i))$$

where for every set $\Delta \subseteq \{\psi_1, \dots, \psi_n\}$, $x(\Delta) = \{x_i \mid \psi_i \in \Delta\}$

Usual implication:

$$\frac{H \mid \Gamma, \varphi \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \supset \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \supset \psi \Rightarrow E}
v(\varphi \supset \psi) \in [v(\varphi) \to v(\psi), (1 \to v(\varphi)) \to v(\psi)]$$

Usual implication:

$$\frac{H \mid \Gamma, \varphi \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \rightarrow \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \rightarrow H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \supset \psi \Rightarrow E}
v(\varphi \supset \psi) \in [v(\varphi) \rightarrow v(\psi), (1 \rightarrow v(\varphi)) \rightarrow v(\psi)]
v(\varphi \supset \psi) = v(\varphi) \rightarrow v(\psi)$$

Usual implication:

$$\frac{H \mid \Gamma, \varphi \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \rightarrow \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \rightarrow H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \supset \psi \Rightarrow E}
v(\varphi \supset \psi) \in [v(\varphi) \rightarrow v(\psi), (1 \rightarrow v(\varphi)) \rightarrow v(\psi)]
v(\varphi \supset \psi) = v(\varphi) \rightarrow v(\psi)$$

Semi-implication [Gurevich, Neeman '09]:

$$\frac{H \mid \Gamma \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \rightsquigarrow \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \rightsquigarrow \psi \Rightarrow E}$$

Usual implication:

$$\frac{H \mid \Gamma, \varphi \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \supset \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \supset \psi \Rightarrow E}
v(\varphi \supset \psi) \in [v(\varphi) \to v(\psi), (1 \to v(\varphi)) \to v(\psi)]
v(\varphi \supset \psi) = v(\varphi) \to v(\psi)$$

Semi-implication [Gurevich, Neeman '09]:

$$\frac{H \mid \Gamma \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \mapsto \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \mapsto \psi \Rightarrow E}$$

$$v(\varphi \mapsto \psi) \in [1 \to v(\psi), (1 \to v(\varphi)) \to v(\psi)]$$

Usual implication:

$$\frac{H \mid \Gamma, \varphi \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \psi \Rightarrow E}$$

$$V(\varphi \supset \psi) \in [V(\varphi) \rightarrow V(\psi), (1 \rightarrow V(\varphi)) \rightarrow V(\psi)]$$

$$V(\varphi \supset \psi) = V(\varphi) \rightarrow V(\psi)$$

Semi-implication [Gurevich, Neeman '09]:

$$\frac{H \mid \Gamma \Rightarrow \psi}{H \mid \Gamma \Rightarrow \varphi \rightarrow \psi} \qquad \frac{H \mid \Gamma \Rightarrow \varphi \quad H \mid \Gamma, \psi \Rightarrow E}{H \mid \Gamma, \varphi \rightarrow \psi \Rightarrow E}$$

$$v(\varphi \rightarrow \psi) \in [1 \rightarrow v(\psi), (1 \rightarrow v(\varphi)) \rightarrow v(\psi)]$$

$$v(\varphi \rightarrow \psi) \in [v(\psi), v(\varphi) \rightarrow v(\psi)]$$

$$v(\varphi \rightarrow \psi) \in \begin{cases} \{v(\psi)\} & v(\varphi) > v(\psi) \\ [v(\psi), 1] & \text{otherwise} \end{cases}$$

Summary

- We characterize proof-theoretically and semantically a family of (non-deterministic) connectives that can be added to propositional Gödel logic.
- The paper also provides:
 - General strong cut-admissibility results.
 - Decidability results.
 - Non-deterministic Kripke-style semantics.
- Further Research:
 - Provide an independent semantic characterization of this family of connectives.
 - Apply these methods for other fuzzy logics.

