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Background and Motivation

@ Current fuzzy logics follow the principle of truth-functionality, and
fuzziness is limited to the level of the atomic formulas.

@ Non-deterministic semantics [Avron,Lev '01] relaxes the
truth-functionality principle, and allows uncertainty also on the level
of the connectives.

@ However, non-deterministic semantics has not yet been applied for
fuzzy logics.

@ We provide a first step towards a theory of non-deterministic
semantics for fuzzy logics, by identifying a family of
non-deterministic connectives that can be added to Gédel logic.
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Simple Non-deterministic Semantics

This naturally leads to non-deterministic semantics.
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This naturally leads to non-deterministic semantics.

Neg=A Tyv=A N=p,A =9 A
Mooty =A = poy, A

V(g o) € 8(v(p), v(v))
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@ The only known “ideal” (in the above sense) system for Gédel logic
is the single-conclusion hypersequent system HG [Avron '91].

@ A single-conclusion hypersequent is a set of single-conclusion
sequents denoted by:

4 :>E1 |I'2:>E2|...|Fn:>En
@ The communication rule:

H|F,A=>E1 H|F,A=>E2(
H\F:>E1|A:>E2

com)

@ All logical rules are the single-version hypersequent version of
classical rules. E.g.
H|T,p,v=E HiT=¢ H|T=2%
HiT,onYy=E HIT=pAY
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@ Example:
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@ In general, new connectives can be added to Gddel logic by adding
to HG rules of the following forms:

{H| T, M= Eh<icm {H|T, % = E}icick {H|T,Ni = E}icicm
H|r,<>(1/J1,...,1/)n):>E H|r:><>(1/;1,...,1/;n)

where N, E;, X C {¢1,...,¥n}
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Many-valued Semantics

In general:

V(O(dﬁ Yo 7#’”)) € [FO(V(/L/”)v R V(d’”))? GO(V(/L/”)v AR V(¢n))]

where F, and G, involve min, max, and —

{H|T. M = Ei}i<icm {HIT. 8= Fili<ici {H|T,%i = E}icick
H|T = o(t1,...,%n) H|T,o(1,...,¢%n) = E
Fo(X1,...,Xp) = min (minx(M;) — max x(E;))
1<i<m
Go(X1,...,Xn) = 1rgl!gl(mm x(©;) = maxx(F;)) — 1n;laé((mm x(Xp))

where for every set A C {1,...,9%n}, X(A) = {x; | ¥ € A}
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@ Semi-implication [Gurevich, Neeman '09]:

H|T =4 HiT=¢ H|TLW=E
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{v(¥)}  vip) > v(¥)
Vg~ v) € { V()] otherwise



@ We characterize proof-theoretically and semantically a family of
(non-deterministic) connectives that can be added to propositional
Gddel logic.

@ The paper also provides:
o General strong cut-admissibility results.
o Decidability results.
o Non-deterministic Kripke-style semantics.

@ Further Research:
o Provide an independent semantic characterization of this family of
connectives.
o Apply these methods for other fuzzy logics.



Thank you!



