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Abstract. We present a multiple-conclusion hypersequent system for
the standard first-order Gédel logic. We provide a constructive, direct,
and simple proof of the completeness of the cut-free part of this system,
thereby proving both completeness for its standard semantics, and the
admissibility of the cut rule in the full system. The results also apply
to derivations from assumptions (or “non-logical axioms”), showing that
such derivations can be confined to those in which cuts are made only
on formulas which occur in the assumptions. Finally, the results about
the multiple-conclusion system are used to show that the usual single-
conclusion system for the standard first-order Godel logic also admits
(strong) cut-admissibility.

1 Introduction

In [15] Godel introduced a sequence {G,} (n > 2) of n-valued matrices in the
language of propositional intuitionistic logic. He used these matrices to show
some important properties of intuitionistic logic. An infinite-valued matrix G,
in which all the G, s can be embedded was later introduced by Dummett in [13].
G, in turn, can naturally be embedded in a matrix Go 1}, the truth-values of
which are the real numbers between 0 and 1 (inclusive). It has not been difficult
to show that the logics of G, and G| 1) are identical, and both are known today
as “Godel logic”.! Later it has been shown that this logic is also characterized
as the logic of linear intuitionistic Kripke frames (see e.g. [14]). Godel logic is
probably the most important intermediate logic, i.e. a logic between intuitionistic
logic and classical logic, which turns up in several places. Recently it has again
attracted a lot of attention because of its recognition as one of the three most
basic fuzzy logics [16].

Godel logic can be naturally extended to the first-order framework. In par-
ticular, the standard first-order Gédel logic (the logic based on [0, 1] as the set of
truth-values) has been introduced and investigated in [21] (where it was called
“intuitionistic fuzzy logic”). The Kripke-style semantics of this logic is provided
by the class of all linearly ordered Kripke frames with constant domains.

1 It is also called Gédel-Dummett logic, because it was first introduced and axioma-
tized in [13]. The name Dummett himself has used is LC.



A cut-free Gentzen-type formulation for Gédel logic was first given by Sonobe
in [18]. Since then several other such calculi which employ ordinary sequents have
been proposed (see [10,1,11,5,12]). All these calculi have the drawback of us-
ing some ad-hoc rules of a nonstandard form, in which several occurrences of
connectives are involved. In contrast, in [2] a cut-free Gentzen-type proof sys-
tem HG for propositional Godel logic was introduced, which does not have this
drawback. HG uses (single-conclusion) hypersequents (a natural generalization
of Gentzen's original (single-conclusion) sequents), and it has exactly the same
logical rules as the usual Gentzen-type system for propositional intuitionistic
logic. HG was furthermore extended by Baaz, Ciabattoni, Fermiiller, and Zach
to provide appropriate proof systems for extensions of propositional Godel logic
with quantifiers of various types and modalities (see [6] for a survey). In particu-
lar, an extension of HG for the standard first-order Gédel logic (called HIF) was
introduced in [8]. Following the work that started in [2], the framework of hy-
persequents was used by Metcalfe, Ciabattoni, and others for other fuzzy logics
(like Lukasiewicz infinite-valued logic), and nowadays it is the major framework
for the proof theory of fuzzy logics (see [17]).

Until recently, in all the works about HG and its extensions the proofs of
completeness (either for the Godel’s many-valued semantics or for the Kripke
semantics) and the proofs of cut-elimination have completely been separated.
Completeness has been shown for the full calculus (including cut), while cut-
elimination has been proved syntactically by some type of induction on com-
plexity of proofs.? On the contrary, the recent [4] provided for the first time a
constructive, direct, and simple proof of the completeness of the cut-free part of
HG for its intended semantics (thereby proving both completeness of the calcu-
lus and the admissibility of the cut rule in it)3. However, [4] did not deal with the
first-order extension of HG, and it was not clear how to adapt its completeness
proof to the first-order case.

In this paper we present a hypersequent system for the standard first-order
Godel logic, for which it is possible to provide a purely semantic, simple (and
easy to verify) proof of cut-admissibility. As usual, this proof is actually a com-
pleteness proof of the cut-free part of our system for its intended semantics.
To overcome the difficulties encountered in adapting the proof of [4] to the first-
order case, we move to the multiple-conclusion framework. The proposed system,
which we call MCG, is a multiple-conclusion hypersequent system, which can
be seen as a combination of HIF and the well-known multiple-conclusion se-
quent system for intuitionistic logic (called LJ’ in [20]). Our results apply also
to derivations from assumptions, as we actually prove strong cut-admissibility,

2 The syntactic methods are notoriously prone to errors, especially (but certainly
not only) in the case of hypersequent systems. Thus the first proof (in [8]) of cut-
elimination for HIF was erroneous. There has also been a gap in the proof given in
[2] in its handling of the case of disjunction. Many other examples, also for ordinary
sequential calculi, can be given.

3 A semantic proof of cut-admissibility for HG has been given in [9]. However, a com-
plicated algebraic phase semantics was used there, and the proof is not constructive.



proving that derivations can be confined to those in which cuts are made only
on formulas which occur in the assumptions. Finally, at the end of the paper
we return to the original single-conclusion system HIF for Gédel logic, and use
our results about MCG to provide a new, semantic proof that this system too
admits (strong) cut-admissibility.

2 Preliminaries

Let £ be a first-order language. We assume that the set of free variables and the
set of bounded variables are disjoint. We use the metavariable a to range over
the free variables, x to range over the bounded variables, p to range over the
predicate symbols of £, ¢ to range over its constant symbols, and f to range over
its function symbols. The sets of L-terms and L-formulas are defined as usual,
and are denoted by trm, and frm,, respectively. trm% and frmcﬁl respectively
denote the sets of closed L-terms and closed £-formulas. Given an L-formula 1,
a free-variable a, and an L-term ¢, we denote by ¥ {t/a} the L-formula obtained
from v by replacing all occurrences of a by t.

2.1 Proof-Theoretical Preliminaries

Definition 1. A sequent is an ordered pair of finite sets of L-formulas. A hy-
persequent is a finite set of sequents.

Given a set H of hypersequents, we denote by frm[H] the set of formulas
that appear in H. We shall use the usual sequent notation I'= A, and the usual
hypersequent notation sy | ... | s,. We also employ the standard abbreviations,
e.g. I'Np= A instead of ' U {¢}= A, and H | s instead of H U {s}.

Definition 2. A sequent I'= A is single-conclusion if A contains at most one
formula. A L-hypersequent s1 | ... | s, is single-conclusion if s1,...,s, are all
single-conclusion.

Next we review the single-conclusion hypersequent system HIF for the stan-
dard first-order Godel logic from [8].4

p=p 1=
H|TI'=E H|I'= H
W gro=e W arr=y T arsE

Hl‘Fl,F{:>E1 H2|F2,F2/:>E2
(com) = 7
H1|H2|F1,F2:>E1|F2,F1:>E2

4 What we present is actually an equivalent version of the system presented in [8].
Thus —p is defined here as ¢ D L, while the density rule is not present, since
it can be eliminated. Other insignificant differences are due to the facts that we
define hypersequents as sets of sequents rather than as multisets, and that we use
multiplicative versions of the rules rather than additive ones.



H1|F1:>g0 H2|F2,Lp:>E
H1|H2|F1,F2:>E

(:):>) H1|F1:>1[J1 H2|F2,1/12=>E H|F,'Iﬁ1=>d)2
H1|H2|F1,F2,w13’¢2:>E H|F$’I/J1D'¢2

H, \ I, yn=FE1 H» \ I, =FE»

(cut)

=2)

V=
(V=) Hi | Hy | I, 2,91 Vo= Er, Ey
H | I'=i H | I'=
EV) TS eve: V) E IS0y
H| Ty =E H|Tps=E
(Amq) LD (Amg) L DY

H |1 ANpa=FE H| )1 Apa=FE
Hi|In=v1 Hs|I>o=12
H1|H2|F1,F2:>’¢1 A
H|Tp{t/a}=FE H|TI'=yp
H | I'Vz(p{z/a})=FE H | I'=Vz(p{z/a})
H|T,p=E &3 H | I'=p{t/a}
H | I' 3z(p{x/a})=FE H | I'=3z(e{z/a})

S

(V=)

&VY)

(3=

The rules (= V) and (3=>) must obey the eigenvariable condition: a must not oc-
cur in the lower hypersequent. F, F; and E5 denote here sets of formulas contain-
ing at most one formula. Note that the sets of formulas denoted by I't, I's, I'f, [
need not to be disjoint. Also note that in (V=): either E; = F5 or one of them
is empty.

2.2 Semantic Preliminaries

In this paper we use the usual Kripke-style semantics for the standard first-order
Godel logic, rather than the many-valued one. There are two differences between
this semantics and the Kripke-style semantics of first-order intuitionistic logic.
First, for Godel logic we use linearly ordered Kripke frames. Second, for first-
order Godel logic we need to use a constant domain, i.e. the same domain in
each world, rather than the expanding domains used for intuitionistic logic.”

Definition 3. An L-structure M is a pair (D, I) where D is a nonempty domain
and [ is an interpretation of constants and function symbols of £, such that
I(c) € D for every constant symbol ¢ of £, and I(f) € D™ — D for every n-ary
function symbol f of L.

Definition 4. A (£, D)-predicate interpretation is a function assigning a subset
of D™ to every n-ary predicate symbol of L.

Definition 5. An L-frame is a tuple W = (W, <, M, {1, } wew ) where:
1. W is a nonempty set linearly ordered by <.

5 Currently no cut-free hypersequent calculus is known for the logic of linearly ordered
Kripke frames with (non-constant) expanding domains.



2. M = (D, I) is an L-structure.

3. For every w € W, I, is an (L, D)-predicate interpretation.

4. I,(p) C I,(p) for every elements u,w of W such that u < w, and for every
predicate symbol p.

Definition 6. An (£, D)-evaluation is a function assigning an element in D to
every free variable of £. Given an (£, D)-evaluation e, a free variable a, and
d € D, we denote by e[,.—q the (£, D)-evaluation which is identical to e except
that efg.—q)(a) = d.

Given a structure M = (D, I), the M-extension of an (£, D)-evaluation e
is a function €’ : trmy; — D defined as follows: €'(¢) = I(c) for every con-
stant symbol ¢; €'(a) = e(a) for every free variable a; and e(f(t1,...,t,) =
I(f)(e'(t1),...,€ (ty)) for every function symbol f and t1,...,¢, € trmg.

Definition 7. Let W = (W, <, M = (D, I), {I, }wew) be an L-frame, and e be
an (£, D)-evaluation. The satisfaction relation F is recursively defined as follows:

1. W,w,e E p(t1,...,t,) iff (e/(t1),...,€ (tn)) € L,(p), where €’ is the M-
extension of e.

W, w, el L.

W, w, e Ey D s it W u, e 1y or W, u, e E )y for every element u > w.
W, w, e E 1 Vg iff W, w,eE 1y or W w, e s.

W, w, e E 1 A iff W w, e Epy and W, w, e E 1s.

W, w, e EYr(Y{z/a}) iff W, w, ejq.—q) F ¥ for every d € D.

W,w, e E Jx(Y{z/a}) ff W, w, e[q.—q F ¢ for some d € D.

oot N

E is extended to sequents as follows: W, w, e E I'= A iff either W, w, e F¥ ¢ for
some @ € I', or W, w, e E ¢ for some p € A.

It is a routine matter to prove the following proposition:

Proposition 1. Let W= (W, < M = (D, I),{I,}wew) be an L-frame, and e
be an (L, D)-evaluation. Let 1 be an L-formula, and u be an element of W such
that W,u,e E 1. Then, W,w,e E ¢ for every element w of W such that u < w.

Definition 8. Let W = (W, <, M = (D, I),{I,}wew) be an L-frame.
1. W is a model of a hypersequent H iff for every (L, D)-evaluation e, there
exists a component s € H such that W, w, e F s for every w € W.
2. W is a model of a set of hypersequents H iff it is a model of every H € H.

We define the semantic consequence relation between hypersequents:

Definition 9. Let H U {H} be a set of hypersequents. H 5" H iff every L-
frame which is a model of H is also a model of H.



3 The Multiple-Conclusion System

The system MCG is the following (multiple-conclusion) hypersequent system:

Axioms:
= 1=

Structural Rules:

H|I'=sA H|I'=sA H
W Fro=a O arr=as M ar=a
(com) H, | F1,F1/:>A1 H, | F27F2/:>A2 (S llt) H | F:>A1,A2
Hy |Hy |11, 3= Ay | Iy, 1= A, P H I T=A [ T= A,

Hy | In= A1, Ha|Ib,p=As

(CUt) H1 |H2|F1,F2:>A1,A2

Logical Rules:

Hy | IN=A1,9y1 H| I, p2=A, (=0) H | I Y1 =12
Hy | Hy | 1, 2,91 Dpa= A1, Ag H | I'=1 Do

(>=)

Hy | I,v1=A1 Hy | Iz, o= A H|I's A 91,12

V= =V

V) T (DD vin= A 2 OV H TS A, 01 v i
H |1, 2= A Hi | = A1, Ha | In= Ag, 1o

N= = A

N F g rimsa N T [ [ 1,155 A1, Be,in Ao

H|TI'=sAp
H | I'=sAVz(p{z/a})

H | p{t/a}= A
D Frvepasa OV

H|I'=s A o{t/a}
H | I'= A Jz(p{z/a})

H|p=A

(3=) H | T 3z(p{z/a})=A &3
The rules (= V) and (3 =) must obey the eigenvariable condition: ¢ must not
occur in the lower hypersequent.

Remark 1. The main difference between MCG and the system HIF of (8] is
the fact that MCG employs multiple-conclusion hypersequents. Among other
things, this involves having full internal weakening (= ITW) on the right, and
allowing also right context formulas in all the rules, except for (D). Note that
such formulas are not allowed in (=D), and so this rule looks exactly like its
single-conclusion counterpart. The communication rule is also strengthened, al-
lowing arbitrary finite sets of formula in the right-hand side of its premises. In
addition, an extra (right) split rule is added, allowing to split the formulas in
the right side of one component into two different components.

Definition 10. Let H U{H} be a set of hypersequents. H - H if there exists a
derivation of H from H in MCG. Given a set £ of L-formulas, we write H F¢ H
if there exists a derivation of H from H in MCG in which the cut-formula of
every application of the rule is in &.



Remark 2. In this notation, strong cut-admissibility means that H H™* H
whenever H F H. Usual cut-admissibility is obtained as a special case when

H=0.
The following usual lemma will be used in the sequel.

Lemma 1. Let H U {H} be a set of hypersequents, ¢ be a constant symbol
not occurring in H U {H}, and a be a free variable. Then, H H™H H jff
H{c/a} H™M H{c/a}.

4 Soundness, Completeness and Cut-Admissibility

In this section we prove the soundness and completeness theorem for MCG with
respect to the Kripke semantics of first-order Godel logic (presented in Section
2). Completeness is proved for MCG without the cut-rule, and so it also proves
cut-admissibility. We begin with the soundness theorem.

Theorem 1. Let HU{H} be a set of closed hypersequent. If H Hirm M H then
HEETH.

Proof (Outline). Let W = (W, <, M = (D, I),{ly,}wew) be an L-frame which
is a model of H. We show that for every (L, D)-evaluation e, there exists a
component s € H such that W, w,e F s for every w € W. Since the axioms of
MCG and the assumptions of H trivially have this property, it suffices to show
that this property is preserved also by applications of the rules of MCG. This
is a routine matter. We do here only the case of (com).

Suppose that H = Hy | Hy | I, [y= Ay | I, I'{ = Ay is derived from the hy-
persequents Hy | I, [} = Ay and Hs | I, ['j= Ay using (com). Assume for con-
tradiction that W is not a model of H. Thus there exists an (£, D)-evaluation
e, such that for every s € H, there exists w € W such that W,w,e ¥ s. In
particular, for every s € Hy U Hy, there exists w € W such that W, w,e ¥ s. In
addition, there exist w; € W such that W, wy,e ¥ I, [y = Ay, and wy € W such
that W, wa, e & T, I'{ = As. By definition, W, w1, e E ¢ for every ¢ € I'y U Iy,
W,wr,e # 1 for every ¢ € Ay, W,wa,e E ¢ for every ¢ € Iy UIY, and
W, wa, e F 1) for every ¢ € As. Since < is linear, either w; < wy or wy < wy.
Assume w.l.o.g that wy; < wy. Then by Proposition 1, W, wq, e E 9 for every
W € Iy. Tt follows that W, wa, e ¥ Iy, ['j= Ay. But this implies that W is not a
model of Hy | I, I'y= As. O

To prove completeness, we use extended sequents and extended hypersequents,
defined as follows:

Definition 11. An extended sequent is an ordered pair of (possibly infinite) sets
of L-formulas, written: 7 = U. Given two extended sequents p; = 71 =U; and
po = To=Us, we write 1 E pg if 71 C 7o and Uy C Us.



Definition 12. An extended hypersequent is a (possibly infinite) set of extended
sequents. Given two extended hypersequents £21, {25, we write 21 C (25 (and say
that (25 extends (21) if for every extended sequent 1 € £21, there exists ps € (2o
such that p; T po.

We shall use the same notations for extended sequents and extended hyper-
sequents. For example, we write 2 | s instead of 2 U {s}.

Definition 13. An extended sequent 7 =U admits the witness property if the
following hold:

1. If Va(yp{x/a}) € U then there exists a constant ¢ such that ¢{c/a} € U.
2. If 3x(¢{z/a}) € T then there exists a constant ¢ such that ¢¥{c/a} € T.

Definition 14. Let {2 be an extended hypersequent, and H be a set of hyper-
sequents.

1. 2 is called closed if it consists of extended sequents consisting only of closed
L-formulas.

2. 2 is called H-consistent if H A" H for every hypersequent H C 2.

3. Let v be an L-formula. (2 is called internally H-mazximal with respect to 1
if for every T=U € (2
(a) If ¢ ¢ T then 2| T, =U is not H-consistent.
(b) If ¢ € U then 2| T=U,1) is not H-consistent.

4. 2 is called internally H-mazximal if it is internally H-maximal with respect
to any closed L-formula.

5. Let s be a sequent of the form 1y = 1. (2 is called externally H-mazimal
with respect to s if either {s} C (2, or 2 | s is not H-consistent.

6. 2 is called externally H-mazimal if it is externally H-maximal with respect
to any closed sequent of the form 1 = .

7. §2 admits the witness property if every u € 2 admits the witness property.

8. 12 is called H-maximal if it is closed, H-consistent, internally H-maximal,
externally H-maximal, and it admits the witness property.

Obviously, every hypersequent is an extended hypersequent, and so all of
these properties apply to (usual) hypersequents as well.

The following three propositions are easily proved in the presence of the
internal and external weakening rules:

Proposition 2. A usual hypersequent H is H-consistent iff H ™ H.

Proposition 3. Let 2 be an extended hypersequent, which is internally H-
mazximal with respect to a formula . For every T=U € §2:

1. If & T, then H MM H | I'Yp=A for some hypersequent H T (2 and
sequent '==ACT=U.

2. If v ¢ U, then H HrmM] g | '= A, for some hypersequent H C 2 and
sequent '==ACT=U.



Proposition 4. Let 2 be an extended hypersequent, which is externally H-
mazximal with respect to a sequent s. Then, either s T {2, or there exists a
hypersequent H C 2 such that H H™H H | s.

A certain H-maximal extended hypersequent serves as the set of worlds in
the refuting frame built in the completeness proof. Lemma 4 below ensures the
existence of that extended hypersequent. In turn, for the proof of Lemma 4 we
need Lemmas 2 and 3 below.

Lemma 2. Assume L has an infinite number of constant symbols. Let H be
a set of hypersequents, and H = It = Ay | ... | [, = A, be a H-consistent
closed hypersequent. Then there exists a H-consistent closed hypersequent H' of
the form I'i=A}|...| [l = A, such that I; C I} and A; C A} for every

1<i<n, and H' admits the witness property.

Lemma 3. Assume L has an infinite number of constant symbols. Let H be a
set of hypersequents, and H = I'1= A, | ... | I,= A, be a H-consistent closed
hypersequent. Let 1 be a closed L-formula, and s be a closed sequent of the form
1 =>1o. Then there exists a H-consistent closed hypersequent H', such that:

- H =I=A...|I,=A,, wheren' € {n,n+ 1}, I, C I} and A; C A]
for every 1 < i <n.

— H' is internally H-mazximal with respect to 1.

— H' is externally H-mazimal with respect to s.

— H’ admits the witness property.

Lemma 4. Assume L has an infinite number of constant symbols. Let H be a
set of hypersequents. Every H-consistent closed hypersequent H can be extended
to a H-mazimal extended hypersequent 2.

Using Lemma 4, we turn to the completeness of the cut-free fragment of MCG.

Theorem 2. Let HoU{Hy} be a set of closed hypersequent. If Ho 5" Hy then
Ho HmH H.

Proof. Assume Ho ¥ Hy, where £ = frm[Ho]. We construct an L-frame W
which is a model of Hy but not of Hy. First, assume (w.l.o.g) that £ has an
infinite number of constant symbols (if not, then we add infinitely many constant
symbols, and obviously Ho ¢ Hjy still holds). By Lemma 4, there exists a Ho-
maximal extended hypersequent {2 such that Hy C (2.

Define W = (W, <, M, {1, }wew), as follows:

— W = 2 (obviously, W is not empty).

— For every Ty =Uy, To=Us e W, Ti=U, < To=Us iff T1 C To.

— M = (D, I) where D is the set of all closed £-terms, I(c) = ¢ for every con-
stant ¢, and I(f)(t1,...,tn) = f(t1,...,t,) for every n-ary function symbol
fand ty,...,t, € D.

— (t1, .., tn) € ITmyu(p) iff p(t1,...,t,) € T for every n-ary predicate symbol
pand ty,...,t, € D.



We first prove that (W, <) is linearly ordered:

Partial Order Obviously < is reflexive and transitive. To see that it is also
anti-symmetric, let wy,ws € W such that wy; < we and wy < wy. Assume
w; = 71 = U; and wy = T = Us. By definition, 771 = 73 in this case.
Assume for contradiction that Uy # Us, and let ¥ € Uy \ Uz (w.lo.g.).
Since {2 is internally H-maximal, there exist a hypersequent H C {2 and a
sequent I' = A C wy, such that Ho -¢ H | I'= A, 1. Using the split rule,
we obtain Ho F€ H | =1 | '= A. But, I'= C wy, and this contradicts
{2’s consistency. Hence U; = Uz, and so w; = ws.

Linearity Let 71 = Uy, To = Us € W. Assume for contradiction that 73 & 7T
and 7o € T1. Let 11 € T1 \ T2 and ¢2 € T3\ T1. By {2’s internal maximality,
there exist hypersequents Hy, Hy T 2 and sequents [} = Ay C Ty = U
and Iy = Ay C To = Uy such that Ho F€ Hy | I'1,92=A; and such that
Ho ¢ Hy | Iy, 1 = Ay. By applying (com) to these two hypersequents we
obtain Ho F¢ H; | Hy | I'1, 901 = Ay | In, 2 = Ag. But this contradicts 2’s
consistency.

The following claims are proved by a standard structural induction:

— For every (£, D)-evaluation e and t € D, €'(t) = t.
— For every (£, D)-evaluation e, t € D, an L-formula 1), a free variable a, and
we W: W, w,epq—y F Y iff W,w,eFp{t/a}.

Next we prove that the following hold for every w = 7T =U € W, and (L, D)-
evaluation e:

(a) If 0 € T then W, w, e E 0.
(b) If 6 € U then W, w, et 0.

(a) and (b) are proved together using a simultaneous induction on the complex-
ity of 8. Here we do three crucial cases.

Let w =T =U € W and let e be an (£, D)-evaluation.

— Suppose 6 is a closed atomic formula p(t1, ..., t,). By definition, W, w, e F
iff (¢/(t1),...,€(tn)) € I,(p), where €’ is the M-extension of e (see Defini-
tion 6). By a previous claim, ¢/(t;) = ¢; for every 1 < 4 < n. And so, our
construction ensures that W, w, e E 0 iff § € T. This proves (a). For (b), note
that ¢ =1 is an axiom (for every L-formula 1), and since {2 is H-consistent,
0 € U implies 0 ¢ T.

— Suppose 6 =1 D .

1. Assume that § € 7. We show that for every element w’ € W such that
w < w' either W, w’, e ¢y or W, w', e E 1s.
Let w' =T = U" € W such that w < w’ (and so, T C 7). By the
induction hypothesis, it suffices to show that either 1); € U’ or 15 € T".
Assume otherwise. Then by (2’s internal maximality, there exist hyper-
sequents Hy, Hy C 2, and sequents I'1 = Ay, [y = Ay C 7' = U’ such



that Ho HE H, | F1:>A1,¢1, and Ho HE H, | FQ,¢2:>A2. By applylng
(>=) we obtain Ho F¢ Hy | Hy | I, I,0=A;, Ay. But since 6 € T,
0 €T and so Hy | Hy | I, 5,0 = Ay, Ay C 2. This contradicts §2’s
consistency.

2. Assume that 6 € U.

First we claim that Ho 75 H | 11 =19 for every hypersequent H C 2.
To see this assume for contradiction that there exists a hypersequent
H C 2, such that Ho F¢ H | 11 = 1. By applying (=D) to this hyper-
sequent we obtain Ho F¢ H |= 0. But this contradicts £2’s consistency.
Therefore, by (2’s external maximality, 11 = 1o C (2. Thus there exists
an extended sequent 7' = U’ € 2, such that ¢ € T’ and 9y € U’. By
the induction hypothesis, W, T'=U", e E 1 and W, T' =U", e & 15. Tt
follows that if 7 C 77, then W, w, e i  and we are done.

Assume now that 7 ¢ 7T’. By linearity, 7/ C T, and so ¢; € T.
By the induction hypothesis, W, w, e F ;. Now notice that 1o € U.
To see this assume for contradiction that 1, ¢ U. Then by (2’s in-
ternal maximality, there exist a hypersequent H C (2, and a sequent
I'=AC T=U,such that Ho F¢ H | I'= A,1),. By applying the split
rule we obtain Ho F¢ H | I'= A | I'=1),. By applying internal weaken-
ing we obtain Ho F¢ H | I'= A | I',11 = 1)». Finally, by (=) we obtain
Ho F¢ H | I'= A | I'=6. But this contradicts 2’s consistency. By the
induction hypothesis, W, w, e & 15. This again implies that W, w, e & 6.

— Suppose 0 = Va(y{z/a}).

1. Assume that W, w, e ¥ 6. We show that 6 ¢ T. By definition, there exists
some t € D such that W, w, e[q.—q 7 ¥. By a previous claim, it follows
that W, w, e i ¢p{t/a}. By the induction hypothesis, 1{t/a} ¢ T. Now,
using (2’s internal maximality, there exist a hypersequent H C (2 and
a sequent I'= A T T = U, such that Ho F¢ H | I'{t/a} = A. By
applying (V=), we obtain Ho F¢ H | I',0= A. Since §2 is H-consistent,
0&T.

2. Assume that 6§ € U. By §2’s witness property, there exists a constant sym-
bol ¢ such that {c/a} € U. From the induction hypothesis it follows that
W,w, e {{c/a}. By a previous claim, it follows that W, w, e[q.— ¥ ¥.
Since ¢ € D, by definition, W, w, e ¥ 6.

It remains to show that W is a model of Hy but not of Hy. First, no-
tice that for every ¢ € frm[H] and T = U € (2, either v € T or ¢ € U.
To see this, note that otherwise, by (2’s internal maximality, there exist hy-
persequents Hy, Hy C §2, and sequents I = A, I5=As C T =U, such that
Ho F€ Hy | I, vv=A, and Ho F€ Hy | Ih= Ay, 4. Now using a (legal) appli-
cation of the cut rule, we obtain Ho F¢ Hy | Hy | I, I = Ay, Ay, but this
contradicts {2’s consistency.

Now let H € Hy, and let e be an (£, D)-evaluation. Since obviously Ho F¢ H,
Lemma 2 implies that H [Z 2. Thus there exists a sequent s € H, such that
s L p for every p € 2. We prove that W, w, e F s for every w € W. Let w € W.
Assume w = 7T =U and s = ['= A. Since s [Z w, there either exists 1) € I" such



that ¢ &€ T, or ¢ € A such that ¢ € U. This implies that there either exists
¥ € I' such that ¢ € U, or ¢ € A such that ¢ € T. By (a) and (b), either there
exists ¥ € I' such that W, w, e F 1, or there exists ¢ € A such that W, w, e F 1.
Therefore, W, w, e E s.

We end the proof by showing that W is not a model of Hy. Let ¢ be an
arbitrary (£, D)-evaluation, and let I'= A € H,. Since Hy C {2 there exists an
extended sequent w = T =U € {2 such that I'= A C w. By (a), for every ¢ € I',
W, w, e E . By (b), for every v € A, W, w,e 1. Thus, Wyw,e ¥ '=A. O

Finally, we state the two main corollaries, easily obtained from the two pre-
vious theorems.

Corollary 1 (Strong Soundness and Completeness).

MCG is strongly sound and complete with respect to the Kripke semantics of the
standard first-order Gédel logic, i.e. H = H iff H -5" H for every set HU {H}
of closed hypersequent.

Corollary 2 (Strong Cut-Admissibility).
MCG admits strong cut-admissibility, i.e. H = H iff H ™M H | for every set
HU{H} of closed hypersequent.

Remark 3. In [21] the following density rule was introduced and used to axiom-
atize standard first-order Gdédel logic:

I'soV(pDp)V(pDH)
I'=oV (Y Do)

where p (a metavariable for an atomic formula) does not occur in the conclusion.
In [19] this rule was proved to be admissible (using a semantic proof). The
(single-conclusion) hypersquential version of this rule has the form (see [6]):

H|I'sp|Ap=1
H | A=1

By Corollary 1, this rule is admissible in MCG.

5 Cut-Admissibility for HIF

In this section we study the relation between MCG and the single-conclusion
system HIF, and derive a semantic cut-admissibility proof for the system HIF
itself. Denote by F<; the provability relation (between sets of single-conclusion
hypersequents, and single-conclusion hypersequents) induced by HIF (see Sec-
tion 2).

Definition 15. Given a hypersequent H, H<! is the single-conclusion hyperse-
quent Jypcyil’=FE | E C A}, where E denotes sets of £-formulas which are
either singletons or empty. Let HS! = {H<! | H € H}.



The following theorem provides the relation between MCG and HIF.

Theorem 3. For every set of hypersequents HU{H}, and set £ of L-formulas,
H-E H iff HE? I—‘gl H=Y

The proof of this theorem is done as usual by induction on the length of the
proof in MCG. The most problematic case (dealing with the rule (3=)) follows
from Lemma 30 in [6].

Corollary 3 (Strong Cut-Admissibility for HIF).
HIF admits strong cut-admissibility, i.e. H F<1 H iff H %ﬁ;ﬂm] H, for every
set HU{H} of closed single-conclusion hypersequents. B

Proof. One direction is trivial. For the converse, assume H k<; H. In this
case, obviously, H F H. By Corollary 2, H H*] H. Theorem 3 implies that
HSE I—’ZT[H] H<!. Now, notice that for a single-conclusion hypersequent H,

HS'=HU{I'=0| I'=¢ € H}, and obviously H<! }_@Sl H and H "21 H<!,
It now follows that H I—ZT[H] H. 0

6 Further Research

We believe that a (multiple-conclusion) hypersequent system can also be used
to provide a similar semantic proof of strong cut-admissibility in Gentzen’s LJ.
Many other (multiple or single-conclusion) hypersequent systems for various
propositional and first-order fuzzy logics and intermediate logics have only syn-
tactic proofs of (usual) cut-elimination theorem (see e.g. [17]). It should be inter-
esting to find for them too more simple semantic proofs and derive corresponding
strong cut-admissibility theorems. For other fuzzy logics, Kripke-style semantics
might not suffice.

Acknowledgements

We are grateful to three anonymous referees for their helpful suggestions and
comments. This research was supported by The Israel Science Foundation (grant
no. 280-10).

References

1. Avellone A., Ferrari M., and Miglioli P., Duplication-free Tableaur Calculi Together
with Cut-free and Contraction-free Sequent Calculi for the Interpolable Proposi-
tional Intermediate Logics, Logic J. IGPL 7 (1999), 447-480.

2. Avron A., Using Hypersequents in Proof Systems for Non-classical Logics, Annals
of Mathematics and Artificial Intelligence 4 (1991), 225-248.

3. Avron A., Gentzen-Type Systems, Resolution and Tableaux, Journal of Automated
Reasoning 10 (1993), 265-281.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Avron A., A Simple Proof of Completeness and Cut-admissibility for Proposi-
tional Godel Logic, Journal of Logic and Computation (2009), doi: 10.1093/log-
com/exp055.

Avron A., and Konikowska B., Decomposition Proof Systems for Gédel Logics,
Studia Logica 69 (2001), 197-219.

Baaz M., Ciabattoni A., and Fermiiller C. G., Hypersequent Calculi for Gddel
Logics - a Survey, Journal of Logic and Computation 13 (2003), 835-861.

Baaz M., Preining N., and Zach R., First-order Gédel Logics, Annals of Pure and
Applied Logic 147 (2007), 23-47.

Baaz M., and Zach R., Hypersequent and the Proof Theory of Intuitionistic Fuzzy
Logic, in Proceedings of CSL 2000, vol. 1862 of LNCS, 187201

Ciabattoni A., Galatos N., and Terui K., From Axioms to Analytic Rules in Non-
classical Logics, in Proceedings of LICS 2008, 229-240.

Corsi G., Semantic Trees for Dummett’s Logic LC, Studia Logica 45 (1986), 199—
206.

Dyckhoff D., A Deterministic Terminating Sequent Calculus for Géddel-Dummett
Logic, Logic J. IGPL 7 (1999), 319-326.

Dyckhoff D., and Negri S., Decision Methods for Linearly Ordered Heyting Algebras,
Archive for Mathematical Logic 45 (2006), 411-422.

Dummett M., A Propositional Calculus with a Denumerable matriz, Journal of
Symbolic Logic 24 (1959), 96-107.

Gabbay D., Semantical Investigations in Heyting’s Intuitionistic Logic, Reidel,
1983.

Godel K., On the Intuitionistic Propositional Calculus, 1933. In Collected Work,
Vol. 1, edited by S. Feferman et al, Oxford University Press, 1986.

Héjek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers,
1998.

Metcalfe G., Olivetti N., and Gabbay D., Proof Theory for Fuzzy Logics,
Springer, 2009.

Sonobe O., A Gentzen-type Formulation of Some Intermediate Propositional Log-
ics, Journal of Tsuda College 7 (1975), 7-14.

M. Takano, P Another proof of the strong completeness of the intuitionistic fuzzy
logic, Tsukuba J. Math. 11 (1984), 851-866.

G. Takeuti, Proof Theory, North-Holland, 1975.

Takeuti G., Titani T., Intuitionistic Fuzzy Logic and Intuitionistic Fuzzy Set The-
ory, Journal of Symbolic Logic 49 (1984), 851-866.



