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Example: Dekker's mutual exclusion

Initially, x =y = 0.

x =1; y:=1;
a =y, b = x;
if (2 = 0) then if (b = 0) then

/* critical section */ /* critical section */
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Initially, x =y = 0.

x =1; y:=1;
a==y; /0 b:=x; /0
if (2 = 0) then if (b =0) then
/* critical section */ /* critical section */
Is it safe?

S

Yes, if we assume sequential consistency (SC):
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Example: Dekker's mutual exclusion

Initially, x =y = 0.

x =1; y:=1;
a==y; /0 b:=x; /0
if (2 = 0) then if (b =0) then
/* critical section */ /* critical section */
Is it safe?

N~

Yes, if we assume sequential consistency (SC):

cpul| --- |CPUn

A

READ WRITE

‘ Memory ‘

No existing hardware implements SC!

P> SC is very expensive (memory ~100 times slower than CPU).



Example: Shared-memory concurrency in C++

int X, Y, a, b;

void threadl() {

X =1;
a=yY;

}

void thread2() {
Y =1;
b =X;

}

int main () {
int cnt = 0;

do {
X=0; Y =0;

thread first(threadl);
thread second(thread2);

first.join();
second.join();
cnt++;

} while (a != 0 || b != 0);

printf("sd\n",cnt);
return 0;



Example: Shared-memory concurrency in C++

int X, Y, a, b;

void threadl() {

X =1;
a=yY;

}

void thread2() {
Y =1;
b =X;

}

If Dekker’'s mutual exclusion
is safe, this program will
not terminate

int main () {
int cnt = 0;

do {
X=0; Y =0;

thread first(threadl);
thread second(thread2);

first.join();
second.join();
cnt++;

} while (a '=9@ || b !=0);

printf("%sd\n",cnt);
return 0;



Weak memory models

We look for a substitute for SC

» What are the possible outcomes of a multi-threaded program in a high-level
language?

Typically called a weak memory model (WMM)

» Allows more behaviors than SC.



Weak memory models

We look for a substitute for SC

» What are the possible outcomes of a multi-threaded program in a high-level
language?

Typically called a weak memory model (WMM)

» Allows more behaviors than SC.

But it is not easy to get right
» The Java memory model (JMM) the the C/C++11 model are both flawed...



The Problem of Programming Language
Concurrency Semantics

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod,
and Peter Sewell

University of Cambridge

(“Disturbingly, 40+ years after the first relaxed-memory hardware was
introduced (the IBM 370/158MP), the field still does not have a credi-
ble proposal for the concurrency semantics of any general-purpose high-
level language that includes high performance shared-memory concur-
rency primitives. This is a major open problem for programming lan-
| guage semantics.”

~

J

European Symposium on Programming (ESOP) 2015



Plan for rest of the talk

1. Challenges for programming language memory models
2. The C/C++11 memory model as a prototype
3. The “out-of-thin-air" problem

4. The “promising semantics” solution
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Challenge 1: Various target models

x86-TSO @’ AMDZ1 POWER i ARMv8 ARM
(2010) (2011) (2016)




Store buffering in x86-TSO

Initially, x =y = 0.

x:=1 y =1
a=y; /0 b:=x; /0
CcpU1l CPU 2
lWRITE 1 l
READ B ]
lWRITE-BACK l

‘ Memory ‘
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lWRITE 1 l
READ B ]
lWRITE-BACK l

‘ x 0 y—=0 ‘




Store buffering in x86-TSO

Initially, x =y = 0.

x:=1 >y =1
»a=y; /0 b:=x; /0
CcpU1l CPU 2
lWRITE 1 l
Mx:=1 —
READ
lWRITE-BACK l

‘ x 0 y=0




Store buffering in x86-TSO

Initially, x =y = 0.

x =1 y =1
»a=y; /0 » b:=x; /0
CcrU1 CPU 2
lWRITE ‘ l
—x:i=1 —y=1
READ
lWRITE-BACK l

‘ x 0 y—=0




Store buffering in x86-TSO

Initially, x =y = 0.

x = 1; y =1
fence; fence;
a=y; /0 b:=x; /0
CcpU1l CPU 2
lWRITE ‘ l
—x:i=1 —y=1
READ

l WRITE-BACK

x+—0

y—0




Load buffering in ARM

Initially, x =y = 0.
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Load buffering in ARM

Initially, x =y = 0.
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Load buffering in ARM

Initially, x =y = 0.
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ty

ty

Memory




Load buffering in ARM

Initially, x =y = 0.

a=x; /1 b:=y; /1
X = b;

ty ty ty ty

ty ty

Memory




Challenge 2: Compilers stir the pot

Initially, x = y = 0.

a:=x;
b=y /1
y=1 c:=x: /0
X forbidden under SC

x = 1;

10



Challenge 2: Compilers stir the pot

&

a =X, compiler . 2 =X

Initially, x = y = 0.

X i b=y, /1 optimization X i b=y, /1
Y=>lc=x 70 rY =l e=a 40
X forbidden under SC v allowed under SC

Common sub-expression elimination is unsound under SC

10



Challenge 3: Transformations do not suffice

Program transformations fail short to explain some weak behaviors.

» In C/C++, no reordering is allowed in the following program:

Message passing (MP)

x = 1;
Y ‘=rel 1;

3:= Yacq; /1
b=x; /0

11



Challenge 3: Transformations do not suffice

Program transformations fail short to explain some weak behaviors.

» In C/C++, no reordering is allowed in the following program:

Message passing (MP)

x = 1;
Y ‘=rel 1;

3:= Yacq; /1
b=x; /0

» And yet, since C/C++ is intended to be compiled to a non-multi-copy-atomic
architectures:

Independent reads of independent writes (IRIW)

a:=Xaeq; /1
b:= Yacq: /70

C = Yacq:s /1
d = Xacq; /0

X =re1 1; H Y i=re1 1;

11



Overview

e

WMM desiderata

1. Formal and comprehensive
2. Not too weak (good for programmers)
3. Not too strong (good for hardware)

4. Admits optimizations (good for compilers)

Implementability vs. Programmability

12



DRF-SC: A fundamental programmability guarantee

DRF-SC guarantee

no data races under SC = only SC behaviors

In most cases, programmers can avoid data races by using provided synchronization
mechanisms (e.g., locks), and need not understand the full semantics.

13



DRF-SC: A fundamental programmability guarantee

DRF-SC guarantee

no data races under SC = only SC behaviors

In most cases, programmers can avoid data races by using provided synchronization
mechanisms (e.g., locks), and need not understand the full semantics.

Establishing more refined programmability guarantees is an active research area:
» [ocal DRF for OCaml memory model [Dolan, Sivaramakrishnan, Madhavapeddy PLDI'18]
» DRF wrt fragments weaker than SC [Kang, Hur, L, Vafeiadis, Dreyer POPL'17]

13



The C11 memory model

» Introduced by the ISO C/C++ 2011 standards.

> Serves as a solid basis for:
> LLVM
> WebAssembly memory model [Watt et al. OOPSLA 19]
» JavaScript memory model [Watt et al. PLDI 20]
> Java 9 [Bender & Palsberg OOPSLA 19]
> Rust



A spectrum of access modes

non-atomic [ relaxed [ release/acquire [ sc

memory_order_seq_cst (sc)

full fence (x86,PPC); stlr&Idar (ARM)

/\

memory_order_release write (rel) memory_order_acquire read (acq)
no fence (x86); lwsync (PPC) no fence (x86); isync (PPC);
stlr (ARM) Idapr (ARM)

—_ =

memory_order_relaxed (rlx)

no fence

Non-atomic (na)
no fence, races are errors!

+ Explicit primitives for language level fences

15



C11: a declarative memory model

Declarative semantics abstracts away from implementation details.

» Became the “standard” in weak memory models
» Mature formalisms and tools (e.g., Herd [Alglave, Maranget, Tautschnig. TOPLAS'14])

1. a program ~» a set of directed graphs.

2. The model defines what graphs are consistent.

16



Execution graphs

Store buffering (SB)

x=y=0
X i=ri1x 1, Y ‘=rix ].,
a:= ynx; || b= xnx;
WxO0 WyO Wx0 WyO WxO0 WYO
Wrix x 1 wrlx,y 1 Wrix x 1 wrlxy 1 Wrix x 1 wrlxy 1
l»‘" «l l JOE l l» T l
Rrix y 0 Rrixx 0 Rrix y 1 Rrixx 1 Rrix y 0 Rrixx 1
Relations

» Program order, po
» Reads-from, rf

WxO0 Wy O

[0



C/C++11 formal model

CExp — P((res : Val U { L}, A : B(AName), lab : A — Act,sb : (A x A), fot : A, st : A))
= {(0. {a}.lab.0.a,a) | a € AName A lab(a) = skip}
‘w.(u) lab, 0, a,a) | a € AName A £ € Loc A lab(a) = A()}
(t/, {a}lab,0,a,a) | a € AName Alab(a) = Wy (v, ')}
{(/. {a}.lab.0.a,a) | a € AName A v/ € Val A lab(a) = Rz (v, v')}
(' {a) ab .0, | @ € ANama A7 € Vol 4 2 vy A ab(a) = R (1,0}
{{vo. {a}.1ab.0,a,a) | a € AName A lab(a) = RMWx (1 }
(L Ay laby sby, fsty, st) | (L Ap,laby, sby, foty, Isty) € L1}
U {(resa, Ay 1 Ay, laby Ulabs, by Usbe U {(ist1, fst)}. foty. Istz)

(v1. Arlaby. sby /x/‘ Lst1) € [Er] A (ress, As.laba. sb. fsty. Ista) € [Esfor /a]]}
[repeat E end] ‘L‘u,M L:J,“ w1 A Ui 18bi Uiy sb,u«m. /»1 ) (st ./»r\» Soty, Ista) |

Vi (resa, Ao labe, Sbi, o1y, 1905) € [EVA (1 £ N = ress = 0) A ressy 2 0}
[ARA ummumeum resa), Ay Az @ {arork, ajoin }. 1aby U uuzu(u,
U {(asorks fsty), (aforics fu;,\,\'mmt n): (Ist2, ajop

\,m i foty.Ist1) € LELT A (ress, Ay, sby. foty. Ista) €

[let + = £, in £

» skip}

)|
LT N ato- i © AName}

Figure 2. Semantics of closed program cxpressions.
H. hb(r, )
V. totalorder({a & A | iswrite(a)}, mo) A hb € mo

(IrreflexiveHB)
(ConsistentMO)

totalorder({a € A | isSeqCst(a)}, 5c) A hbseqca € € A MOsaqest € 5C (ConsistentSC)
Wb rf(b) # L <= 3. iswrite,(a) A isread;(b) A hb(a b) (ConsistentRFdom)

Va,b. of(b) = a = 3¢, v. iswriter,,(a) A isreads,, (b) A ~hb(b, a) (ConsistentRF)

Va,b. rf(B) = a A (mode(a) = naV mode(b) = na) = hb(a.b) (ConsistentRFna)

Va,b. rf(b) = a A isSeqCst(h) = isc(a.b) V ~isSeqCst(a) A (V. ise(xr,b) = —hb(a, z)) (RestrSCReads)
Za,b. hbla,b) A mo(rf(b), rf(a)) A locs(a) = locs(t) (CoherentRR)

Fa,b. hb(a.b) A mo(rf(b), a) A iswrite(a) A loes(a) = locs(b) (CoherentWR)

Ha, b, hb(a, b) A mo(b, rf(a)) A iswrite(b) A locs(a) = locs(b) (CoherentRW)

Va. isrmw(a) Arf(a) # L = mo(rf(a),a) A fe. mo(rf(a), &) A mo(e, a) (AtomicRMW)
Va,b. (. lab(a) = lab(b) = A(f) = a=b (ConsistentAlloc)
where iswrite; . (a) ' 3X, vg. lab(a) € {Wx (£,0). RMWx (£, via.v)}  iswriter(a) < Su. iswritey . (a)
isread, ,(u>“ﬂa\' V- 13b(a) € {Rx (£, 1), RMWx (€, 0. ten)} ete

sElem(a,0) " sameThread (s, 1) v isrmw(b)

rseq(a) “' {a} U {b | rsElem(a. b) A mo(a,b) A (Ve. mo(a, ) A mofc,b) = rsElem(a,c))}
sw ' {(a,b) | mode(a) € {rel,rel_ncq.sc} A mode(b) € {acq. rel_acq.sc} A rf(b) & rseq(a)}
b =" (sb U sw)
hb, 2 ((a,1) < hb | iswrite, (a) A iswrite, (1)}

Nseqcse 2 {(a,b) € X | isSeqCst(a) A isSeqCst(b)}

iswriteiety(4) A 5c(a, ) A Be. 5c(a ©) A sc(c, ) A iswrteiaen (€)

Figure 3. Axioms satisfied by consistent CI1 executions, Consistent(A, lab, sb. rf, mo, sc)
WD S [{(! D] e W(t2) ma \\\/ D | e Wi 1) —a: R, 1)
a \\(4 2)—b lw 2) e 2) " W)

violates CoherentRR

afb means a=r()

a ™ b means mo(a, b)
a ™ b means  hb(a.b)

violates CoherentWR violates CoherentRW

Figure 4. Sample executions violating coherency conditions (Batty et al. 2011,

excerpt from [Vafeiadis & Narayan OOPSLA'13]

[Batty et al. POPL'11]

Require the existence of several orders that
satisfy certain constraints:

» SC-per-location (a.k.a. coherence)
> Release/acquire synchronization

» Global conditions on SC accesses

18



Example: flag-based synchronization

Message passing (MP)

Y =rix 421
X =rix 1,

a:= >y /1
b:= Yrix; /0

Message passing (MP)

Y i=nx 42;
X =rel 11

3= Xacq; /1
b:= Yrix; /70

Wx0 WyO.

N

Wrix ¥y 42 Rrxx 1

19



Repairing Sequential Consistency in C11  [L, Vafeiadis, Kang, Hur, Dreyer. PLDI'17]

» The semantics of SC accesses is the most complicated part of the model.

20



Repairing Sequential Consistency in C11  [L, Vafeiadis, Kang, Hur, Dreyer. PLDI'17]

» The semantics of SC accesses is the most complicated part of the model.

» C/C++11 provides too strong semantics (a correctness problem!)

3:=Xaeq; /1 R 4.l €:=VYacqs /1
b:=ys; /0 X =sc L Y Fec L d:=Xsc; /0
» |n addition, its semantics for SC fences is too weak.
3= Xacq; /1 €= Yacq; /1
fenceg; X =re1 1l; || ¥ :=re1 1l; || fenceg;

b := yacq; /0 d = Xacq; /0

20



Repairing Sequential Consistency in C11  [L, Vafeiadis, Kang, Hur, Dreyer. PLDI'17]

» The semantics of SC accesses is the most complicated part of the model.

» C/C++11 provides too strong semantics (a correctness problem!)

3:=Xaeq; /1 R 4.l €:=VYacqs /1
b:=ys; /0 X =sc L Y Fec L d:=Xsc; /0 J
» |n addition, its semantics for SC fences is too weak.
3= Xacq; /1 €= Yacq; /1
fenceg; X =re1 1l; || ¥ :=re1 1l; || fenceg;
b := yacq; /0 d = Xacq; /0

» The standard committee fixed the specification to solve these problems in C+-20.

20






C/C+4++11 is too weak

non-atomic

C

C

release/acquire

C

SC

22



C/C+4++11 is too weak

non-atomic [ (relaxed] [C release/acquire

C

SC

Load-buffering

b:=y; /1

X = b;

a=x; /1
y =1

C/C++11 allows this behavior
because POWER & ARM allow it!

22



C/C+4++11 is too weak

non-atomic [ C release/acquire [ sc )
Load-buffering
ar=x; /1 b:=y; /1 [x =y =0]
y =1 X 1= b; \
C/C++11 allows this behavior Rx 1 Ry 1
because POWER & ARM allow it! l l
Wyl Wx 1

program order
_
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C/C+4++11 is too weak

non-atomic [ C release/acquire [ sc )
Load-buffering
ar=x; /1 b:=y; /1 [x =y =0]
y =1 X 1= b; \
C/C++11 allows this behavior Rx 1 Ry 1
because POWER & ARM allow it! l l
Wyl Wx 1

program order
_
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C/C+4++11 is too weak

non-atomic [ (relaxed

release/acquire [ sc )

Load-buffering

b:=y; /1

X = b;

a=x; /1
y =1

C/C++11 allows this behavior
because POWER & ARM allow it!

[x =y =0]
Rx1 Ryl
Wyi Xﬁxl

program order
_

22



C/C+4++11 is too weak

non-atomic [ (relaxed

release/acquire [ sc )

Load-buffering

b:=y; /1

X = b;

a=x; /1
y =1

C/C++11 allows this behavior
because POWER & ARM allow it!

[x =y =0]
Rx1 Ryl
Wyi Xﬁxl

program order
_
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C/C+4++11 is too weak

non-atomic [ C release/acquire [ sc

Load-buffering

a=x; /1 b=y, /1 [x=y=0]

y =1 X = b; / \
C/C++11 allows this behavior . Rx 1 Ry 1
because POWER & ARM allow it! v,
Load-buffering 4+ data dependency l l

a=x; /1 b:=y; /1 Wyi Wx 1

y = a; X = b;

program order

— >



C/C+4++11 is too weak

non-atomic [ (relaxed)] [ release/acquire [ sc

Load-buffering

b:=y; /1
X = b;

a=x; /1
y =1

C/C++11 allows this behavior
because POWER & ARM allow it!

Load-buffering 4+ data dependency

a=x; /1
y = a

b:=y; /1
X = b;

C/C++11 allows this behavior

[X/Y\O]
Rx1 Ryl
Wy 1 wl 1

program order
_



C/C+4++11 is too weak

non-atomic [ (relaxed)] [ release/acquire [ sc

Load-buffering

b:=y; /1
X = b;

a=x; /1
y =1

C/C++11 allows this behavior
because POWER & ARM allow it!

Load-buffering 4+ data dependency

a=x; /1
y = a

b:=y; /1
X = b;

C/C++11 allows this behavior

Values appear out-of-thin-air!
(no hardware/compiler exhibit this behavior)

[X/Y\O]
Rx1 Ryl
Wy 1 wl 1

program order
_



C/C+4++11 is too weak

non-atomic [ (relaxed)] [ release/acquire [ sc

Load-buffering + control dependency

a=x; /1 b=y, /1 [x=y=10]
if (a=1) if (b=1)
y=1; x = 1;
Rx1 Ryl
l\,.. 4 l
Wyl Wx 1

program order
_

22



C/C+4++11 is too weak

non-atomic

release/acquire [ sc )

Load-buffering + control dependency

a=x; /1
if (a=1)
y:=1

b:=y; /1

C/C++11 allows this behavior

[X/Y\O]
Rx1 Ryl
Wy 1 wl 1

program order
_

22



C/C+4++11 is too weak

non-atomic

release/acquire [ sc )

Load-buffering + control dependency

a=x; /1
if (a=1)
y:=1

b:=y; /1

C/C++11 allows this behavior
The DRF guarantee is broken!

[X/Y\O]
Rx1 Ryl
Wy 1 wl 1

program order
_

22



The three examples have
the same execution graph!

22



The hardware solution

Keep track of syntactic dependencies and forbid dependency cycles.

Load-buffering 0

a=x; /1 b=y, /1
y =1, X := b;
PLonibuing + datadepencency 1
a=x; /1 b=y, /1
y =g x:=b

x=y=0]

/\

Rx1 Ryl

Wyl Wx 1

program order
_—

reads from

23



The hardware solution

Keep track of syntactic dependencies and forbid dependency cycles.

Do b=y =0
a=x; /1 b=y, /1
y:=1 X 1= b;
Rx1 Ry 1
1 \
a=x; /1 bi=y; /1 ' !
P oy L
T ) Wyl Wx 1
program order
Load-buffering + fake dependency " _
a=x; /1 b=y, /1 readerom
yi=a+1l—a x 1= b; syntactic dependency

23



The hardware solution

Keep track of syntactic dependencies and forbid dependency cycles.

Load-buffering

b=y, /1

a:=x; /1
y =1,

Load-buffering 4+ data dependency

a=x; /1 = // 1
y = a; =
y
Load-buffering + fake dependency
a=x; /1 =y, /1
y=a+1l-g = b;

.

x=y=0]

/\

Rx1 Ryl

Wyl Wx 1

program order
_—

reads from

Unsuitable for PL: Compilers do not preserve syntactic dependencies. J

23



The “out-of-thin-air” problem

C/C++11 is too weak

» Values might appear out-of-thin-air.
» The DRF guarantee is broken.

The C+-+14 standard states:

“Implementations should ensure that no "out-of-thin-air" values are computed
that circularly depend on their own computation.”

24



Solution

A straightforward solution

» Disallow po U rf cycles!

» On weak hardware it carries a certain implementation cost.

[Ou & Demsky. Towards understanding the costs of avoiding out-of-thin-air results. OOPSLA’18]
Slowdown on ARMV8 is 3.1% on average and 17.6% max (on some benchmarks...)

25
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Solution

A straightforward solution

» Disallow po U rf cycles!

» On weak hardware it carries a certain implementation cost.

[Ou & Demsky. Towards understanding the costs of avoiding out-of-thin-air results. OOPSLA’18]
Slowdown on ARMV8 is 3.1% on average and 17.6% max (on some benchmarks...)

RC11 (Repaired C11) model [L, Vafeiadis, Kang, Hur, Dreyer. PLDI'17]

» (Modified) compilation schemes are correct.
» DRF holds and no OOTA-values.

» Model checking tools [Kokologiannakis, L, Sagonas, Vafeiadis. POPL'18]
http://plv.mpi-sws.org/rcmc/
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Solution

A straightforward solution

» Disallow po U rf cycles!

» On weak hardware it carries a certain implementation cost.

[Ou & Demsky. Towards understanding the costs of avoiding out-of-thin-air results. OOPSLA’18]
Slowdown on ARMV8 is 3.1% on average and 17.6% max (on some benchmarks...)

RC11 (Repaired C11) model [L, Vafeiadis, Kang, Hur, Dreyer. PLDI'17]

» (Modified) compilation schemes are correct.
» DRF holds and no OOTA-values.

» Model checking tools [Kokologiannakis, L, Sagonas, Vafeiadis. POPL'18]
http://plv.mpi-sws.org/rcmc/

» Solving the problem without changing the compilation schemes will require a
major revision of the standard.

25


http://plv.mpi-sws.org/rcmc/

[Kang, Hur, L, Vafeiadis, Dreyer. POPL'17]



A ‘promising’ solution to OOTA

[Kang, Hur, L, Vafeiadis, Dreyer. POPL'17]

Key idea: Start with an operational interleaving semantics, but allow threads to
promise to write in the future.



Simple operational semantics for C11's relaxed accesses

Store-buffering

x=y=0
x=1; y=1;
a=y; /0 b=x; /0

27



Simple operational semantics for C11's relaxed accesses

Store-buffering

x=y=0 xe'ggg; Tl)'(s view Tz)’(s view
> x=1 by =1 (y : 000) ; i)/ 5 ?)/
a=y; /0 b=x: /0

» Global memory is a pool of messages of the form
(location : value @ timestamp)

» Each thread maintains a thread-local view recording the last observed timestamp
for every location

27



Simple operational semantics for C11's relaxed accesses

Store-buffering

x=y=0 xe'ggg; Tl)'(s view Tz)’(s view
x=1 by =1 (y : 000) X i)/ 5 ?)/
»a=y; /0 b=x; /0 (x :1@5) .
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Promises

Load-buffering

a=x; /1
y =1

» To model load-store reordering, we allow “promises”.

» At any point, a thread may promise to write a message in the future, allowing
other threads to read from the promised message.
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» To model load-store reordering, we allow “promises”.

> At any point, a thread may promise to write a message in the future, allowing
other threads to read from the promised message.
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Promises

Load-buffering

(x : O@O) T1's view T>'s view

Must not admit the same execution!

N
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Certified promises

Thread-local certification

A thread can promise to write a message, if it can thread-locally certify that its
promise will be fulfilled.

Load-buffering Load buffering + fake dependency
a=x; /1 X v a=x; /1 X v
y i=1; = y:=a+1l-—g =

T; may promise y := 1, since it is able to write y := 1 by itself.

dependency

T: may NOT promise y := 1, since it is not
a=x; /1 able to write y := 1 by itself.

X =Yy;

29



Quiz: read-from-untaken-branch

Is this behavior possible?

a:=x; /42
y = a

b:=y;
if (b =42)
c.=1;
else
c:=2;
b= 42;
X := b;
print (c); / prints 1

(due to Hans Boehm)
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Quiz:

read-from-untaken-branch

(due to Hans Boehm)

Is this behavior possible?

a:=x; /42
y = a

b:=y;
if (b =42)
c:=1;
else
c:=2;
b:=42;
X = b;
print (c); / prints 1

Yes. And it can obtained by standard compiler optimizations!
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The full model

We have extended this basic idea to handle:
» Atomic Read-Modify-Writes (e.g., CAS, fetch-and-add)
> Release/acquire accesses and fences
» SC fences

» Plain accesses (C11's non-atomics & Java's normal accesses)

Results

>

>
>
>

No “out-of-thin-air” values

DRF guarantees

Compiler optimizations (incl. reorderings, eliminations)
Efficient h/w mappings (x86-TSO, Power, ARM)
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The full model

We have extended this basic idea to handle: ‘-)'
» Atomic Read-Modify-Writes (e.g., CAS, fetch-and-add) /'/
> Release/acquire accesses and fences a
» SC fences The Coq

proof assistant

» Plain accesses (C11's non-atomics & Java's normal accesses)

Results

» No “out-of-thin-air” values

» DRF guarantees

» Compiler optimizations (incl. reorderings, eliminations)
> [ Efficient h/w mappings (x86-TSO, Power, ARM)}
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An intermediate memory model [Podkopaev, L, Vafeiadis POPL'19)

x86-TSO

Promise ARMv7

ARMv8.3

\/

(R)C11 RISC-V

POWER

» A common denominator of existing models
» Formulated in the declarative style

» Simplifies compilation correctness proofs
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Certification from current memory is not enough!

a:= FADD(x,1,acq-rel) /0 || b:= FADD(x,1,acq-rel) /0

if a =0 then if b =0 then
y:=1 c=y/1
if c =1 then
x:=0

» The only race is on an acquire-release RMW.
> The DRF-RA guarantee entails the annotated behavior should be disallowed.
» Thus, the behavior must be forbidden by the promising model.

> We forbid it by requiring a certification from any extension of the current memory.
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Complex compilation issues... (1/2)

. b=z/1
2=V /1| o FADD(x,1) /0
= y::C+1

» The promising model forbids this behavior.
» But, it is allowed when compiling to ARMv8.

P Register promotion is unsound.
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Complex compilation issues... (2/2)

a:=CAS(x,0,1) /1 || x:=42
if a < 10 then b=y /1
y =1 x:=b

» The promising model forbids this behavior.

> But, it can be obtained by local compiler optimization 4+ global value-range
analysis.



Complex compilation issues... (2/2)

a:=CAS(x,0,1) /1 || x:=42
if a < 10 then b=y /1
y =1 x:=b

» The promising model forbids this behavior.

> But, it can be obtained by local compiler optimization 4+ global value-range
analysis.

Promising 2.0 [Lee, Cho, Podkopaev, Chakraborty, Hur, L, Vafeiadis PLDI'20]

These issues were fixed by a better “forall future memory” certification requirement.
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An ongoing challenge: A local DRF guarantee

Existing programmability guarantees are non-modular!

2= pop(S) b = pop(5)
lock() lock()

process a accessing X, y process b accessing x, y
unlock() unlock()

» We want to assume SC semantics for the accesses to x and y.
» The stack implementation may have (benign) races.
» The (global) DRF-SC guarantee is inapplicable.
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An ongoing challenge: A local DRF guarantee

Existing programmability guarantees are non-modular!

2:= pop(S) b= pop(S)
lock() lock()

process a accessing x, y process b accessing X, y
unlock() unlock()

» We want to assume SC semantics for the accesses to x and y.
» The stack implementation may have (benign) races.
» The (global) DRF-SC guarantee is inapplicable.

A bad surprise... [Lee, Cho, Hur, L submitted]

Standard compiler optimizations are inconsistent with local DRF guarantees.
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Summary

]
o]
v

The challenges in designing a WMM.

i
[ WMM ] » The C/C++11 model.
.................... + » C/C++11 is broken:
w ¢ » Most problems are locally fixable.
%i M : » But ruling out OOTA requires an
: entirely different approach.

» The promising model may be the solution.
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» The challenges in designing a WMM.

v

The C/C++11 model.

v

C/C++11 is broken:

» Most problems are locally fixable.

» But ruling out OOTA requires an
entirely different approach.

» The promising model may be the solution.

Thank you!

http://www.cs.tau.ac.il/"orilahav/
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