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Main Contributions

@ A correspondence between a wide class of proof-systems (called
basic systems) and Kripke semantics.

@ More precisely, a general soundness and completeness result
which uniformly provides Kripke semantics for each basic system.

@ Extension of the previous result to obtain semantic
characterizations of crucial syntactic properties of basic systems:
o Analyticity
o Cut-admissibility



Basic Systems: General Framework

@ Propositional sequent systems
@ Manipulate two-sided multiple-conclusion sequents

© Fully structural :
o Sequents are finite sets of signed formulas, e.g.

Vo=, N = {f), fo to LY Ap)}

o Ildentity axioms, cut, weakening rules always present

Q The logical rules are all basic rules
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Basic Rules - Examples

_dr=vy _Lyv=4A
Or = Oy MOy = A

@ Distinction between active and context formulas

@ The structure of the active part:

=9
=09

P =

~ = py/ = 0p o=

~ py = /Opr =

@ Introducing context-relations to handle the context part:

ar = M= A
Tr= ™ = {(F0pn, f0pn) ) oA o= UEp £y, (Epy, Epy) )

@ The final formulation:
(= p1,m1)/ = 0Op (p1 =, m0)/0py =
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@ A basic rule:
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o Premises: sequents sy,..., 5
o Corresponding context-relations: r1,..., 7
o Conclusion: sequent C



Basic Rules

@ A basic rule:
<S1,7T1>,. ) <Sn,7Tn>/C

o Premises: sequents sy,..., 5
o Corresponding context-relations: r1,..., 7
o Conclusion: sequent C

@ lIts application:
U(S1)UC1 O'(Sn)UCn
o(C)ucju...Uc,

where :

@ o is a substitution
o forevery 1 <i<n, (¢, c})is a m-instance



Basic Rules - More Examples

Basic Rule Application
M,v=240 To=v¢,A0
<p1 :>77T0>7<:>p1777-0>/:> T1,To = Ay, As

mo = {(f:p1, £p1), (s, tp1)}
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Basic Rule Application
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Basic Rule Application
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Basic Rules - More Examples

Basic Rule Application
(1 =, m0), (= p1,m0)/ = |_171/)|_TT|_A21:> ZZ?’AZ
(1 = p2,m0)/ = p1 D p2 rr:;j{p,AA
(P1 = P2y 1)/ = P1 O P2 rrj;;ww
(= p1,m2)/ = Opy DF::SFEzéw

mo = {(f:p1, £p1), (1, tp1) }

m = {{fps, 1)}

mo = {{f:py, FOpy), (FOpy, FOp1)}



Basic Systems

Many sequent systems are basic.

This includes systems for (the propositional fragments of):

Classical logic

Intuitionistic logic, its dual, and bi-intuitionistic logic
Variety of modal logics

Intuitionistic modal logics

Many-valued logics

Variety of paraconsistent logics



Kripke Semantics in General

A Kripke frame consists of:
@ A set of worlds W
@ A set of accessibility relations R

o Avaluationv: W x Frm; — {T,F}




Kripke Semantics in General

A Kripke frame consists of:
@ A set of worlds W
@ A set of accessibility relations R

o Avaluationv: W x Frm; — {T,F}

@ A signed formula x:1 is true in a world w if v(w,¢) = X

@ A sequent sis true in a world w if it contains at least one signed
formula which is true in w

@ Accordingly, a sequent I = A is true in w iff v(w, ) = F for some
Y el orv(w,y)=Tforsome ¢ € A

@ A frame is a model of a sequent s if it is true in every world



Kripke Semantics for Basic Systems

@ To obtain Kripke semantics for a proof system G, we identify a set
of G-legal frames for which G is sound and complete, i.e.
C g s iff every G-legal frame which is a model of C is also a
model of s.

@ For a basic system G:

o Each context-relation in G and each basic rule of G imposes a
constraint on the set of frames.
o Joining all of these constraints, we obtain the set of G-legal frames.

@ It might produce non-deterministic semantics.



G-legal Frames

@ For every context-relation 7 in G there is a corresponding
accessibility relation R, where A, is the identity relation.

@ The constraint imposed by the context-relation 7:
if wR-u then for every m-instance (x:, y:p), either v(u, 1) # X or
v(iw,p) =Y.

@ The constraint imposed by the basic rule (sy,71),...,(Sph,mn)/C:
For every world w, substitution o, if for every 1 < i < n, o(s;) is true
in every u such that wR,,u, then o(C) is true in w.



G-legal Frames

Reminder: mo = {(fp1, f:p1), (t:io1, to1)}

@ For every context-relation 7 in G there is a corresponding
accessibility relation R, where A, is the identity relation.

@ The constraint imposed by the context-relation 7:
if wR-u then for every m-instance (x:, y:p), either v(u, 1) # X or
v(iw,p) =Y.

@ The constraint imposed by the basic rule (sy,71),...,(Sph,mn)/C:
For every world w, substitution o, if for every 1 < i < n, o(s;) is true
in every u such that wR,,u, then o(C) is true in w.



(= p1,7k)/ = Opy M= 4
Tk = {{fp1, fOp1)} e

@ Arelation R, € R.

o If wR,, u then for every v, either v(w,Oy) = F or v(u,v) # F,
i.e. if v(w,0y) =T, then v(u,+) = T for every u such that wR;, u.

@ If v(u,v) = T for every u such that wR;, u, then v(w,0y) = T.
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Every basic system G is sound and complete with respect to the
semantics of G-legal frames.




Kripke Semantics for Basic Systems

Every basic system G is sound and complete with respect to the
semantics of G-legal frames.

@ General and uniform:
o Various known soundness and completeness results are specific
cases of this general theorem
o There are some known systems for which it provides Kripke
semantics for the first time, e.g. systems for weak modal logics

@ Modular



Analyticity

@ A basic system is (strongly) analytic iff it has the subformula
property, i.e. C g s implies that there exists a proof of s from C in
G that contains only subformulas of the formulas in C U {s}.

@ Analyticity implies decidability and consistency.

@ Q: semantic meaning of analyticity?



Analyticity

@ A basic system is (strongly) analytic iff it has the subformula
property, i.e. C g s implies that there exists a proof of s from C in
G that contains only subformulas of the formulas in C U {s}.

@ Analyticity implies decidability and consistency.
@ Q: semantic meaning of analyticity?

Next, we strengthen the soundness and completeness theorem to
characterize proofs containing only formulas from a given set €.

For this we introduce £-semiframes.



Frames

A frame consists of:
@ A set of worlds W
@ A set of accessibility relations R

o Avaluationv: W x Frm; — {T,F}

Theorem
There exists a proof in G of s from C

if and only if

every G-legal frame which is a model of C is also a model of s.



Semiframes

A £-semiframe consists of:
@ A set of worlds W
@ A set of accessibility relations R

o Avaluationv: W x & — {T,F}

Theorem
There exists a proof in G of s from C containing only formulas from &

if and only if

every G-legal £-semiframe which is a model of C is also a model of s.



Semantic Characterization of Analyticity

@ The last theorem leads to a semantic decision procedure for
analytic basic systems (just check all possible semiframes).
@ Semantic sufficient condition for analyticity: If every G-legal

E-semiframe can be extended to a G-legal frame for every set £ of
formulas closed under subformulas, then G is analytic.

@ Both the procedure and the criterion are applicable for many
interesting basic systems.



Strong Cut-Admissibility

@ A basic system enjoys strong cut-admissibility if whenever C g s,
then there exists a proof of s from C in which all cuts are on
formulas from C.

@ In particular, if C is empty, then no cuts are allowed (usual
cut-admissibility).

We strengthen the soundness and completeness theorem to handle
proofs in which cut is only allowed on formulas from a given set £.



Quasiframes

Intuition

V= =19

An application of cut: =
If cut on ¢ is forbidden, we need a frame which is a model of both ¢ =
and = 1.



Quasiframes

An application of cut: @

If cut on ¢ is forbidden, we need a frame which is a model of both ¢ =
and = 1.

Definition
@ A &-quasiframe consists of:

o A set of worlds W

o A set of accessibility relations R

o Avaluationv: W x Frm; — {T,F, 1} such that v(w, ) # | for every
weWandy e &

@ Asequentl = Ais truein some w € W if v(w,¢)c {F, I} for some
Y el orv(w,y)e {T,1} for some ¢ € A.




Semantic Characterization of Cut-Admissibility

@ Semantic sufficient condition for strong cut-admissibility:
If every G-legal £-quasiframe can be refined into a G-legal frame
for every set £ of formulas, then G enjoys strong cut-admissibility
(by refinement, we mean changing all I's to T’s or F’s).

@ Provides a uniform basis for semantic proofs of strong
cut-admissibility in basic systems.



Thank you!



