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Abstract—Today router buffers are sized according to the well-
known Bandwidth-Delay Product (BDP) rule, which uses the
average round-trip time (RTT) of flows traversing a router. The
BDP rule not only leads to large queueing delays, but also imposes
“one (buffer) size fits all” philosophy for flows exhibiting a large
variation in RTT. When short and long RTT flows compete at a
single buffer, they may adversely affect each other in throughput
and delay. We propose SplitBuff, a scheme using which short
RTT flows achieve low delay and long RTT flows achieve high
throughput, without requiring any protocol modifications. With
SplitBuff, a router splits a buffer into multiple buffers of varying
sizes and maps flows onto these buffers based on their RTTs. We
describe SplitBuff and evaluate its performance using extensive
ns-2 simulations to demonstrate its effectiveness.

I. INTRODUCTION
Buffer sizing is a key issue in the design of Internet routers

because it can significantly impact the Quality of Service
(QoS) seen by applications [1], [2], [3]. In particular, while
over-sized buffers lead to large queueing delays and high jitter,
small buffers can degrade throughput and increase packet loss
rate. Today, buffers are sized based on two primary objectives.
First, to accommodate short-term bursts that occur when the
arrival rate temporarily exceeds the link capacity. Second, to
ensure that a Transmission Control Protocol (TCP) connection
is able to maintain full link utilization at all times. This results
in the well-known Bandwidth-Delay Product (BDP) rule for
buffer sizing [1].
The BDP rule states that a router needs buffer of size

equal to the average round-trip time (RTT) of passing flows
multiplied by the bottleneck link capacity. The BDP rule is
based on the dynamics of TCP’s congestion control algorithm.
In particular, the goal is to have enough buffers at a router so
that when a TCP source responds to congestion, the buffer
never goes empty, thus keeping the bottleneck link busy
100% of the time [2]. When flows with different RTTs co-
exist, the BDP rule chooses the buffer size based on the
average of their RTTs. This has important consequences on
the performance seen by different RTT flows. In particular,
short RTT flows observe a large queueing delay due to the
presence of long RTT flows, and long RTT flows experience
throughput degradation due to the presence of short RTT flows.
For example, when 10ms and 990ms RTT flows share a
bottleneck, BDP rule leads to 500ms of buffering. If 10ms
RTT flow was the only flow present, only 10ms worth of
buffering would have been required. But the presence of a
990ms flow can cause an extra 490ms queueing delay for the

short RTT flow. On the other hand, short RTT flows fill up
the buffer quickly causing high loss rate and subsequently low
throughput for long RTT flows.
In this paper, we ask, “How can we simulateneously improve

the throughput of long RTT flows and reduce the delay experi-
enced by short RTT flows while sizing buffers according to the
BDP rule?”. To this end, we propose SplitBuff, a framework
for splitting buffers based on the RTT of flows. With SplitBuff,
routers split a single buffer into multiple buffers of smaller
sizes, each of which carry flows with a smaller RTT range
than the RTT range of all flows traversing the router. The
cumulative size of these buffers is chosen according to the
BDP rule and the individual buffers are sized based on the
average RTT of flows traversing them. We then use round-
robin scheduling for transmitting packets from these buffers.
Since flows with similar RTTs are grouped together, this
results in smaller queueing delays. The throughput of long
RTT flows improve due to lower loss rates. This is achieved
by using a buffer size no larger than given by the BDP rule.
We make the following contributions in this paper: (1) We

study the interaction of short and long RTT flows when buffers
are sized according to the BDP rule, (2) we propose SplitBuff,
a framework for isolating the impact of short and long RTT
flows when they co-exist, and (3) we conduct rigorous ns-2
simulations to show the efficacy of SplitBuff.
The rest of the paper is organized as follows. We study

the interaction of short and long RTT flows in Section II.
We present SplitBuff in Section III. SplitBuff is evaluated in
Section IV. We discuss related work in Section V and finally,
we offer concluding remarks in Section VI.

II. INTERACTION OF SHORT AND LONG RTT FLOWS
The throughput of a TCP flow is inversely proportional to

its RTT. Consequently, short RTT flows achieve a larger share
of the bottleneck capacity when competing with long RTT
flows as they are able to increase their sending rate faster. In
particular, the TCP throughput S of a long-lived connection
is related to the RTT T and the loss rate p by the following
equation:

S =
0.87MSS

T
√
p

(1)

where MSS is the maximum segment size [4]. The RTT T =

Tp + Tq, where Tp and Tq are the propagation and queueing
delays, respectively. The maximum value of Tq is determined
by the bottleneck router’s buffer size.
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Fig. 1. The figure shows that the throughput of long RTT flows is significantly less than that of short RTT flows. Moreover, increasing the buffer size causes
the short RTT flows to suffer from additional queuing delays which can be much larger than their round-trip propagational delays.

When two TCP flows with different RTTs compete at a
bottleneck link, their throughput ratio according to Eq. 1 is

Ss

Sl
=

Tl

Ts

√

pl
ps

(2)

where Ss and Sl, Ts and Tl, and ps and pl, represent the
throughput, round-trip time and loss rate of short and long
RTT flows, respectively. Let Tq be the average queueing delay
seen by both flows then:

Ss

Sl
=

Tl + Tq

Ts + Tq
(3)

when pl = ps. Since TCP is designed to fill buffers of any
size [2], the difference in the throughput of short and long RTT
flows can be reduced by increasing the buffer size. However,
this comes at the cost of increasing the average queueing delay.
To validate this, we conducted ns-2 simulations on a dumb-

bell topology. We set the bottleneck capacity to 100Mbps and
the packet size to 1KB. Fig. 1(a) shows the throughput ratio as
a function of the bottleneck buffer size when a 10ms RTT flow
competes with a 990ms RTT flow. Observe that when buffer
sizes are small, the throughput ratio can be more than 100. This
happens because short RTT flows fill up the small buffer very
quickly, leaving little room for long RTT flows, thus causing
the throughput of latter flows to degrade considerably (see Fig.
1(c)). For example, a 25ms buffer results in a throughput ratio
of 443. Note that this is similar to the one predicted by Eq. 2
as the product of the ratio of RTTs and the ratio of loss rates
(= 990

10
×
√

0.2
0.012

≈ 405).
However, as the buffer size increases, the throughput ratio

decreases. This happens because increasing the buffer size
reduces the value of the RTT ratio. In addition, the loss rate
decreases for both flows. While the short RTT flow still causes
the buffer to fill up quickly but with increasing buffer size, the
probability that the large RTT flow will find the buffer to be
full decreases, which improves the throughput experienced by
the long RTT flow. For example, when a 300ms buffer is
used, the average queueing delay is ∼230ms, which results in
a throughput ratio equal to 1220/240=5.1. The ns-2 simulation
results yield a value of 5.6.
When buffer is sized according to the BDP rule, which

results in a 500ms buffer, the short RTT flow has to face
large and unnecessary queueing delays due to the presence
of the long RTT flow (since the buffer is sized according to
the average RTT of both flows). For example, the short RTT
flow experiences a queueing delay in excess of 300ms (see

Fig. 1(b)), however, if it were the only flow present then only
10ms of buffering would have been needed to maintain full
link utilization. In summary, varying the buffer size of a single
link presents a tradeoff between delay and throughput ratio.

• Small buffer sizes lead to smaller queueing delays but
considerably degrade the throughput of long RTT flows.

• Large buffer sizes improve throughput of long RTT flows,
even though the throughput ratio remains significant, but
also increase the average queueing delay. Consequently,
when buffers are sized according to the BDP rule, short
RTT flows experience large queueing delay due to the
presence of long RTT flows. Large queue sizes can result
in high jitter, which can hurt real-time applications such
as VoIP and video conferencing.

III. PROPOSED FRAMEWORK: SPLITBUFF
To allow long RTT flows to achieve high throughput while

ensuring low delay for short RTT flows, we propose SplitBuff ,
a framework for limiting the interaction between short and
long RTT flows. With SplitBuff, the available buffer space is
split into multiple sub-buffers and flows are mapped to sub-
buffers based on their RTTs. Each sub-buffer carries flows with
a smaller RTT range compared to the RTT range of all flows
traversing the router. The size of each sub-buffer is chosen
based on the RTT of flows traversing it.
In order to realize SplitBuff, three important questions

need to be addressed: (a) How do routers obtain flow RTT
information?, (b) how should flows be mapped to sub-buffers?,
and (c) how should the sub-buffers be sized?.

A. Obtaining RTT Information
The RTT information can be obtained by a router using

several methods. These methods can be divided into two
categories: (a) Passive RTT Estimation and (b) Active RTT
Estimation.
Passive RTT Estimation rely on observing the behavior of

each flow at a router; either by observing the TCP SYN-ACK
pairs and time stamping [5] or by using algorithms based on
the frequency of TCP packets [6] in each flow. All of these
techniques require per-flow state and an additional overhead of
RTT estimation. In addition, they cannot be used if IP payloads
are encrypted.
Active RTT Estimation rely on explicitly sending the RTT

in flows’ packets to the routers. This method has an overhead
of conveying RTT information in the packet headers but
have reduced RTT estimation time and complexity. The RTT



information can be quantized [7], [8] so that it can be easily
incorporated in the IP header without requiring a new field or
any changes in IP. Therefore, we use active RTT estimation
in SplitBuff. We would like to point out existing buffer
sizing rules [1], [2], [3] as well as several congestion control
protocols [7], [8], [9] also require flow RTT information.

B. Mapping Flows to Sub-Buffers

An important decision in the design of SplitBuff is the
choice of a criterion for mapping flows to sub-buffers. It is
important for the criterion to be scalable (in the sense that it
should not require per-flow state) and efficient (so that it does
not introduce any significant overhead inside the routers). A
simple criterion is to use the average RTT of flows traversing a
router for mapping flows. In particular, when two sub-buffers
are used, flows with RTT greater than the average are mapped
to one buffer and the rest are mapped to the other. A downside
of using the average RTT (RTT ) is that the RTT of each
flow includes the queueing delay at the bottleneck link, which
can vary widely. Therefore, we use the average round-trip
propagation delay (RTTP = RTT − Tq) as a criterion for
mapping flows to sub-buffers.

C. Sizing Sub-Buffers

Choosing the size of sub-buffers is a critical decision
because it impacts the throughput and delay experienced by
flows. As router buffers are sized according to the BDP rule
[2], we therefore enforce that the cumulative size of all sub-
buffers should not exceed the BDP. To achieve fair throughput
for long RTT flows and low delay for short RTT flows, we size
sub-buffers proportional to the average RTT of flows passing
through them. Let B be the buffer size given by the BDP rule
based on the average RTTP of all flows traversing the router.
Let TBX

and TBY
be the average RTTP of flows in the two

sub-buffers X and Y , respectively. Then

BX =
TBX

B

TBX
+ TBY

, BY =
TBY

B

TBX
+ TBY

(4)

where BX and BY are the sizes of sub-buffers X and Y ,
respectively.
The above rule ensures that buffers sizes proportional to

flow RTTs. For example, suppose two flows with a RTT of
10ms and 990ms, respectively, traverse a router using Split-
Buff. Their average RTT is 500ms, which yields a buffer size
of 6250 pkts on a 100Mbps link with 1KB packet sizes. The
sub-buffers would then have sizes of∼62 pkts and ∼6187pkts.
While the 10ms RTT flow would traverse the former sub-
buffer, the 990ms flow would traverse the latter. This allows
the short RTT flow to achieve low delay and the long RTT flow
to obtain high throughput. Note that packets from these queues
are served using a fair round-robin scheduler. The working of
SplitBuff with two sub-buffers is explained in Fig. 2.

Variables:
p = received packet.
p → rtt = RTT information in the received packet.
RTTs = sum of the RTTs.
RTTx, RTTy = sum of the RTTs in sub-buffer x or y.
Tu = update time period.
Tq = average queuing delay.
Tqx , Tqy = average queuing delay in sub-buffer x or y.
thresh = threshold for mapping flows.
B = total buffer size.
Bx, By = total size of sub-buffer x or y.
C = link capacity.
α = smoothing constant with value between 0 and 1.
On every packet p arrival in time period Tu:

RTTs = RTTs + (p → rtt);
if ((p → rtt)−Tq) < thresh then

RTTx = RTTx + (p → rtt);
Tqx = update(Tqx , current number of packets in Bx);
append p to the tail of sub-buffer x;

else
RTTy = RTTy + (p → rtt);
Tqy = update(Tqy , current number of packets in By);
append p to the tail of sub-buffer y;

end
After every time period Tu:

(Tq , Tqx , Tqy ) = update(Tq , Tqx , Tqy ,α);
B = (average(RTTs) − Tq) ∗ C;
thresh = (average(RTTs)− Tq);
TBx = average(RTTx)− Tqx ;
TBy = average(RTTy)− Tqy ;

Bx =
TBx∗B

TBx+TBy
; By =

TBy ∗B

TBx+TBy
;

RTTs, RTTx, RTTx = 0;

Fig. 2. Working of SplitBuff with two sub-buffers
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Fig. 3. RTTP estimation on a single buffer

IV. EVALUATION
We now evaluate SplitBuff under diverse network scenarios

using ns-2 simulations [10]. First, we evaluate the estimation
accuracy of our RTTP measurements. Second, we compare
the performance of SplitBuff with the single buffer case when
different buffer sizing rules are used. Third, we compare
SplitBuff with Blind-SplitBuff in which flows are mapped
randomly to sub-buffers rather than based on their RTTs.
Finally, we evaluate SplitBuff using real trace data collected
from backbone Internet links. Unless stated otherwise, we use
a dumbbell topology with a single bottleneck link. We use
TCP SACK in all scenarios. All simulations are run for at
least 500 s and results are averaged over 10 runs.

A. RTTP Estimation Accuracy
To evaluate the accuracy of estimated RTTP in SplitBuff,

we conduct experiments under two scenarios with varying
number of long-lived TCP flows: (a) Flows have homogeneous
RTTP of 100ms and (b) flows have heterogeneous RTTPs that
are uniformly distributed in the interval [50ms,150ms] with a
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Fig. 4. Throughput comparison of (a) BDP Rule, (b) Stanford Model and (c) SplitBuff.
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(a) Queueing delay under BDP Rule
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(b) Queueing delay under SM Model
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Fig. 5. Queueing delay comparison of (a) BDP Rule, (b) Stanford Model and (c) SplitBuff.

mean of 100ms. To avoid phase effects, flow starting times are
chosen uniformly at random from [0 s,5 s]. Fig. 3 shows the
estimated RTTP in both scenarios. Observe that the estimated
RTTP closely approximates the actual RTTP . In particular,
the standard deviation remains within 5.2ms and 7.7ms of the
actual RTTP under both scenarios, respectively.
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Fig. 6. Performance under Blind-SplitBuff.

B. SplitBuff Evaluation
We now compare the performance of SplitBuff with the

single buffer case under different buffer sizing rules as well
as with Blind-SplitBuff. For ease of exposition, short and long
RTT flows are termed as Type-1 and Type-2 flows, respectively.
1) Comparison with Single Buffer Models: For the single

buffer case, we consider two buffer sizing rules: (a) BDP rule
and (b) Stanford Model (SM) [2]. We fix the RTTP of Type-1
flows to 10ms and vary the RTTP of Type-2 flows in the range
[10ms, 500ms]. We also vary the number of TCP flows N∈
{2, 10, 100, 250, 500}. In each simulation, there areN/2 Type-
1 flows and N/2 Type-2 flows. We determine the normalized

throughput (ratio of per-flow throughput and link capacity),
average queueing delay and loss rate for both type of flows.
Figures 4(a) and 4(b) show the throughput under the BDP and
SM rules, respectively. Observe that across a range of flows,
the throughput of long RTTP flows decrease substantially for
both the models with increase in RTTP. This decline is much
more under SM especially when N is large due to the fact
that SM decreases buffer size with N . The queueing delay, as
shown in Fig. 5(a) and 5(b), however, is much lower in SM
compared to the BDP rule for the same reason.
With SplitBuff, both type of flows achieve the same through-

put across a range of RTTP of Type-2 flows (see Fig. 4(c)).
This happens because the aggressive Type-1 flows are sent
to a separate sub-buffer, which limits their impact on Type-
2 flows. Also observe that Type-2 flows experience slightly
higher queueing delay compared to the BDP rule due to round-
robin scheduling. However, the queuing delay of short flows
reduces dramatically as shown in Fig. 5(c). Moreover, when
both type of flows are considered, the average queuing delay
remains less compared to the BDP rule.

2) Comparison with Blind-SplitBuff: We now compare
SplitBuff with Blind-SplitBuff (that maps each flow randomly
onto one of the sub-buffers) in order to isolate the benefits
of using round-robin scheduling and RTT-awareness. We find
that Blind-SplitBuff behaves similar to the single buffer case.
We set the size of both sub-buffers in Blind-SplitBuff to
(BDP/2). Fig. 6(a) shows that for any number of flows,
the throughput of long RTTP flows follow almost the same
trend as shown in Fig. 4(a). However, the utilization of the
bottleneck link improves because of splitting. The queuing
delay is approximately the same in both sub-buffers as shown



in Fig. 6(b)) and is greater compared to SplitBuff when both
types of flows are considered (see Fig. 5(c)). The queuing
delays with Blind-SplitBuff are similar to the single buffer
case (see Fig. 5(a)). These results show that random splitting
of flows with round robin scheduling cannot improve fairness
between short and long RTT flows because such flows can
end up in the same sub-buffers. Therefore, it is the RTT-aware
splitting which causes performance improvement.

C. Evaluation over Real RTT Trace Data
We now evaluate the performance of SplitBuff using trace

data collected from some backbone Internet links [11], [12].
The RTT distribution was found to be heavy-tailed ranging
from 10ms to 1000ms in [11]. In some traces captured
from US, the distribution was found to be bimodal [12],
with first mode at 180ms (US coast-to-coast traffic with
approximate RTTP=130ms) and second mode at 74ms (US
to Asian/European traffic with approximate RTTP=60ms).
To mimic the RTT distribution in [12], we generate flows in ns-
2 with RTTs that follow two different lognormal distributions
corresponding to the two modes. For each distribution, we
generate N/2 flows and categorize US coast-to-coast traffic as
Type-1 flows and US Asian/European traffic as Type-2 flows.
Observe that most of Type-1 flows will pass from sub-buffer-1
while most of the Type-2 flows will pass from sub-buffer-2,
therefore the resulting RTTP estimate in each sub-buffer is
close to the RTTP of the corresponding flows (see Table I).
To evaluate SplitBuff’s performance with three sub-buffers,

we define two thresholds for mapping flows to sub-buffers at
RTTP− σ

2
and RTTP+ σ

2
, where σ is the standard deviation

of RTTs. We observed a further improvement in the throughput
of Type-2 flows. In particular, the normalized throughput was
measured to be 0.0095 and 0.0096 for Type-1 and Type-2
flows, respectively. And the average of the queuing delays
(Tq) for both type of flows was further reduced to 67.3ms.

TABLE I
SPLITBUFF: FOR BIMODAL RTT DISTRIBUTION WITH N=100
Buffer Flows Estimated Normalized Queuing
Type RTTP (ms) Throughput Delay (ms)

BDP Rule: Avg: 108.7
Type-1 - 0.012 -
Type-2 - 0.0072 -

SplitBuff-2: Avg: 98.25
Sub-buffer-1 Type-1 62.7 0.0106 52.2
Sub-buffer-2 Type-2 178.7 0.0086 144.4

V. RELATED WORK

Active Queue Management (AQM) schemes, such as RED
[13] and ADT [14], seek to maintain low queues and high
network throughput at the same time. However, choosing
appropriate parameters for AQM schemes is a challenging
task. Moreover, such schemes do not address issues that result
due to the interaction of heterogeneous RTT flows.
Several buffer sizing rules have been proposed in the past

which target reducing queue delays [1], [2], [3]. For instance,
SM [2] proposes to reduce buffer sizes by leveraging the
statistical multiplexing of flows. However, it can significantly

increase the loss rate [3]. In addition, our results in Section
IV show that it does not address throughput fairness issues.
With SplitBuff, queuing delays can be reduced while main-
taining high link utilization and low loss rates. In addition, it
considerably improves throughput fairness.
The RD [15] services enable a user to choose between a

higher transmission rate or low queuing delay at a congested
network link through link scheduling and dynamic buffer
sizing. However, RD does not differentiate between short and
long RTT flows. Consequently, long flows can achieve very
low throughput when competing with short flows. SplitBuff,
on the other hand, improves delays as well as throughput
fairness. Moreover, unlike RD services, SplitBuff does not
maintain per-flow state.

VI. CONCLUSION
Flows on the Internet have heterogenous RTTs due to

geographical distribution of clients. When short and long RTT
flows compete at a bottleneck, they can adversely affect each
other. We proposed SplitBuff, a framework which splits a
buffer into multiple sub-buffers to improve performance in
the presence of RTT heterogeneity. We showed the efficacy of
SplitBuff using extensive ns-2 simulations. In the future, we
plan to investigate the behavior of SplitBuff in the presence
of rate-sensitive and delay-sensitive flows. We also plan to
investigate whether it would be beneficial to increase the
number of sub-buffers in SplitBuff.
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