
Fast on Average, Predictable in the Worst Case:
Exploring Real-Time Futexes in LITMUSRT

Roy Spliet
MPI-SWS

rspliet@mpi-sws.org

Manohar Vanga
MPI-SWS

mvanga@mpi-sws.org

Björn B. Brandenburg
MPI-SWS

bbb@mpi-sws.org

Sven Dziadek
TU Dresden

dziadek@gmail.com

Abstract—This paper explores the problem of how to improve
the average-case performance of real-time locking protocols,
preferably without significantly deteriorating worst-case perfor-
mance. Motivated by the futex implementation in Linux, where
uncontended locks under the Priority Inheritance Protocol (PIP)
do not incur kernel-switching overheads, we extend this concept
to more sophisticated protocols; namely the PCP, the MPCP and
the FMLP+. We identify the challenges involved in implementing
futexes in these protocols and present the design and evaluation
of their implementation under LITMUSRT, a real-time extension
of the Linux kernel. Our evaluation shows that the average-case
locking overhead is improved by up to 87% for some scenarios,
but it does come at a price in the worst case overhead.

I. INTRODUCTION

Suspension-based real-time locking protocols, such as the
Priority Inheritance Protocol (PIP), are used in real-time
systems to ensure mutually exclusive access to shared re-
sources while preventing unbounded priority inversions, where
a higher priority task that should be scheduled can be delayed
by lower priority tasks for potentially unbounded durations.
Such blocking, termed priority-inversion blocking (henceforth
pi-blocking), increases worst-case response times of tasks.
Various protocols have been proposed which provide different
bounds on worst-case blocking time. The choice of real-time
locking protocol is thus critical in the design of real-time
systems as it affects their schedulability.

Practical systems, in addition to accounting for pi-blocking,
must also carefully account for system overheads associated
with the lock acquisition and lock release operations. These
overheads typically comprise both hardware overheads, such
as those incurred by protection mode switches, as well as
bookkeeping code in the operating system kernel. Failure
to account for these overheads can lead to execution time
underestimates and consequently to deadline misses. Ideally,
one would choose an optimal locking protocol, such as the
Priority Ceiling Protocol (PCP), provided that an efficient
implementation is available.

The majority of prior work dealing with the efficient im-
plementation of real-time locking protocols has focused on
worst-case overheads. However, there are numerous workloads
that can benefit from faster average-case overheads, where
locks are typically uncontended. A prime example is that
of soft real-time workloads such as video playback where
locks may be acquired by threads of different priorities many
thousands of times per second [7]. Reducing average-case

locking overhead in such applications allows for supporting
much higher throughput (e.g. higher frame-rate) and reducing
the number of deadline misses. Another advantage is in mixed-
criticality systems where optimizing for the average-case can
help avoid deadline misses in low-criticality tasks. While these
examples motivate the need for low average-case overheads,
system schedulability is ultimately based on the worst-case
overheads. Thus, average-case overhead reductions must not
significantly increase worst-case overheads.

An effective approach for achieving these goals is through
the support for the fast userspace mutexes (futexes) [11] in
the Linux kernel, a mechanism that supports efficient lock
implementations with low average-case overheads. By ex-
porting lock-state information to userspace, expensive system
calls can be avoided when a lock is uncontended. Linux’s
PIP implementation uses futexes to reduce the average-case
locking overhead.

While prior work [1] has successfully applied the futex
approach to the PIP, the approach does not easily generalize to
more sophisticated protocols. This is problematic as the PIP is
limited in its theoretical properties: it has non-optimal bounds
on pi-blocking and is susceptible to deadlocks unlike the PCP.
Additionally protocols such as FIFO Multiprocessor Locking
Protocol (FMLP+) are asymptotically optimal in clustered
Job-Level Fixed-Priority scheduling, a property not shared by
the PIP. However, it is unclear whether the futex approach
can be extended to improve the average-case performance of
these protocols. In fact, even though the Pthreads package pro-
vides an implementation of the PCP (called PRIO PROTECT)
which uses the futex API, the PRIO PROTECT implemen-
tation does not adhere to the futex philosophy and requires
multiple system calls for uncontended lock operations.

The key challenge in generalizing the PIP futex imple-
mentation to more sophisticated protocols boils down to the
following difference: The PIP can be considered a reactive
locking protocol, in that it makes all its decisions in reaction
to lock acquisition or lock release operations. In contrast,
the PCP and multiprocessor locking protocols such as MPCP
and FMLP+ are what we term anticipatory locking protocols:
they make use of additional information about the workload
to anticipate problematic scenarios and prevent them. For
example, in the PCP, each lock is associated with a priority
ceiling that specifies the highest priority task that may acquire
it. This can result in scenarios where a lock is uncontended but

the semantics of the protocol forbid a task from acquiring it.
Similarly, MPCP and FMLP+ keep track of additional infor-
mation to ensure bounded remote blocking via the technique
of priority boosting, where jobs in critical sections are boosted
in priority to ensure progress.

This motivates the key question of this paper: can the
futex approach be extended to support anticipatory real-time
locking protocols without violating their semantics? Further,
can this be done without significantly increasing the worst-
case overheads? In this paper, we show that this is indeed
possible and we describe the key properties that help us
achieve this for three protocols: the PCP, MPCP and FMLP+.
We implemented futex-based versions of these protocols in
LITMUSRT called the PCP-DU, MPCP-DU and FMLP+-DU.
Here, “DU” stands for deferred update, as our implementations
implement futexes by deferring the update of the state of a lock
until the next time the scheduler is called.

A. Contributions

In this paper, we make the following contributions:
• We identify key properties of the PCP, MPCP and

FMLP+ (Secs. IV and V) that allow us to extend the futex
approach to anticipatory real-time locking protocols.

• We describe futex-based implementations of these pro-
tocols (Secs. IV and V) in LITMUSRT: the PCP-DU,
MPCP-DU and FMLP+-DU respectively.

• We evaluated these protocols (Sec. VI) and observe
upto 93% reduction in overheads in certain uncontended
scenarios, and only at most 22% increase in contended
overheads.

We begin by providing the necessary background informa-
tion before presenting the design, implementation details and
evaluation of the improved implementations.

II. BACKGROUND AND DEFINITIONS

We consider real-time scheduling under a system compris-
ing a set of n tasks {T1, . . . , Tn} running on a set of m
processors {P1, . . . , Pm}, where each task Ti releases a series
of jobs, where the jth job is denoted Ji,j . We assume the
sporadic task model where each task is defined by the worst-
case execution time (WCET) ei, a minimum inter-arrival time
or period pi and a relative deadline di. There are a set of shared
resources ∈ R = {r1, . . . , rn} in the system, each associated
with a lock.

We assume Partitioned Fixed-Priority (P-FP) scheduling [9],
where the set of tasks are partitioned among the m processors
in the system and each processor is scheduled under a fixed-
priority scheduler. For a given task Ti, the index i refers
to its base priority (T1 having the highest priority and Tn
having the lowest priority). Tasks are scheduled based on their
effective priority, which may exceed the base priority under
certain resource sharing policies. For instance, the PIP may
temporarily raise the effective priority of a task.

It should be noted that although we use P-FP scheduling
throughout this paper, the techniques presented are not limited
to P-FP and generalize to other scheduling algorithms.

A. Futexes

Futexes, short for fast userspace mutexes, are a mechanism
found in the Linux kernel to support the implementation
of suspension-based locks in userspace [11]. A basic futex-
enabled lock consists of (i) a shared integer that contains the
current state of the lock, and (ii) a kernel-side wait-queue
exposed through the futex API. The integer represents the
number of tasks contending for this lock: 0 means free, 1
means acquired, and any larger value indicates there are jobs
blocking on this mutex. Lock and unlock operations are imple-
mented using atomic fetch-and-increment/fetch-and-decrement
respectively, where the old value indicates whether the lock
operation succeeded or some further action is required. Further
action involves an expensive system call to the kernel in order
to manipulate the wait-queue.

B. Locking in LITMUSRT

LITMUSRT is a real-time extension of the Linux ker-
nel [8], providing a testbed for novel scheduling and locking
algorithms. It supports the sporadic task model and modular
scheduler plugins. Besides several multiprocessor scheduling
policies, LITMUSRT also implements a variety of locking
protocols, including the PCP, MPCP, FMLP [6] and the
FMLP+. These implementations have been designed primarily
with low worst-case locking overheads in mind.

Real-time tasks use the mutex-based locking API of
LITMUSRT to ensure mutually exclusive access to shared
resources. Tasks use special system calls provided by
LITMUSRT to create locks associated with a particular pro-
tocol, and to lock and unlock them. These routines track
the state of a lock and take care of task blocking when the
protocol forbids lock acquisition for a particular task. We
implemented our protocols in LITMUSRT to benefit from the
generic scheduling framework and extensible API it offers.

C. Real-Time Locking Protocols

The simplest suspension-based real-time locking protocol
is the Priority Inheritance Protocol (PIP) proposed by Sha
et al. [14]. Under the PIP, when a high-priority task blocks
on a lock currently held by a lower-priority task, the latter
inherits the priority of the high-priority task, thus preventing
unbounded priority inversions. PRIO INHERIT is the Linux
implementation of the PIP, which uses the futex API and
consequently does not incur system call overheads for uncon-
tended lock operations.

Although PRIO INHERIT provides low average-case over-
heads, the PIP has several properties that make it sub-optimal
for use in certain applications. First, locking under the PIP
is susceptible to transitive pi-blocking, which occurs when
a chain of blocked jobs forms where each job blocks on
a resource currently held by the next job in the (ascending
priority-ordered) chain. The chain is resolved in reverse pri-
ority order, so that the highest priority task in this chain is
blocked for the duration of all critical sections in this chain.
Second, inconsistently ordered nested locks are susceptible to

deadlocks under the PIP. These problems discourage using PIP
from an analytical point of view.

D. Priority Ceiling Protocol (PCP)

The Priority Ceiling Protocol [14] addresses the short-
comings of the PIP. It is optimal on uniprocessors and
jobs experience pi-blocking of at most one outermost critical
section. Furthermore, through precautionary blocking of jobs
in anticipation of cyclic dependencies, deadlocks are avoided
entirely.

In the PCP, every resource ri is assigned a priority ceiling,
ceil(ri), which is the highest priority of all tasks that may lock
that resource. During run-time, the scheduler keeps track of a
system ceiling (denoted sysceil(t)), which is the currently held
lock with the highest priority ceiling. A job is only allowed
to acquire a lock if (i) either its priority exceeds the priority
of the system ceiling, or (ii) if the system ceiling is currently
owned by the requesting job. If none of these conditions are
satisfied, the requesting job is blocked and, if the blocked job
has a higher effective priority than that of the blocking job, its
priority is inherited by the current owner of the system ceiling.
When a lock is released, the system ceiling is lowered to the
highest priority waiter, who then becomes the new owner of
the system ceiling.

LITMUSRT implements the Classic or Original PCP
(OPCP), where the priority of a job is raised only when a
higher priority job becomes blocked on a lock currently held
by the lower priority job. In particular, the priority of the lower
priority job is raised only to that of the highest priority job
currently blocked by it.

The pthreads implementation of the PCP on the other hand
(also known as PRIO PROTECT) is an implementation of the
Immediate Priority Ceiling Protocol (IPCP), which is subtly
different from the OPCP. The difference to the OPCP is that
when a job acquires a lock, its priority is immediately raised
to the priority ceiling of that lock using priority inheritance.
While this provides less accurate control over the effective
priority, it has the advantage of reducing the number of
preemptions in the system and thus the runtime overhead.

Although PRIO PROTECT is implemented in Linux using
the futex API, it does not enjoy the benefits of the futex
approach. Anticipatory properties are not captured in the futex
API, which for the PCP implies a system call is still required
to raise or lower the jobs’ priority, even in the uncontended
case. PRIO PROTECT thus does not enjoy the benefits of the
futex approach for uncontended lock operations.

E. Multiprocessor Priority Ceiling Protocol (MPCP)

The introduction of parallelism in multiprocessor systems
adds a new dimension of complexity to real-time locking
protocols, as they now need to account for remote blocking,
where a job is blocked by other jobs on different processors.
Unfortunately the progress guarantees of the PIP, which is
also a key component of the PCP, breaks across partition
boundaries and does not ensure the progress of resource-
holding jobs.

Rajkumar et al. proposed the Multiprocessor Priority Ceil-
ing Protocol (MPCP) [13], the first shared-memory multipro-
cessor real-time locking protocol, which solves the problems
associated with parallelism through priority boosting. Priority
boosting is a technique where the priority of jobs in critical
sections is temporarily raised to a level higher than any used
base priority. These jobs are thus guaranteed to progress as
they cannot be interrupted by newly released jobs (which have
not entered a critical section yet), but boosted jobs can still
be preempted by other jobs in the boosted state. Under the
MPCP, for every partition in the system, each lock is assigned
a priority ceiling, which is the highest priority of all tasks
on every other partition accessing this lock. When entering a
critical section, the priority of a job running in a given partition
is boosted to a value relative to the ceiling for this partition.

Deadlocks are avoided in the MPCP by prohibiting the
nesting of locks and waiting jobs are ordered in order of their
base priority; when a critical section completes, jobs blocked
on that lock are resumed in order of priority.

LITMUSRT implements the MPCP using the same APIs
as the PCP. Upon opening a lock, its priority ceilings for all
other partitions in the system are set up. When the job tries to
acquire the lock, its priority is boosted and an attempt is made
to obtain the lock. On failure, the job is added to the priority
wait-queue associated with the lock and is suspended. When
the lock is unlocked, the job is restored to its base priority
and the next job on the wait-queue is resumed.

F. FIFO Multiprocessor Locking Protocol (FMLP+)

The FIFO Multiprocessor Locking Protocol (FMLP+) [5]
is a suspension-based locking protocol for partitioned schedul-
ing with an asymptotically optimal bound on maximum
suspension-aware pi-blocking (O(n)). While the FMLP+ uses
priority boosting similar to the MPCP to ensure progress of
jobs in critical sections, the crucial difference is that it uses
FIFO ordering for jobs in critical sections as well as in the
wait-queue. Similar to the MPCP, nesting of critical sections
is forbidden, thus avoiding deadlocks.

The FMLP+ implementation in LITMUSRT differs slightly
from the MPCP: no ceilings need to be determined when
opening a lock, the per-lock priority wait-queue is replaced
with a FIFO ordered wait-queue, and the priority boosting
mechanism orders boosted jobs based on the time at which
they made the lock requests instead of the ceiling of the locks.

Having described the necessary background, we now present
the key insights of three protocols, namely the PCP, MPCP,
and FMLP+, that allow us to implement futex-based versions,
along with their implementation under LITMUSRT.

III. DESIGN AND IMPLEMENTATION

In the following two sections, we identify the challenges
in designing futex-based versions of three real-time locking
protocols: the PCP, MPCP, and FMLP+. We chose these
protocols because these are the base implementations in
LITMUSRT, and are known to be state of the art for unipro-
cessors and multiprocessors respectively.

In the following two sections, for each of these three
protocols, we identify scenarios that allow for optimization of
the uncontended case. At a high level, we point out scenarios
that allow us to safely defer the updating of the global lock
and scheduler state until later (specifically, the next context
switch), without violating the semantics of the protocol. We
then present the design and implementation of our futex-based
versions (the PCP-DU, MPCP-DU, and FMLP+-DU respec-
tively), with the goal of reducing the overhead of uncontended
lock and unlock operations, while minimizing the impact on
the worst-case overhead.

We begin with the PCP and then apply what we learn there
to the MPCP and the FMLP+.

IV. UNIPROCESSOR PROTOCOLS - PCP

As explained in Section II-D, the PCP is an anticipatory
uniprocessor suspension-based locking protocol where each
lock has a priority ceiling, defined as the highest priority of
all tasks using that lock. Acquiring locks potentially raises the
system ceiling, preventing other tasks with a priority below the
system ceiling from acquiring any locks. Similarly, releasing
locks may potentially lower the system ceiling resulting in
blocked tasks waking up. Correctly performing these oper-
ations requires an accurate method of keeping track of the
system ceiling at any given time which requires a global view
of the state of all the locks in the system.

The current implementation of the PCP in Linux
(PRIO PROTECT) maintains the status of all locks inside the
kernel and update this on every lock and unlock operation.
This works as each of these operations are performed through
a system call, allowing the kernel to track the system ceiling.
However, this is at odds with the goal of allowing userspace
processes to modify lock state without any kernel intervention,
as is the case with futexes. In order to support this, processes
must be able to communicate this state to the kernel. Further,
this state should only be communicated to the kernel if and
when strictly needed in order to avoid unnecessary overhead.

We first identify two key properties of the PCP that allows
us to build such an “asynchronous” locking system: (i) the
success or failure of lock acquisition by a particular job can
be determined prior to it being scheduled, and (ii) since the
PCP is a uniprocessor locking protocol, the state of a lock (i.e.
whether it is locked by someone or not) needs to be known
only when a context switch occurs. These two properties
together allow us to implement futexes for the PCP.

These properties are derived from the observation that in the
PCP, the outcome of a lock operation depends only upon the
effective priority of the job and the current system ceiling, both
of which are known by the scheduler when a job is about to be
scheduled. Further, since the PCP is a uniprocessor protocol,
neither of these two factors can change without the scheduler
being invoked as the only events that trigger changes in either
of these are always preceded by a context switch. For example,
a higher priority task may be released which acquires a lock,
but not before preempting the old task, thus invoking the
scheduler. The same rationale is true for unlocking: whether

1 struct lock_page {
2 bitmap_t locked;
3 bool can_lock;
4 int unlock_syscall;
5 };

Listing 1: Structure of the lock page

or not jobs are blocking on a system ceiling will not change
within a scheduling interval of the system ceiling owner.

This immediately tells us that the latest time until which
we can defer communication of the state of locks back to the
kernel is a context switch. More importantly, it is possible to
predict the outcome of the lock and unlock operations during
an interval from when a job is scheduled to the time it is
preempted and the scheduler invoked.

A. Implementation of PCP-DU

To implement futexes, all that is needed is a bidirectional
communication channel between a userspace process and the
kernel to exchange lock state information. Userspace processes
need to be able to convey the state of locks to the kernel on
being preempted. This can be done by a single bit for each
lock in the system, which is set by the userspace process and
can be later read out by the kernel when needed (i.e. when a
context switch occurs).

In addition, the kernel needs to be able to communicate
two pieces of information. First, whether the userspace process
can successfully acquire locks and second, whether an unlock
operation requires scheduler invocation in order to wake up
blocked higher-priority tasks. If the kernel is able to communi-
cate this information to every task, system calls can be avoided
during lock and unlock operations unless strictly needed.

In our implementation, called PCP-DU standing for PCP
with deferred updates, each task shares a memory page with
the kernel with the structure shown in Figure 1. This shared
page acts as the bidirectional communication channel between
the task and the kernel. Here, the locked bitmap stores the state
of each lock the task may hold, the can lock bit is set by the
kernel to communicate to a task whether it may acquire locks
without kernel intervention, and the unlock syscall field is a
reference counter specifying whether there are higher-priority
tasks blocked on a lock or not. In case of a non-zero value
for unlock syscall, the task should invoke the scheduler upon
releasing a lock.

PCP-DU requires two additions to the existing scheduler:
updating the global state of the locks touched by the current
job and determining whether the next job can successfully ac-
quire locks without kernel preemption or not. For updating the
global state of the locks, the scheduler compares the locked
bitmap from the current job’s lock page with a previously
cached copy to determine relevant events in the past interval.
It then updates the global lock state accordingly. The kernel
updates this cached copy of the locked bitmap on every context
switch. After updating the lock states, the scheduler determines
whether the next job is allowed to lock by comparing its
effective priority with the priority of the system ceiling. As

mentioned earlier, this can be communicated to the process
using the the can lock bit in the lock page.

a) Lock acquisition: Lock acquisition consists of first
checking the can lock boolean. If it is unset, then the scheduler
is invoked through a system call which blocks the process. If
the can lock boolean is set, the task need simply write to the
bit in the locked bitmap corresponding to the lock it wishes
to acquire. It should be noted at this point that checking the
can lock boolean and locking a bit in the bitmap must be
done atomically. Otherwise, a preemption occuring right after
the can lock boolean is checked can result in an invalid lock
operation. This atomicity can be achieved by dedicating one
bit in the bitmap to the can lock field.

In addition to the approach described above (called
PCP-DU-BOOL), we also propose a novel approach using
the exception-handling mechanism available in the memory
management unit (MMU) of modern systems to communicate
the can lock bit. In this approach, the kernel sets the per-
mission of the lock-page to read-only if the process is not
allowed to lock. Lock acquisition thus consists of attempting
to write a bit to the bitmap. The lock is acquired when this
write operation succeeds, otherwise an access violation fault
is triggered which automatically invokes the kernel, allowing
it to block the requesting process. This implementation, called
PCP-DU-PF, has the advantage that locking consists of writing
only a single bit in memory. There is no for atomic operations
and the code can be made sequential, thus avoiding branch
mispredictions.

b) Lock release: For unlocking in userspace, the ker-
nel needs to efficiently determine whether a system call is
required. We propose an implementation where atomicity is
not required between unlocking (unsetting the desired bit in
the locked bitmap) and checking whether the kernel should be
invoked for unlocking jobs. As an added benefit, we trivially
update the decision every time a job blocks, thus simplifying
the logic needed at every context switch.

The basis for this mechanism is the unlock syscall field,
a reference counter that indicates whether the job should
invoke the scheduler during an unlock operation. When a job
blocks on the system ceiling, its owner’s unlock syscall field
is incremented. On unlocking, this integer is read out. If zero,
no jobs are blocked on one of the locks of the current job,
and thus no action is required. However, a non-zero value
indicates blocked higher-priority tasks and the task invokes
the kernel. At this point, the kernel wakes up every task now
exceeding the system ceiling, and the number of woken up
jobs is subtracted from the integer.

Atomicity between unlocking and checking the un-
lock syscall integer is not necessary, because in the rare case
of preemption the kernel will update the global lock state based
on the lock page and wake up any jobs required, updating the
unlock syscall integer. In the absolute worst case, the kernel
will be invoked while the work was already done. This causes
some overhead, but not incorrect behaviour.

We acknowledge that this mechanism does not keep track
of which acquired lock(s) define the system ceiling. In the

1 struct lock_page {
2 bitmap boost,
3 bool unlock_syscall
4 };

Listing 2: Structure of the lock page

uncommon case of contended nested locks, it could happen
that an unlock does not lead to a lower system ceiling.
Implementation of a system that accounts for this corner case
defeats the goals for this project; the more complex logic
required would increase both the average- and worst-case lock
time in return for efficiency of an uncommon case.

V. MULTIPROCESSOR PROTOCOLS - MPCP AND FMLP+

While with the PCP we were able to defer the update of the
global system state until the next context-switch, this is not
entirely possible with the MPCP and FMLP+. Multiprocessor
locking protocols suffer from remote blocking, where a local
job may be blocked by jobs on a different processor. While
in the PCP, a switch to another job was always preceded by a
context switch, this is no longer the case since a lock may be
acquired by a job running in parallel on a remote processor.

Both the MPCP and FMLP+ use a technique termed priority
boosting to ensure progress of critical sections. Priority boost-
ing works by increasing the priority of jobs in critical sections
beyond that of any local job, thus ensuring that they can never
be preempted. Recall that in partitioned scheduling, as long
as the priority is boosted past that of the highest-priority local
job not within a critical section, we can guarantee that the
boosted job will not be preempted by them. However, since
boosted jobs are free to preempt other boosted jobs, each lock
is assigned a priority ceiling which is the highest priority of
all tasks on every other partition accessing this lock.

The key point is that priorities are only relevant within
the same partition [5]; the difference in priorities of two
jobs running on different partitions is meaningless. As the
boosted priority also has no effect on the order a lock is
granted under the MPCP (which uses the base priorities of
the jobs) or the FMLP+ (which uses the time of the request),
any absolute or relative variation in boost priorities across
processor boundaries has no effect on scheduling.

Thus, we observe that the boosting of priority, similar to
priority inheritance, can be deferred until a context-switch
occurs. This is because the preemption of a job is always
preceded by a context-switch, at which point the kernel can
observe that the job “boosted itself” and perform the actual
boosting of priority. That is, it is safe to defer the actual
boosting of a job’s priority until a context-switch occurs.

A. Implementation

For MPCP-DU and FMLP+-DU, we use the same lock-page
communication channel as for PCP-DU. The structure of the
lock page differs slightly, as shown in Listing 2.

Recall that in order to implement deferred priority boosting,
the job needs to be able to communicate to the kernel as
to whether it boosted itself or not. This is implemented

in MPCP-DU and FMLP+-DU through the boosted bitmap,
which represents the locks that should be considered for
boosting (i.e. the job plans to acquire them). The boosted
priority is the highest priority ceiling of all locks a job has
set to the boosted state.

It should be noted that since a lock may get acquired on
a remote processor without a local context-switch preceding
it, we cannot store the state of the lock in the per-process
structure anymore. Instead this state is shared among all
processes in the form of a single shared page of memory
comprising a reference counter. Remote blockers make their
presence known by attempting an atomic increment of the
lock. If it is currently acquired, they return non-zero and block.
When the lock is released by the owner, they will notice
that the reference count is non-zero and invoke the scheduler
(which proceeds to wake up the remote blocked job).

The unlock syscall is again used by the kernel to commu-
nicate to a task when an unlock operation, which results in
the priority being lowered again, should call the kernel. This
may occur if there are multiple boosted jobs and the highest
priority one unlocks. The resulting drop in priority of that job
should result in the next boosted task being scheduled.

c) Kernel operations during preemption: On every
scheduling operation, the kernel will perform two additional
actions atop the regular scheduling: (i) determine the priority
of the current task, and (ii) determine whether the next task
should invoke the scheduler upon unlocking.

For determining the priority of the current job, the kernel
compares its boost variable with a cached copy obtained
during the previous context switch. When there is a difference,
the priority is updated accordingly. For FMLP+-DU, the most
significant bit in the boost bitmap will result in a new boost
priority being set.

To determine whether the next task should invoke the
scheduler on an unlock, the scheduler compares the base
priority of the next scheduled job with any other effective
priority on the local ready-queue. If there exists a job with a
higher effective priority, the unlock_syscall flag on the
job’s lock page is set.

d) Lock acquisition: For lock acquisition in MPCP-DU
and FMLP+-DU, as mentioned before, we have to extend futex
with a mechanism that supports deferred priority boosting. For
this the boost bitmap is added to the shared lock page. Like
the locked bitmap in PCP-DU, each bit corresponds with a
single lock. When a job intends to acquire a lock, it first sets
the boost bit. On a context switch these bits are interpreted
and the boost priority is set accordingly.

For FMLP+-DU the priority boosting mechanism must be
able to distinguish between a critical section that lasted during
the entire interval a job was scheduled, and the case in which
the job releases and re-acquires the lock within this interval.
In the latter case a new boost priority must be determined. For
this purpose the most significant bit of the boost bitmap is set
by the FMLP+-DU implementation on every lock operation.
The scheduler clears this bit before scheduling a job, helping it
detect whether any resource was locked during the scheduled

interval under the assumption locks are not nested as defined
in the FMLP+ specification.

Interrupts between setting the boost-bit and obtaining the
lock can not result in incorrect behaviour. Preemption cannot
occur on this interrupt, because the priority of the job already
exceeds all local base priorities. It can thus continue the
locking operation unless a job with a higher boost priority
is unblocked on a semaphore. In this latter case the job is
correctly preempted.

e) Lock release: For releasing a lock under the MPCP
and FMLP+, the boosted priority is dropped. In some cases
this should lead to preemption even if the mutex being
unlocked is not contended. We thus need to extend the futex
mechanism with a check whether the scheduler should be
invoked on an uncontended unlock.

The unlock_syscall field in the lock page is a boolean
that conveys this information. When a futex unlock is uncon-
tended, this bit is tested and when set the boost bit is unset
after which kernel scheduler is called.

For lock operations that follow the slow futex path, unboost-
ing is handled immediately by the kernel prior to possible
preemption to guarantee a correct scheduler decision. In this
case userspace does not have to take any further action to
unboost the priority.

B. Further Optimizations

In addition to the presented techniques, we have identified
two performance optimizations for the implementation of the
MPCP and the FMLP+ in LITMUSRT that improve perfor-
mance in both the average- and worst-case.

For both these protocols, a spinlock is used inside the kernel
to protect the state of the per-mutex wait-queue. During lock
acquisition, the critical section consists of adding the current
job to the wait-queue. Initially the unlock critical section
consisted of taking the first element off the wait queue and
waking it up using wake_up_task(). We have observed
that wake_up_task() can take several thousand cycles due
to raising an inter-processor scheduling interrupt. By moving
this routine outside the critical section, any lock operation
blocked on this semaphore no longer waits for this operation
to complete. This significantly reduces the worst-case response
time for contended lock acquisition.

Second, in the FMLP+ implementation in LITMUSRT the
boost priority is set using the system clock to ensure a
fair timestamp. Recall that for FMLP+ only the order of
assignment within a partition is used for scheduling decisions.
We can thus replace the system-clock based timestamp with a
per-processor logical timestamp that is incremented on every
read. This eliminates part of the overhead associated with
every priority-boost operation.

VI. EXPERIMENTS AND RESULTS

In this section we present the results from our evaluation of
the different implementations: PCP-DU-PF, PCP-DU-BOOL,
MPCP-DU and FMLP+-DU. We compare these with the
LITMUSRT implementations of the original PCP, MPCP

(cycles) PR
IO

IN
H

ER
IT

PR
IO

PR
OT

EC
T

PC
P

PC
P-

D
U

-P
F

PC
P-

D
U

-B
O

O
L

M
PC

P-
O

RI
G

M
PC

P-
N

EW

M
PC

P-
D

U

FM
LP

+
-O

RI
G

FM
LP

+
-N

EW

FM
LP

+
-D

U

Samples: 7.100.000 per protocol Uncontended Samples: 12.200.000 per protocol
Lock (Avg.) 263 1604 645 160 171 1075 1091 214 1363 1041 215
Lock (99%) 351 1847 742 231 239 1300 1329 309 1594 1271 313
Lock (Max.) 7707 33156 3850 2384 1974 5875 6506 2477 7491 7906 2625

Unlock (Avg.) 301 1221 1211 87 92 1216 1149 177 1181 1117 174
Unlock (99%) 369 1475 1355 133 140 1451 1368 228 1418 1325 224

Unlock (Max.) 16552 9027 6655 1770 1653 7330 6158 1920 6574 5292 1875
Samples: 900.000 per protocol Contended Samples: 2.200.000 per protocol

Lock (Avg.) 4955 - 1967 4624 2673 1266 1216 1097 1440 1096 1059
Lock (99%) 5550 - 2132 5367 3103 1531 1494 1387 1715 1371 1307
Lock (Max.) 7707 - 7953 14820 9700 12242 6281 5392 13109 6026 5570

Unlock (Avg.) 3767 - 4109 5148 4868 4301 4280 2657 4203 4166 2335
Unlock (99%) 6023 - 4627 5909 5582 5791 5799 5009 5741 5662 2962

Unlock (Max.) 13172 - 14919 15985 15787 20482 21657 18258 21223 22451 17991

TABLE I
OBSERVED AVERAGE AND WORST-CASE RESPONSE TIME FOR UNCONTENDED LOCK/UNLOCK OPERATIONS

and FMLP+ and implementations of the MPCP and
FMLP+ containing the proposed optimizations, along with
the standard Linux implementations PRIO INHERIT and
PRIO PROTECT.

All our experiments were conducted on the
Boundary Devices Sabre Lite ARMv7 development board
based on the FreeScale I.MX6Q SoC, an ARM Cortex-A9
quad-core system running at 1GHz. All experiments were
run using LITMUSRT 2013.1 based on Linux 3.10.5. Several
bugfixes and performance improvements for spinlocks on
ARM were backported into the 2013.1 tree from LITMUSRT

2014.1 and Linux 3.13 respectively. The kernel was compiled
to the Thumb-2 instruction set with all kernel debugging
options disabled in order to maximize performance.

In this section, we seek to answer the following key ques-
tions regarding our improved implementations:

1) How does the uncontended overhead in our implemen-
tations compare with those of the original protocols?

2) What additional overheads are introduced by the futex-
based approach and how significantly does it affect the
worst-case overheads?

3) Is it worth avoiding atomic operations when implement-
ing uniprocessor locking protocols?

To answer these questions, we implemented microbench-
marks that measures lock and unlock overhead using hardware
cycle-counters. Next we explain the methodology used in this
microbenchmark.

A. Microbenchmarking Methodology

Our microbenchmark program spawns several threads, each
locking and unlocking a resource every period. Threads were
randomly assigned a critical section length C(Ti) between
60 − 80µs, an execution time between C(Ti) + 0 − 20µs
and a period between 600 − 800µs. For the uniprocessor
protocols 5 threads are spawned on one core, whereas for
the multiprocessor protocols 6 threads are spawned across
three cores. The fourth is reserved for trace and control tasks.

A cache-polluting background workload was executed during
and around the critical section to simulate a realistic workload.
This program was ran for 5 seconds, repeated 300 times for
each protocol with a different random parameter assignment
for each run.

Each sample was measured using cycle counters which
measured the time it takes from a lock or unlock request
being made to when the operation completes (and the program
continues). In the case of contended locks and preempted
unlocks, we subtract the blocking time as this is a consequence
of application parameters as well as other system overheads
such as the time it takes to wake up a task on a remote
processor, which we present separately.

To prevent any bias in the worst-case results, we normalized
the size of the obtained data set across each class of protocols
(uniprocessor and multiprocesssor) by randomly discarding
samples from the data set. Final data set sizes are stated in
Table I. For the scheduler overheads 16 million samples were
obtained.

Separation of contended and uncontended lock samples is
done at the first point of testing the lock status. For the locks
proposed in this paper this is the atomic test in userspace. Race
conditions that change the actual lock status from contended to
uncontended beyond this point thus still result in a contended
lock sample.

The results of our overhead analysis are shown in Table I.
The table shows the overheads from the uncontended case in
the top half of the table and the overheads from contended
cases in the bottom half. For each case, the average, 99th

percentile, and maximum observed overheads are shown for
both the lock and unlock operations. PRIO INHERIT and
PRIO PROTECT is the Linux futex-based implementation
of the PIP and the non-futex implementation of the PCP
respectively. PCP refers to the LITMUSRT non-futex imple-
mentation while PCP-DU-BOOL and PCP-DU-PF refer to our
two implementations that make use of atomic operations and
the MMU exception handler respectively. MPCP-ORIG and

FMLP+-ORIG refer to the default implementations of the
MPCP and FMLP+ found in LITMUSRT, while MPCP-NEW
and FMLP+-NEW refer to our optimized implementations.
MPCP-DU and FMLP+-DU refer to our futex-based imple-
mentations of the MPCP and FMLP+.

B. Uncontended-Case Overhead Reduction

The first question we wish to answer is to what extent the
futex approach improves the average-case lock and unlock
overheads. As can be seen in Table I, in the uncontended
case, the overhead of the futex-based implementation with
their vanilla counterparts shows overhead reductions of up to
13x (1200+ cycles for PCP unlock vs. only 90 cycles for
PCP-DU-PF and PCP-DU-BOOL). This trend in uncontended
overheads can be observed in both lock and unlock operations
for every protocol when compared with their futex-based
implementation (in both average and worst cases). This large
reduction in average overhead is a direct consequence of the
futex-based approach avoiding system calls when a lock is
uncontended.

Note that the 99th percentile value for all the uncontended
results are very close in value to the observed average cycles.
For example, the average locking time in PRIO INHERIT
is 263 cycles while the 99th percentile is still only 351
cycles. This is in contrast to the observed maximum overhead
of 7707 cycles. This shows that the futex-based approach
actually performs really well on average, which is what we
are concerned with in this paper.

C. Contended-Case Overhead Penalty

Recall that in all three protocols, both lock and unlock
code paths are modified to now do additional work. First, we
added additional logic to the user-space lock routines, which
for contended lock acquisition serves no purpose. Second, the
scheduler has been extended to handle deferred update.

Thus, the next question we naturally ask, which ties back to
our original goals, is whether there is a significant increase in
the maximum observed overheads as a result of the additional
logic we add to implement futexes for each of these protocols.

Table I provides some data that helps to answer this
question. Note that we do not have contended samples for
PRIO PROTECT as it is an implementation of the IPCP
(see Sec. II), where the priority of the requesting task is
immediately raised to the priority ceiling of the resource. As
a consequence, there can be no contention unless there is
nesting, a scenario we do not evaluate in our microbenchmark.

Ignoring the average and 99th percentile for now, let us
consider the maximum observed overhead for lock and unlock
operations under PCP. In this case, we see the maximum for
the lock operation is 7953 cycles while the unlock is around
14919 cycles. If we compare this with our futex-based imple-
mentations (PCP-DU-PF and PCP-DU-BOOL), we can deduce
two interesting insights. In the case of PCP-DU-BOOL, we
see an increase in locking overhead of 1750 cycles (9700
cycles maximum in PCP-DU-BOOL vs. 7953 cycles in vanilla
PCP). The unlock operation incurs an additional 900 cycles

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

%
 l
o
c
k
s
 s

e
rv

e
d

Cycles

PRIO_INHERIT
PCP

PCP-DU-PF
PCP-DU-BOOL

Fig. 1. Cumulative contended lock time (uniprocessor)

of overhead (increases from 14900 cycles to 15800 cycles).
This is an additional overhead of 22% in the case of the
lock operation while it amounts to around 6% for the unlock
operation. This overhead is higher than we expected and we
attribute the increase to the cumulative effect of atomic opera-
tion failures as well as cache pollution during job suspension.
Nevertheless, since the reduction in the average-case overheads
is significant, it is still beneficial to workloads that can tolerate
the increase in worst-case overheads.

An interesting point to note regarding PCP-DU-PF is that
the maximum observed overhead in the case of lock almost
doubles (increases to 14,820 cycles from 7,953 cycles). We
attribute this large increase in overhead to the complex code
path of Linux’s page-fault handling mechanism which is not
optimized for our futex implementation. A more lightweight
kernel might however find PCP-DU-PF more suitable given
the large overhead reduction in the uncontended case. In any
other case, our results suggest that it is not worth avoiding
atomic operations, in particular on uniprocessors where there
is no overhead from cache-coherency protocols.

Note that in the case of MPCP-DU and FMLP+-DU, the
maximum observed overhead actually decreases in compar-
ison with the non-futex implementation in LITMUSRT as
the optimizations we describe in Sec. V push some of this
overhead into the scheduler. As we show later in Sec. VI-E,
this overhead is low and does not invalidate our results.

Importantly, the data in Table I shows an incomplete view
of where the overheads come from. Figs. 1 and 2 help better
understand which code paths increase the overhead and what
percentage of samples they really affect.

D. Overhead Distributions

Figs. 1–4 visualize the cumulative distribution of lock and
unlock overheads, normalized to percentage. The X-axis shows
the number of cycles while the Y-axis shows the percentage
of locks served in less than the corresponding X-axis value.

From these graphs we attempt to recognize the different
code paths in our implementations through the presence of
horizontal shifts (which means, jobs experienced this code path
during their execution after a certain percentage of operations).

For all the uniprocessor protocols, the contended locking
code path is simpler, resulting in smooth curves as can be seen
in Fig. 1. For the PCP and the PCP-DU, the slight anomaly

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

%
 l
o
c
k
s
 s

e
rv

e
d

Cycles

MPCP (orig)
MPCP (impr)

MPCP-DU
FMLP+ (orig)
FMLP+ (impr)

FMLP+-DU

Fig. 2. Cumulative contended unlock time (multiprocessor)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

%
 s

e
rv

e
d

Cycles

PCP
PCP-DU-PF

PCP-DU-BOOL

Fig. 3. Cumulative contended scheduling time (uniprocessor)

in the upper 10% of the slowest lock acquisitions corresponds
with the case that an active old priority inheritance must be
cleared prior to setting a new one.

From Fig. 1, we can derive that the PCP-DU-BOOL re-
quires approximately 800 extra cycles for a contended lock
acquisition than the PCP, evident from the right-shift distance
between the curves. This overhead can be attributed to both
the userspace code and the extra work involved in setting
permission on the lock page. PCP-DU-PF has a significantly
higher overhead in this case, spending more than twice the
amount of cycles in comparison to the PCP. A lot of this
overhead is due to the page-fault handling code path in Linux
of which only a fraction is for PCP-DU-PF. Nonetheless, all
implementations are more efficient than the PRIO INHERIT
code in pthreads.

Another example we show is the unlock operation overhead
in the multiprocessor protocols. Fig. 2 clearly distinguishes
two code paths all non-futex based protocols. In the implemen-
tation, the lower 25% of overheads correspond to the cheap
code path where a job is woken up locally, while a more
expensive code path can be seen in the non-futex protocols
corresponding to when a job needs to be woken up remotely
through an inter-processor interrupt. Due to changes in the
distribution and adding a third code path to the unlock logic for
MPCP-DU and FMLP+-DU, the expensive code path hardly
ever occurs.

The complete set of cumulative overhead results can be
found in Appendix C.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000

%
 s

e
rv

e
d

Cycles

MPCP
MPCP-DU

FMLP+
FMLP+-DU

Fig. 4. Cumulative contended scheduling time (multiprocessor)

E. Scheduler Overheads

Figs. 3 and 4 show the cumulative distribution of scheduler
overheads similar to the previous graphs of lock and unlock
overheads. In Fig. 3, we first observe that the scheduler
overhead for PCP-DU-BOOL and PCP-DU-PF are mostly
equal, despite the latter requiring a TLB flush when the locking
permission changes. Significantly, as can be seen by the same
shape of all the curves, both PCP-DU-BOOL and PCP-DU-PF
only incur a fixed additional overhead in comparison to the
original PCP of 550 cycles.

For multiprocessor protocols, we observe a different trend
as can be seen in Fig. 4. We observe that for the majority of
the cases, the MPCP-DU is more expensive in the scheduler
than the FMLP+-DU. This is expected, because unlike for the
FMLP+, the boost priority is not dependent on the specific
lock, thus deciding whether the priority must be boosted or
not requires less work.

Compared to the baseline implementations, overall the
FMLP+-DU is approximately 450 cycles more expensive
on scheduling, and an additional 200 cycles is incurred by
the MPCP-DU. We consider these good results, as this is
considerably less than the number of cycles saved on a single
uncontended lock and unlock operation.

VII. RELATED WORK

Sha et al. identified the priority inversion problem and
proposed the Priority Inheritance Protocol (PIP) to bound pi-
blocking, and the optimal Priority Ceiling Protocol (PCP) to
prevent deadlocks and limit pi-blocking to the length of at
most one outermost critical section [14]. Evolving on the PCP,
Baker et al. proposed the Stack Resource Policy (SRP) [2],
achieving the same properties as the PCP by delaying job
release to avoid blocking during execution.

Rajkumar et al. proposed the first suspension-based locking
protocols for multiprocesor systems [13]; the Distributed Pri-
ority Ceiling Protocol (DPCP) and the Multiprocessor Priority
Ceiling Protocol (MPCP) extended the PCP for distributed and
shared-memory systems respectively under partitioned fixed-
priority scheduling.

Global FMLP, proposed by Block et al. [3], was the
first suspension-based locking protocols for global earliest-
deadline first scheduling. Although we focus on partitioned
algorithms in this paper, the work on FMLP+ was a refinement

of the FMLP. The FIFO Multiprocessor Locking Protocol
(FMLP+) [5] is a suspension-based locking protocol for
partitioned scheduling with an asymptotically optimal bound
on maximum suspension-aware pi-blocking (O(n)).

The observation that kernel calls are expensive is not new.
Liedke et al. [12] establish that the kernel overhead is pro-
hibitive for efficient IPC, and propose a solution in userspace
that reduces IPC overhead while guaranteeing atomicity.

Franke et al. [11] observe the same kernel cost for syn-
chronization primitives, and proposed fast userspace mutexes
(futexes) as a general mechanism for implementing lightweight
synchronization which issues system calls only when locks are
contended. Futexes are part of the Linux kernel userspace API
and Drepper [10] provides a detailed explanation of the futex
API exposed by the Linux kernel and how it can be used
to build synchronization primitives. The futex API has been
used to implement lightweight PIP futexes (PRIO INHERIT
in the pthreads package) [1]. Our work is motivated by the
elegance of this approach and we extended it to support
anticipatory protocols with more attractive analytical prop-
erties (in particular the PCP, MPCP, and FMLP+). Züpke’s
work [15] on deterministic futexes targets the problem of futex
implementation from the perspective of small embedded real-
time kernels, identifies problems with the applicability of the
Linux approach, and proposes a method to implement futexes
without the need for a fine-grained kernel memory allocator.

LITMUSRT, the real-time extension of the Linux kernel
developed at UNC Chapel Hill provides implementations for
many state-of-the-art locking protocols[6], [8] and while there
has been prior work on analysing the overheads of locking
protocols in LITMUSRT [4], the focus has been on improving
the worst-case response time. To the best of our knowledge,
this is the first paper to implement and evaluate average-case-
optimized versions of the PCP, the MPCP and the FMLP+.

VIII. CONCLUSION

Motivated by the benefits of improving the average-case
overheads of locking protocols, this paper explored whether it
is possible to extend the futex approach of the Linux kernel,
where expensive system calls are avoided when locks are
uncontended, to anticipatory locking protocols which provide
stronger analytical properties.

We identified key properties of three protocols (the PCP,
MPCP, and FMLP+) that leave room for optimization of the
overhead in the uncontended case, and successfuly imple-
mented and evaluated futex-based version of these protocols
under LITMUSRT.

Our cycle-accurate evaluation of these protocols shows up
to 87% reduction in the uncontended case for certain scenarios
while incurring no more than 22% additional overhead in the
worst-case. While this is higher than expected, the significant
reduction in uncontended overheads still make this attractive
for workloads that can afford the increase worst-case overhead.

Overall, we have shown that it is possible to implement
state-of-the-art real-time locking protocols in the spirit of the
futex approach. We have observed compelling improvements

for the average-case uncontended lock operations. However,
we have also observed that the worst-case overheads must
not be neglected. In fact, due to the moderate increase in
maximum overheads, our futex approach may not be suitable
for workloads that exhibit high contention or are especially
sensitive to worst-case lock overheads. However, we believe
that the improvements in average-case locking overheads are
useful for the vast majority of predominantly soft real-time
applications deployed on Linux and Linux-like platforms.

REFERENCES

[1] Lightweight priority inheritance futexes. http://lxr.linux.no/linux/
Documentation/pi-futex.txt.

[2] T.P. Baker. A stack-based resource allocation policy for realtime
processes. In Real-Time Systems Symposium, 1990. Proceedings., 11th,
pages 191–200, 1990.

[3] Aaron Block, Hennadiy Leontyev, Bjorn B. Brandenburg, and James H.
Anderson. A flexible real-time locking protocol for multiprocessors. In
Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, RTCSA ’07, pages
47–56, Washington, DC, USA, 2007. IEEE Computer Society.

[4] B.B. Brandenburg. Improved analysis and evaluation of real-time
semaphore protocols for p-fp scheduling (extended version). In Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2013 IEEE 19th, pages 141–152, April 2013.

[5] Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[6] Björn B. Brandenburg and James H. Anderson. An implementation of
the PCP, SRP, D-PCP, M-PCP, and FMLP real-time synchronization
protocols in LITMUSRT. In Proceedings of the 2008 14th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems
and Applications, RTCSA ’08, pages 185–194, Washington, DC, USA,
2008. IEEE Computer Society.

[7] Björn B. Brandenburg and James H. Feather-trace: A light-weight event
tracing toolkit. In In Proceedings of the Third International Workshop
on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT’07, pages 61–70, 2007.

[8] J.M. Calandrino, H. Leontyev, A. Block, U.C. Devi, and J.H. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multipro-
cessor schedulers. In Real-Time Systems Symposium, 2006. RTSS ’06.
27th IEEE International, pages 111–126, Dec 2006.

[9] Sudarshan K. Dhall and C. L. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[10] Ulrich Drepper. Futexes are tricky. Dec 2005.
[11] H. Franke, R. Russell, and M. Kirkwood. Fuss, Futexes and Furwocks:

Fast userlevel locking in linux. https://www.kernel.org/doc/ols/2002/
ols2002-pages-479-495.pdf, 2002.

[12] J. Liedtke and H. Wenske. Lazy process switching. In Hot Topics in
Operating Systems, 2001. Proceedings of the Eighth Workshop on, pages
15–18, May 2001.

[13] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. In Distributed Computing Systems, 1990. Proceedings.,
10th International Conference on, pages 116–123, 1990.

[14] Lui Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols:
an approach to real-time synchronization. Computers, IEEE Transac-
tions on, 39(9):1175–1185, 1990.

[15] Alexander Züpke. Deterministic fast user space synchronization. In In
Proceedings of the Ninth Workshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT’13, pages 56–60, 2013.

http://lxr.linux.no/linux/Documentation/pi-futex.txt
http://lxr.linux.no/linux/Documentation/pi-futex.txt
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
https://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf

APPENDIX A
PCP-DU EXECUTION FLOW

kernel/
pagefault handler

lock page lock(od)

lock = get lock(od)

ceiling = get sys ceiling()
acq = exceeds ceiling(lock,ceiling)

unlock syscall(ceiling→owner)
higher prio = waitqueue add()

!acq

prio inherit()

!higher prio

suspend()

higher prio

acq

Lock acquired

Fig. 5. PCP-DU lock() execution flow

Figure 5 shows the execution flow for the lock() oper-
ation. Here lock_page_lock() is the user-space routine
that attempts to acquire a lock by writing to the locked
bitmap of the lock page. When failing to write to the bitmap
the kernel will add the current job to the priority wait-queue
and suspend until the ceiling is low enough for the current job
to obtain the job.

We have implemented two different mechanisms for
lock_page_lock(). In PCP-DU-PF, when it was prede-
termined that lock acquisition is not allowed, the lock page
is marked read-only. lock_page_lock() tries to acquire
a lock by seting a bit in the bitmap, resulting in a write
fault on failure. In this case the operating systems page-fault
handler will be invoked, which is extended to execute the slow
locking path. In PCP-DU-BOOL, lock_page_lock() uses
an atomic compare-and-exchange operation to set the lock bit
under the condition that the higest bit in the bitmap is set.
When this fails, the routine will invoke the kernel to execute
the slow path.

In the slow path, the job repeatedly suspends itself until
the ceiling was lowered sufficiently to obtain the lock. On
suspension, the unlock_syscall() routine increments the
unlock_syscall counter in the lock page of the system
ceiling owner, informing it that another job must be woken
up on unlocking. It then sets up a new priority inheritance if
the job is the highest priority waiting job in the system and
suspends itself.

clear lock(od)
call = lock page→unlock syscall

kernel do unlock(od)
lock = get lock(od)
ceiling remove(lock)

clear prio inheritance()
preempt = wake up tasks()

prio inherit()

call > 0call == 0

schedule()

preempt!preempt

Lock released

kernel

Fig. 6. PCP-DU unlock() execution flow

Figure 6 shows the flow for an unlock operation. This
demonstrates how the unlock_syscall integer is used
to determine whether the kernel should be invoked or not.
wake_up_tasks() will decrement this integer by 1 for
every task woken up, and if one or more higher priority tasks
are woken up, the scheduler will be invoked to preempt the
current job.

APPENDIX B
MPCP-DU AND FMLP+-DU EXECUTION FLOW

Figure 7 shows the execution flow for the lock operation.
uLock is the integer shared between the different tasks.
After setting the right bit in boost, uLock is atomically
incremented. The old value returned by this operation is used
to determine whether the job successfully acquired the lock or
rather needs to invoke the kernel slow path.

On the slow path, the free flag is used to determine whether
the job still needs to suspend. If the flag is not set the job
adds itself to the wait queue and suspends, otherwise it simply
unsets the flag. For MPCP-DU, this wait queue is priority
ordered, for FMLP+-DU a FIFO-ordered wait queue is used.

set boost prio(od)
old = atom inc(uLock)

kernel do lock(od)
lock = get lock(od)

old != 0old == 0

waitqueue add()
suspend()

lock.free == 0

Lock acquired

lock.free == 1

lock.free = 0

kernel

Fig. 7. Multiprocessor lock() execution flow

old = atom dec(uLock)

unset boost prio(od)
call = lock page→unlock syscall

old == 1

sched yield()

call!call

kernel do unlock(od)
lock = get lock(od)

task = waitqueue pop(lock)
unset boost prio(od)

old != 1

wake up(task)

task != NULL

lock.free = 1

task == NULL

Lock released

kernel

Fig. 8. Multiprocessor unlock() execution flow

The unlock execution flow is shown in Figure 8. Atomic
decrement on the uLock variable determines whether the
kernel should be called to wake up the next job in the wait
queue, possibly resulting in preemption.

When a higher priority job is on the ready queue but its
priority did not exceed the current job’s boosted priority,
unlock of a mutex should lead to preemption even if no job
is blocking on this mutex. For an unlock through the kernel,
preemption is thus performed after waking up the next job on
the wait queue. For unlock operations that remain in userspace,
the kernel determines in advance whether there is such a job on
the local ready-queue. If so, it sets the unlock syscall value in
the lock page to inform the current job to invoke the scheduler
upon unlocking.

APPENDIX C
CONTENDED LOCK OPERATION DISTRIBUTIONS

The distribution for suspending uniprocessor unlock opera-
tions is shown in Figure 9. Here the top code paths correspond
with the situation where more than one suspended task should
be woken up. We observe an overhead of several hundred
cycles for the PCP-DU-BOOL and the PCP-DU-PF, both
sharing the same unlock code path. We note that the start
and end point of the two curves are equal, but the distribution
differs This overhead is incurred by userspace code and race
condition checks required to prevent the lock state from
corrupting when the scheduler interrupted between deciding
to unlock through the slow path and reaching the kernel.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

%
 l
o
c
k
s
 s

e
rv

e
d

Cycles

PRIO_INHERIT
PCP

PCP-DU-PF
PCP-DU-BOOL

Fig. 9. Cumulative contended unlock time (uniprocessor)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

%
 l
o
c
k
s
 s

e
rv

e
d

Cycles

MPCP (orig)
MPCP (impr)

MPCP-DU
FMLP+ (orig)
FMLP+ (impr)

FMLP+-DU

Fig. 10. Cumulative contended lock time (multiprocessor)

For multiprocessor locking protocols, the lock overhead
is limited to the user-space code overhead. In graph 10 we
can observe that the MPCP-DU and the FMLP+-DU are
slightly more efficient than the previous implementations.
This is mostly caused by moving the priority boost code
to the scheduler. Furthermore, we can observe that using a
logical timestamp for priority boosting in FMLP+ improved
its contended lock time.

	Introduction
	Contributions

	Background and definitions
	Futexes
	Locking in LITMUSRT
	Real-Time Locking Protocols
	Priority Ceiling Protocol (PCP)
	Multiprocessor Priority Ceiling Protocol (MPCP)
	FIFO Multiprocessor Locking Protocol (FMLP+)

	Design and Implementation
	Uniprocessor Protocols - PCP
	Implementation of PCP-DU

	Multiprocessor Protocols - MPCP and FMLP+
	Implementation
	Further Optimizations

	Experiments and Results
	Microbenchmarking Methodology
	Uncontended-Case Overhead Reduction
	Contended-Case Overhead Penalty
	Overhead Distributions
	Scheduler Overheads

	Related work
	Conclusion
	References
	Appendix A: PCP-DU Execution Flow
	Appendix B: MPCP-DU and FMLP+-DU Execution Flow
	Appendix C: Contended lock operation distributions

