Automata on Self-Similar words

Valérie Berthe, Toghrul Karimov, Mihir Vahanwala

Highlights 2025, Saarbrücken

Automata on S-adic words

Valérie Berthe, Toghrul Karimov, Mihir Vahanwala

Highlights 2025, Saarbrücken

Definition by example: the Fibonacci word

Cutting sequence, obtained by drawing a line of gradient $1/\phi$, and recording the order of crossing grid lines Here ϕ is the golden ratio

$$\mathbf{x}(k) = \left\lfloor (k+2) \cdot \eta \right\rfloor - \left\lfloor (k+1) \cdot \eta \right\rfloor$$

Formula for k-th letter of Sturmian word $\mathbf{x} \in \{0, 1\}^{\omega}$ with slope $\eta \in (0, 1)$ irrational

For the Fibonacci word, $\eta = 1/\phi^2 \approx 0.38$

Any Sturmian word has exactly n + 1 length-n factors, e.g., •••, •••, •••, •••

Any Sturmian word has exactly n + 1 length-n factors, e.g., •••, •••, •••, •••

The Problem

Given an ω -regular language L, effectively characterise the set of Sturmian words in L

Key Fact reflecting self-similarity

Any Sturmian word x is the image of a Sturmian word x' under a Sturmian substitution

Sturmian substitutions $S = {\lambda_0, \lambda_1}$, where $\lambda_0(0) = 0$, $\lambda_0(1) = 01$, $\lambda_1(0) = 10$, $\lambda_1(1) = 1$

Sturmian substitutions $S = {\lambda_0, \lambda_1}$, where $\lambda_0(0) = 0$, $\lambda_0(1) = 01$, $\lambda_1(0) = 10$, $\lambda_1(1) = 1$

Consequently

A Sturmian word \mathbf{x} is directed by a sequence $\mathbf{s} = s_0 s_1 \dots \in S^{\omega}$, i.e., there are Sturmian words $\mathbf{x}^{(0)} = \mathbf{x}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ satisfying $\mathbf{x}^{(n)} = s_n(\mathbf{x}^{(n+1)})$

This allows to further deduce $\mathbf{x} = \lim s_0 s_1 \cdots s_n(0)$

A tale of two spaces

Sturmian word x

has sophisticated combinatorial properties

Any Sturmian word has exactly n + 1 length-n factors

$$\mathbf{x} = \lim s_0 s_1 \cdots s_n(0)$$

Directive sequence s

continued fraction of slope

$$\eta = \frac{1}{1 + a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\ddots}}}} = \frac{1}{1 + 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\ddots}}}}$$

$$\mathbf{s} = \lambda_0^{a_1} \cdot \lambda_1^{a_2} \cdot \lambda_0^{a_3} \cdots = (\lambda_0 \lambda_1)^{\omega}$$

Theorem. Given ω -regular $L \subseteq \{0,1\}^{\omega}$, we can compute ω -regular $L' \subseteq S^{\omega}$ such that a Sturmian word $\mathbf{x} \in L$ if and only if its directive sequence $\mathbf{s} \in L'$

Thank You!