Automata on S-adic words

Valérie Berthé, Toghrul Karimov, Mihir Vahanwala

Some families of symbolic dynamical systems, such as **Sturmian words**, have several equivalent characterisations and enjoy neat combinatorial properties that reflect **self-similarity**

Definition by example: the Fibonacci word

Cutting sequence, obtained by drawing a line of slope η , and recording the order of crossing grid lines Here $\eta = 1/\phi$, where ϕ is the golden ratio

as the itinerary of a rotation by η around a circle of circumference 1

$$\mathbf{x}(k) = |(k+2) \cdot \eta| - |(k+1) \cdot \eta|$$

Formula for k-th letter of Sturmian word $\mathbf{x} \in \{0, 1\}^{\omega}$

Any Sturmian word has exactly n + 1 length-n factors, e.g., •••, •••, •••,

The Problem

Given an ω -regular language L, effectively characterise the set of Sturmian words in L

Key Fact

Any Sturmian word \mathbf{x} is the image of a Sturmian word \mathbf{x}' under a Sturmian substitution

Sturmian substitutions $S = {\lambda_0, \lambda_1}$, where $\lambda_0(0) = 0$, $\lambda_0(1) = 01$, $\lambda_1(0) = 10$, $\lambda_1(1) = 1$

Consequence: A Sturmian word \mathbf{x} is directed by a sequence $\mathbf{s} = s_0 s_1 \dots \in S^{\omega}$, i.e., there are Sturmian words $\mathbf{x}^{(0)} = \mathbf{x}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots$ satisfying $\mathbf{x}^{(n)} = s_n(\mathbf{x}^{(n+1)})$

This allows to further deduce $\mathbf{x} = \lim s_0 s_1 \cdots s_n(0)$

Sturmian word x

has sophisticated combinatorial properties

Directive sequence s

• • • • • • • • • • • • • • • obtained from slope, is subject to simpler constraints

Theorem. Given ω -regular $L \subseteq \{0,1\}^{\omega}$, we can compute ω -regular $L' \subseteq S^{\omega}$ such that a Sturmian word $\mathbf{x} \in L$ if and only if its directive sequence $\mathbf{s} \in L'$