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ABSTRACT

Suppose we have a deterministic finite-state transducer A and an
infinite word x, and run A on x to obtain an infinite word A(x).
Which properties of x are guaranteed to also hold for A(x)? In
this paper, we study this preservation question for various well-
known combinatorial properties, e.g., recurrence, being morphic,
and having factor frequencies. The celebrated Krohn-Rhodes theo-
rem provides the framework for proving our preservation results,
and our techniques are based on the ergodic theory of symbolic
dynamical systems, i.e., shift spaces.
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1 INTRODUCTION

Words with elegant combinatorial properties often accurately cap-
ture the behaviour of symbolic dynamical systems and natural phe-
nomena. Classes of self-similar words like morphic words [37, 38],
and in particular, automatic sequences [2] have profound connec-
tions with logic and automata theory [40]. Such words have been
of interest for over a century: e.g., the ubiquitous Thue-Morse word
(as qualified in [1]) was defined to study a problem concerning
geodesics on surfaces [37, Chap. 5]. It is moreover an example of a
uniformly recurrent word, i.e., every factor occurs infinitely often
(this first condition makes the word recurrent) and there is a bound
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on the gaps between its consecutive occurrences (this additional
condition makes the word uniformly recurrent). This almost peri-
odic nature of uniformly recurrent words has been used to model
quasicrystals in the setting of aperiodic order [3]: one may consult
[37] and its bibliography for such applications in physics.

A perennially relevant class of uniformly recurrent words is that
of toric words [7]. They have traditionally attracted interest in the
study of dynamical systems and ergodic theory (see [42, Chap. 1]
and [43]). More recently, toric words have been identified to accu-
rately capture the behaviour of linear loops in program verification
[29]. They also play a central role in the decidability of the monadic
second-order (MSO) theory of the structure (N; <, a?‘, .. .,a?) as
established by [6].

Intuitively, if the infinite word x is a trace of a system (e.g., the
coding of an orbit of a point under the action of a dynamical sys-
tem), and A is a deterministic finite-state transducer, then A(x) is
obtained by augmenting x with annotations with respect to some
specification provided by the transducer. It is natural to ask: are
combinatorial properties of x preserved even after adding such an-
notations, and to what extent? More precisely, this paper considers
the following concrete questions.

(1) If x is recurrent, then is A(x) also recurrent? Can the recur-
rence function of A(x) be described and computed?

(2) If x admits factor frequencies, then does A (x)? If these fre-
quencies are effective for x, are they effective for A(x)?

In the above, (i) the recurrence function Ry: N — N U {oo} of
a recurrent infinite word x returns for each n, the maximum gap
between two consecutive occurrences of a factor u of length n;
(ii) an infinite word x admits factor frequencies if for every finite
word u, we have that limy_, o ﬁ i |0<i<N,x(i,i+|u]) =u}|
exists.

A classical result regarding the preservation of factor frequencies
by transducers is Agafonov’s theorem (see e.g., [5]), which states
that if A is a deterministic oblivious subsequence-selecting trans-
ducer, then x is normal if and only if A(x) is normal. A normal
word x € X% admits factor frequencies such that for any u € 3%,
the frequency of u is 1/|2| lul Normality is a prerequisite for ran-
domness, and its preservation by transducers has been studied in
[11, 12]. This paper complements the above results by showing that
transducers can also preserve the existence of factor frequencies
by virtue of preserving combinatorial structure.

We identify that the Krohn-Rhodes theorem [34] provides a con-
venient framework to answer our preservation-related questions.
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This is because it guarantees that A (x) can be obtained as a cascade
goByo---0By(x), where By, ..., By are “simple” letter-to-letter
transducers whose underlying automata are either permutation au-
tomata or reset automata, and o is a letter-to-word substitution. In
other words, it suffices to answer the above questions for substitu-
tions (done in Lem. 4.1), permutation automata, and reset automata.

To answer the first question regarding recurrence, we use the
Krohn-Rhodes framework to revisit the work of Pritykin [36], who
used a result of Seménov et al. [35] to show that if x has a uniformly
recurrent suffix, then so does A(x). The advantages of using the
Krohn-Rhodes theorem are as follows. (i) We can prove a slightly
stronger result, i.e., if x has a recurrent suffix, then so does A(x).
(ii) We can already give an effective answer in the affirmative to
the second question regarding frequencies in the special case of
uniformly recurrent words and counter-free transducers. (iii) In the
original case of uniform recurrence and arbitrary transducers, we
can explicitly describe and compute the starting index of the uni-
formly recurrent suffix of A(x), and also the recurrence function of
this suffix. In particular, if x is linearly recurrent (i.e., the recurrence
function of x grows linearly), then the suffix of A (x) is also linearly
recurrent; likewise if x is polynomially recurrent, then so is the
suffix of A(x). Moreover, if x is (linearly, polynomially, uniformly)
recurrent and the underlying automaton of A is a permutation au-
tomaton, then A(x) itself possesses the corresponding recurrence
property. These preservation results are stated and proved in Sec. 5,
and will be useful to treat the second question regarding factor
frequencies in greater generality.

What about preservation of having factor frequencies? The as-
tute reader might already provide the counterexample of the (non-
recurrent automatic) word x € {0, 1} such that x(n) = 1 if and
only if n is a power of 3, and the two-state transducer A that per-
mutes the states upon reading the letter 1 and prints the current
state. The word x admits factor frequencies but A(x) does not.
Applying Lem. 6.3, we deduce that A(x) is also automatic, and thus
automatic (and hence morphic) words do not necessarily admit
factor frequencies.

The question of what structure a word needs in order to admit
factor frequencies is indeed profound. We note in Lem. 3.1 the
intrinsic connection to symbolic dynamics and ergodic theory: a
word x admits factor frequencies if and only if it is generic for an
invariant measure on the shift space X that it generates. Normal
words, for instance, are by definition generic for the uniform Borel
probability measure on the full shift . We therefore seek to un-
derstand when we can guarantee that A(x) is also a generic point
for some invariant measure on the shift space Y it generates.

The most reliable way of doing so is to ensure that the shift
Y generated by A(x) is uniquely ergodic, i.e., it admits a single
invariant measure; by Oxtoby’s theorem, all words in Y would then
be generic for this measure. It does not suffice to merely require
that x generate a uniquely ergodic shift: this condition is met by
the counterexample above. Nevertheless, if a shift space is uniquely
ergodic, then the support of its invariant measure will be a minimal
shift space, i.e., a shift space generated by a uniformly recurrent
word. In the above counterexample, this support is the singleton
shift space generated by 0. We further prove that all words in
a minimal uniquely ergodic shift space admit computable factor
frequencies (Lem. 3.2).
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It is tempting to try to establish that if x generates a minimal
shift space X that is uniquely ergodic, then A(x) generates a shift
space Y that is uniquely ergodic. Unfortunately, as the symbolic
traces of ingenious counterexamples shown by Veech [41], Sataev
[39], Chaika [13], and Guenais & Parreau [27] demonstrate, this
is not the case. Intuitively, the introduction of “annotations” gives
rise to words whose factor frequencies “oscillate” between different
limits, or, in technical terms, a generic point in X need not lift to a
generic point in Y.

What additional structure must we impose on x in order to
ensure that A(x) generates a uniquely ergodic shift space? The
following is an ideal starting point. A primitive morphic word x is a
uniformly recurrent word that is morphic, i.e., obtained by applying
a substitution 7 to the fixed point of a non-trivial substitution o.
Primitive morphic words are in fact linearly recurrent, and are
classic examples of words that generate uniquely ergodic shifts. We
show that if x has a primitive morphic suffix, then so does A(x),
and this result is fully effective, i.e., we can compute the factor
frequencies of A(x); see Thm. 6.2. We mention that we incidentally
prove that more general notions of self-similarity are preserved
while obtaining A (x) from x (see Lem. 6.1).

Our main contribution lies in proving that, in order to guarantee
preservation of having factor frequencies, it suffices to impose far
less structure on x than that implied by being primitive morphic.
More precisely, we consider an ergodic-theoretic property known
as Boshernitzan’s condition, or Condition (B) (Def. 3.7) on minimal
shifts. If a minimal shift X satisfies Boshernitzan’s condition, then
it is uniquely ergodic. Boshernitzan’s condition is rather relaxed: it
is known that all linearly recurrent words, as well as all Sturmian
words, generate shifts that satisfy it. We show that if x is uniformly
recurrent and generates a shift that satisfies Boshernitzan’s condi-
tion, then the uniformly recurrent suffix of A(x) also generates a
shift that satisfies Boshernitzan’s condition, and A(x) thus admits
factor frequencies. This main result is Thm. 7.1 in the paper. As a
special case, we show that the factor frequencies of A(x) are com-
putable when x is a computable Sturmian word and the underlying
automaton of A is a permutation automaton (Cor. 8.2).

Our preservation theorems are summarised in Fig. 1, which de-
picts the relations between combinatorial properties, whether A (x)
inherits them from x, and whether the corresponding preservation
theorem is effective.

2 PRELIMINARIES
2.1 Notation and Terminology

Throughout this paper, we shall work with words over finite non-
empty alphabets, which will usually be denoted by ¥ and sometimes
by I'. The set of infinite words over ¥ (indexed by N) is denoted
by 2?, the set of finite words is denoted by X*, the empty word is
denoted by ¢, and the set of finite non-empty words is denoted by
>*. For a word x, the notation x(i) denotes the letter in the i-th
position of x, the notation x(i, j) denotes the finite subword, or
factor of x starting in position i and ending at position j — 1 (i.e.,
the length of the factor is j — i). When u = x(i, j), we say that u has
an occurrence in x at index i. If x is an infinite word, the notation
x(i, 00) denotes the suffix of x starting at position i. We shall denote
the length of a finite word u as |u|. The factor complexity of a word
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Figure 1: Summary of main results. Arrow from block P to
block Q means that the properties in P imply those in Q.
Shield besides P means that if x has a suffix with the proper-
ties in P, then so does A(x). Gear besides the shield means
that the relevant suffix y of A(x) is effectively identifiable,
and the properties in P are furthermore effective for y if they
are for x. Uniformly recurrent x admitting factor frequencies
does not guarantee that A(x) does.

x is the function Py that counts for each n, the number of distinct
length-n factors of x. We denote by .L(x) the factor language of x,
i.e., the set of finite factors u of x. We shall sometimes use £, (x)
as a convenient shorthand for £(x) N X",

A word x € X¢ is said to be recurrent if every factor u of x
occurs infinitely often. In this case, we can define the set of return
words to a factor u of x: these are words r such that ru is a factor
of x, and ru has exactly two occurrences of u, once as a prefix,
and once as a suffix. A recurrent word x is said to be uniformly
recurrent if for every factor u, its set of return words Ry () is finite.
For a uniformly recurrent word x, we can define a return-time (or
recurrence) function Ry : N — N, such that Ry (n) gives the length
of the longest return word to a length-n factor of x. A uniformly
recurrent word x is said to be linearly recurrent if Ry (n) € O(n). A
helpful perspective is as follows: in a uniformly recurrent word x,
for any factor u, the gaps between its consecutive occurrences are
bounded. If x is linearly recurrent, the bound is linear in |u|. If for
a uniformly (respectively, linearly) recurrent word x € 2, given
any n, we can compute x(n) and Ry (n), we say that x is effectively
uniformly (respectively, linearly) recurrent.

Remark 2.1. If x(n) and Rx(n) are computable, we can compute
L (x) as the set of length-n factors of x(0,n + Ry (n)). This is
because if the occurrence of u at index i is its first occurrence, then
v = x(0, i) must be a suffix of some return word r to u, since indeed,
vu is a recurrent factor of x. In particular, Ry gives a bound on the
index of the first occurrence of a factor. Conversely, if x is uniformly
recurrent and x(n) and L, (x) are computable given any n, then
we can compute Ry (n) by enumerating £ (x) till we find an N such
that all length-N factors contain at least two occurrences of each
length-n factor.

For arbitrary recurrent words, the set of return words to a factor
is not necessarily finite. In this general setting, we say that a word x
is effectively recurrent if it is recurrent, and for any regular language
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L, the following two problems are decidable: (A) Does there exist
N > 0 such that x(0,N) € L; (B) Does there exist non-empty
u € LN L(x)? Due to a result of Seménov (see e.g., [14, Thm. 5]),
this definition is equivalent to asserting that x is recurrent and has
a decidable monadic-second order (MSO) theory. Recall that it is
elementary to show that if x has a decidable MSO theory, then so
does A(x) for any transducer A (see, e.g., [7, Lem. 4.5]).

Let u be a factor of an infinite word x. The frequency of u in x,
denoted fx (u), is given by limn_; o0 ﬁ|{i | x(i,i+|ul) =u, i < N}|
(i.e., the limiting fraction of indices which mark an occurrence of
u), and is defined if the limit exists. We say that a word x € X%
admits factor frequencies if for every recurrent factor u of x, the
above limit exists. If furthermore, given any u, this limit can be
computed, then we say that x admits computable factor frequen-
cies. Formally, there is a Turing machine which, given factor u
and tolerance § as input, computes a rational number p such that
|fx(u) — p| < 8. Moreover, for any given u, if the convergence of
the sequence ﬁl{i | x(i,i+|ul) =u, k <i< N +k}| toward fx(u)
holds uniformly in k, then x is said to admit uniform frequencies
(see e.g. [37, 38]).

2.2 Shift Spaces and Measures

We shall use ergodic theory to study which subsets of uniformly
recurrent words that admit factor frequencies are closed under
transduction. Shift spaces will serve as our underlying dynamical
systems in order to do so. We also remark that combinatorial prop-
erties (e.g., recurrence) are often studied for shift spaces, but it is
usually straightforward to obtain analogous results for words.

The shift operator T maps a word x € X% to x(1,0), ie., it
deletes the starting letter. We write T"x for the n-fold application
of T to x € 2“. We endow 2“ with the usual product topology,
thus making it a compact metric space. A shift system (also called a
shift) is the dynamical system (X, T) where X C 3¢ is closed and
satisfies TX C X. When the dynamics is clear from the context, we
also refer to X as a shift.

Given a word x, the shift generated by x is the the topological
closure {T"x | n € N} of the orbit of x under T. For a shift X, we
define £L(X) ={u | u € L(x"), x’ € X}, and as before, we declare
L, (X) to be shorthand for £ (X) NX". We have that if X is the shift
generated by x, then £(X) = L(x),and X = {x" | L(x") € L(x)}
[38, Prop. 4.6]. A shift X is said to be minimal if it does not have
a non-empty proper closed subset Y such that TY C Y. Therefore,
the shift generated by any x” in a minimal shift X must be X itself.
We have that a word x generates a minimal shift if and only if it is
uniformly recurrent [38, Prop. 4.7].

A cylinder of X C 3¢ is a set of the form {ux’: x’ € 3?} N X
where u € 3*. The cylinder generated by u will be denoted by [u] x;
we omit the superscript X when it is clear from the context. The
cylinders are clopen (i.e., both closed and open, and in particular
are the open balls of X), and a subset of X is clopen if and only
if it is a finite union of cylinders. Since there are countably many
cylinders, any open set is a countable union of cylinders.

We refer the reader to [23, App. B.5] or a standard text such as
[4] for the basic concepts of measure spaces. Given a topological
space X, its collection of Borel-measurable sets, or simply Borel sets,
is the the o-algebra generated by the open subsets of X. If X is
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a shift space, the o-algebra can equivalently be generated by the
cylinders of X.

A (Borel probability) measure p on X maps each Borel set B to
1(B) € [0, 1], satisfies p(X) = 1, and is countably additive, i.e., for
any countable collection (Bp),, of disjoint Borel sets we have
H(Un Bn) = Zn 1(Bn).

A function 7: Y — X is called Borel measurable if for every
Borel set B C X, the pre-image 77 !(B) is a Borel set of Y. In
particular, if 7 is continuous, then it is Borel measurable. Indeed,
if B is open, then by continuity 7! (B) is open; and we have that
a2 Y X\ B) =Y\ #7Y(B) and 7~} (U; B;) = U; 7~ 1(B;). In other
words, the family of sets B for which 7~1(B) is Borel contains the
open sets of X and forms a o-algebra; in particular it must contain
the o-algebra generated by the family of open sets of X, i.e., the
Borel sets of X. A measurable function 7: Y — X projects a Borel
measure v on Y to a Borel measure yon X asy=vox L.

An invariant measure p of a compact dynamical system (X, T) is
a (Borel probability) measure y such that (T ~1B) = u(B) for every
measurable B C X. By the Krylov-Bogolyubov theorem [23, 3.8.4],
every (X, T) has an invariant measure.

In the case of shift spaces, we can obtain an invariant measure y
by defining a probability pre-measure pig on the Boolean algebra of
cylinders, and then invoking the Carathéodory extension theorem
[23, Thm. B.5.1] to uniquely extend it to a Borel measure p, since
the o-algebras generated by cylinders and open sets of a shift space
coincide. We require that the pre-measure g evaluate to 1 on X =
[e]x, and satisfy the compatibility conditions

po([ulx) = > po[ualx) = Y po(laulx). (1)

Observe in particular that g o T~ ([u]x) = po([u]x), and more
generally, for any set U in the Boolean algebra of cylinders, 1o (U) =
1to(T~1U). The Borel measure i is defined as
p(B) = inf " po(Un),
(Un)n 5
where (Uy,), ranges over sequences of (disjoint) sets in the Boolean
algebra of cylinders such that B € |J,, Up,.

Since T is continuous, y o T~1 will also be a Borel measure v.
The corresponding pre-measure vy obtained by restricting v to the
Boolean algebra of cylinders, however, is identical to yo. Thus by
the uniqueness of the extension, v = o T~! = py, i.e., yt is indeed
an invariant measure.

We say that x € X is a generic point of an invariant measure y
(or simply, x is generic for p) if for every continuous h € C(X,R)
(where C(X,R) denotes the set of all continuous functions from X

to R),
1 N-1 )
lim — T'x) = .
We refer the reader to [23, App. B.5.2] for the precise formal
definition of the integral.

2.3 Morphic Words and Primitivity

A substitution is a map o: ¥ — T'*, and is extended to 3* and =¢
in the obvious way, i.e., concatenation. A substitution o: ¥ — ¥*
is said to be primitive if there exists a positive integer m such that
for every letter a € 3, all letters occur in 6™ (a). A substitution o
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is said to be non-erasing if there does not exist a letter a such that
o(a) =e¢.

Aword x € X (we assume x contains all the letters in X) is called
substitutive if there exists a substitution ¢ which is non-trivial (i.e,
not the identity) over the letters of x, such that o(x) = x. If o is
primitive, then x is said to be a primitive substitutive word. As an
example, the Fibonacci word x = 0100101001001 - - - is primitive
substitutive, and is the fixed point of the substitution that maps 0
to 01 and 1to 0.

A word y € I'? is called morphic if there exists a substitutive
word x € X and a substitution 7: ¥ — I'* such that y = 7(x). If
x is primitive substitutive, then y is said to be primitive morphic.
Morphic words are presented as o, 7, a prefix u such that o(u) = u,
and a letter a such that o(a) prolongs a (i.e., begins with a and
is more than one letter long). We can convert any representation
into one such that the defining substitutions are non-erasing by
restricting the alphabet of .

Remark 2.2. Some authors require 7 to be a coding, ie.,7: ¥ = T
in the above definition. A result of Cobham observes that this is
not a restriction. Indeed, these definitions can (effectively) be used
interchangeably, including in the case of primitive morphic words.
The idea to prove the equivalence (presented in [21, Prop. 17]) is to
define a substitution & over an auxiliary alphabet 3, constructed
by taking |z(a)| copies of each letter a € X.

There are several other sources the reader can consult for a de-
tailed technical exposition of this remark, see e.g., [2, Cor. 7.7.5], [20,
Thm. 3.8] (Thm. 9 in the arXiv version), or [28]. For completeness,
we sketch the idea of [21, Prop. 17] here. For 0 < i < |r(a)| — 1,
the substitution ¢ maps the i-th copy a') of a to the concatena-
tion blgo)bi(l) --- of all the copies of the i-th letter b; of o(a) (if
|o(a)| < i, then the image is the empty word). The last copy of a
is mapped similarly to the copies of the remaining letters of o(a).
We then get %, a “stuttering” version of x, as the fixed point of &
iterated on c(%), the foremost copy of the starting letter of x. Finally,
y is obtained as 7(X), where 7 maps a'D to the i-th letter of 7(a).

Remark 2.3. It is straightforward to give an effective proof of the
fact that any suffix of a morphic word is morphic [2, Thm. 7.6.1]. It
is also known how to decide whether a morphic word (presented
as the image under 7 of the fixed point of ¢) is uniformly recurrent;
should the decision be yes, the procedure computes letter-to-letter
7’ and primitive ¢’ such that the input is the image under 7’ of the
fixed point of ¢’ [22, Thm. 1, Thm. 3, Sec. 4, Sec. 5] (see also [21,
Lem. 4] and the statement of [24, Thm. 24(1)]). It is well known
that primitive substitutive words are, in fact, linearly recurrent
[18, Prop. 25]. By Lem. 2.4 below, the linear recurrence function
and factor frequencies are effective. These properties extend to
primitive morphic words by Lem. 4.1. The proof of effectiveness is
implicit is classical texbook, we provide it for completeness.

LEMMA 2.4. Letx € 2 be a substitutive word obtained as the fixed
point of a primitive substitution o, and let y = 7(x) be a primitive
morphic word. We have that x, y are effectively linearly recurrent and
admit computable factor frequencies.

Proor. We prove the lemma for the primitive substitutive x, and
defer the proof for the primitive morphic y to Lem. 4.1, whence it
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follows immediately. In the proof, we shall associate to the substi-
tution o an adjacency matrix M, whose (j, i)-th entry records the
number of times the j-th letter a; appears in the image o(a;) of the
i-th letter a;. Because ¢ is primitive, we can assume up to replacing
o with some o¥ that M has strictly positive entries, which allows
us to use Perron-Frobenius theory.

We first show that x is effectively linearly recurrent, i.e., Ry (n) <
Ln for some computable L. The proof of linear recurrence in [18,
Prop. 25] shows that L = C- maxgex |0(a)| - Ry (2), where C is such
that for all n > 1, maxgey |6™(a)| < C - minges |0 (a)|.

It suffices to take C = (maxi,j(vi/vj))z, where (vi)ll.g
strictly positive entries of a left eigenvector o™ of M corresponding
to the Perron-Frobenius eigenvalue p (i.e., the positive one with
maximum absolute value). Indeed, for the i-th letter a, |6 (a)| =
2,j(M");i. The expression on the right is the sum of entries in the i-
th column of M", and is lower bounded by 2 (vj/max;vj)- (M™)ji,
and upper bounded by 3 ;(v;/minoj) - (M");,;. These bounds re-
spectively evaluate to the i-th entries of (vTM™")/(max; v;) and
(v"M"™)/(min; vj). Since v is an eigenvector, we get that

are the

p!(mino;)/(maxo;) < |6"(a)| < p/ (maxv;)/(minov).
J J J J

We now show how to compute (an upper bound on) Ry (2). First,
we can compute L (2) by starting with x(0, 2), and recording the
length-2 factors that are produced upon repeatedly applying o.
The set of factors will saturate within |2|? iterations. In particular,
we can find k large enough such that for all a € %, o (a) contains
every factor in Ly (2). Clearly, R (2) < 2max, |o¥ (a)|. This proves
effective linear recurrence.

We note that the textbook discussions in [38, Chap. 5.4] and [23,
Chap. 3.8.5] prove x has computable factor frequencies. We present
the techniques here for clarity in exposition. Recall the adjacency
matrix M of o. It follows that the frequency of the i-th letter a in x
is the i-th entry of the eigenvector corresponding to the Frobenius
eigenvalue.

This same idea is extrapolated to describe factor frequencies as
follows. We define an alphabet X,,, whose letters correspond to
words in L (x) (see Rmk. 2.1 for how to compute this alphabet),
and the word x, € 2%, where x,(i) corresponds to the factor
x(i,i + n). We define the substitution o, such that o, (u) is the
ordered list of the first |o(u(0))| length-n factors of o(u). Crucially,
this substitution on ¥, is primitive [38, Lem. 5.3], and we can
again use Perron-Frobenius theory to obtain the frequency of factor
u € 3" which is a letter in 3,,. m]

Morphic words, by their definition, can be regarded as being
self-similar. This notion of self-similarity can be generalised as
follows.

Definition 2.5. Let S be a set of substitutions. A word x € X%
is said to be S-adic if there exists a sequence & = (on),_, of sub-
stitutions from S, and words x(©) = x,x(l), x(z), ... such that for
all n, x(" =g, (x(""'l)). The sequence o is called the directive

sequence of the word x, and we say that x is directed by o.

Note that substitutive and morphic words are special cases of S-
adic words where the directive sequence is periodic and eventually
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periodic, respectively. The most common example of a class of S-
adic words is the class of Sturmian words (see e.g. [8, 37]): these are
words over the binary alphabet with a factor complexity of n+1. Let
S = {40, A1, po. p1}, where A; (i) = i, A (j) = ij, pi (i) = i, pi (j) = ji.
It is well known that any Sturmian word is S-adic with S as above,
and an analogous statement can also be made for the generalisation
to Arnoux-Rauzy words [25]. As an example, the Fibonacci word is
a Sturmian word, and the sequence of substitutions is (19A1)%.

3 FREQUENCIES AND ERGODIC THEORY

In this section, we shall prove the following, and use it to moti-
vate the conditions we impose on a word x (i.e., Boshernitzan’s
condition) in order to ensure that A(x) admits factor frequencies.

LEmMMA 3.1. A word x admits factor frequencies if and only if x is
generic for an invariant measure i on the shift X that it generates.
Should this be the case, we have Fx(u) = p([u]x).

Proor. The “if” implication is obvious: we simply choose the
continuous function h to be the indicator 1,, which evaluates to 1
on the cylinder [u]x and 0 elsewhere.

Conversely, suppose x admits factor frequencies and generates
the shift X. Recall that £(X) = L(x), and hence the factor frequen-
cies of x defines a pre-measure yg on each cylinder in a way that
satisfies the compatibility condition (1). The pre-measure py is thus
invariant, and extends to an invariant measure y. We now need to
prove that x is generic for g, i.e., for every continuous h, we have
[ hdp =limy 00 5 N5 A(T ).

We have a special case where the Stone-Weierstrafy theorem
applies. Observe that since X is compact, the function h is uniformly
continuous, admits a modulus of continuity, and we can define the
following sequence (gar)p of functions that converges uniformly
to h (i.e., for every § there exists Mg such that for all M > Mg we
have maxx |gym —h| < maxye r,,(x)(max[, |, h—minf,}, h) < 6):

gMm = Z max h - 1y,.
ue Lm(X) [ulx
By the dominated convergence theorem [23, Thm. B.5.3], we also
have that /hd,u = limM_,oongdy.
In particular, for every § > 0, we can choose M large enough

such that
/ hdy — / gmdp

and for all N, we have by uniform convergence that

1Y . 1Y
'N ;gM(m -5 ZO h(T'x)

Since x admits factor frequencies, it is also clear that for each M,
we have limy_ % Zfio_l gm(Tix) = /gMd/l, and in particular
for our chosen M, for every § there exists Ngs such that for all
N > N, we have

L Nt '
/9Mdll "N Z gm(T'x)

i=0

< 8/3,

< /3.

< /3.

Adding our inequalities together and applying the triangle in-
equality, we get that for every § there exists Ns such that for all
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N > Ng, we have |f hdy — % Zf\io h(Tix)| < §, or in other words,
/ hdp = limy 00 % Zfial h(Tix), as desired. ]

We now describe measures for which “almost” all points are
generic. An invariant measure y is called ergodic when the following
condition is met: if a Borel set B is such that T~1B = B, then p(B) is
either 0 or 1. Since X is a compact metric space, (X, T) is guaranteed
to have an ergodic measure [23, Prop. 3.8.9]. The Birkhoff ergodic
theorem [23, Thm. 3.8.5] states that if y is an ergodic measure,
then for every integrable function h, the set of points x for which!
f hdp # limn_,c0 % Zﬁ\igl h(T'x) has p-measure 0. Thus, for each
u € L(X), the set B, = {x | fx(u) # p([u]x)} has y-measure 0.
By Lem. 3.1, the complement of the countable union of all such By,
is precisely the set of points that are generic for p. Thus, the set G
of generic points for y has p-measure 1. If (X, T) is minimal, we
additionally have that G is dense (in the topological sense) in X.

The exception of non-generic points does not arise in dynami-
cal systems (X, T) that are uniquely ergodic, i.e., there exists only
one invariant measure y, which is guaranteed to be ergodic [23,
Cor. 3.8.10]. In this case, Oxtoby’s theorem [38, Thm. 4.3] tells us
that all points x € X are generic for . Moreover, unique ergod-
icity is even equivalent to each word in the shift having uniform
factor frequencies [23, Prop. 3.8.14]. A word x admits uniform fac-
tor frequencies if for every v € L(x) and every &, there exists
M such that for every m > M and every u € L, (x), we have
[lulo/lul = fi(v)] < 8, where |u|, denotes the number of occur-
rences of v in u. Note that for technical convenience, we may re-
place |u|y/|u| in the above by |u|,/(|u| — |o| + 1), which we denote
by f.(v). This alternate definition is also natural because the de-
nominator is the number of indices of u at which an occurrence of
v is possible.

Note that if (X, T) is uniquely ergodic, then the support X’ of
the invariant measure y is a minimal shift. Indeed, if it were to
contain a shift Y, then Y itself would admit an invariant measure
v [23, Prop. 3.8.4] which, when extended to X’, would be distinct
from p: a contradiction. We henceforth focus on minimal shifts.

LEmMMA 3.2. If an effectively uniformly recurrent word x generates
a uniquely ergodic shift X with invariant measure y, then x admits
computable factor frequencies.

Proor. Given a factor v of length [ and a tolerance §, we shall
show that we can compute L such that for allu € Ly ,;_;(x), we
have |fi(v) — fu(v)| < 8. It then remains to count the occurrences
of v in any appropriate u, e.g., u = x(0,L + I — 1). For notational
convenience, in this proof we abbreviate £ ,;_; as simply L.

It suffices to show that for every L > 1, we have min, ¢ p f,,(v) <
fx(v) < maxye s fu(v). Indeed, by the definition of uniform fre-
quencies, the difference between the bounds is less than § for some
L which can be found by brute enumeration (made possible by the
fact that x is effectively uniformly recurrent).

We prove the above claim by showing that fi(v) is a convex
combination of the values of f;, (v); more precisely, we have fy (v) =
e s fx(u) fu(v). To that end, we define the continuous function
X> which maps x to f,(o r+1-1) (0). Clearly by the unique ergodicity

'We overload inequality to also include the case where the limit does not exist.
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of X, we have / xdy is equal to the summation of the right. We
shall conclude by showing that limy_, % Zfio_l X(Tix) = fx(0).

Observe that by definition, y(x) = % 251:_01 1,(T/x). Thus, we
can express Zl{ial x(Tix) = I% Zfio_l Z;J;Li_l 1,(T/x). We can fur-
ther rearrange the summation to obtain

1 N-L ) L-2 ) )
| Z 1U(Tlx)+Z(Hl)uv(r’x)+1U(TN*1*lx)) .
i=L-1 i=0

Thus, imy—eo 37 L g ¥(T'x) = limy—e0 5 ZN7E, 10(T'x). The
latter sequence is (N — 2L)/N times the average of N — 2L terms,
and indeed converges to the limit of the usual Birkhoff averages,

ie., to fx(v). o

The existence of factor frequencies is very susceptible to fail-
ure when words are drawn from minimal shift spaces that are
not uniquely ergodic. Note that the set of all invariant measures
of (X,T) form a convex polytope whose extremal points are the
ergodic measures [23, Prop. 3.8.10]. In particular, if (X, T) is not
uniquely ergodic, it will have at least two distinct ergodic measures.

LEmMMA 3.3 (THM. 1.1 IN [17]). Let X be a minimal shift space
which is not uniquely ergodic. There exists a dense set B C X of words
that are not generic for any invariant measure, and hence do not
admit factor frequencies.

Remark 3.4. To summarise the discussion on the existence of
factor frequencies, for a minimal shift X, we have the following. If X
is uniquely ergodic, then all x € X admit (uniform and computable)
factor frequencies, and moreover agree on the frequencies of each
factor. On the other hand, if X is not uniquely ergodic, then it will
have a dense subset of words which do not admit factor frequencies,
and a dense (by virtue of including the orbit of any generic point)
subset of generic points for its ergodic measures. These generic
points do admit factor frequencies, but they do not agree on the
frequencies of all factors because they are generic for different
measures.

Let us now explain how to obtain the counterexamples to the
preservation of unique ergodicity alluded to in the Introduction.

LEMMA 3.5. There exists a uniformly recurrent word x € {0, 1}
that admits factor frequencies, but A(x) does not, where A is the
two-state transducer whose underlying automaton changes the state
on reading 1, stays in the same state on reading 0, and prints (q, b)
on reading b, where q is the current state.

Proor. We shall choose x to be the symbolic trace of a carefully
constructed topological dynamical system. Chaika [13] constructs a
minimal and uniquely ergodic dynamical system (X, T”) as follows:
the space X’ is the unit circle identified by the interval [0, 1), and
T’ maps { to { + a, where @ < 1/3 is an irrational number. The
invariant measure ' is the usual Lebesgue measure. There is a
distinguished set I which is the union of the intervals [0,y) and
[a + B, + B +y), where f,y are constants depending on «. The
dynamics of the skew product Y’ = (Z3 = X’,T") maps (b,{) to
(b+11(0), { + ), where 17({) is 1 if { € I, and 0 otherwise. This
skew product is minimal, but admits precisely two distinct ergodic
measures V('), vi.
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For each {, we define its symbolic trace x = tr({) as x(n) =
17({ + na). We claim that X = {tr({) | { € X’} is a minimal shift.
To that end, for each u € {0, 1}*, we shall inductively define sets
I, with the property that u occurs at index n in tr({) if and only if
{+na € I,. Clearly, I} = I,and Iy = [0,1)\[1, and I,, = [, N(—a+1L,).
By examining the orientation of the intervals, we have that each I,
is either empty, or contains a non-empty open set. Thus, tr({) is
uniformly recurrent, and furthermore L(tr({)) is the set of factors
u such that I, is non-empty (we take I to be [0, 1)). It follows that
every tr({) generates the same shift X, and that f;,(s)(v) = W (L).
The unique ergodicity of X follows readily from the following
lemma.

LEMMA 3.6. Consider the partition of the unit circle into finitely
many semi-open intervals Ij = [B;,y;), and let a be irrational. The
shift X generated by the codings (with respect to the intervals I;) of
the rotation by a is uniquely ergodic.

PRroOF. Denote by I ; the interval (f}, yj]. By symmetry, the set
of codings with respect to the partition of “dual” intervals is also
included in X. We shall prove that X comprises precisely of the
codings with respect to the original partition, and codings with
respect to the dual partition.

For each u € L,(X), we define I, and I, as before, and also
define the non-empty closed interval I, as their union. If x € X is a
coding of the rotation starting at {, then for each prefix u of x, we
must have { € I,. Conversely, if { is in each I;, then x is its coding
because by the orientation of the intervals, { is either in each I, or
in each I, (if { was on the left endpoint of I, and right endpoint of
Lo, it would imply that I, is empty, a contradiction).

Thus, each x € X defines an infinite sequence of nested closed
intervals, and there necessarily exists a point { in their countable
intersection. By the preceding discussion x codes a rotation of this
¢ with respect to either the original partition, or the dual partition.
This proves that each x € X admits factor frequencies, with fx (u)
given by the Lebesgue measure of I;,. We use Oxtoby’s theorem to
conclude that x is uniquely ergodic. O

We now define the shift Y to be generated by the run of A on
some tr({). We claim that Y is minimal, projects to X, and in fact
the projection map is two-to-one. Minimality can be seen either by
alternately defining Y via Y’ similarly as above, or directly from the
uniform recurrence of Y as given by Lem. 5.2. Now, Y is (isomorphic
to) a closed subset of Zy X X. Since Z3 is compact, projection is a
closed map, and hence the projection of Y onto X is a closed set
which is moreover shift-invariant. It follows that this projection
must be X itself. Since Y includes the set of symbolic traces of the
minimal skew product Y’ = Z, ~ X”, it must in fact be isomorphic
to Zy X X.

Finally, we show that Y admits two distinct invariant measures
Vo, v1. For this, observe that tr: Y’ — Y is measurable. Indeed, the
subsets B of Y for which tr~!(B) is Lebesgue-measurable form a
o-algebra which includes the cylinders of Y as they are images of
measurable sets {b} X I,. Thus, the ergodic measures v('), v; of Y/
project to invariant measures v, = v; otr L.

To complete the proof, we record that v, v; are indeed distinct
because vy, V| are such that v;j(b X B) = i/ (B), i.e., each measure
concentrates its mass in one copy of X’ [13, Prop. 3].
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We thus have that Y is a shift that is not uniquely ergodic, and
contains the runs of A on all x € X. In particular, by Lem. 3.3, there
exists some counterexample y = A(x) that does not admit factor
frequencies despite x doing so. O

The natural questions that follow are: can one identify when a
shift is uniquely ergodic? Is there a stronger condition on X which
precludes the misbehaviour of Y described above? Boshernitzan
[10] gave a sufficient (but not necessary) condition in answer to
the former. In this paper, we shall show that this condition answers
the latter in the affirmative.

Definition 3.7 (Condition (B)). Let X C X be a minimal shift
space. For an invariant measure y, define x: N — R as

(n-p([ulx)).

k(n) = min
ue L, (X)
The minimal shift space X C X satisfies Boshernitzan’s condition
(also referred to as Condition (B)) if it admits an invariant measure
y such that the corresponding « satisfies lim sup,,_,,, x(n) > 0. A
uniformly recurrent word x € 3¢ satisfies Boshernitzan’s condition
if it generates a shift space X that satisfies Boshernitzan’s condition.

LEMMA 3.8 (BOSHERNITZAN [10]). A minimal shift space X C 3¢
that satisfies Boshernitzan’s condition is uniquely ergodic. If a word
x € X? satisfies Boshernitzan’s condition, then the frequency of every
factor u of x is well defined and uniform.

Remark 3.9. If a word x is linearly recurrent, then it satisfies
Boshernitzan’s condition [19, Thm. 15]. And even, linear recurrence
for a minimal shift space is equivalent to lim inf x(n) > 0 by a result
due to Boshernitzan (see [37, Exercise 174]). By Rmk. 2.3 below,
Boshernitzan’s condition is also satisfied by primitive morphic
words. The work of Damanik and Lenz [15] is important from the
perspective of applicability: they show that Sturmian words satisfy
Boshernitzan’s condition, as do almost all words coding the orbits
of interval-exchange transformations [16, Thm. 5], a large class of
1-dimensional toric words [16, Sec. 5], and almost all Arnoux-Rauzy
words [16, Thm. 12].

4 THE KROHN-RHODES FRAMEWORK

In this paper, we shall work with deterministic automata and trans-
ducers. Henceforth, when we refer to automata and transducers,
we mean the deterministic models of computation described below.

A transducer A is given by (Q, ginit.2, T, 8%, 8%), where Q is a
finite non-empty set of states, gjnit € Q is the initial state, X is the
input alphabet, T is the output alphabet, §7: Q X £ — Q is the
transition function, and §°: Q X & — T* is the output function.
For convenience, we shall extend the domain of §¢, 8° to OxZz*
in the obvious way: 6?(q,¢) = q and §°(q,¢) = ¢ for all g, while
5 (q, ua) = 8*(86*(q,u), a) and 6°(q, ua) = 5°(q, u) - 5°(56* (¢, u), a).
A uniform transducer is one where we have that for all g, a, we
have |6°(q, a)| is the same: if the common length is [, we have an
l-uniform transducer. A non-erasing transducer is one where for all
q € Q,a € ¥ we have §°(q, a) # ¢.

Automata are special cases of 1-uniform transducers where I' =
OxZ, and & is the identity function, and we therefore present them
simply as (Q, ginit, 2, ). We shall denote the output of a transducer
A upon reading a word x (finite or infinite) as A(x). When A is
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an automaton, we call the sequence A(x) of state-letter pairs the
run of A on x, because indeed if we denote A(x)(n) = (qn, an),
then for every n we have §(qn, an) = qn+1-

Given a transducer A, we shall denote its underlying automaton
(obtained as described above) by Ay. We observe that we can always
define a substitution o: (Q X %) — I'* such that for all x, we have
that A(x) = o (Ap(x)). The following lemma assures us that it
suffices to focus only on automata to prove our results.

LEMMA 4.1. Leto: ¥ — T be a substitution, and let x € 3% be
an infinite word. If x has one of the following properties, then o(x)
also has that property, provided it is an infinite word.

(1) primitive morphic

(2) recurrent

(3) (effectively) uniformly recurrent

(4) (effectively) linearly recurrent

(5) uniformly recurrent and admits factor frequencies

(6) satisfies Boshernitzan’s condition

In item (5), if x is effectively uniformly recurrent and admits com-
putable factor frequencies, then o(x) also has these properties.

Proor. Item (1) follows immediately by definition (see Rmk. 2.2).

Items (2) through (4) have similar proofs. To formalise the proof,
consider the attribution function a from indices of o(x) to indices of
x. We define () to be the smallest index i such that j < |o(x(0,i+
1))], i.e., the letter at index j of o(x) is attributed to the image
of x(i). We define a(J) = Ujey a(j). In particular, when v is a
factor of o(x) at index j, then we set J = [J, j + |v|), obtain [, ")
as the smallest interval that contains a(J), and say that the above
occurrence of v is attributed to an occurrence of u = x(i,i’) in x at
index i.

Clearly, if an occurrence of v is attributed to an occurrence of u,
then the recurrence of u implies that of v. This proves item (2).

In case x is uniformly recurrent, an occurrence of v will always
be attributed to a factor u that is at most Ry (1) - [o| in length. This is
because the gaps between occurrences of non-erasing letters (letters
a for which o(a) is not the empty word) are bounded by Ry (1). The
gaps between the occurrences of u are themselves bounded by
Ry (Rx(1) - |v]). Finally, the gaps between the occurrences of v must
be bounded by (maxgey |0(a)]) - Rx(Rx (1) - |o]). This proves item
(3), and also item (4): if Ry (n) is linear, then the bound on the gaps
between occurrences of v will also be linear in |o|.

We prove item (5) in two steps. As in Rmk. 2.2, we decompose o as
T06, where 7 is a letter-to-letter substitution, and 6 maps each letter
ato |o(a)| copies of a, i.e., 6(a) = (a,0)(a,1)---(a,|o(a)] — 1). We
denote 6(x) by z, and 7(z), which is the same as o(x), by y. Observe
by the preceding discussion that z, y are uniformly recurrent. We
shall show that z admits factor frequencies, and in turn so does y.

By uniform recurrence, we have that any factor w of z can be
attributed to one of finitely many factors {uy, . .., ug} of x, and this
factor will have length at most Rx(1) - |w|. By the definition of
attribution, there is no pair u;, u; such that u; is a factor of u; (in
particular, the cylinders [u;]x,. .., [ug]x are disjoint); moreover
by the positional-encoding nature of the construction, each u;, upon
restricting to non-erasing letters, will give a word u such that & (u)
contains exactly one occurrence of w (and conversely, the set of
factors which begin and end with a non-erasing letter, and give
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u upon restricting to non-erasing letters is {uy, ..., ug}). We thus
obtain fz(w) = fz(6(u)). We claim that f;(6(u)) = F/L, where
F= Zflzl fx(u;), and L is the non-zero constant ), ,¢x fx(a)|d(a)l.
Indeed, L > 1/Rx(1), and is hence non-zero.

We note that F = limn_;co ﬁ Zfio_l Z?:l 1y, (T"x) by Lem. 3.1.
We also have that L = limy_,00 ﬁ Zfigl |o(x(i))| (consider the
function that maps x to |o(x(0))|). We rephrase these observations
by taking appropriate subsequences of Birkhoff averages as follows.
Let (BN)Nen denote the strictly increasing sequence whose N-
th element S is the index (in x) of the N-th occurrence of an
element of {uy, ..., uy}. We have in particular that limpn_, e /?T—N =
F. Similarly, we define the strictly increasing sequence (ynN)NeN
of indices of occurrences of 6(u) in z as yN = Z?:Aé_l lo(x(i))],

and observe that limy_,co 2—’:{ = L. Since L # 0, we obtain that

limy—eo YiN = % Denoting U = {yny | N € N}, it remains to
. . unfoM
observe (by elementary analytic means) that limps_, % =
lim N_F
N—o00 YN T

Indeed, the sequences agree whenever M = yn. The sequence on
the left decreases in the interim, and only increases when M steps
from ypr —1 to yn. A simple calculation shows that the increment is
bounded by 1/(yn — 1), i.e., asymptotically vanishes. It then follows
that the sequences converge to the same limiting value F/L.

The proof that y inherits the property of admitting factor fre-
quencies from z is simpler because 7 is letter-to-letter. For any factor
v, there are finitely many factors wy, . .., wyg of the same length such
that 7(w;) = v. The frequency f;(0) is simply 3; fz(w;).

To prove item (6)?, observe that

1
min (v) > = min (u),
o Bty Y 2 Lo B
where R = Ry(1). Writing «’(n) as shorthand for min,¢ r f(u),
using X,Y to denote the shifts generated by x,y, and defining
X Py using fx, fy, we get L(R+1)n -k}, (n) > maxo<,<g(nR+r) -
K;((nR +r). This allows us to conclude that lim sup,,_,, ky(n) > 0,
given limsup,,_, ., kx(n) > 0, thus establishing the preservation of
Boshernitzan’s condition. O

We record an interesting corollary of the above proof.

COROLLARY 4.2. Let o be a non-erasing substitution. If x admits
(computable) factor frequencies, then so does o(x).

Our main tool to prove preservation results for automata will be
the Krohn-Rhodes theorem, which decomposes automata into sim-
ple, “well-behaved” components that are connected “in series”. The
strategy is then to prove preservation results for these simpler au-
tomata. The Krohn-Rhodes theorem is often stated for semigroups
[30]; see [34, Thm. 1] for a formulation in terms of automata (see
also [32, Thm. 3]). We now introduce the terminology required to
state the theorem.

Given an automaton A = (Q, ginit, =, 9), for every u € ¥, we
define &, : Q — Q to be the transition function induced by u, i.e.,
Su(q) = 8(q,u). An automaton A is called a reset automaton if
for every a € %, the function Jj is either the identity function, or

2The proof of [15, Thm. 8(a)], which states item (6), implicitly assumes the substitution
is non-erasing,.
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constant-valued. Intuitively, a reset automaton is a flip-flop whose
memory records the last reset. An automaton A is called a permu-
tation automaton (also a group automaton) if for every a € 3, §,
defines a permutation of Q, i.e., is bijective. The automaton A is
called counter-free if there does not exist u € =*, 0’ C Q such that
8, induces a non-trivial permutation on Q’. For the sake of brevity,
we declare that permutation, reset, and counter-free transducers
are respectively those whose underlying automata are permutation,
reset, and counter-free automata. We remark that counter-free au-
tomata are of particular interest because of their equivalence with
first-order-definable (aperiodic) languages, as established by the
McNaughton-Papert theorem [33].

We say that an automaton A’ = (Q', ¢/ %, &’) covers an au-
tomaton A = (Q, ginit, 2, 8) if there exists a map ¢ from Q” to Q
that respects the initial states and commutes with the transition
relations, i.e., ¢(q], ;) = Qinit and for every ¢’ € Q’,a € %, we have
that ¢(8”(q’, a)) = 5(¢(q’), a). This implies, in particular that for a
word u over 3, its runs v,0” over A, A’ respectively are related by
v = ¢’ (v) where ¢’ is a letter-to-letter substitution.

If Ay = (01,2, 61), and Ay = (Q2, Q1 X X, §2), then the cascade
Az o Aj is an automaton over ¥ with states Q2 X Q; defined by
the following property. The run of a word u is a word v” over
(Q2 X Q1 X X): its projection v onto Q1 X X is the run of Ay on u,
and o’ is the run of Ay on v. Formally, the transition function is
given by

0((q2:q1), @) = (81(q1, @), 52(q2, (91, a))).

The cascade Ay o --- o A; is implemented by performing the
rightmost cascade first, akin to function composition.

THEOREM 4.3 (KROHN-RHODES [34]). For every automaton A, we
can compute a cascade A’ = By o - - - o By such that:

(1) A’ covers A.

(2) Each B; is either a permutation automaton or a two-state reset
automaton.

(3) If B; is a permutation automaton, then its transition group is
homomorphic to a subgroup of the transition monoid of A.

In particular, if A is a counter-free automaton, then each B; is a reset
automaton.

Remark 4.4. Our proofs of preservation theorems for transducer
outputs will follow the following template: (i) prove the theorem
for reset automata and permutation automata; (ii) deduce that the
theorem holds for any cascade of these special automata; (iii) apply
Lem. 4.1 (we only need the easy case of o being a coding here) and
deduce that the theorem holds for any automaton covered by such
a cascade; (iv) apply the Krohn-Rhodes theorem and deduce that
the theorem indeed holds for all automata; (v) apply Lem. 4.1 to
deduce the theorem holds for all transducers. In the above, only
Step (i) will require work.

5 PRESERVATION OF RECURRENCE

Seménov showed that if a word x € X% is effectively almost-periodic
(i.e., the word x is effective, and given any u € 3%, it can be decided
whether u occurs infinitely often in x, and if it is the case, we can
compute Ry (u)), then for any transducer A, the word A(x), if
infinite, is also effectively almost-periodic (see [35, Sec. 3] for an
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exposition of that result in English). Using this result and tech-
niques from the proof, Pritykin showed that if a word y € ¢ has a
uniformly recurrent suffix x, then for any transducer A, the word
A(y), if infinite, also has a uniformly recurrent suffix [36]. We use
the Krohn-Rhodes theorem to prove (in an arguably simpler and
more insightful manner) the following strengthening. We remark
that the Krohn-Rhodes theorem is crucially needed in the case
where we do not assume uniform recurrence.

THEOREM 5.1. Let A = (Q, Ginit, 2, T, 6%, 5%) be a transducer. Con-
sider a word x € 2“. If x has one of the following properties, then
A(x) also has the same property, provided that it is an infinite word.

(1) (effectively) recurrent suffix

(2) (effectively) uniformly recurrent suffix (whose starting index is
computable)

(3) (effectively) linearly recurrent suffix (whose starting index is
computable)

By Rmk. 4.4, the preservation theorem above would follow from
preservation lemmas for permutation automata and reset automata.
Observe that in the proofs, we can assume without losing generality
that the input word x is recurrent by simply considering the run
starting at the beginning of the recurrent suffix. The following
distills the core idea of Seménov’s argument.

LEMMA 5.2. Let A = (Q, ginit, 2, 0) be a permutation automaton.
Consider a wordy € 2?. If x has one of the following properties, then
A(x) also has that property.

(1) (effectively) recurrent
(2) (effectively) uniformly recurrent
(3) (effectively) linearly recurrent

ProoF. We prove the preservation of recurrence, and obtain
preservation of the other properties as corollaries of the proof. We
shall consider an arbitrary occurrence of a factor v of A(x), and
prove that v occurs infinitely often by showing that we can find
another occurrence to the right of the one under consideration.

To that end, let us establish some notation. We denote the pro-
jection of v = vy onto X by ug, and denote by iy the index of the
occurrence of vy in A(x) (which is the same as that of the corre-
sponding occurrence of ug in x). If the first letter of vy is (g, up(0))
and 8y, (q) = qo, then we use (uo, qo) as shorthand for vg. The short-
hand indeed defines vy because A is a permutation automaton, and
hence for every word u, 8, admits an inverse, which we shall denote
by 8;!. In other words, the transition function is “reversible”: if
we know the state after reading u, we can determine all the states
along the run of u.

We inductively define sequences (uy )y of factors of x, (vg)x
of factors of A(x), (ir)x of indices, and (qi )y of states. We shall
maintain that the projection of each vy onto X is the corresponding
uy.. We always have that ug has infinitely many occurrences in x,
and we will maintain that u; occurs in x at index ip. We find its next
occurrence at index ir,q > io, and define ug,; = x(io, ixq1 +|ug|) to
be the extended return word that spans consecutive occurrences of
ug. Correspondingly, we define vgq = A(x) (ig, igy1 + |ug|). This
word v, will be denoted by (ug,1, gr+1)- In particular, the word
uy. is a prefix of ug .

By the pigeonhole principle, there exist distinct [, k with 0 < [ <
k < |Q| such that g; = qg. By construction, we also have that u; is
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both a prefix and a suffix of uy. This means that we have found two
occurrences of v; = (uy, q;), one at index io, and the other at index
i41 + |ug| — |uz|. Our construction also ensures in particular that
uo is a prefix of u;, and since the transition function is reversible,
we have found an occurrence of vy at index ir,q + |ug| — |y|, which
is to the right of iy by at most |ug,|-

We have thus far proven that A(x) is recurrent. Effectiveness
follows because A(x) inherits the property of having a decidable
MSO theory from x.

In the case of (effective) uniform recurrence, we observe that
ire1 — i0 < Ry(lugl), and thus |ug,q| < Ry(lugl) + |ug|. For con-
venience, we define the auxiliary function Wy (read as “window
function”) as Wy (n) = Ry (n) +n. From the discussion above, we get

that Rz (x) (n) < Wx(lQlﬂ) (n), where Wx(k) denotes the k-fold com-
position of Wy. Clearly, if Ry is computable (respectively, linear),
then so is R (x)-

Finally, we check that in the case of uniform recurrence, the
index of the first occurrence of v is bounded by R 7 ([v]). This
is indeed the case, because if iy exceeds the above bound, we can
apply the above argument mutatis mutandis to find an occurrence
of v to the left of iy. This completes the proof. O

LEMMA 5.3. Let A = (Q, ginit, 2, 8) be a reset automaton. Consider
a word x € . If x has one of the following properties, then A(x)
also has that property.

(1) recurrent suffix

(2) effectively recurrent suffix with computable starting index

(3) (effectively) uniformly recurrent suffix (whose starting index is
computable)

(4) (effectively) linearly recurrent suffix (whose starting index is
computable)

(5) uniformly recurrent suffix and admits factor frequencies

In item (5), if the suffix of x is effectively uniformly recurrent, its start-
ing index is computable, and x admits computable factor frequencies,
then A(x) also has these properties.

Proor. We shall assume without losing generality that x is re-
current by simply considering the run starting at the beginning
of its recurrent suffix. The lemma is trivial if x does not contain
any recurrent reset letters, i.e., letters a such that §, is a constant-
valued function. We shall therefore assume that x has a recurrent
reset letter a, whose first occurrence is at index N, which can be
computed in the case of effective uniform recurrence. We claim
that the suffix of A(x) starting at index N + 1 is recurrent.

The key will be to focus on return words to the reset letter a.
By definition, these words begin with a, and have exactly a single
occurrence of a because a is a single-letter word. We have that
x(N, 00) = roriry - - -, a concatenation of return words.

As before, we shall show that for any occurrence of an arbitrary
factor v at index iy > N, we can find another occurrence at an
index to the right of ij. Let u be the projection of v onto X7, i.e.,
x(ig, io +|v]) = u. We observe by the above factorisation of x (N, co)
into return words that there exists an index i with N < i < ip such
that x(i) = a. We take i to be maximal, and in particular we have
io — i < Ry(1). Let v’ denote the factor x(i, i + |0]). By recurrence,
u’ will have another occurrence at an index i’ > i, and this will
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lead to an occurrence of v in A(x) at index i’ — i + io. This proves
that y = A(x) (N + 1, c0) is recurrent, establishing item (1).

To prove item (2), observe that when x has a decidable MSO
theory, we can in particular decide if a reset letter exists, and if so,
find its first occurrence by brute enumeration. We also have that
the corresponding suffix of A(x) has a decidable MSO theory, and
is hence effectively recurrent.

If x is uniformly recurrent, then [i’ — i| < Ry(|o| + Rx(1)), and
hence Ry(n) < Ry(n+ Ryx(1)). Clearly Ry is effective (respectively,
linear) if Ry is. We also check that if iy — N exceeds Ry (n + Ry (1)),
then we can use the same argument as above to find an occurrence
of v in A(x) to the left of iy. This proves items (3) and (4).

To study factor frequencies of v, we partition the occurrences of u,
and account precisely for which partitions result in an occurrence
of v. Formally, we construct a tree whose root is u, vertices are
factors u’ of the form wu, leaves are factors u’ that have u as a
proper suffix and begin with a reset letter, and the successors of the
internal nodes u” are of the form au’. The depth of the tree is thus
at most Ry(1). The frequency fy(v) is simply 3, fx(u’), where
the summation ranges over leaves u’ such that the run of the reset
automaton on the word u’ has v as its suffix. O

Remark 5.4. In the above proof, consider the case x is uniformly
recurrent, and let y be the recurrent suffix of A(x). Observe that

minveLn(y) fy(v) 2 minue[,ﬁRx(l) (x) fx(w).

Lem. 5.2, Lem. 5.3, and Rmk. 4.4 prove Thm. 5.1. In fact, item (4)
of Lem. 5.3, along with the counter-free case of Thm. 4.3, gives the
following result.

THEOREM 5.5. Let A = (Q, ginit, = I, 8°,8%) be a counter-free
transducer. Let x € 32“ be uniformly recurrent and admit factor
frequencies. We have that if A(x) is an infinite word, then it has a
suffix y which is uniformly recurrent and admits factor frequencies.
When x is effectively uniformly recurrent and admits computable
factor frequencies, the suffixy also has these properties, and its starting
index in A(x) can be computed.

6 PRESERVATION OF SELF-SIMILARITY

In this section, we show that transducers preserve properties that
indicate self-similarity>.

LEmMA 6.1. Let A = (Q, init, = I, 6%, &%) be a transducer, let S
be a set of substitutions, let x € X be an S-adic word directed by the
sequence (on),,_,. We have that the word A(x), if infinite, is S-adic
for a set S of substitutions defined using only S, and the directive
sequence (6n),_, can be defined using only A and (0n),-

Proor. We can assume without losing generality that A = A is
an automaton (Lem. 4.1). Let xo = x, x1, . . . be the sequence of words
such that for all n, x, € £% and x, = 0n(xp+1). To show that the
run yo = Ap(xp) is S-adic, we shall construct a sequence (An);>,
of automata, where Ay, = (Q, Ginit, Zn, On), then let y, = Ap(xn),

3Every word x = agaaz - - - is vacuously S-adic for S = {ay,..., OS> Tls -+ -5 Tm}
over the alphabet ¥ U {b}, where o; replaces the distinguished letter b with a; € &
and is identical elsewhere, and 7; replaces b with ba; and is identical elsewhere. We
then see that x is directed by 04 74, 7a, - - - - The point of directive sequences is to
encode more information about self-similar structure, and the lemma conveys the
sense in which this structure is preserved. In particular, it allows us to prove that if x
is morphic then so is A (x).
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and finally define a sequence of substitutions (&,);_, such that for
all n, yn = 6n(Yn+1)-

The key idea is that x,,+1 can be intuited as a “compression” of x,,
using oy,. Hence, in A1, we define 8,41 such that for all a € 2,41,
On+1(q, a) = 6n(q, on(a)). Thus, the run yp,41 can be regarded as a
“fast-forwarded” version of the run y,. We are therefore motivated
to define 6, as the dual “slow-motion” operator, i.e., 5, ((g, a)) gives
the run of A, on o, (a) starting in state g. It is now easy to check
that A, (xn) = 650 (Ans1(xn+1)) for all n. O

THEOREM 6.2. Let A = (Q, ginit, % T, 8%, 8%) be a transducer, and
let x € 2“ be a primitive morphic word given as the image under t
of a particular fixed point of a primitive substitution o. When A(x)
is an infinite word:

(1) The word A(x) has a primitive morphic suffix y. We can com-
pute the index at which y begins, and compute substitutions
6,7 such that & is primitive and y is the image under 7 of a
fixed point of 6.

(2) The word A(x) admits computable factor frequencies.

Proor. We note that item (2) follows from item (1) by applying
Lem. 2.4. We therefore focus on proving item (1). We remark that it
suffices to give a proof assuming A is an automaton.

We first prove that A(x) is morphic, and we will follow the
construction given in the proof of Lem. 6.1 in order to do so. The
directive sequence of x is 70®, and in particular, for all n > 1,
3n = 21 and xp, = x1. Observe that this implies that the set {A, |
n € N} is finite and can be effectively enumerated. Furthermore,
when n > 1, Apyq and 6, will depend only on A, and o. By
the pigeonhole principle, there exist computable m, n such that
m < nand Ay, = A,. We have that Ay, (x) is a fixed point of
6m -+ On—1, and its image under 6 - - - 6,—1 gives A(x), which is
hence morphic.

Now, since x is primitive morphic, it is effectively linearly re-
current (Lem. 2.4). The run A(x) therefore has a suffix y that is
effectively linearly recurrent, and the starting index N of this suffix
can be computed (Thm. 5.1). This suffix y of the morphic word
A(x) is again morphic, and the substitutions describing it can be
computed (Rmk. 2.3). Having proved that y is an effectively linearly
recurrent morphic word, we invoke Rmk. 2.3 again, this time to
deduce that y is indeed primitive morphic, and we can compute
substitutions &, 7 such that & is primitive, and y is the image under
7 of a fixed point of 6. O

For the sake of completeness, we comment on the case of auto-
matic words. Recall that a word x € I'“ is automatic [2, Chap. 5] if
for some k > 2, there exists an automaton that computes x(n) when
given the k-ary representation of n as input: we then say that x is
k-automatic. Clearly, for a > 1, we have x is k%-automatic if and
only if x is k-automatic. Equivalently, by a result due to Cobham
[2, Thm. 6.3.2], a word x is k-automatic if and only if it is the image
under a coding of a fixed point of a k-uniform morphism o (for
every a € X, |o(a)| = k). Note that the definition can be relaxed
(analogously to Rmk. 2.2) to replace the coding by a k’-uniform
morphism [2, Cor. 6.8.3]. Our proof of Lem. 6.1 can thus be adapted
to deduce the main result of [2, Sec. 6.9]:
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LEmMA 6.3. If A is a uniform transducer and x is k-automatic,
then A(x) is k-automatic.

7 PRESERVATION OF CONDITION (B)

In this section, we prove the following main result using the Krohn-
Rhodes theorem. We give a general statement, but observe that by
Rmk. 4.4, it suffices to prove the result separately for reset automata
and permutation automata.

TuroreMm 7.1. Let A = (Q, ginit> 2. T, 8%, 8%) be a transducer, and
let x € 3? be a/an (effectively) uniformly recurrent word that satisfies
Boshernitzan’s condition. We have that the word A(x), if infinite, has
a/an (effectively) uniformly recurrent suffix y that satisfies Bosher-
nitzan’s condition, and hence admits (computable) factor frequencies.

We already have argued the existence of a/an (effectively) uni-
formly recurrent suffix y in Thm. 5.1. We shall prove that this suffix
satisfies Boshernitzan’s condition. The fact that y admits (com-
putable) factor frequencies would then follow immediately from
(Lem. 3.2 and) Lem. 3.8.

LEmMMA 7.2. Let A = (Q, ginit, 2, 8) be a reset automaton and let
x € 3% be a uniformly recurrent word that satisfies Boshernitzan’s
condition. We have that the word A(x) has a uniformly recurrent
suffix y that satisfies Boshernitzan’s condition.

Proor. Recall from Lem. 5.3 that A(x) has a uniformly recurrent
suffix y that admits factor frequencies. We can define an invariant
measure y on the minimal shift Y defined by y, as pu([v]y) = fy(v)
(the invariant measure on the shift defined by x is similarly de-
fined). Let us now use Rmk. 5.4 to argue that Y satisfies Bosher-
nitzan’s condition (Def. 3.7) by virtue of admitting the above in-
variant measure. We have from Rmk. 5.4 that for n large enough,
minge £, (y) fy(v) is lower bounded by minyc z,, (x) fx(u) as well
as minge 7, . (x) fx(u)), or in other words

3-ky(n) > max(kx(2n),kx(2n + 1)).

This implies that lim sup,,_,, ky(n) > 0, and the word y indeed
satisfies Boshernitzan’s condition. ]

The case where A is a permutation automaton is much more
involved, and we need to invoke arguments from cohomology and
topological dynamics inspired by [9]. We devote the rest of this
section to the proof of the following lemma.

LEmMA 7.3. Let A = (Q, ginit, 2, 8) be a permutation automa-
ton. If x is a uniformly recurrent word that satisfies Boshernitzan’s
condition, then so is A(x).

The group G generated by the transitions of the permutation
automaton, and the natural onto morphism ¢: ~* — G (the mor-
phism maps a word u to the element corresponding to &) will play
a key role in the proof. Let X be the minimal shift defined by x,
let ux be its unique invariant measure, and recall that by Def. 3.7,
lim sup,,_,, kx(n) > 0. We define the skew product topological
dynamical system* (G > X, T) with the compact metric state space
{(g,x) | g € G,x € X}, and update T(g,x) = (g - ¢(x(0)), x(1, 00)).
“We acknowledge that the notation T is overloaded, but nevertheless use it for clarity
because, as we shall see, it performs the same shift operation in spirit. If the shift

operator is invoked on multiple shift spaces within the same context, we shall use a
distinguishing subscript.
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Observe that T™! o (g,x) = {(ga~!,ax) | ax € X}, where a™! is
shorthand for ¢(a)~!

We shall equivalently (in fact, interchangeably since we deal with
a permutation automaton) regard the skew product as a shift space
Z over the alphabet (G x ). We map (g, x) to y (and also denote y
by (g, x)), where y(n) = (g - ¢(x(0,n)), x(n)). This perspective is
isomorphic and each element y € Z can naturally be viewed as the
run of an automaton with states G on its projection x € X. Note that
A(x) can be obtained by simply applying a coding (letter-to-letter
substitution) on y. By Lem. 5.2, each y € Z is uniformly recurrent
(however, Z is not necessarily minimal). Given a word x whose
run A(x) = (e, x) = y we are to study, let Y be the minimal shift
defined by y: note that Y is contained in (but not necessarily equal
to) Z. We use 7 to denote the projection of Y onto X, and 7~ ! to
denote its pre-image.

Our goal is to prove that if X satisfies Boshernitzan’s condition
(Def. 3.7), then so does Y. We shall do so® by starting with an
arbitrary invariant measure v on Y, and using it to construct an
invariant measure py on Y that satisfies ky (n) = ¢ - kx(n) for all
large enough n, where c is a constant.

We shall study the symmetry of Y in order to understand how
much structure Y inherits from X. Consider the group action of G
on Z, where h € G maps (g, x) to (hg, x). By the associativity of
the binary group operation, we have that the action of h commutes
with the shift operation Tz and its inverse. Define the subgroup
H as {h € G | hY = Y}. We shall show the following connection
between invariant measures on Y and X.

LEMMA 7.4. Let v be an arbitrary invariant measure on'Y.

(1) The map v o h is an invariant measure on'Y for each h € H.
(2) The map v o w~1 on X is the same as the unique invariant
measure [Ix.

In particular, the invariant measure yy defined as |1?| 2heHVOoh
satisfies pry o w71 = pix.

The following lemma, which is inspired by [31, Prop. 2.1], is
instrumental in making 77! explicit: it tells us that we can express

71 (x) ={(g.x) | g € a(x)}.

LEMMA 7.5. The map a given by a(x) = {g | (9,x) € Y} is a well
defined function from X to C = H\G, satisfies a(ax) = a(x) -a” 1,
and is continuous. In particular, X can be expressed as a finite union
of cylinders on which a is constant.

Proor. Note that 7(Y) must be a shift contained in X because
the projection 7 commutes with T and is a closed map as G is
compact; since X is a minimal shift, 7(Y) = X. This assures us that
a maps each x € X to a non-empty set.

We first prove that a(x) is indeed a coset. By the defining prop-
erty of the subgroup H, we deduce that if (g,x) € Y, then Hg C
a(x). We now need to prove that a(x) cannot span more than one
coset, i.e., if (¢,x) € Y and (¢, x) € Y, then g’ = hg for some h € H.
Let Y’ = ¢’g™ 'Y, and observe that Y’ is also a minimal shift (recall
that the group action commutes with the shift operation). We have
that (g, x) is contained in the intersection of the minimal shifts
Y, Y’: this is only possible if Y = Y. In other words, h = ¢’g~! € H

5Some proof ideas are inspired by [9], especially Prop. 3.8 ibidem.
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We henceforth refer to « as a function from X to C; in technical
parlance it is a (minimal) cobounding map modulo H.

The next requirement follows readily. Let x, ax € X. Since a(x)
and a(ax) are both cosets, they have the same cardinality, and it
suffices to observe from the construction of Y that a(ax) - ¢(a) C
a(x) in order to establish that a(ax) = a(x) -a~ 1.

Thirdly, we show that « is continuous. Suppose for the sake of
deriving a contradiction that « is not continuous at some x € X,
ie., a(x) = C, and for every index n, there exists x, € X such that
x(0,n) = x,(0,n) but a(x,) = C, # C. By the pigeonhole principle,
we deduce that there exist a coset C’, infinitely many indices n,
and words x, such that x,,(0,n) = x(0,n), but a(x,) = C’ # C.
Consider an element ¢’ € C, and observe that ((¢’, x,))n is an
infinite sequence of elements in the compact space Y, and this
sequence converges to (¢’,x). However, ¢’ ¢ a(x), i.e., the limit
does not exist in Y: a contradiction, as desired.

It remains to show that X is a finite union of cylinders on which a
is constant. From the preceding argument for continuity, it follows
that for any x € X, we can obtain cylinders [u;]x on which « is
constant and x(j, ) € [u;]x. We show by contradiction that these
cylinders cover X: if they leave some x” uncovered, we can use
continuity identify a cylinder [u’]x on which « is constant and
x" € [u’]x. However, by the minimality of X, u” must have been a
prefix of some x(j, ©): a contradiction. Finally, since X is compact,
the open cover ([u j]);‘;o of cylinders with the desired property

admits a finite subcover ([u j])jl\i o» Which we use to establish the
last claim of the lemma. O

PRrRoOF OF LEM. 7.4. Lem. 7.5 gives the framework to deduce that:
(i) the operators Ty, Ty, L on Y give the same evaluations as their

~1 commutes with T

counterparts Tz, T, 1. (ii) the inverse image 7
and T~!. These will respectively imply the two parts of the claim.

Observe that TY_1 o(g,x) C TZ_1 0(g,x) = {(ga~!,ax) | ax € X}.
On the other hand, a(ax) = a(x) - a~!: since g € a(x), this proves
by the definition of & that the set inclusion is actually an equality,
ie, Ty 1= T ! (that Ty = Tz on Y is obvious by the definition of Y).
This proves (i). It then immediately follows that h o Ty’ 1= Ty Lop,
and hence vo h is an invariant measure on Y for each h € H. Indeed,
1/0h0T);l =VOT;10h=VOh.

To show (ii), observe furthermore that 7~ 1o T, l(x) =
g € a(ax),ax € X} = {(ga ' ax) | g € a(x),ax € X} = T;l )
77 1(x). This implies that for any invariant measure v, we have
vorlo T;l =vo T;l o~ ! = vox~! It remains to observe that

vo n~1is indeed a Borel measure on X because the function 7 is

Borel measurable by virtue of being continuous. Thus, vo 7~ ! is an
invariant measure on X; since (X, Tx) is uniquely ergodic, it can

only be the same as . O

{(g',ax) |

We are now ready to complete the proof that Y inherits the prop-
erty of admitting an invariant measure that satisfies Boshernitzan’s
condition from X.

Let us examine what py evaluates to on cylinders. For conve-
nience, we shall denote a finite factor v as (g, u), where v(n) =
(g - @(u(0,n)), u(n)) for all n. We have

|H| 2, veh(lg.wly) = 7 = > @0l

heH g'€Hyg

py([(gw]y
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and by symmetry, ry ([(g, 0)]y) = (/IH) - Zgrcprg iy (19 0)]y).

Now, by Lem. 7.5, for all long enough factors u € L(X), we
have that « is constant-valued on [u]x. This implies that for u
long enough, 77! ([u]x) = Uy ea([ulx) [(¢’,u)]y. In other words,
py ([(g.w)]y) = (1/|H]) - py o~ ([ulx)- Since py o~ = px, we
have thus proven that for all long enough finite factors, we have
py ([(g.W]y) = (1/|H|) - px([ulx), and it follows that xy(n) =
(1/|H|)xx (n). We have thus proved that the run y of an automaton
with states G and initial state e (where e is the group identity)
defines a minimal shift Y that satisfies Boshernitzan’s condition
(Def. 3.7).

We obtain A(x) by a simple coding that substitutes (g, a) with
(g, a), where g is obtained by the action of g on gjnjt. By Lem. 4.1,
A(x) satisfies Boshernitzan’s condition (Def. 3.7), and hence by
Lem. 3.8, admits factor frequencies. This proves Lem. 7.3. O

8 DISCUSSION

An open question is to find an example of a word x (or prove one
does not exist) that does not satisfy Boshernitzan’s condition, but
A(x) generates uniquely ergodic shifts for every A.

An obvious direction for future work is to generalise the fol-
lowing beyond the case of primitive morphic words: if the fac-
tor frequencies of x are given by effective closed-form expressions,
then so are those of A(x). Concretely, if we can decide whether
fx(u) = r where r is a given constant, our current proof of Thm. 7.1
via Lem. 3.2 does not imply that A(x) inherits this property.

The main technical obstacle to the above is obtaining an effective
version of Lem. 7.5, i.e., the computation of minimal cobounding
maps on the shift X defined by the input word. This is closely
related to the behaviour of return groups. Recall that Rx (u) denotes
the set of return words to a factor u € L(X). Let G be a group,
and ¢ be a morphism from 2* into G. The return group of u (with
respect to G, ¢) is generated by the return words to u, and is given
by (¢ (Rx(u))). If u’ is a prefix of u, then the return group of u
is a subgroup of that of u’ [24, Lem. 3]. We say that the return
groups stabilise at u if for every factor u’’ such that u is a prefix of
u”’, the return groups of u and u”’ are the same. As [9, Prop. 7.8]
observes, determining minimal cobounding maps is equivalent to
determining when return groups stabilise.

Our effective results for primitive morphic words indicate that
the stabilisation of return groups can be determined in this case,
and it has indeed been proven [24, Prop. 27]. Nevertheless, this
remains open in the general case, to the best of our knowledge. A
possible approach is to generalise the derivation-based techniques
of Durand applied in both [24] and our paper.

Another potential approach leverages recent advances in word
combinatorics, in particular the study of so-called suffix-connected
words and their generalisations [26]. An important property of
suffix-connected words (which include Sturmian words and Arnoux-
Rauzy words) is that all factors are stable [26, Cor. 1.2], i.e., for
any factor u, the return group (with respect to G, ¢) is G. While
this property is ideal to prove an effective version of Lem. 7.3,
it remains difficult to determine when an automaton preserves
suffix-connectedness, and hence obtain a preservation result for an
entire cascade of automata. As a positive case in point, we give the
following application.
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ProrosITION 8.1. Let A = (Q’, ginit» =, 8) be a permutation au-
tomaton, and let x € “ be a Sturmian word. Let G be the group of
permutations induced by the transitions, and let Q be the orbit of ginit
under G. The run of A on x visits each state ¢ € Q with frequency

1/1Ql-

ProoOF. Let X be the minimal shift defined by x. Since the word
x is stable by virtue of being Sturmian and hence suffix-connected,
we have by [9, Prop. 7.8] that the trivial cobounding map on X is
minimal. This implies that the shift Y corresponding to the entire
skew product G = X is minimal. Furthermore, since x is a Stur-
mian word, it satisfies Boshernitzan’s condition (Rmk. 3.9), and by
Lem. 7.3, the shift Y also satisfies Boshernitzan’s condition. From
the proof of Lem. 7.3, we have that the unique invariant measure
on Y is given by py ([(g: w)]y) = ﬁux([u]x)

Consider g € Q. The set Hy = {g | ginit - g = q} is a coset of the
subgroup H = {# | ginit - h = ginit}, and hence |Q| - |H]| = [G|. Now
by Oxtoby’s theorem, f(x)(q:a) = Sger, v ([(g. @)]y). which
by the definition of yy and the above observation, simplifies to
|—é|px( lalx) = |—é|fx(a). The frequency with which a run visits a

state g € Q is then simply @ Dafx(a) = @ O

We conclude by recording an interesting corollary of Thm. 7.1,
Rmk. 3.9, and the proof of Prop. 8.1.

COROLLARY 8.2. Let T = {0,1}, let A = (Q, Ginit, 2. T, 6°, 5%) be
a transducer, and let x € 3% be a Sturmian word whose factor fre-
quencies have effective closed form expressions. If A is a permutation
transducer, then the factor frequencies in A(x) have effective closed
form expressions.
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