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ABSTRACT
Suppose we have a deterministic finite-state transducer A and an

infinite word 𝑥 , and run A on 𝑥 to obtain an infinite word A(𝑥).
Which properties of 𝑥 are guaranteed to also hold for A(𝑥)? In
this paper, we study this preservation question for various well-

known combinatorial properties, e.g., recurrence, being morphic,

and having factor frequencies. The celebrated Krohn-Rhodes theo-

rem provides the framework for proving our preservation results,

and our techniques are based on the ergodic theory of symbolic

dynamical systems, i.e., shift spaces.
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1 INTRODUCTION
Words with elegant combinatorial properties often accurately cap-

ture the behaviour of symbolic dynamical systems and natural phe-

nomena. Classes of self-similar words like morphic words [37, 38],
and in particular, automatic sequences [2] have profound connec-

tions with logic and automata theory [40]. Such words have been

of interest for over a century: e.g., the ubiquitous Thue-Morse word

(as qualified in [1]) was defined to study a problem concerning

geodesics on surfaces [37, Chap. 5]. It is moreover an example of a

uniformly recurrent word, i.e., every factor occurs infinitely often

(this first condition makes the word recurrent) and there is a bound
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on the gaps between its consecutive occurrences (this additional

condition makes the word uniformly recurrent). This almost peri-
odic nature of uniformly recurrent words has been used to model

quasicrystals in the setting of aperiodic order [3]: one may consult

[37] and its bibliography for such applications in physics.

A perennially relevant class of uniformly recurrent words is that

of toric words [7]. They have traditionally attracted interest in the

study of dynamical systems and ergodic theory (see [42, Chap. 1]

and [43]). More recently, toric words have been identified to accu-

rately capture the behaviour of linear loops in program verification

[29]. They also play a central role in the decidability of the monadic

second-order (MSO) theory of the structure ⟨N; <, 𝑎N
1
, . . . , 𝑎N

𝑘
⟩ as

established by [6].

Intuitively, if the infinite word 𝑥 is a trace of a system (e.g., the

coding of an orbit of a point under the action of a dynamical sys-

tem), and A is a deterministic finite-state transducer, then A(𝑥) is
obtained by augmenting 𝑥 with annotations with respect to some

specification provided by the transducer. It is natural to ask: are

combinatorial properties of 𝑥 preserved even after adding such an-

notations, and to what extent? More precisely, this paper considers

the following concrete questions.

(1) If 𝑥 is recurrent, then is A(𝑥) also recurrent? Can the recur-
rence function of A(𝑥) be described and computed?

(2) If 𝑥 admits factor frequencies, then does A(𝑥)? If these fre-
quencies are effective for 𝑥 , are they effective for A(𝑥)?

In the above, (i) the recurrence function 𝑅𝑥 : N → N ∪ {∞} of
a recurrent infinite word 𝑥 returns for each 𝑛, the maximum gap

between two consecutive occurrences of a factor 𝑢 of length 𝑛;

(ii) an infinite word 𝑥 admits factor frequencies if for every finite

word 𝑢, we have that lim𝑁→∞
1

𝑁
· |{𝑖 | 0 ≤ 𝑖 < 𝑁, 𝑥 (𝑖, 𝑖 + |𝑢 |) = 𝑢}|

exists.

A classical result regarding the preservation of factor frequencies

by transducers is Agafonov’s theorem (see e.g., [5]), which states

that if A is a deterministic oblivious subsequence-selecting trans-

ducer, then 𝑥 is normal if and only if A(𝑥) is normal. A normal

word 𝑥 ∈ Σ𝜔 admits factor frequencies such that for any 𝑢 ∈ Σ+,
the frequency of 𝑢 is 1/|Σ| |𝑢 | . Normality is a prerequisite for ran-
domness, and its preservation by transducers has been studied in

[11, 12]. This paper complements the above results by showing that

transducers can also preserve the existence of factor frequencies

by virtue of preserving combinatorial structure.

We identify that the Krohn-Rhodes theorem [34] provides a con-

venient framework to answer our preservation-related questions.
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This is because it guarantees thatA(𝑥) can be obtained as a cascade
𝜎 ◦ B𝑘 ◦ · · · ◦ B1 (𝑥), where B1, . . . ,B𝑘 are “simple” letter-to-letter

transducers whose underlying automata are either permutation au-
tomata or reset automata, and 𝜎 is a letter-to-word substitution. In

other words, it suffices to answer the above questions for substitu-

tions (done in Lem. 4.1), permutation automata, and reset automata.

To answer the first question regarding recurrence, we use the

Krohn-Rhodes framework to revisit the work of Pritykin [36], who

used a result of Semënov et al. [35] to show that if 𝑥 has a uniformly

recurrent suffix, then so does A(𝑥). The advantages of using the
Krohn-Rhodes theorem are as follows. (i) We can prove a slightly

stronger result, i.e., if 𝑥 has a recurrent suffix, then so does A(𝑥).
(ii) We can already give an effective answer in the affirmative to

the second question regarding frequencies in the special case of

uniformly recurrent words and counter-free transducers. (iii) In the

original case of uniform recurrence and arbitrary transducers, we

can explicitly describe and compute the starting index of the uni-

formly recurrent suffix ofA(𝑥), and also the recurrence function of

this suffix. In particular, if 𝑥 is linearly recurrent (i.e., the recurrence
function of 𝑥 grows linearly), then the suffix ofA(𝑥) is also linearly
recurrent; likewise if 𝑥 is polynomially recurrent, then so is the

suffix of A(𝑥). Moreover, if 𝑥 is (linearly, polynomially, uniformly)

recurrent and the underlying automaton of A is a permutation au-

tomaton, then A(𝑥) itself possesses the corresponding recurrence

property. These preservation results are stated and proved in Sec. 5,

and will be useful to treat the second question regarding factor

frequencies in greater generality.

What about preservation of having factor frequencies? The as-

tute reader might already provide the counterexample of the (non-

recurrent automatic) word 𝑥 ∈ {0, 1}𝜔 such that 𝑥 (𝑛) = 1 if and

only if 𝑛 is a power of 3, and the two-state transducer A that per-

mutes the states upon reading the letter 1 and prints the current

state. The word 𝑥 admits factor frequencies but A(𝑥) does not.
Applying Lem. 6.3, we deduce thatA(𝑥) is also automatic, and thus

automatic (and hence morphic) words do not necessarily admit

factor frequencies.

The question of what structure a word needs in order to admit

factor frequencies is indeed profound. We note in Lem. 3.1 the

intrinsic connection to symbolic dynamics and ergodic theory: a

word 𝑥 admits factor frequencies if and only if it is generic for an
invariant measure on the shift space 𝑋 that it generates. Normal

words, for instance, are by definition generic for the uniform Borel

probability measure on the full shift Σ𝜔 . We therefore seek to un-

derstand when we can guarantee that A(𝑥) is also a generic point

for some invariant measure on the shift space 𝑌 it generates.

The most reliable way of doing so is to ensure that the shift

𝑌 generated by A(𝑥) is uniquely ergodic, i.e., it admits a single

invariant measure; by Oxtoby’s theorem, all words in 𝑌 would then

be generic for this measure. It does not suffice to merely require

that 𝑥 generate a uniquely ergodic shift: this condition is met by

the counterexample above. Nevertheless, if a shift space is uniquely

ergodic, then the support of its invariant measure will be aminimal
shift space, i.e., a shift space generated by a uniformly recurrent

word. In the above counterexample, this support is the singleton

shift space generated by 0
𝜔
. We further prove that all words in

a minimal uniquely ergodic shift space admit computable factor

frequencies (Lem. 3.2).

It is tempting to try to establish that if 𝑥 generates a minimal

shift space 𝑋 that is uniquely ergodic, then A(𝑥) generates a shift
space 𝑌 that is uniquely ergodic. Unfortunately, as the symbolic

traces of ingenious counterexamples shown by Veech [41], Sataev

[39], Chaika [13], and Guenais & Parreau [27] demonstrate, this

is not the case. Intuitively, the introduction of “annotations” gives

rise to words whose factor frequencies “oscillate” between different

limits, or, in technical terms, a generic point in 𝑋 need not lift to a

generic point in 𝑌 .

What additional structure must we impose on 𝑥 in order to

ensure that A(𝑥) generates a uniquely ergodic shift space? The

following is an ideal starting point. A primitive morphic word 𝑥 is a

uniformly recurrent word that is morphic, i.e., obtained by applying

a substitution 𝜏 to the fixed point of a non-trivial substitution 𝜎 .

Primitive morphic words are in fact linearly recurrent, and are

classic examples of words that generate uniquely ergodic shifts. We

show that if 𝑥 has a primitive morphic suffix, then so does A(𝑥),
and this result is fully effective, i.e., we can compute the factor

frequencies ofA(𝑥); see Thm. 6.2. We mention that we incidentally

prove that more general notions of self-similarity are preserved

while obtaining A(𝑥) from 𝑥 (see Lem. 6.1).

Our main contribution lies in proving that, in order to guarantee

preservation of having factor frequencies, it suffices to impose far

less structure on 𝑥 than that implied by being primitive morphic.

More precisely, we consider an ergodic-theoretic property known

as Boshernitzan’s condition, or Condition (B) (Def. 3.7) on minimal
shifts. If a minimal shift 𝑋 satisfies Boshernitzan’s condition, then

it is uniquely ergodic. Boshernitzan’s condition is rather relaxed: it

is known that all linearly recurrent words, as well as all Sturmian
words, generate shifts that satisfy it. We show that if 𝑥 is uniformly

recurrent and generates a shift that satisfies Boshernitzan’s condi-

tion, then the uniformly recurrent suffix of A(𝑥) also generates a

shift that satisfies Boshernitzan’s condition, and A(𝑥) thus admits

factor frequencies. This main result is Thm. 7.1 in the paper. As a

special case, we show that the factor frequencies of A(𝑥) are com-

putable when 𝑥 is a computable Sturmian word and the underlying

automaton of A is a permutation automaton (Cor. 8.2).

Our preservation theorems are summarised in Fig. 1, which de-

picts the relations between combinatorial properties, whetherA(𝑥)
inherits them from 𝑥 , and whether the corresponding preservation

theorem is effective.

2 PRELIMINARIES
2.1 Notation and Terminology
Throughout this paper, we shall work with words over finite non-

empty alphabets, which will usually be denoted by Σ and sometimes

by Γ. The set of infinite words over Σ (indexed by N) is denoted
by Σ𝜔 , the set of finite words is denoted by Σ∗, the empty word is

denoted by 𝜀, and the set of finite non-empty words is denoted by

Σ+. For a word 𝑥 , the notation 𝑥 (𝑖) denotes the letter in the 𝑖-th

position of 𝑥 , the notation 𝑥 (𝑖, 𝑗) denotes the finite subword, or

factor of 𝑥 starting in position 𝑖 and ending at position 𝑗 − 1 (i.e.,

the length of the factor is 𝑗 − 𝑖). When 𝑢 = 𝑥 (𝑖, 𝑗), we say that 𝑢 has

an occurrence in 𝑥 at index 𝑖 . If 𝑥 is an infinite word, the notation

𝑥 (𝑖,∞) denotes the suffix of 𝑥 starting at position 𝑖 . We shall denote

the length of a finite word 𝑢 as |𝑢 |. The factor complexity of a word
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Figure 1: Summary of main results. Arrow from block 𝑃 to
block 𝑄 means that the properties in 𝑃 imply those in 𝑄 .
Shield besides 𝑃 means that if 𝑥 has a suffix with the proper-
ties in 𝑃 , then so does A(𝑥). Gear besides the shield means
that the relevant suffix 𝑦 of A(𝑥) is effectively identifiable,
and the properties in 𝑃 are furthermore effective for 𝑦 if they
are for 𝑥 . Uniformly recurrent 𝑥 admitting factor frequencies
does not guarantee that A(𝑥) does.

𝑥 is the function 𝑃𝑥 that counts for each 𝑛, the number of distinct

length-𝑛 factors of 𝑥 . We denote by L(𝑥) the factor language of 𝑥 ,
i.e., the set of finite factors 𝑢 of 𝑥 . We shall sometimes use L𝑛 (𝑥)
as a convenient shorthand for L(𝑥) ∩ Σ𝑛 .

A word 𝑥 ∈ Σ𝜔 is said to be recurrent if every factor 𝑢 of 𝑥

occurs infinitely often. In this case, we can define the set of return
words to a factor 𝑢 of 𝑥 : these are words 𝑟 such that 𝑟𝑢 is a factor

of 𝑥 , and 𝑟𝑢 has exactly two occurrences of 𝑢, once as a prefix,

and once as a suffix. A recurrent word 𝑥 is said to be uniformly
recurrent if for every factor 𝑢, its set of return words R𝑥 (𝑢) is finite.
For a uniformly recurrent word 𝑥 , we can define a return-time (or
recurrence) function 𝑅𝑥 : N → N, such that 𝑅𝑥 (𝑛) gives the length
of the longest return word to a length-𝑛 factor of 𝑥 . A uniformly

recurrent word 𝑥 is said to be linearly recurrent if 𝑅𝑥 (𝑛) ∈ 𝑂 (𝑛). A
helpful perspective is as follows: in a uniformly recurrent word 𝑥 ,

for any factor 𝑢, the gaps between its consecutive occurrences are

bounded. If 𝑥 is linearly recurrent, the bound is linear in |𝑢 |. If for
a uniformly (respectively, linearly) recurrent word 𝑥 ∈ Σ𝜔 , given
any 𝑛, we can compute 𝑥 (𝑛) and 𝑅𝑥 (𝑛), we say that 𝑥 is effectively
uniformly (respectively, linearly) recurrent.

Remark 2.1. If 𝑥 (𝑛) and 𝑅𝑥 (𝑛) are computable, we can compute

L𝑛 (𝑥) as the set of length-𝑛 factors of 𝑥 (0, 𝑛 + 𝑅𝑥 (𝑛)). This is

because if the occurrence of 𝑢 at index 𝑖 is its first occurrence, then

𝑣 = 𝑥 (0, 𝑖) must be a suffix of some return word 𝑟 to 𝑢, since indeed,

𝑣𝑢 is a recurrent factor of 𝑥 . In particular, 𝑅𝑥 gives a bound on the

index of the first occurrence of a factor. Conversely, if 𝑥 is uniformly

recurrent and 𝑥 (𝑛) and L𝑛 (𝑥) are computable given any 𝑛, then

we can compute 𝑅𝑥 (𝑛) by enumerating L(𝑥) till we find an 𝑁 such

that all length-𝑁 factors contain at least two occurrences of each

length-𝑛 factor.

For arbitrary recurrent words, the set of return words to a factor

is not necessarily finite. In this general setting, we say that a word 𝑥

is effectively recurrent if it is recurrent, and for any regular language

𝐿, the following two problems are decidable: (A) Does there exist

𝑁 > 0 such that 𝑥 (0, 𝑁 ) ∈ 𝐿; (B) Does there exist non-empty

𝑢 ∈ 𝐿 ∩ L(𝑥)? Due to a result of Semënov (see e.g., [14, Thm. 5]),

this definition is equivalent to asserting that 𝑥 is recurrent and has

a decidable monadic-second order (MSO) theory. Recall that it is

elementary to show that if 𝑥 has a decidable MSO theory, then so

does A(𝑥) for any transducer A (see, e.g., [7, Lem. 4.5]).

Let 𝑢 be a factor of an infinite word 𝑥 . The frequency of 𝑢 in 𝑥 ,

denoted 𝑓𝑥 (𝑢), is given by lim𝑁→∞
1

𝑁
|{𝑖 | 𝑥 (𝑖, 𝑖 + |𝑢 |) = 𝑢, 𝑖 < 𝑁 }|

(i.e., the limiting fraction of indices which mark an occurrence of

𝑢), and is defined if the limit exists. We say that a word 𝑥 ∈ Σ𝜔

admits factor frequencies if for every recurrent factor 𝑢 of 𝑥 , the

above limit exists. If furthermore, given any 𝑢, this limit can be

computed, then we say that 𝑥 admits computable factor frequen-
cies. Formally, there is a Turing machine which, given factor 𝑢

and tolerance 𝛿 as input, computes a rational number 𝜌 such that

|𝑓𝑥 (𝑢) − 𝜌 | < 𝛿 . Moreover, for any given 𝑢, if the convergence of

the sequence
1

𝑁
|{𝑖 | 𝑥 (𝑖, 𝑖 + |𝑢 |) = 𝑢, 𝑘 ≤ 𝑖 < 𝑁 + 𝑘}| toward 𝑓𝑥 (𝑢)

holds uniformly in 𝑘 , then 𝑥 is said to admit uniform frequencies
(see e.g. [37, 38]).

2.2 Shift Spaces and Measures
We shall use ergodic theory to study which subsets of uniformly

recurrent words that admit factor frequencies are closed under

transduction. Shift spaces will serve as our underlying dynamical

systems in order to do so. We also remark that combinatorial prop-

erties (e.g., recurrence) are often studied for shift spaces, but it is

usually straightforward to obtain analogous results for words.

The shift operator 𝑇 maps a word 𝑥 ∈ Σ𝜔 to 𝑥 (1,∞), i.e., it
deletes the starting letter. We write 𝑇𝑛𝑥 for the 𝑛-fold application

of 𝑇 to 𝑥 ∈ Σ𝜔 . We endow Σ𝜔 with the usual product topology,

thus making it a compact metric space. A shift system (also called a

shift) is the dynamical system (𝑋,𝑇 ) where 𝑋 ⊆ Σ𝜔 is closed and

satisfies 𝑇𝑋 ⊆ 𝑋 . When the dynamics is clear from the context, we

also refer to 𝑋 as a shift.

Given a word 𝑥 , the shift generated by 𝑥 is the the topological

closure {𝑇𝑛𝑥 | 𝑛 ∈ N} of the orbit of 𝑥 under 𝑇 . For a shift 𝑋 , we

define L(𝑋 ) = {𝑢 | 𝑢 ∈ L(𝑥 ′), 𝑥 ′ ∈ 𝑋 }, and as before, we declare

L𝑛 (𝑋 ) to be shorthand forL(𝑋 ) ∩Σ𝑛 . We have that if𝑋 is the shift

generated by 𝑥 , then L(𝑋 ) = L(𝑥), and 𝑋 = {𝑥 ′ | L(𝑥 ′) ⊆ L(𝑥)}
[38, Prop. 4.6]. A shift 𝑋 is said to be minimal if it does not have
a non-empty proper closed subset 𝑌 such that 𝑇𝑌 ⊆ 𝑌 . Therefore,

the shift generated by any 𝑥 ′ in a minimal shift 𝑋 must be 𝑋 itself.

We have that a word 𝑥 generates a minimal shift if and only if it is

uniformly recurrent [38, Prop. 4.7].

A cylinder of 𝑋 ⊆ Σ𝜔 is a set of the form {𝑢𝑥 ′ : 𝑥 ′ ∈ Σ𝜔 } ∩ 𝑋

where𝑢 ∈ Σ∗. The cylinder generated by𝑢 will be denoted by [𝑢]𝑋 ;

we omit the superscript 𝑋 when it is clear from the context. The

cylinders are clopen (i.e., both closed and open, and in particular

are the open balls of 𝑋 ), and a subset of 𝑋 is clopen if and only

if it is a finite union of cylinders. Since there are countably many

cylinders, any open set is a countable union of cylinders.

We refer the reader to [23, App. B.5] or a standard text such as

[4] for the basic concepts of measure spaces. Given a topological

space 𝑋 , its collection of Borel-measurable sets, or simply Borel sets,
is the the 𝜎-algebra generated by the open subsets of 𝑋 . If 𝑋 is
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a shift space, the 𝜎-algebra can equivalently be generated by the

cylinders of 𝑋 .

A (Borel probability) measure 𝜇 on 𝑋 maps each Borel set 𝐵 to

𝜇 (𝐵) ∈ [0, 1], satisfies 𝜇 (𝑋 ) = 1, and is countably additive, i.e., for

any countable collection (𝐵𝑛)∞𝑛=0
of disjoint Borel sets we have

𝜇 (⋃𝑛 𝐵𝑛) =
∑
𝑛 𝜇 (𝐵𝑛).

A function 𝜋 : 𝑌 → 𝑋 is called Borel measurable if for every
Borel set 𝐵 ⊆ 𝑋 , the pre-image 𝜋−1 (𝐵) is a Borel set of 𝑌 . In

particular, if 𝜋 is continuous, then it is Borel measurable. Indeed,

if 𝐵 is open, then by continuity 𝜋−1 (𝐵) is open; and we have that

𝜋−1 (𝑋 \ 𝐵) = 𝑌 \ 𝜋−1 (𝐵) and 𝜋−1 (⋃𝑖 𝐵𝑖 ) =
⋃

𝑖 𝜋
−1 (𝐵𝑖 ). In other

words, the family of sets 𝐵 for which 𝜋−1 (𝐵) is Borel contains the
open sets of 𝑋 and forms a 𝜎-algebra; in particular it must contain

the 𝜎-algebra generated by the family of open sets of 𝑋 , i.e., the

Borel sets of 𝑋 . A measurable function 𝜋 : 𝑌 → 𝑋 projects a Borel
measure 𝜈 on 𝑌 to a Borel measure 𝜇 on 𝑋 as 𝜇 = 𝜈 ◦ 𝜋−1

.

An invariant measure 𝜇 of a compact dynamical system (𝑋,𝑇 ) is
a (Borel probability) measure 𝜇 such that 𝜇 (𝑇 −1𝐵) = 𝜇 (𝐵) for every
measurable 𝐵 ⊆ 𝑋 . By the Krylov-Bogolyubov theorem [23, 3.8.4],

every (𝑋,𝑇 ) has an invariant measure.

In the case of shift spaces, we can obtain an invariant measure 𝜇

by defining a probability pre-measure 𝜇0 on the Boolean algebra of

cylinders, and then invoking the Carathéodory extension theorem

[23, Thm. B.5.1] to uniquely extend it to a Borel measure 𝜇, since

the 𝜎-algebras generated by cylinders and open sets of a shift space

coincide. We require that the pre-measure 𝜇0 evaluate to 1 on 𝑋 =

[𝜀]𝑋 , and satisfy the compatibility conditions

𝜇0 ( [𝑢]𝑋 ) =
∑︁
𝑎

𝜇0 ( [𝑢𝑎]𝑋 ) =
∑︁
𝑎

𝜇0 ( [𝑎𝑢]𝑋 ) . (1)

Observe in particular that 𝜇0 ◦𝑇 −1 ( [𝑢]𝑋 ) = 𝜇0 ( [𝑢]𝑋 ), and more

generally, for any set𝑈 in the Boolean algebra of cylinders, 𝜇0 (𝑈 ) =
𝜇0 (𝑇 −1𝑈 ). The Borel measure 𝜇 is defined as

𝜇 (𝐵) = inf

(𝑈𝑛 )𝑛

∑︁
𝑛

𝜇0 (𝑈𝑛),

where (𝑈𝑛)𝑛 ranges over sequences of (disjoint) sets in the Boolean

algebra of cylinders such that 𝐵 ⊆ ⋃
𝑛 𝑈𝑛 .

Since 𝑇 is continuous, 𝜇 ◦ 𝑇 −1
will also be a Borel measure 𝜈 .

The corresponding pre-measure 𝜈0 obtained by restricting 𝜈 to the

Boolean algebra of cylinders, however, is identical to 𝜇0. Thus by

the uniqueness of the extension, 𝜈 = 𝜇 ◦𝑇 −1 = 𝜇, i.e., 𝜇 is indeed

an invariant measure.

We say that 𝑥 ∈ 𝑋 is a generic point of an invariant measure 𝜇

(or simply, 𝑥 is generic for 𝜇) if for every continuous ℎ ∈ 𝐶 (𝑋,R)
(where 𝐶 (𝑋,R) denotes the set of all continuous functions from 𝑋

to R),

lim

𝑁→∞
1

𝑁

𝑁−1∑︁
𝑖=0

ℎ(𝑇 𝑖𝑥) =
∫

ℎ𝑑𝜇.

We refer the reader to [23, App. B.5.2] for the precise formal

definition of the integral.

2.3 Morphic Words and Primitivity
A substitution is a map 𝜎 : Σ → Γ∗, and is extended to Σ∗ and Σ𝜔

in the obvious way, i.e., concatenation. A substitution 𝜎 : Σ → Σ∗

is said to be primitive if there exists a positive integer𝑚 such that

for every letter 𝑎 ∈ Σ, all letters occur in 𝜎𝑚 (𝑎). A substitution 𝜎

is said to be non-erasing if there does not exist a letter 𝑎 such that

𝜎 (𝑎) = 𝜀.

Aword 𝑥 ∈ Σ𝜔 (we assume 𝑥 contains all the letters in Σ) is called
substitutive if there exists a substitution 𝜎 which is non-trivial (i.e,

not the identity) over the letters of 𝑥 , such that 𝜎 (𝑥) = 𝑥 . If 𝜎 is

primitive, then 𝑥 is said to be a primitive substitutive word. As an

example, the Fibonacci word 𝑥 = 0100101001001 · · · is primitive

substitutive, and is the fixed point of the substitution that maps 0

to 01 and 1 to 0.

A word 𝑦 ∈ Γ𝜔 is called morphic if there exists a substitutive
word 𝑥 ∈ Σ𝜔 and a substitution 𝜏 : Σ → Γ∗ such that 𝑦 = 𝜏 (𝑥). If
𝑥 is primitive substitutive, then 𝑦 is said to be primitive morphic.

Morphic words are presented as 𝜎, 𝜏 , a prefix 𝑢 such that 𝜎 (𝑢) = 𝑢,

and a letter 𝑎 such that 𝜎 (𝑎) prolongs 𝑎 (i.e., begins with 𝑎 and

is more than one letter long). We can convert any representation

into one such that the defining substitutions are non-erasing by

restricting the alphabet of 𝜎 .

Remark 2.2. Some authors require 𝜏 to be a coding, i.e., 𝜏 : Σ → Γ
in the above definition. A result of Cobham observes that this is

not a restriction. Indeed, these definitions can (effectively) be used

interchangeably, including in the case of primitive morphic words.

The idea to prove the equivalence (presented in [21, Prop. 17]) is to

define a substitution 𝜎̂ over an auxiliary alphabet Σ̂, constructed
by taking |𝜏 (𝑎) | copies of each letter 𝑎 ∈ Σ.

There are several other sources the reader can consult for a de-

tailed technical exposition of this remark, see e.g., [2, Cor. 7.7.5], [20,

Thm. 3.8] (Thm. 9 in the arXiv version), or [28]. For completeness,

we sketch the idea of [21, Prop. 17] here. For 0 ≤ 𝑖 < |𝜏 (𝑎) | − 1,

the substitution 𝜎̂ maps the 𝑖-th copy 𝑎 (𝑖 ) of 𝑎 to the concatena-

tion 𝑏
(0)
𝑖

𝑏
(1)
𝑖

· · · of all the copies of the 𝑖-th letter 𝑏𝑖 of 𝜎 (𝑎) (if
|𝜎 (𝑎) | ≤ 𝑖 , then the image is the empty word). The last copy of 𝑎

is mapped similarly to the copies of the remaining letters of 𝜎 (𝑎).
We then get 𝑥 , a “stuttering” version of 𝑥 , as the fixed point of 𝜎̂

iterated on 𝑐 (0) , the foremost copy of the starting letter of 𝑥 . Finally,

𝑦 is obtained as 𝜏 (𝑥), where 𝜏 maps 𝑎 (𝑖 ) to the 𝑖-th letter of 𝜏 (𝑎).

Remark 2.3. It is straightforward to give an effective proof of the

fact that any suffix of a morphic word is morphic [2, Thm. 7.6.1]. It

is also known how to decide whether a morphic word (presented

as the image under 𝜏 of the fixed point of 𝜎) is uniformly recurrent;

should the decision be yes, the procedure computes letter-to-letter

𝜏 ′ and primitive 𝜎′ such that the input is the image under 𝜏 ′ of the
fixed point of 𝜎′ [22, Thm. 1, Thm. 3, Sec. 4, Sec. 5] (see also [21,

Lem. 4] and the statement of [24, Thm. 24(1)]). It is well known

that primitive substitutive words are, in fact, linearly recurrent

[18, Prop. 25]. By Lem. 2.4 below, the linear recurrence function

and factor frequencies are effective. These properties extend to

primitive morphic words by Lem. 4.1. The proof of effectiveness is

implicit is classical texbook, we provide it for completeness.

Lemma 2.4. Let 𝑥 ∈ Σ𝜔 be a substitutive word obtained as the fixed
point of a primitive substitution 𝜎 , and let 𝑦 = 𝜏 (𝑥) be a primitive
morphic word. We have that 𝑥,𝑦 are effectively linearly recurrent and
admit computable factor frequencies.

Proof. We prove the lemma for the primitive substitutive 𝑥 , and

defer the proof for the primitive morphic 𝑦 to Lem. 4.1, whence it
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follows immediately. In the proof, we shall associate to the substi-

tution 𝜎 an adjacency matrix𝑀 , whose ( 𝑗, 𝑖)-th entry records the

number of times the 𝑗-th letter 𝑎 𝑗 appears in the image 𝜎 (𝑎𝑖 ) of the
𝑖-th letter 𝑎𝑖 . Because 𝜎 is primitive, we can assume up to replacing

𝜎 with some 𝜎𝑘 that𝑀 has strictly positive entries, which allows

us to use Perron–Frobenius theory.

We first show that 𝑥 is effectively linearly recurrent, i.e., 𝑅𝑥 (𝑛) ≤
𝐿𝑛 for some computable 𝐿. The proof of linear recurrence in [18,

Prop. 25] shows that 𝐿 = 𝐶 ·max𝑎∈Σ |𝜎 (𝑎) | ·𝑅𝑥 (2), where𝐶 is such

that for all 𝑛 ≥ 1, max𝑎∈Σ |𝜎𝑛 (𝑎) | ≤ 𝐶 · min𝑎∈Σ |𝜎𝑛 (𝑎) |.
It suffices to take 𝐶 = (max𝑖, 𝑗 (𝑣𝑖/𝑣 𝑗 ))2

, where (𝑣𝑖 ) |Σ |𝑖=1
are the

strictly positive entries of a left eigenvector 𝑣⊤ of𝑀 corresponding

to the Perron-Frobenius eigenvalue 𝜌 (i.e., the positive one with

maximum absolute value). Indeed, for the 𝑖-th letter 𝑎, |𝜎𝑛 (𝑎) | =∑
𝑗 (𝑀𝑛) 𝑗,𝑖 . The expression on the right is the sum of entries in the 𝑖-

th column of𝑀𝑛
, and is lower bounded by

∑
𝑗 (𝑣 𝑗/max𝑗 𝑣 𝑗 ) · (𝑀𝑛) 𝑗,𝑖 ,

and upper bounded by

∑
𝑗 (𝑣 𝑗/min 𝑣 𝑗 ) · (𝑀𝑛) 𝑗,𝑖 . These bounds re-

spectively evaluate to the 𝑖-th entries of (𝑣⊤𝑀𝑛)/(max𝑗 𝑣 𝑗 ) and
(𝑣⊤𝑀𝑛)/(min𝑗 𝑣 𝑗 ). Since 𝑣⊤ is an eigenvector, we get that

𝜌 𝑗 (min

𝑗
𝑣 𝑗 )/(max

𝑗
𝑣 𝑗 ) ≤ |𝜎𝑛 (𝑎) | ≤ 𝜌 𝑗 (max

𝑗
𝑣 𝑗 )/(min

𝑗
𝑣 𝑗 ).

We now show how to compute (an upper bound on) 𝑅𝑥 (2). First,
we can compute L𝑥 (2) by starting with 𝑥 (0, 2), and recording the

length-2 factors that are produced upon repeatedly applying 𝜎 .

The set of factors will saturate within |Σ|2 iterations. In particular,

we can find 𝑘 large enough such that for all 𝑎 ∈ Σ, 𝜎𝑘 (𝑎) contains
every factor inL𝑥 (2). Clearly, 𝑅𝑥 (2) ≤ 2 max𝑎 |𝜎𝑘 (𝑎) |. This proves
effective linear recurrence.

We note that the textbook discussions in [38, Chap. 5.4] and [23,

Chap. 3.8.5] prove 𝑥 has computable factor frequencies. We present

the techniques here for clarity in exposition. Recall the adjacency

matrix𝑀 of 𝜎 . It follows that the frequency of the 𝑖-th letter 𝑎 in 𝑥

is the 𝑖-th entry of the eigenvector corresponding to the Frobenius

eigenvalue.

This same idea is extrapolated to describe factor frequencies as

follows. We define an alphabet Σ𝑛 , whose letters correspond to

words in L𝑛 (𝑥) (see Rmk. 2.1 for how to compute this alphabet),

and the word 𝑥𝑛 ∈ Σ𝜔𝑛 , where 𝑥𝑛 (𝑖) corresponds to the factor

𝑥 (𝑖, 𝑖 + 𝑛). We define the substitution 𝜎𝑛 such that 𝜎𝑛 (𝑢) is the
ordered list of the first |𝜎 (𝑢 (0)) | length-𝑛 factors of 𝜎 (𝑢). Crucially,
this substitution on Σ𝑛 is primitive [38, Lem. 5.3], and we can

again use Perron-Frobenius theory to obtain the frequency of factor

𝑢 ∈ Σ𝑛 , which is a letter in Σ𝑛 . □

Morphic words, by their definition, can be regarded as being

self-similar. This notion of self-similarity can be generalised as

follows.

Definition 2.5. Let 𝑆 be a set of substitutions. A word 𝑥 ∈ Σ𝜔

is said to be 𝑆-adic if there exists a sequence 𝝈 = (𝜎𝑛)∞𝑛=0
of sub-

stitutions from 𝑆 , and words 𝑥 (0) = 𝑥, 𝑥 (1) , 𝑥 (2) , . . . such that for

all 𝑛, 𝑥 (𝑛) = 𝜎𝑛

(
𝑥 (𝑛+1)

)
. The sequence 𝝈 is called the directive

sequence of the word 𝑥 , and we say that 𝑥 is directed by 𝝈 .

Note that substitutive and morphic words are special cases of 𝑆-

adic words where the directive sequence is periodic and eventually

periodic, respectively. The most common example of a class of 𝑆-

adic words is the class of Sturmian words (see e.g. [8, 37]): these are

words over the binary alphabet with a factor complexity of 𝑛+1. Let

𝑆 = {𝜆0, 𝜆1, 𝜌0, 𝜌1}, where 𝜆𝑖 (𝑖) = 𝑖, 𝜆𝑖 ( 𝑗) = 𝑖 𝑗, 𝜌𝑖 (𝑖) = 𝑖, 𝜌𝑖 ( 𝑗) = 𝑗𝑖 .

It is well known that any Sturmian word is 𝑆-adic with 𝑆 as above,

and an analogous statement can also be made for the generalisation

to Arnoux-Rauzy words [25]. As an example, the Fibonacci word is

a Sturmian word, and the sequence of substitutions is (𝜆0𝜆1)𝜔 .

3 FREQUENCIES AND ERGODIC THEORY
In this section, we shall prove the following, and use it to moti-

vate the conditions we impose on a word 𝑥 (i.e., Boshernitzan’s

condition) in order to ensure that A(𝑥) admits factor frequencies.

Lemma 3.1. A word 𝑥 admits factor frequencies if and only if 𝑥 is
generic for an invariant measure 𝜇 on the shift 𝑋 that it generates.
Should this be the case, we have 𝐹𝑥 (𝑢) = 𝜇 ( [𝑢]𝑋 ).

Proof. The “if” implication is obvious: we simply choose the

continuous function ℎ to be the indicator 1𝑢 which evaluates to 1

on the cylinder [𝑢]𝑋 and 0 elsewhere.

Conversely, suppose 𝑥 admits factor frequencies and generates

the shift 𝑋 . Recall that L(𝑋 ) = L(𝑥), and hence the factor frequen-
cies of 𝑥 defines a pre-measure 𝜇0 on each cylinder in a way that

satisfies the compatibility condition (1). The pre-measure 𝜇0 is thus

invariant, and extends to an invariant measure 𝜇. We now need to

prove that 𝑥 is generic for 𝜇, i.e., for every continuous ℎ, we have∫
ℎ𝑑𝜇 = lim𝑁→∞

1

𝑁

∑𝑁−1

𝑖=0
ℎ(𝑇 𝑖𝑥).

We have a special case where the Stone-Weierstraß theorem

applies. Observe that since𝑋 is compact, the functionℎ is uniformly

continuous, admits a modulus of continuity, and we can define the

following sequence (𝑔𝑀 )𝑀 of functions that converges uniformly

to ℎ (i.e., for every 𝛿 there exists𝑀𝛿 such that for all𝑀 ≥ 𝑀𝛿 we

have max𝑋 |𝑔𝑀 −ℎ | ≤ max𝑢∈L𝑀 (𝑋 ) (max[𝑢 ]𝑋 ℎ−min[𝑢 ]𝑋 ℎ) < 𝛿):

𝑔𝑀 =
∑︁

𝑢∈L𝑀 (𝑋 )
max

[𝑢 ]𝑋
ℎ · 1𝑢 .

By the dominated convergence theorem [23, Thm. B.5.3], we also

have that

∫
ℎ𝑑𝜇 = lim𝑀→∞

∫
𝑔𝑀𝑑𝜇.

In particular, for every 𝛿 > 0, we can choose 𝑀 large enough

such that ����∫ ℎ𝑑𝜇 −
∫

𝑔𝑀𝑑𝜇

���� < 𝛿/3,

and for all 𝑁 , we have by uniform convergence that����� 1

𝑁

𝑁∑︁
𝑖=0

𝑔𝑀 (𝑇 𝑖𝑥) − 1

𝑁

𝑁∑︁
𝑖=0

ℎ(𝑇 𝑖𝑥)
����� < 𝛿/3.

Since 𝑥 admits factor frequencies, it is also clear that for each𝑀 ,

we have lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0
𝑔𝑀 (𝑇 𝑖𝑥) =

∫
𝑔𝑀𝑑𝜇, and in particular

for our chosen 𝑀 , for every 𝛿 there exists 𝑁𝛿 such that for all

𝑁 ≥ 𝑁𝛿 , we have�����∫ 𝑔𝑀𝑑𝜇 − 1

𝑁

𝑁−1∑︁
𝑖=0

𝑔𝑀 (𝑇 𝑖𝑥)
����� < 𝛿/3.

Adding our inequalities together and applying the triangle in-

equality, we get that for every 𝛿 there exists 𝑁𝛿 such that for all
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𝑁 ≥ 𝑁𝛿 , we have
��∫ ℎ𝑑𝜇 − 1

𝑁

∑𝑁
𝑖=0

ℎ(𝑇 𝑖𝑥)
�� < 𝛿 , or in other words,∫

ℎ𝑑𝜇 = lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0
ℎ(𝑇 𝑖𝑥), as desired. □

We now describe measures for which “almost” all points are

generic. An invariant measure 𝜇 is called ergodicwhen the following
condition is met: if a Borel set 𝐵 is such that𝑇 −1𝐵 = 𝐵, then 𝜇 (𝐵) is
either 0 or 1. Since𝑋 is a compact metric space, (𝑋,𝑇 ) is guaranteed
to have an ergodic measure [23, Prop. 3.8.9]. The Birkhoff ergodic

theorem [23, Thm. 3.8.5] states that if 𝜇 is an ergodic measure,

then for every integrable function ℎ, the set of points 𝑥 for which
1∫

ℎ𝑑𝜇 ≠ lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0
ℎ(𝑇 𝑖𝑥) has 𝜇-measure 0. Thus, for each

𝑢 ∈ L(𝑋 ), the set 𝐵𝑢 = {𝑥 | 𝑓𝑥 (𝑢) ≠ 𝜇 ( [𝑢]𝑋 )} has 𝜇-measure 0.

By Lem. 3.1, the complement of the countable union of all such 𝐵𝑢
is precisely the set of points that are generic for 𝜇. Thus, the set 𝐺

of generic points for 𝜇 has 𝜇-measure 1. If (𝑋,𝑇 ) is minimal, we

additionally have that 𝐺 is dense (in the topological sense) in 𝑋 .

The exception of non-generic points does not arise in dynami-

cal systems (𝑋,𝑇 ) that are uniquely ergodic, i.e., there exists only
one invariant measure 𝜇, which is guaranteed to be ergodic [23,

Cor. 3.8.10]. In this case, Oxtoby’s theorem [38, Thm. 4.3] tells us

that all points 𝑥 ∈ 𝑋 are generic for 𝜇. Moreover, unique ergod-

icity is even equivalent to each word in the shift having uniform
factor frequencies [23, Prop. 3.8.14]. A word 𝑥 admits uniform fac-

tor frequencies if for every 𝑣 ∈ L(𝑥) and every 𝛿 , there exists

𝑀 such that for every 𝑚 ≥ 𝑀 and every 𝑢 ∈ L𝑚 (𝑥), we have

| |𝑢 |𝑣/|𝑢 | − 𝑓𝑥 (𝑣) | < 𝛿 , where |𝑢 |𝑣 denotes the number of occur-

rences of 𝑣 in 𝑢. Note that for technical convenience, we may re-

place |𝑢 |𝑣/|𝑢 | in the above by |𝑢 |𝑣/(|𝑢 | − |𝑣 | + 1), which we denote

by 𝑓𝑢 (𝑣). This alternate definition is also natural because the de-

nominator is the number of indices of 𝑢 at which an occurrence of

𝑣 is possible.

Note that if (𝑋,𝑇 ) is uniquely ergodic, then the support 𝑋 ′
of

the invariant measure 𝜇 is a minimal shift. Indeed, if it were to

contain a shift 𝑌 , then 𝑌 itself would admit an invariant measure

𝜈 [23, Prop. 3.8.4] which, when extended to 𝑋 ′
, would be distinct

from 𝜇: a contradiction. We henceforth focus on minimal shifts.

Lemma 3.2. If an effectively uniformly recurrent word 𝑥 generates
a uniquely ergodic shift 𝑋 with invariant measure 𝜇, then 𝑥 admits
computable factor frequencies.

Proof. Given a factor 𝑣 of length 𝑙 and a tolerance 𝛿 , we shall

show that we can compute 𝐿 such that for all 𝑢 ∈ L𝐿+𝑙−1
(𝑥), we

have |𝑓𝑥 (𝑣) − 𝑓𝑢 (𝑣) | < 𝛿 . It then remains to count the occurrences

of 𝑣 in any appropriate 𝑢, e.g., 𝑢 = 𝑥 (0, 𝐿 + 𝑙 − 1). For notational
convenience, in this proof we abbreviate L𝐿+𝑙−1

as simply L.

It suffices to show that for every 𝐿 ≥ 1, we have min𝑢∈L 𝑓𝑢 (𝑣) ≤
𝑓𝑥 (𝑣) ≤ max𝑢∈L 𝑓𝑢 (𝑣). Indeed, by the definition of uniform fre-

quencies, the difference between the bounds is less than 𝛿 for some

𝐿 which can be found by brute enumeration (made possible by the

fact that 𝑥 is effectively uniformly recurrent).

We prove the above claim by showing that 𝑓𝑥 (𝑣) is a convex

combination of the values of 𝑓𝑢 (𝑣); more precisely, we have 𝑓𝑥 (𝑣) =∑
𝑢∈L 𝑓𝑥 (𝑢) 𝑓𝑢 (𝑣). To that end, we define the continuous function

𝜒 , which maps 𝑥 to 𝑓𝑥 (0,𝐿+𝑙−1) (𝑣). Clearly by the unique ergodicity

1
We overload inequality to also include the case where the limit does not exist.

of 𝑋 , we have
∫
𝜒𝑑𝜇 is equal to the summation of the right. We

shall conclude by showing that lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0
𝜒 (𝑇 𝑖𝑥) = 𝑓𝑥 (𝑣).

Observe that by definition, 𝜒 (𝑥) = 1

𝐿

∑𝐿−1

𝑗=0
1𝑣 (𝑇 𝑗𝑥). Thus, we

can express

∑𝑁−1

𝑖=0
𝜒 (𝑇 𝑖𝑥) = 1

𝐿

∑𝑁−1

𝑖=0

∑𝑖+𝐿−1

𝑗=𝑖 1𝑣 (𝑇 𝑗𝑥). We can fur-

ther rearrange the summation to obtain

1

𝐿

(
𝐿

𝑁−𝐿∑︁
𝑖=𝐿−1

1𝑣 (𝑇 𝑖𝑥) +
𝐿−2∑︁
𝑖=0

(𝑖 + 1) (1𝑣 (𝑇 𝑖𝑥) + 1𝑣 (𝑇𝑁−1−𝑖𝑥))
)
.

Thus, lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0
𝜒 (𝑇 𝑖𝑥) = lim𝑁→∞

1

𝑁

∑𝑁−𝐿
𝑖=𝐿−1

1𝑣 (𝑇 𝑖𝑥). The
latter sequence is (𝑁 − 2𝐿)/𝑁 times the average of 𝑁 − 2𝐿 terms,

and indeed converges to the limit of the usual Birkhoff averages,

i.e., to 𝑓𝑥 (𝑣). □

The existence of factor frequencies is very susceptible to fail-

ure when words are drawn from minimal shift spaces that are

not uniquely ergodic. Note that the set of all invariant measures

of (𝑋,𝑇 ) form a convex polytope whose extremal points are the

ergodic measures [23, Prop. 3.8.10]. In particular, if (𝑋,𝑇 ) is not
uniquely ergodic, it will have at least two distinct ergodic measures.

Lemma 3.3 (Thm. 1.1 in [17]). Let 𝑋 be a minimal shift space
which is not uniquely ergodic. There exists a dense set 𝐵 ⊆ 𝑋 of words
that are not generic for any invariant measure, and hence do not
admit factor frequencies.

Remark 3.4. To summarise the discussion on the existence of

factor frequencies, for a minimal shift𝑋 , we have the following. If𝑋

is uniquely ergodic, then all 𝑥 ∈ 𝑋 admit (uniform and computable)

factor frequencies, and moreover agree on the frequencies of each

factor. On the other hand, if 𝑋 is not uniquely ergodic, then it will

have a dense subset of words which do not admit factor frequencies,

and a dense (by virtue of including the orbit of any generic point)

subset of generic points for its ergodic measures. These generic

points do admit factor frequencies, but they do not agree on the

frequencies of all factors because they are generic for different

measures.

Let us now explain how to obtain the counterexamples to the

preservation of unique ergodicity alluded to in the Introduction.

Lemma 3.5. There exists a uniformly recurrent word 𝑥 ∈ {0, 1}𝜔
that admits factor frequencies, but A(𝑥) does not, where A is the
two-state transducer whose underlying automaton changes the state
on reading 1, stays in the same state on reading 0, and prints (𝑞,𝑏)
on reading 𝑏, where 𝑞 is the current state.

Proof. We shall choose 𝑥 to be the symbolic trace of a carefully

constructed topological dynamical system. Chaika [13] constructs a

minimal and uniquely ergodic dynamical system (𝑋 ′,𝑇 ′) as follows:
the space 𝑋 ′

is the unit circle identified by the interval [0, 1), and
𝑇 ′

maps 𝜁 to 𝜁 + 𝛼 , where 𝛼 < 1/3 is an irrational number. The

invariant measure 𝜇′ is the usual Lebesgue measure. There is a

distinguished set 𝐼 which is the union of the intervals [0, 𝛾) and
[𝛼 + 𝛽, 𝛼 + 𝛽 + 𝛾), where 𝛽,𝛾 are constants depending on 𝛼 . The

dynamics of the skew product 𝑌 ′ = (Z2 ⋊ 𝑋 ′,𝑇 ′) maps (𝑏, 𝜁 ) to
(𝑏 + 1𝐼 (𝜁 ), 𝜁 + 𝛼), where 1𝐼 (𝜁 ) is 1 if 𝜁 ∈ 𝐼 , and 0 otherwise. This

skew product is minimal, but admits precisely two distinct ergodic

measures 𝜈 ′
0
, 𝜈′

1
.
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For each 𝜁 , we define its symbolic trace 𝑥 = tr(𝜁 ) as 𝑥 (𝑛) =

1𝐼 (𝜁 + 𝑛𝛼). We claim that 𝑋 = {tr(𝜁 ) | 𝜁 ∈ 𝑋 ′} is a minimal shift.

To that end, for each 𝑢 ∈ {0, 1}+, we shall inductively define sets

𝐼𝑢 with the property that 𝑢 occurs at index 𝑛 in tr(𝜁 ) if and only if

𝜁+𝑛𝛼 ∈ 𝐼𝑢 . Clearly, 𝐼1 = 𝐼 , and 𝐼0 = [0, 1)\𝐼1, and 𝐼𝑏𝑢 = 𝐼𝑏∩(−𝛼+𝐼𝑢 ).
By examining the orientation of the intervals, we have that each 𝐼𝑢
is either empty, or contains a non-empty open set. Thus, tr(𝜁 ) is
uniformly recurrent, and furthermore L(tr(𝜁 )) is the set of factors
𝑢 such that 𝐼𝑢 is non-empty (we take 𝐼𝜀 to be [0, 1)). It follows that
every tr(𝜁 ) generates the same shift 𝑋 , and that 𝑓tr(𝜁 ) (𝑢) = 𝜇′ (𝐼𝑢 ).
The unique ergodicity of 𝑋 follows readily from the following

lemma.

Lemma 3.6. Consider the partition of the unit circle into finitely
many semi-open intervals 𝐼 𝑗 = [𝛽 𝑗 , 𝛾 𝑗 ), and let 𝛼 be irrational. The
shift 𝑋 generated by the codings (with respect to the intervals 𝐼 𝑗 ) of
the rotation by 𝛼 is uniquely ergodic.

Proof. Denote by 𝐼 𝑗 the interval (𝛽 𝑗 , 𝛾 𝑗 ]. By symmetry, the set

of codings with respect to the partition of “dual” intervals is also

included in 𝑋 . We shall prove that 𝑋 comprises precisely of the

codings with respect to the original partition, and codings with

respect to the dual partition.

For each 𝑢 ∈ L𝑛 (𝑋 ), we define 𝐼𝑢 and 𝐼𝑢 as before, and also

define the non-empty closed interval 𝐼𝑢 as their union. If 𝑥 ∈ 𝑋 is a

coding of the rotation starting at 𝜁 , then for each prefix 𝑢 of 𝑥 , we

must have 𝜁 ∈ 𝐼𝑢 . Conversely, if 𝜁 is in each 𝐼𝑢 , then 𝑥 is its coding

because by the orientation of the intervals, 𝜁 is either in each 𝐼𝑢 , or

in each 𝐼𝑢 (if 𝜁 was on the left endpoint of 𝐼𝑢 and right endpoint of

𝐼𝑢𝑣 , it would imply that 𝐼𝑢𝑣 is empty, a contradiction).

Thus, each 𝑥 ∈ 𝑋 defines an infinite sequence of nested closed

intervals, and there necessarily exists a point 𝜁 in their countable

intersection. By the preceding discussion 𝑥 codes a rotation of this

𝜁 with respect to either the original partition, or the dual partition.

This proves that each 𝑥 ∈ 𝑋 admits factor frequencies, with 𝑓𝑥 (𝑢)
given by the Lebesgue measure of 𝐼𝑢 . We use Oxtoby’s theorem to

conclude that 𝑥 is uniquely ergodic. □

We now define the shift 𝑌 to be generated by the run of A on

some tr(𝜁 ). We claim that 𝑌 is minimal, projects to 𝑋 , and in fact

the projection map is two-to-one. Minimality can be seen either by

alternately defining 𝑌 via 𝑌 ′
similarly as above, or directly from the

uniform recurrence of𝑌 as given by Lem. 5.2. Now,𝑌 is (isomorphic

to) a closed subset of Z2 × 𝑋 . Since Z2 is compact, projection is a

closed map, and hence the projection of 𝑌 onto 𝑋 is a closed set

which is moreover shift-invariant. It follows that this projection

must be 𝑋 itself. Since 𝑌 includes the set of symbolic traces of the

minimal skew product 𝑌 ′ = Z2 ⋊ 𝑋 ′
, it must in fact be isomorphic

to Z2 × 𝑋 .

Finally, we show that 𝑌 admits two distinct invariant measures

𝜈0, 𝜈1. For this, observe that tr : 𝑌 ′ → 𝑌 is measurable. Indeed, the

subsets 𝐵 of 𝑌 for which tr−1 (𝐵) is Lebesgue-measurable form a

𝜎-algebra which includes the cylinders of 𝑌 as they are images of

measurable sets {𝑏} × 𝐼𝑢 . Thus, the ergodic measures 𝜈 ′
0
, 𝜈′

1
of 𝑌 ′

project to invariant measures 𝜈𝑏 = 𝜈 ′
𝑏
◦ tr−1

.

To complete the proof, we record that 𝜈0, 𝜈1 are indeed distinct

because 𝜈 ′
0
, 𝜈′

1
are such that 𝜈 ′

𝑏
(𝑏 × 𝐵) = 𝜇′ (𝐵), i.e., each measure

concentrates its mass in one copy of 𝑋 ′
[13, Prop. 3].

We thus have that 𝑌 is a shift that is not uniquely ergodic, and

contains the runs ofA on all 𝑥 ∈ 𝑋 . In particular, by Lem. 3.3, there

exists some counterexample 𝑦 = A(𝑥) that does not admit factor

frequencies despite 𝑥 doing so. □

The natural questions that follow are: can one identify when a

shift is uniquely ergodic? Is there a stronger condition on 𝑋 which

precludes the misbehaviour of 𝑌 described above? Boshernitzan

[10] gave a sufficient (but not necessary) condition in answer to

the former. In this paper, we shall show that this condition answers

the latter in the affirmative.

Definition 3.7 (Condition (B)). Let 𝑋 ⊆ Σ𝜔 be a minimal shift

space. For an invariant measure 𝜇, define 𝜅 : N → R as

𝜅 (𝑛) = min

𝑢∈L𝑛 (𝑋 )
(𝑛 · 𝜇 ( [𝑢]𝑋 )) .

The minimal shift space 𝑋 ⊆ Σ𝜔 satisfies Boshernitzan’s condition

(also referred to as Condition (B)) if it admits an invariant measure

𝜇 such that the corresponding 𝜅 satisfies lim sup𝑛→∞ 𝜅 (𝑛) > 0. A

uniformly recurrent word 𝑥 ∈ Σ𝜔 satisfies Boshernitzan’s condition

if it generates a shift space𝑋 that satisfies Boshernitzan’s condition.

Lemma 3.8 (Boshernitzan [10]). A minimal shift space 𝑋 ⊆ Σ𝜔

that satisfies Boshernitzan’s condition is uniquely ergodic. If a word
𝑥 ∈ Σ𝜔 satisfies Boshernitzan’s condition, then the frequency of every
factor 𝑢 of 𝑥 is well defined and uniform.

Remark 3.9. If a word 𝑥 is linearly recurrent, then it satisfies

Boshernitzan’s condition [19, Thm. 15]. And even, linear recurrence

for a minimal shift space is equivalent to lim inf 𝜅 (𝑛) > 0 by a result

due to Boshernitzan (see [37, Exercise 174]). By Rmk. 2.3 below,

Boshernitzan’s condition is also satisfied by primitive morphic

words. The work of Damanik and Lenz [15] is important from the

perspective of applicability: they show that Sturmian words satisfy

Boshernitzan’s condition, as do almost all words coding the orbits

of interval-exchange transformations [16, Thm. 5], a large class of

1-dimensional toric words [16, Sec. 5], and almost all Arnoux-Rauzy

words [16, Thm. 12].

4 THE KROHN-RHODES FRAMEWORK
In this paper, we shall work with deterministic automata and trans-

ducers. Henceforth, when we refer to automata and transducers,

we mean the deterministic models of computation described below.

A transducer A is given by (𝑄,𝑞init .Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ), where 𝑄 is a

finite non-empty set of states, 𝑞init ∈ 𝑄 is the initial state, Σ is the

input alphabet, Γ is the output alphabet, 𝛿𝑡 : 𝑄 × Σ → 𝑄 is the

transition function, and 𝛿𝑜 : 𝑄 × Σ → Γ∗ is the output function.

For convenience, we shall extend the domain of 𝛿𝑡 , 𝛿𝑜 to 𝑄 × Σ∗

in the obvious way: 𝛿𝑡 (𝑞, 𝜀) = 𝑞 and 𝛿𝑜 (𝑞, 𝜀) = 𝜀 for all 𝑞, while

𝛿𝑡 (𝑞,𝑢𝑎) = 𝛿𝑡 (𝛿𝑡 (𝑞,𝑢), 𝑎) and 𝛿𝑜 (𝑞,𝑢𝑎) = 𝛿𝑜 (𝑞,𝑢) · 𝛿𝑜 (𝛿𝑡 (𝑞,𝑢), 𝑎).
A uniform transducer is one where we have that for all 𝑞, 𝑎, we

have |𝛿𝑜 (𝑞, 𝑎) | is the same: if the common length is 𝑙 , we have an

𝑙-uniform transducer. A non-erasing transducer is one where for all

𝑞 ∈ 𝑄, 𝑎 ∈ Σ we have 𝛿𝑜 (𝑞, 𝑎) ≠ 𝜀.

Automata are special cases of 1-uniform transducers where Γ =

𝑄×Σ, and 𝛿𝑜 is the identity function, and we therefore present them
simply as (𝑄,𝑞init, Σ, 𝛿). We shall denote the output of a transducer

A upon reading a word 𝑥 (finite or infinite) as A(𝑥). When A is
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an automaton, we call the sequence A(𝑥) of state-letter pairs the
run of A on 𝑥 , because indeed if we denote A(𝑥) (𝑛) = (𝑞𝑛, 𝑎𝑛),
then for every 𝑛 we have 𝛿 (𝑞𝑛, 𝑎𝑛) = 𝑞𝑛+1.

Given a transducer A, we shall denote its underlying automaton
(obtained as described above) byA0. We observe that we can always

define a substitution 𝜎 : (𝑄 × Σ) → Γ∗ such that for all 𝑥 , we have

that A(𝑥) = 𝜎 (A0 (𝑥)). The following lemma assures us that it

suffices to focus only on automata to prove our results.

Lemma 4.1. Let 𝜎 : Σ → Γ∗ be a substitution, and let 𝑥 ∈ Σ𝜔 be
an infinite word. If 𝑥 has one of the following properties, then 𝜎 (𝑥)
also has that property, provided it is an infinite word.

(1) primitive morphic
(2) recurrent
(3) (effectively) uniformly recurrent
(4) (effectively) linearly recurrent
(5) uniformly recurrent and admits factor frequencies
(6) satisfies Boshernitzan’s condition

In item (5), if 𝑥 is effectively uniformly recurrent and admits com-
putable factor frequencies, then 𝜎 (𝑥) also has these properties.

Proof. Item (1) follows immediately by definition (see Rmk. 2.2).

Items (2) through (4) have similar proofs. To formalise the proof,

consider the attribution function 𝛼 from indices of 𝜎 (𝑥) to indices of
𝑥 . We define 𝛼 ( 𝑗) to be the smallest index 𝑖 such that 𝑗 < |𝜎 (𝑥 (0, 𝑖 +
1)) |, i.e., the letter at index 𝑗 of 𝜎 (𝑥) is attributed to the image

of 𝑥 (𝑖). We define 𝛼 (𝐽 ) =
⋃

𝑗∈ 𝐽 𝛼 ( 𝑗). In particular, when 𝑣 is a

factor of 𝜎 (𝑥) at index 𝑗 , then we set 𝐽 = [ 𝑗, 𝑗 + |𝑣 |), obtain [𝑖, 𝑖′)
as the smallest interval that contains 𝛼 (𝐽 ), and say that the above

occurrence of 𝑣 is attributed to an occurrence of 𝑢 = 𝑥 (𝑖, 𝑖′) in 𝑥 at

index 𝑖 .

Clearly, if an occurrence of 𝑣 is attributed to an occurrence of 𝑢,

then the recurrence of 𝑢 implies that of 𝑣 . This proves item (2).

In case 𝑥 is uniformly recurrent, an occurrence of 𝑣 will always

be attributed to a factor𝑢 that is at most 𝑅𝑥 (1) · |𝑣 | in length. This is

because the gaps between occurrences of non-erasing letters (letters

𝑎 for which 𝜎 (𝑎) is not the empty word) are bounded by 𝑅𝑥 (1). The
gaps between the occurrences of 𝑢 are themselves bounded by

𝑅𝑥 (𝑅𝑥 (1) · |𝑣 |). Finally, the gaps between the occurrences of 𝑣 must

be bounded by (max𝑎∈Σ |𝜎 (𝑎) |) · 𝑅𝑥 (𝑅𝑥 (1) · |𝑣 |). This proves item
(3), and also item (4): if 𝑅𝑥 (𝑛) is linear, then the bound on the gaps

between occurrences of 𝑣 will also be linear in |𝑣 |.
We prove item (5) in two steps. As in Rmk. 2.2, we decompose𝜎 as

𝜏 ◦𝜎̂ , where 𝜏 is a letter-to-letter substitution, and 𝜎̂ maps each letter

𝑎 to |𝜎 (𝑎) | copies of 𝑎, i.e., 𝜎̂ (𝑎) = (𝑎, 0) (𝑎, 1) · · · (𝑎, |𝜎 (𝑎) | − 1). We

denote 𝜎̂ (𝑥) by 𝑧, and 𝜏 (𝑧), which is the same as 𝜎 (𝑥), by𝑦. Observe
by the preceding discussion that 𝑧,𝑦 are uniformly recurrent. We

shall show that 𝑧 admits factor frequencies, and in turn so does 𝑦.

By uniform recurrence, we have that any factor 𝑤 of 𝑧 can be

attributed to one of finitely many factors {𝑢1, . . . , 𝑢𝑑 } of 𝑥 , and this
factor will have length at most 𝑅𝑥 (1) · |𝑤 |. By the definition of

attribution, there is no pair 𝑢𝑖 , 𝑢 𝑗 such that 𝑢𝑖 is a factor of 𝑢 𝑗 (in

particular, the cylinders [𝑢1]𝑋 , . . . , [𝑢𝑑 ]𝑋 are disjoint); moreover

by the positional-encoding nature of the construction, each𝑢𝑖 , upon

restricting to non-erasing letters, will give a word 𝑢 such that 𝜎̂ (𝑢)
contains exactly one occurrence of 𝑤 (and conversely, the set of

factors which begin and end with a non-erasing letter, and give

𝑢 upon restricting to non-erasing letters is {𝑢1, . . . , 𝑢𝑑 }). We thus

obtain 𝑓𝑧 (𝑤) = 𝑓𝑧 (𝜎̂ (𝑢)). We claim that 𝑓𝑧 (𝜎̂ (𝑢)) = 𝐹/𝐿, where
𝐹 =

∑𝑑
𝑖=1

𝑓𝑥 (𝑢𝑖 ), and 𝐿 is the non-zero constant

∑
𝑎∈Σ 𝑓𝑥 (𝑎) |𝜎̂ (𝑎) |.

Indeed, 𝐿 ≥ 1/𝑅𝑥 (1), and is hence non-zero.

We note that 𝐹 = lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0

∑𝑑
𝑗=1

1𝑢 𝑗
(𝑇 𝑖𝑥) by Lem. 3.1.

We also have that 𝐿 = lim𝑁→∞
1

𝑁

∑𝑁−1

𝑖=0
|𝜎 (𝑥 (𝑖)) | (consider the

function that maps 𝑥 to |𝜎 (𝑥 (0)) |). We rephrase these observations

by taking appropriate subsequences of Birkhoff averages as follows.

Let (𝛽𝑁 )𝑁 ∈N denote the strictly increasing sequence whose 𝑁 -

th element 𝛽𝑁 is the index (in 𝑥) of the 𝑁 -th occurrence of an

element of {𝑢1, . . . , 𝑢𝑑 }. We have in particular that lim𝑁→∞
𝑁
𝛽𝑁

=

𝐹 . Similarly, we define the strictly increasing sequence (𝛾𝑁 )𝑁 ∈N
of indices of occurrences of 𝜎̂ (𝑢) in 𝑧 as 𝛾𝑁 =

∑𝛽𝑁 −1

𝑖=0
|𝜎 (𝑥 (𝑖)) |,

and observe that lim𝑁→∞
𝛾𝑁
𝛽𝑁

= 𝐿. Since 𝐿 ≠ 0, we obtain that

lim𝑁→∞
𝑁
𝛾𝑁

= 𝐹
𝐿
. Denoting 𝑈 = {𝛾𝑁 | 𝑁 ∈ N}, it remains to

observe (by elementary analytic means) that lim𝑀→∞
|𝑈∩[0,𝑀 ) |

𝑀
=

lim𝑁→∞
𝑁
𝛾𝑁

= 𝐹
𝐿
.

Indeed, the sequences agree whenever𝑀 = 𝛾𝑁 . The sequence on

the left decreases in the interim, and only increases when𝑀 steps

from 𝛾𝑁 −1 to 𝛾𝑁 . A simple calculation shows that the increment is

bounded by 1/(𝛾𝑁 −1), i.e., asymptotically vanishes. It then follows

that the sequences converge to the same limiting value 𝐹/𝐿.
The proof that 𝑦 inherits the property of admitting factor fre-

quencies from 𝑧 is simpler because 𝜏 is letter-to-letter. For any factor

𝑣 , there are finitely many factors𝑤1, . . . ,𝑤𝑑 of the same length such

that 𝜏 (𝑤𝑖 ) = 𝑣 . The frequency 𝑓𝑦 (𝑣) is simply

∑
𝑖 𝑓𝑧 (𝑤𝑖 ).

To prove item (6)
2
, observe that

min

𝑣∈L𝑛 (𝑦)
𝑓𝑦 (𝑣) ≥

1

𝐿
min

𝑢∈L𝑛 ·𝑅 (𝑥 )
𝑓𝑥 (𝑢),

where 𝑅 = 𝑅𝑥 (1). Writing 𝜅′ (𝑛) as shorthand for min𝑢∈L 𝑓 (𝑢),
using 𝑋,𝑌 to denote the shifts generated by 𝑥,𝑦, and defining

𝜇𝑋 , 𝜇𝑌 using 𝑓𝑥 , 𝑓𝑦 , we get 𝐿(𝑅 + 1)𝑛 ·𝜅′
𝑌
(𝑛) ≥ max0≤𝑟<𝑅 (𝑛𝑅 + 𝑟 ) ·

𝜅′
𝑋
(𝑛𝑅 + 𝑟 ). This allows us to conclude that lim sup𝑛→∞ 𝜅𝑌 (𝑛) > 0,

given lim sup𝑛→∞ 𝜅𝑋 (𝑛) > 0, thus establishing the preservation of

Boshernitzan’s condition. □

We record an interesting corollary of the above proof.

Corollary 4.2. Let 𝜎 be a non-erasing substitution. If 𝑥 admits
(computable) factor frequencies, then so does 𝜎 (𝑥).

Our main tool to prove preservation results for automata will be

the Krohn-Rhodes theorem, which decomposes automata into sim-

ple, “well-behaved” components that are connected “in series”. The

strategy is then to prove preservation results for these simpler au-

tomata. The Krohn-Rhodes theorem is often stated for semigroups

[30]; see [34, Thm. 1] for a formulation in terms of automata (see

also [32, Thm. 3]). We now introduce the terminology required to

state the theorem.

Given an automaton A = (𝑄,𝑞init, Σ, 𝛿), for every 𝑢 ∈ Σ∗, we
define 𝛿𝑢 : 𝑄 → 𝑄 to be the transition function induced by 𝑢, i.e.,

𝛿𝑢 (𝑞) = 𝛿 (𝑞,𝑢). An automaton A is called a reset automaton if

for every 𝑎 ∈ Σ, the function 𝛿𝑎 is either the identity function, or

2
The proof of [15, Thm. 8(a)], which states item (6), implicitly assumes the substitution

is non-erasing.
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constant-valued. Intuitively, a reset automaton is a flip-flop whose

memory records the last reset. An automaton A is called a permu-
tation automaton (also a group automaton) if for every 𝑎 ∈ Σ, 𝛿𝑎
defines a permutation of 𝑄 , i.e., is bijective. The automaton A is

called counter-free if there does not exist 𝑢 ∈ Σ+, 𝑄′ ⊆ 𝑄 such that

𝛿𝑢 induces a non-trivial permutation on 𝑄 ′
. For the sake of brevity,

we declare that permutation, reset, and counter-free transducers

are respectively those whose underlying automata are permutation,

reset, and counter-free automata. We remark that counter-free au-

tomata are of particular interest because of their equivalence with

first-order-definable (aperiodic) languages, as established by the

McNaughton–Papert theorem [33].

We say that an automaton A′ = (𝑄 ′, 𝑞′initΣ, 𝛿
′) covers an au-

tomaton A = (𝑄,𝑞init, Σ, 𝛿) if there exists a map 𝜑 from 𝑄 ′
to 𝑄

that respects the initial states and commutes with the transition

relations, i.e., 𝜑 (𝑞′init) = qinit and for every 𝑞′ ∈ 𝑄 ′, 𝑎 ∈ Σ, we have
that 𝜑 (𝛿 ′ (𝑞′, 𝑎)) = 𝛿 (𝜑 (𝑞′), 𝑎). This implies, in particular that for a

word 𝑢 over Σ, its runs 𝑣, 𝑣 ′ over A,A′
respectively are related by

𝑣 = 𝜎′ (𝑣 ′) where 𝜎′ is a letter-to-letter substitution.
If A1 = (𝑄1, Σ, 𝛿1), and A2 = (𝑄2, 𝑄1 × Σ, 𝛿2), then the cascade

A2 ◦ A1 is an automaton over Σ with states 𝑄2 × 𝑄1 defined by

the following property. The run of a word 𝑢 is a word 𝑣 ′ over
(𝑄2 ×𝑄1 × Σ): its projection 𝑣 onto 𝑄1 × Σ is the run of A1 on 𝑢,

and 𝑣 ′ is the run of A2 on 𝑣 . Formally, the transition function is

given by

𝛿 ((𝑞2, 𝑞1), 𝑎) = (𝛿1 (𝑞1, 𝑎), 𝛿2 (𝑞2, (𝑞1, 𝑎))) .

The cascade A𝑘 ◦ · · · ◦ A1 is implemented by performing the

rightmost cascade first, akin to function composition.

Theorem 4.3 (Krohn-Rhodes [34]). For every automaton A, we
can compute a cascade A′ = B𝑘 ◦ · · · ◦ B1 such that:

(1) A′ covers A.
(2) Each B𝑖 is either a permutation automaton or a two-state reset

automaton.
(3) If B𝑖 is a permutation automaton, then its transition group is

homomorphic to a subgroup of the transition monoid of A.

In particular, ifA is a counter-free automaton, then each B𝑖 is a reset
automaton.

Remark 4.4. Our proofs of preservation theorems for transducer

outputs will follow the following template: (i) prove the theorem

for reset automata and permutation automata; (ii) deduce that the

theorem holds for any cascade of these special automata; (iii) apply

Lem. 4.1 (we only need the easy case of 𝜎 being a coding here) and

deduce that the theorem holds for any automaton covered by such

a cascade; (iv) apply the Krohn-Rhodes theorem and deduce that

the theorem indeed holds for all automata; (v) apply Lem. 4.1 to

deduce the theorem holds for all transducers. In the above, only

Step (i) will require work.

5 PRESERVATION OF RECURRENCE
Semënov showed that if a word 𝑥 ∈ Σ𝜔 is effectively almost-periodic
(i.e., the word 𝑥 is effective, and given any 𝑢 ∈ Σ+, it can be decided

whether 𝑢 occurs infinitely often in 𝑥 , and if it is the case, we can

compute R𝑥 (𝑢)), then for any transducer A, the word A(𝑥), if
infinite, is also effectively almost-periodic (see [35, Sec. 3] for an

exposition of that result in English). Using this result and tech-

niques from the proof, Pritykin showed that if a word 𝑦 ∈ Σ𝜔 has a

uniformly recurrent suffix 𝑥 , then for any transducer A, the word

A(𝑦), if infinite, also has a uniformly recurrent suffix [36]. We use

the Krohn-Rhodes theorem to prove (in an arguably simpler and

more insightful manner) the following strengthening. We remark

that the Krohn-Rhodes theorem is crucially needed in the case

where we do not assume uniform recurrence.

Theorem 5.1. LetA = (𝑄,𝑞init, Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ) be a transducer. Con-
sider a word 𝑥 ∈ Σ𝜔 . If 𝑥 has one of the following properties, then
A(𝑥) also has the same property, provided that it is an infinite word.

(1) (effectively) recurrent suffix
(2) (effectively) uniformly recurrent suffix (whose starting index is

computable)
(3) (effectively) linearly recurrent suffix (whose starting index is

computable)

By Rmk. 4.4, the preservation theorem above would follow from

preservation lemmas for permutation automata and reset automata.

Observe that in the proofs, we can assume without losing generality

that the input word 𝑥 is recurrent by simply considering the run

starting at the beginning of the recurrent suffix. The following

distills the core idea of Semënov’s argument.

Lemma 5.2. Let A = (𝑄,𝑞init, Σ, 𝛿) be a permutation automaton.
Consider a word 𝑦 ∈ Σ𝜔 . If 𝑥 has one of the following properties, then
A(𝑥) also has that property.

(1) (effectively) recurrent
(2) (effectively) uniformly recurrent
(3) (effectively) linearly recurrent

Proof. We prove the preservation of recurrence, and obtain

preservation of the other properties as corollaries of the proof. We

shall consider an arbitrary occurrence of a factor 𝑣 of A(𝑥), and
prove that 𝑣 occurs infinitely often by showing that we can find

another occurrence to the right of the one under consideration.

To that end, let us establish some notation. We denote the pro-

jection of 𝑣 = 𝑣0 onto Σ by 𝑢0, and denote by 𝑖0 the index of the

occurrence of 𝑣0 in A(𝑥) (which is the same as that of the corre-

sponding occurrence of 𝑢0 in 𝑥 ). If the first letter of 𝑣0 is (𝑞,𝑢0 (0))
and 𝛿𝑢0

(𝑞) = 𝑞0, then we use (𝑢0, 𝑞0) as shorthand for 𝑣0. The short-

hand indeed defines 𝑣0 becauseA is a permutation automaton, and

hence for every word𝑢, 𝛿𝑢 admits an inverse, which we shall denote

by 𝛿−1

𝑢 . In other words, the transition function is “reversible”: if

we know the state after reading 𝑢, we can determine all the states

along the run of 𝑢.

We inductively define sequences (𝑢𝑘 )𝑘 of factors of 𝑥 , (𝑣𝑘 )𝑘
of factors of A(𝑥), (𝑖𝑘 )𝑘 of indices, and (𝑞𝑘 )𝑘 of states. We shall

maintain that the projection of each 𝑣𝑘 onto Σ is the corresponding

𝑢𝑘 . We always have that 𝑢𝑘 has infinitely many occurrences in 𝑥 ,

and we will maintain that𝑢𝑘 occurs in 𝑥 at index 𝑖0. We find its next

occurrence at index 𝑖𝑘+1
> 𝑖0, and define𝑢𝑘+1

= 𝑥 (𝑖0, 𝑖𝑘+1
+ |𝑢𝑘 |) to

be the extended return word that spans consecutive occurrences of

𝑢𝑘 . Correspondingly, we define 𝑣𝑘+1
= A(𝑥) (𝑖0, 𝑖𝑘+1

+ |𝑢𝑘 |). This
word 𝑣𝑘+1

will be denoted by (𝑢𝑘+1
, 𝑞𝑘+1

). In particular, the word

𝑢𝑘 is a prefix of 𝑢𝑘+1
.

By the pigeonhole principle, there exist distinct 𝑙, 𝑘 with 0 ≤ 𝑙 <

𝑘 ≤ |𝑄 | such that 𝑞𝑙 = 𝑞𝑘 . By construction, we also have that 𝑢𝑙 is
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both a prefix and a suffix of 𝑢𝑘 . This means that we have found two

occurrences of 𝑣𝑙 = (𝑢𝑙 , 𝑞𝑙 ), one at index 𝑖0, and the other at index

𝑖𝑘+1
+ |𝑢𝑘 | − |𝑢𝑙 |. Our construction also ensures in particular that

𝑢0 is a prefix of 𝑢𝑙 , and since the transition function is reversible,

we have found an occurrence of 𝑣0 at index 𝑖𝑘+1
+ |𝑢𝑘 | − |𝑢𝑙 |, which

is to the right of 𝑖0 by at most |𝑢𝑘+1
|.

We have thus far proven that A(𝑥) is recurrent. Effectiveness
follows because A(𝑥) inherits the property of having a decidable

MSO theory from 𝑥 .

In the case of (effective) uniform recurrence, we observe that

𝑖𝑘+1
− 𝑖0 ≤ 𝑅𝑥 ( |𝑢𝑘 |), and thus |𝑢𝑘+1

| ≤ 𝑅𝑥 ( |𝑢𝑘 |) + |𝑢𝑘 |. For con-
venience, we define the auxiliary function𝑊𝑥 (read as “window

function”) as𝑊𝑥 (𝑛) = 𝑅𝑥 (𝑛) +𝑛. From the discussion above, we get

that 𝑅A(𝑥 ) (𝑛) ≤𝑊
( |𝑄 |+1)
𝑥 (𝑛), where𝑊 (𝑘 )

𝑥 denotes the 𝑘-fold com-

position of𝑊𝑥 . Clearly, if 𝑅𝑥 is computable (respectively, linear),

then so is 𝑅A(𝑥 ) .
Finally, we check that in the case of uniform recurrence, the

index of the first occurrence of 𝑣 is bounded by 𝑅A(𝑥 ) ( |𝑣 |). This
is indeed the case, because if 𝑖0 exceeds the above bound, we can

apply the above argument mutatis mutandis to find an occurrence

of 𝑣 to the left of 𝑖0. This completes the proof. □

Lemma 5.3. LetA = (𝑄,𝑞init, Σ, 𝛿) be a reset automaton. Consider
a word 𝑥 ∈ Σ𝜔 . If 𝑥 has one of the following properties, then A(𝑥)
also has that property.

(1) recurrent suffix
(2) effectively recurrent suffix with computable starting index
(3) (effectively) uniformly recurrent suffix (whose starting index is

computable)
(4) (effectively) linearly recurrent suffix (whose starting index is

computable)
(5) uniformly recurrent suffix and admits factor frequencies

In item (5), if the suffix of 𝑥 is effectively uniformly recurrent, its start-
ing index is computable, and 𝑥 admits computable factor frequencies,
then A(𝑥) also has these properties.

Proof. We shall assume without losing generality that 𝑥 is re-

current by simply considering the run starting at the beginning

of its recurrent suffix. The lemma is trivial if 𝑥 does not contain

any recurrent reset letters, i.e., letters 𝑎 such that 𝛿𝑎 is a constant-

valued function. We shall therefore assume that 𝑥 has a recurrent

reset letter 𝑎, whose first occurrence is at index 𝑁 , which can be

computed in the case of effective uniform recurrence. We claim

that the suffix of A(𝑥) starting at index 𝑁 + 1 is recurrent.

The key will be to focus on return words to the reset letter 𝑎.

By definition, these words begin with 𝑎, and have exactly a single

occurrence of 𝑎 because 𝑎 is a single-letter word. We have that

𝑥 (𝑁,∞) = 𝑟0𝑟1𝑟2 · · · , a concatenation of return words.

As before, we shall show that for any occurrence of an arbitrary

factor 𝑣 at index 𝑖0 > 𝑁 , we can find another occurrence at an

index to the right of 𝑖0. Let 𝑢 be the projection of 𝑣 onto Σ+, i.e.,
𝑥 (𝑖0, 𝑖0 + |𝑣 |) = 𝑢. We observe by the above factorisation of 𝑥 (𝑁,∞)
into return words that there exists an index 𝑖 with 𝑁 ≤ 𝑖 < 𝑖0 such

that 𝑥 (𝑖) = 𝑎. We take 𝑖 to be maximal, and in particular we have

𝑖0 − 𝑖 < 𝑅𝑥 (1). Let 𝑢′ denote the factor 𝑥 (𝑖, 𝑖0 + |𝑣 |). By recurrence,

𝑢′ will have another occurrence at an index 𝑖′ > 𝑖 , and this will

lead to an occurrence of 𝑣 in A(𝑥) at index 𝑖′ − 𝑖 + 𝑖0. This proves
that 𝑦 = A(𝑥) (𝑁 + 1,∞) is recurrent, establishing item (1).

To prove item (2), observe that when 𝑥 has a decidable MSO

theory, we can in particular decide if a reset letter exists, and if so,

find its first occurrence by brute enumeration. We also have that

the corresponding suffix of A(𝑥) has a decidable MSO theory, and

is hence effectively recurrent.

If 𝑥 is uniformly recurrent, then |𝑖′ − 𝑖 | ≤ 𝑅𝑥 ( |𝑣 | + 𝑅𝑥 (1)), and
hence 𝑅𝑦 (𝑛) ≤ 𝑅𝑥 (𝑛 + 𝑅𝑥 (1)). Clearly 𝑅𝑦 is effective (respectively,

linear) if 𝑅𝑥 is. We also check that if 𝑖0 − 𝑁 exceeds 𝑅𝑥 (𝑛 + 𝑅𝑥 (1)),
then we can use the same argument as above to find an occurrence

of 𝑣 in A(𝑥) to the left of 𝑖0. This proves items (3) and (4).

To study factor frequencies of 𝑣 , we partition the occurrences of𝑢,

and account precisely for which partitions result in an occurrence

of 𝑣 . Formally, we construct a tree whose root is 𝑢, vertices are

factors 𝑢′ of the form 𝑤𝑢, leaves are factors 𝑢′ that have 𝑢 as a

proper suffix and begin with a reset letter, and the successors of the

internal nodes 𝑢′ are of the form 𝑎𝑢′. The depth of the tree is thus

at most 𝑅𝑥 (1). The frequency 𝑓𝑦 (𝑣) is simply

∑
𝑢′ 𝑓𝑥 (𝑢′), where

the summation ranges over leaves 𝑢′ such that the run of the reset

automaton on the word 𝑢′ has 𝑣 as its suffix. □

Remark 5.4. In the above proof, consider the case 𝑥 is uniformly

recurrent, and let 𝑦 be the recurrent suffix of A(𝑥). Observe that
min𝑣∈L𝑛 (𝑦) 𝑓𝑦 (𝑣) ≥ min𝑢∈L𝑛+𝑅𝑥 (1) (𝑥 ) 𝑓𝑥 (𝑢).

Lem. 5.2, Lem. 5.3, and Rmk. 4.4 prove Thm. 5.1. In fact, item (4)

of Lem. 5.3, along with the counter-free case of Thm. 4.3, gives the

following result.

Theorem 5.5. Let A = (𝑄,𝑞init, Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ) be a counter-free
transducer. Let 𝑥 ∈ Σ𝜔 be uniformly recurrent and admit factor
frequencies. We have that if A(𝑥) is an infinite word, then it has a
suffix 𝑦 which is uniformly recurrent and admits factor frequencies.
When 𝑥 is effectively uniformly recurrent and admits computable
factor frequencies, the suffix𝑦 also has these properties, and its starting
index in A(𝑥) can be computed.

6 PRESERVATION OF SELF-SIMILARITY
In this section, we show that transducers preserve properties that

indicate self-similarity
3
.

Lemma 6.1. Let A = (𝑄,𝑞init, Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ) be a transducer, let 𝑆
be a set of substitutions, let 𝑥 ∈ Σ𝜔 be an 𝑆-adic word directed by the
sequence (𝜎𝑛)∞𝑛=0

. We have that the word A(𝑥), if infinite, is 𝑆-adic
for a set 𝑆 of substitutions defined using only 𝑆 , and the directive
sequence (𝜎̂𝑛)∞𝑛=0

can be defined using only A and (𝜎𝑛)∞𝑛=0
.

Proof. We can assumewithout losing generality thatA = A0 is

an automaton (Lem. 4.1). Let 𝑥0 = 𝑥, 𝑥1, . . . be the sequence of words

such that for all 𝑛, 𝑥𝑛 ∈ Σ𝜔𝑛 and 𝑥𝑛 = 𝜎𝑛 (𝑥𝑛+1). To show that the

run 𝑦0 = A0 (𝑥0) is 𝑆-adic, we shall construct a sequence (A𝑛)∞𝑛=0

of automata, where A𝑛 = (𝑄,𝑞init, Σ𝑛, 𝛿𝑛), then let 𝑦𝑛 = A𝑛 (𝑥𝑛),
3
Every word 𝑥 = 𝑎0𝑎1𝑎2 · · · is vacuously 𝑆-adic for 𝑆 = {𝜎1, . . . , 𝜎 |Σ|, 𝜏1, . . . , 𝜏 |Σ| }
over the alphabet Σ ∪ {𝑏}, where 𝜎𝑖 replaces the distinguished letter 𝑏 with 𝑎𝑖 ∈ Σ
and is identical elsewhere, and 𝜏𝑖 replaces 𝑏 with 𝑏𝑎𝑖 and is identical elsewhere. We

then see that 𝑥 is directed by 𝜎𝑎
0
𝜏𝑎

1
𝜏𝑎

2
· · · . The point of directive sequences is to

encode more information about self-similar structure, and the lemma conveys the

sense in which this structure is preserved. In particular, it allows us to prove that if 𝑥

is morphic then so is A(𝑥 ) .
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and finally define a sequence of substitutions (𝜎̂𝑛)∞𝑛=0
such that for

all 𝑛, 𝑦𝑛 = 𝜎̂𝑛 (𝑦𝑛+1).
The key idea is that 𝑥𝑛+1 can be intuited as a “compression” of 𝑥𝑛

using 𝜎𝑛 . Hence, inA𝑛+1, we define 𝛿𝑛+1 such that for all 𝑎 ∈ Σ𝑛+1,

𝛿𝑛+1 (𝑞, 𝑎) = 𝛿𝑛 (𝑞, 𝜎𝑛 (𝑎)). Thus, the run 𝑦𝑛+1 can be regarded as a

“fast-forwarded” version of the run 𝑦𝑛 . We are therefore motivated

to define 𝜎̂𝑛 as the dual “slow-motion” operator, i.e., 𝜎̂𝑛 ((𝑞, 𝑎)) gives
the run of A𝑛 on 𝜎𝑛 (𝑎) starting in state 𝑞. It is now easy to check

that A𝑛 (𝑥𝑛) = 𝜎̂𝑛 (A𝑛+1 (𝑥𝑛+1)) for all 𝑛. □

Theorem 6.2. Let A = (𝑄,𝑞init, Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ) be a transducer, and
let 𝑥 ∈ Σ𝜔 be a primitive morphic word given as the image under 𝜏
of a particular fixed point of a primitive substitution 𝜎 . When A(𝑥)
is an infinite word:

(1) The word A(𝑥) has a primitive morphic suffix 𝑦. We can com-
pute the index at which 𝑦 begins, and compute substitutions
𝜎̂, 𝜏 such that 𝜎̂ is primitive and 𝑦 is the image under 𝜏 of a
fixed point of 𝜎̂ .

(2) The word A(𝑥) admits computable factor frequencies.

Proof. We note that item (2) follows from item (1) by applying

Lem. 2.4. We therefore focus on proving item (1). We remark that it

suffices to give a proof assuming A is an automaton.

We first prove that A(𝑥) is morphic, and we will follow the

construction given in the proof of Lem. 6.1 in order to do so. The

directive sequence of 𝑥 is 𝜏𝜎𝜔 , and in particular, for all 𝑛 ≥ 1,

Σ𝑛 = Σ1 and 𝑥𝑛 = 𝑥1. Observe that this implies that the set {A𝑛 |
𝑛 ∈ N} is finite and can be effectively enumerated. Furthermore,

when 𝑛 ≥ 1, A𝑛+1 and 𝜎̂𝑛 will depend only on A𝑛 and 𝜎 . By

the pigeonhole principle, there exist computable 𝑚,𝑛 such that

𝑚 < 𝑛 and A𝑚 = A𝑛 . We have that A𝑚 (𝑥) is a fixed point of

𝜎̂𝑚 · · · 𝜎̂𝑛−1, and its image under 𝜎̂0 · · · 𝜎̂𝑚−1 gives A(𝑥), which is

hence morphic.

Now, since 𝑥 is primitive morphic, it is effectively linearly re-

current (Lem. 2.4). The run A(𝑥) therefore has a suffix 𝑦 that is

effectively linearly recurrent, and the starting index 𝑁 of this suffix

can be computed (Thm. 5.1). This suffix 𝑦 of the morphic word

A(𝑥) is again morphic, and the substitutions describing it can be

computed (Rmk. 2.3). Having proved that 𝑦 is an effectively linearly

recurrent morphic word, we invoke Rmk. 2.3 again, this time to

deduce that 𝑦 is indeed primitive morphic, and we can compute

substitutions 𝜎̂, 𝜏 such that 𝜎̂ is primitive, and 𝑦 is the image under

𝜏 of a fixed point of 𝜎̂ . □

For the sake of completeness, we comment on the case of auto-
matic words. Recall that a word 𝑥 ∈ Γ𝜔 is automatic [2, Chap. 5] if

for some 𝑘 ≥ 2, there exists an automaton that computes 𝑥 (𝑛) when
given the 𝑘-ary representation of 𝑛 as input: we then say that 𝑥 is

𝑘-automatic. Clearly, for 𝑎 ≥ 1, we have 𝑥 is 𝑘𝑎-automatic if and

only if 𝑥 is 𝑘-automatic. Equivalently, by a result due to Cobham

[2, Thm. 6.3.2], a word 𝑥 is 𝑘-automatic if and only if it is the image

under a coding of a fixed point of a 𝑘-uniform morphism 𝜎 (for

every 𝑎 ∈ Σ, |𝜎 (𝑎) | = 𝑘). Note that the definition can be relaxed

(analogously to Rmk. 2.2) to replace the coding by a 𝑘′-uniform
morphism [2, Cor. 6.8.3]. Our proof of Lem. 6.1 can thus be adapted

to deduce the main result of [2, Sec. 6.9]:

Lemma 6.3. If A is a uniform transducer and 𝑥 is 𝑘-automatic,
then A(𝑥) is 𝑘-automatic.

7 PRESERVATION OF CONDITION (B)
In this section, we prove the following main result using the Krohn-

Rhodes theorem. We give a general statement, but observe that by

Rmk. 4.4, it suffices to prove the result separately for reset automata

and permutation automata.

Theorem 7.1. Let A = (𝑄,𝑞init, Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ) be a transducer, and
let 𝑥 ∈ Σ𝜔 be a/an (effectively) uniformly recurrent word that satisfies
Boshernitzan’s condition. We have that the wordA(𝑥), if infinite, has
a/an (effectively) uniformly recurrent suffix 𝑦 that satisfies Bosher-
nitzan’s condition, and hence admits (computable) factor frequencies.

We already have argued the existence of a/an (effectively) uni-

formly recurrent suffix 𝑦 in Thm. 5.1. We shall prove that this suffix

satisfies Boshernitzan’s condition. The fact that 𝑦 admits (com-

putable) factor frequencies would then follow immediately from

(Lem. 3.2 and) Lem. 3.8.

Lemma 7.2. Let A = (𝑄,𝑞init, Σ, 𝛿) be a reset automaton and let
𝑥 ∈ Σ𝜔 be a uniformly recurrent word that satisfies Boshernitzan’s
condition. We have that the word A(𝑥) has a uniformly recurrent
suffix 𝑦 that satisfies Boshernitzan’s condition.

Proof. Recall from Lem. 5.3 thatA(𝑥) has a uniformly recurrent

suffix 𝑦 that admits factor frequencies. We can define an invariant

measure 𝜇 on the minimal shift 𝑌 defined by 𝑦, as 𝜇 ( [𝑣]𝑌 ) = 𝑓𝑦 (𝑣)
(the invariant measure on the shift defined by 𝑥 is similarly de-

fined). Let us now use Rmk. 5.4 to argue that 𝑌 satisfies Bosher-

nitzan’s condition (Def. 3.7) by virtue of admitting the above in-

variant measure. We have from Rmk. 5.4 that for 𝑛 large enough,

min𝑣∈L𝑛 (𝑦) 𝑓𝑦 (𝑣) is lower bounded by min𝑢∈L2𝑛 (𝑥 ) 𝑓𝑥 (𝑢) as well
as min𝑢∈L2𝑛+1 (𝑥 ) 𝑓𝑥 (𝑢)), or in other words

3 · 𝜅𝑌 (𝑛) ≥ max(𝜅𝑋 (2𝑛), 𝜅𝑋 (2𝑛 + 1)) .
This implies that lim sup𝑛→∞ 𝜅𝑌 (𝑛) > 0, and the word 𝑦 indeed

satisfies Boshernitzan’s condition. □

The case where A is a permutation automaton is much more

involved, and we need to invoke arguments from cohomology and

topological dynamics inspired by [9]. We devote the rest of this

section to the proof of the following lemma.

Lemma 7.3. Let A = (𝑄,𝑞init, Σ, 𝛿) be a permutation automa-
ton. If 𝑥 is a uniformly recurrent word that satisfies Boshernitzan’s
condition, then so is A(𝑥).

The group 𝐺 generated by the transitions of the permutation

automaton, and the natural onto morphism 𝜑 : Σ∗ → 𝐺 (the mor-

phism maps a word 𝑢 to the element corresponding to 𝛿𝑢 ) will play

a key role in the proof. Let 𝑋 be the minimal shift defined by 𝑥 ,

let 𝜇𝑋 be its unique invariant measure, and recall that by Def. 3.7,

lim sup𝑛→∞ 𝜅𝑋 (𝑛) > 0. We define the skew product topological
dynamical system

4 (𝐺 ⋊ 𝑋,𝑇 ) with the compact metric state space

{(𝑔, 𝑥) | 𝑔 ∈ 𝐺, 𝑥 ∈ 𝑋 }, and update 𝑇 (𝑔, 𝑥) = (𝑔 · 𝜑 (𝑥 (0)), 𝑥 (1,∞)).
4
We acknowledge that the notation𝑇 is overloaded, but nevertheless use it for clarity

because, as we shall see, it performs the same shift operation in spirit. If the shift

operator is invoked on multiple shift spaces within the same context, we shall use a

distinguishing subscript.



Conference’17, July 2017, Washington, DC, USA Valérie Berthé, Herman Goulet-Ouellet, Toghrul Karimov, Dominique Perrin, and Mihir Vahanwala

Observe that 𝑇 −1 ◦ (𝑔, 𝑥) = {(𝑔𝑎−1, 𝑎𝑥) | 𝑎𝑥 ∈ 𝑋 }, where 𝑎−1
is

shorthand for 𝜑 (𝑎)−1
.

We shall equivalently (in fact, interchangeably since we deal with

a permutation automaton) regard the skew product as a shift space

𝑍 over the alphabet (𝐺 × Σ). We map (𝑔, 𝑥) to 𝑦 (and also denote 𝑦

by (𝑔, 𝑥)), where 𝑦 (𝑛) = (𝑔 · 𝜑 (𝑥 (0, 𝑛)), 𝑥 (𝑛)). This perspective is
isomorphic and each element 𝑦 ∈ 𝑍 can naturally be viewed as the

run of an automaton with states𝐺 on its projection 𝑥 ∈ 𝑋 . Note that

A(𝑥) can be obtained by simply applying a coding (letter-to-letter

substitution) on 𝑦. By Lem. 5.2, each 𝑦 ∈ 𝑍 is uniformly recurrent

(however, 𝑍 is not necessarily minimal). Given a word 𝑥 whose

run A(𝑥) = (𝑒, 𝑥) = 𝑦 we are to study, let 𝑌 be the minimal shift

defined by 𝑦: note that 𝑌 is contained in (but not necessarily equal

to) 𝑍 . We use 𝜋 to denote the projection of 𝑌 onto 𝑋 , and 𝜋−1
to

denote its pre-image.

Our goal is to prove that if 𝑋 satisfies Boshernitzan’s condition

(Def. 3.7), then so does 𝑌 . We shall do so
5
by starting with an

arbitrary invariant measure 𝜈 on 𝑌 , and using it to construct an

invariant measure 𝜇𝑌 on 𝑌 that satisfies 𝜅𝑌 (𝑛) = 𝑐 · 𝜅𝑋 (𝑛) for all
large enough 𝑛, where 𝑐 is a constant.

We shall study the symmetry of 𝑌 in order to understand how

much structure 𝑌 inherits from 𝑋 . Consider the group action of 𝐺

on 𝑍 , where ℎ ∈ 𝐺 maps (𝑔, 𝑥) to (ℎ𝑔, 𝑥). By the associativity of

the binary group operation, we have that the action of ℎ commutes

with the shift operation 𝑇𝑍 and its inverse. Define the subgroup

𝐻 as {ℎ ∈ 𝐺 | ℎ𝑌 = 𝑌 }. We shall show the following connection

between invariant measures on 𝑌 and 𝑋 .

Lemma 7.4. Let 𝜈 be an arbitrary invariant measure on 𝑌 .

(1) The map 𝜈 ◦ ℎ is an invariant measure on 𝑌 for each ℎ ∈ 𝐻 .
(2) The map 𝜈 ◦ 𝜋−1 on 𝑋 is the same as the unique invariant

measure 𝜇𝑋 .

In particular, the invariant measure 𝜇𝑌 defined as 1

|𝐻 |
∑
ℎ∈𝐻 𝜈 ◦ ℎ

satisfies 𝜇𝑌 ◦ 𝜋−1 = 𝜇𝑋 .

The following lemma, which is inspired by [31, Prop. 2.1], is

instrumental in making 𝜋−1
explicit: it tells us that we can express

𝜋−1 (𝑥) = {(𝑔, 𝑥) | 𝑔 ∈ 𝛼 (𝑥)}.

Lemma 7.5. The map 𝛼 given by 𝛼 (𝑥) = {𝑔 | (𝑔, 𝑥) ∈ 𝑌 } is a well
defined function from 𝑋 to C = 𝐻\𝐺 , satisfies 𝛼 (𝑎𝑥) = 𝛼 (𝑥) · 𝑎−1,
and is continuous. In particular, 𝑋 can be expressed as a finite union
of cylinders on which 𝛼 is constant.

Proof. Note that 𝜋 (𝑌 ) must be a shift contained in 𝑋 because

the projection 𝜋 commutes with 𝑇 and is a closed map as 𝐺 is

compact; since 𝑋 is a minimal shift, 𝜋 (𝑌 ) = 𝑋 . This assures us that

𝛼 maps each 𝑥 ∈ 𝑋 to a non-empty set.

We first prove that 𝛼 (𝑥) is indeed a coset. By the defining prop-

erty of the subgroup 𝐻 , we deduce that if (𝑔, 𝑥) ∈ 𝑌 , then 𝐻𝑔 ⊆
𝛼 (𝑥). We now need to prove that 𝛼 (𝑥) cannot span more than one

coset, i.e., if (𝑔, 𝑥) ∈ 𝑌 and (𝑔′, 𝑥) ∈ 𝑌 , then 𝑔′ = ℎ𝑔 for some ℎ ∈ 𝐻 .

Let 𝑌 ′ = 𝑔′𝑔−1𝑌 , and observe that 𝑌 ′
is also a minimal shift (recall

that the group action commutes with the shift operation). We have

that (𝑔, 𝑥) is contained in the intersection of the minimal shifts

𝑌,𝑌 ′
: this is only possible if 𝑌 = 𝑌 ′

. In other words, ℎ = 𝑔′𝑔−1 ∈ 𝐻 .

5
Some proof ideas are inspired by [9], especially Prop. 3.8 ibidem.

We henceforth refer to 𝛼 as a function from 𝑋 to C; in technical

parlance it is a (minimal) cobounding map modulo 𝐻 .

The next requirement follows readily. Let 𝑥, 𝑎𝑥 ∈ 𝑋 . Since 𝛼 (𝑥)
and 𝛼 (𝑎𝑥) are both cosets, they have the same cardinality, and it

suffices to observe from the construction of 𝑌 that 𝛼 (𝑎𝑥) · 𝜑 (𝑎) ⊆
𝛼 (𝑥) in order to establish that 𝛼 (𝑎𝑥) = 𝛼 (𝑥) · 𝑎−1

.

Thirdly, we show that 𝛼 is continuous. Suppose for the sake of

deriving a contradiction that 𝛼 is not continuous at some 𝑥 ∈ 𝑋 ,

i.e., 𝛼 (𝑥) = 𝐶 , and for every index 𝑛, there exists 𝑥𝑛 ∈ 𝑋 such that

𝑥 (0, 𝑛) = 𝑥𝑛 (0, 𝑛) but 𝛼 (𝑥𝑛) = 𝐶𝑛 ≠ 𝐶 . By the pigeonhole principle,

we deduce that there exist a coset 𝐶′
, infinitely many indices 𝑛,

and words 𝑥𝑛 such that 𝑥𝑛 (0, 𝑛) = 𝑥 (0, 𝑛), but 𝛼 (𝑥𝑛) = 𝐶′ ≠ 𝐶 .

Consider an element 𝑔′ ∈ 𝐶 , and observe that ((𝑔′, 𝑥𝑛))𝑛 is an

infinite sequence of elements in the compact space 𝑌 , and this

sequence converges to (𝑔′, 𝑥). However, 𝑔′ ∉ 𝛼 (𝑥), i.e., the limit

does not exist in 𝑌 : a contradiction, as desired.

It remains to show that𝑋 is a finite union of cylinders on which 𝛼

is constant. From the preceding argument for continuity, it follows

that for any 𝑥 ∈ 𝑋 , we can obtain cylinders [𝑢 𝑗 ]𝑋 on which 𝛼 is

constant and 𝑥 ( 𝑗,∞) ∈ [𝑢 𝑗 ]𝑋 . We show by contradiction that these

cylinders cover 𝑋 : if they leave some 𝑥 ′ uncovered, we can use

continuity identify a cylinder [𝑢′]𝑋 on which 𝛼 is constant and

𝑥 ′ ∈ [𝑢′]𝑋 . However, by the minimality of 𝑋 , 𝑢′ must have been a

prefix of some 𝑥 ( 𝑗,∞): a contradiction. Finally, since 𝑋 is compact,

the open cover ( [𝑢 𝑗 ])∞𝑗=0
of cylinders with the desired property

admits a finite subcover ( [𝑢 𝑗 ])𝑁𝑗=0
, which we use to establish the

last claim of the lemma. □

Proof of Lem. 7.4. Lem. 7.5 gives the framework to deduce that:

(i) the operators 𝑇𝑌 ,𝑇
−1

𝑌
on 𝑌 give the same evaluations as their

counterparts 𝑇𝑍 ,𝑇
−1

𝑍
; (ii) the inverse image 𝜋−1

commutes with 𝑇

and 𝑇 −1
. These will respectively imply the two parts of the claim.

Observe that𝑇 −1

𝑌
◦ (𝑔, 𝑥) ⊆ 𝑇 −1

𝑍
◦ (𝑔, 𝑥) = {(𝑔𝑎−1, 𝑎𝑥) | 𝑎𝑥 ∈ 𝑋 }.

On the other hand, 𝛼 (𝑎𝑥) = 𝛼 (𝑥) · 𝑎−1
: since 𝑔 ∈ 𝛼 (𝑥), this proves

by the definition of 𝛼 that the set inclusion is actually an equality,

i.e.,𝑇 −1

𝑌
= 𝑇 −1

𝑍
(that𝑇𝑌 = 𝑇𝑍 on 𝑌 is obvious by the definition of 𝑌 ).

This proves (i). It then immediately follows that ℎ ◦𝑇 −1

𝑌
= 𝑇 −1

𝑌
◦ ℎ,

and hence 𝜈 ◦ℎ is an invariant measure on𝑌 for each ℎ ∈ 𝐻 . Indeed,

𝜈 ◦ ℎ ◦𝑇 −1

𝑌
= 𝜈 ◦𝑇 −1

𝑌
◦ ℎ = 𝜈 ◦ ℎ.

To show (ii), observe furthermore that 𝜋−1 ◦𝑇 −1

𝑋
(𝑥) = {(𝑔′, 𝑎𝑥) |

𝑔′ ∈ 𝛼 (𝑎𝑥), 𝑎𝑥 ∈ 𝑋 } = {(𝑔𝑎−1, 𝑎𝑥) | 𝑔 ∈ 𝛼 (𝑥), 𝑎𝑥 ∈ 𝑋 } = 𝑇 −1

𝑌
◦

𝜋−1 (𝑥). This implies that for any invariant measure 𝜈 , we have

𝜈 ◦ 𝜋−1 ◦𝑇 −1

𝑋
= 𝜈 ◦𝑇 −1

𝑌
◦ 𝜋−1 = 𝜈 ◦ 𝜋−1

. It remains to observe that

𝜈 ◦ 𝜋−1
is indeed a Borel measure on 𝑋 because the function 𝜋 is

Borel measurable by virtue of being continuous. Thus, 𝜈 ◦𝜋−1
is an

invariant measure on 𝑋 ; since (𝑋,𝑇𝑋 ) is uniquely ergodic, it can

only be the same as 𝜇𝑋 . □

We are now ready to complete the proof that 𝑌 inherits the prop-

erty of admitting an invariant measure that satisfies Boshernitzan’s

condition from 𝑋 .

Let us examine what 𝜇𝑌 evaluates to on cylinders. For conve-

nience, we shall denote a finite factor 𝑣 as (𝑔,𝑢), where 𝑣 (𝑛) =

(𝑔 · 𝜑 (𝑢 (0, 𝑛)), 𝑢 (𝑛)) for all 𝑛. We have

𝜇𝑌 ( [(𝑔,𝑢)]𝑌 ) =
1

|𝐻 |
∑︁
ℎ∈𝐻

𝜈◦ℎ( [(𝑔,𝑢)]𝑌 ) =
1

|𝐻 |
∑︁

𝑔′∈𝐻𝑔

𝜈 ( [(𝑔′, 𝑢)]𝑌 ),
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and by symmetry, 𝜇𝑌 ( [(𝑔,𝑢)]𝑌 ) = (1/|𝐻 |) ·∑𝑔′∈𝐻𝑔 𝜇𝑌 ( [(𝑔′, 𝑢)]𝑌 ).
Now, by Lem. 7.5, for all long enough factors 𝑢 ∈ L(𝑋 ), we

have that 𝛼 is constant-valued on [𝑢]𝑋 . This implies that for 𝑢

long enough, 𝜋−1 ( [𝑢]𝑋 ) =
⋃

𝑔′∈𝛼 ( [𝑢 ]𝑋 ) [(𝑔′, 𝑢)]𝑌 . In other words,

𝜇𝑌 ( [(𝑔,𝑢)]𝑌 ) = (1/|𝐻 |) · 𝜇𝑌 ◦𝜋−1 ( [𝑢]𝑋 ). Since 𝜇𝑌 ◦𝜋−1 = 𝜇𝑋 , we

have thus proven that for all long enough finite factors, we have

𝜇𝑌 ( [(𝑔,𝑢)]𝑌 ) = (1/|𝐻 |) · 𝜇𝑋 ( [𝑢]𝑋 ), and it follows that 𝜅𝑌 (𝑛) =

(1/|𝐻 |)𝜅𝑋 (𝑛). We have thus proved that the run 𝑦 of an automaton

with states 𝐺 and initial state 𝑒 (where 𝑒 is the group identity)

defines a minimal shift 𝑌 that satisfies Boshernitzan’s condition

(Def. 3.7).

We obtain A(𝑥) by a simple coding that substitutes (𝑔, 𝑎) with
(𝑞, 𝑎), where 𝑞 is obtained by the action of 𝑔 on 𝑞init. By Lem. 4.1,

A(𝑥) satisfies Boshernitzan’s condition (Def. 3.7), and hence by

Lem. 3.8, admits factor frequencies. This proves Lem. 7.3. □

8 DISCUSSION
An open question is to find an example of a word 𝑥 (or prove one

does not exist) that does not satisfy Boshernitzan’s condition, but

A(𝑥) generates uniquely ergodic shifts for every A.

An obvious direction for future work is to generalise the fol-

lowing beyond the case of primitive morphic words: if the fac-

tor frequencies of 𝑥 are given by effective closed-form expressions,

then so are those of A(𝑥). Concretely, if we can decide whether

𝑓𝑥 (𝑢) = 𝑟 where 𝑟 is a given constant, our current proof of Thm. 7.1

via Lem. 3.2 does not imply that A(𝑥) inherits this property.
The main technical obstacle to the above is obtaining an effective

version of Lem. 7.5, i.e., the computation of minimal cobounding
maps on the shift 𝑋 defined by the input word. This is closely

related to the behaviour of return groups. Recall that R𝑋 (𝑢) denotes
the set of return words to a factor 𝑢 ∈ L(𝑋 ). Let 𝐺 be a group,

and 𝜑 be a morphism from Σ∗ into 𝐺 . The return group of 𝑢 (with

respect to 𝐺,𝜑) is generated by the return words to 𝑢, and is given

by ⟨𝜑 (R𝑋 (𝑢))⟩. If 𝑢′ is a prefix of 𝑢, then the return group of 𝑢

is a subgroup of that of 𝑢′ [24, Lem. 3]. We say that the return

groups stabilise at 𝑢 if for every factor 𝑢′′ such that 𝑢 is a prefix of

𝑢′′, the return groups of 𝑢 and 𝑢′′ are the same. As [9, Prop. 7.8]

observes, determining minimal cobounding maps is equivalent to

determining when return groups stabilise.

Our effective results for primitive morphic words indicate that

the stabilisation of return groups can be determined in this case,

and it has indeed been proven [24, Prop. 27]. Nevertheless, this

remains open in the general case, to the best of our knowledge. A

possible approach is to generalise the derivation-based techniques

of Durand applied in both [24] and our paper.

Another potential approach leverages recent advances in word

combinatorics, in particular the study of so-called suffix-connected
words and their generalisations [26]. An important property of

suffix-connectedwords (which include Sturmianwords andArnoux-

Rauzy words) is that all factors are stable [26, Cor. 1.2], i.e., for
any factor 𝑢, the return group (with respect to 𝐺,𝜑) is 𝐺 . While

this property is ideal to prove an effective version of Lem. 7.3,

it remains difficult to determine when an automaton preserves

suffix-connectedness, and hence obtain a preservation result for an

entire cascade of automata. As a positive case in point, we give the

following application.

Proposition 8.1. Let A = (𝑄 ′, 𝑞init, Σ, 𝛿) be a permutation au-
tomaton, and let 𝑥 ∈ Σ𝜔 be a Sturmian word. Let 𝐺 be the group of
permutations induced by the transitions, and let𝑄 be the orbit of 𝑞init
under 𝐺 . The run of A on 𝑥 visits each state 𝑞 ∈ 𝑄 with frequency
1/|𝑄 |.

Proof. Let 𝑋 be the minimal shift defined by 𝑥 . Since the word

𝑥 is stable by virtue of being Sturmian and hence suffix-connected,

we have by [9, Prop. 7.8] that the trivial cobounding map on 𝑋 is

minimal. This implies that the shift 𝑌 corresponding to the entire

skew product 𝐺 ⋊ 𝑋 is minimal. Furthermore, since 𝑥 is a Stur-

mian word, it satisfies Boshernitzan’s condition (Rmk. 3.9), and by

Lem. 7.3, the shift 𝑌 also satisfies Boshernitzan’s condition. From

the proof of Lem. 7.3, we have that the unique invariant measure

on 𝑌 is given by 𝜇𝑌 ( [(𝑔,𝑢)]𝑌 ) = 1

|𝐺 | 𝜇𝑋 ( [𝑢]𝑋 ).
Consider 𝑞 ∈ 𝑄 . The set 𝐻𝑞 = {𝑔 | 𝑞init · 𝑔 = 𝑞} is a coset of the

subgroup 𝐻 = {ℎ | 𝑞init · ℎ = 𝑞init}, and hence |𝑄 | · |𝐻 | = |𝐺 |. Now
by Oxtoby’s theorem, 𝑓A(𝑥 ) (𝑞, 𝑎) =

∑
𝑔∈𝐻𝑞

𝜇𝑌 ( [(𝑔, 𝑎)]𝑌 ), which
by the definition of 𝜇𝑌 and the above observation, simplifies to

1

|𝑄 | 𝜇𝑋 ( [𝑎]𝑋 ) = 1

|𝑄 | 𝑓𝑥 (𝑎). The frequency with which a run visits a

state 𝑞 ∈ 𝑄 is then simply
1

|𝑄 |
∑
𝑎 𝑓𝑥 (𝑎) = 1

|𝑄 | . □

We conclude by recording an interesting corollary of Thm. 7.1,

Rmk. 3.9, and the proof of Prop. 8.1.

Corollary 8.2. Let Σ = {0, 1}, let A = (𝑄,𝑞init, Σ, Γ, 𝛿𝑜 , 𝛿𝑡 ) be
a transducer, and let 𝑥 ∈ Σ𝜔 be a Sturmian word whose factor fre-
quencies have effective closed form expressions. If A is a permutation
transducer, then the factor frequencies in A(𝑥) have effective closed
form expressions.
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