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—— Abstract

Toric words have recently gained attention as a means to model the behaviour of dynamical systems
such as linear loops. This work is concerned with describing when the toric model is precise enough
to decide whether the trace of a system is contained in an w-regular language. Our contributions are
threefold. (i) We use topological means to generalise a class of toric words by defining noise-robust
dynamical systems and their sets of noisy traces. We prove that all noisy traces of a system are
almost-periodic, and have the same set of recurrent factors. (ii) We apply the abstract techniques
above to concrete sequences obtained as sign descriptions of real algebraic linear recurrence sequences
(LRS), and show that the language-membership problem for sign descriptions of LRS with few
dominant roots is decidable. (iii) We show that noisy traces of noise-robust dynamical systems are
indistinguishable to a prefix-independent w-regular language, and inclusion is decidable provided
the common language of their recurrent factors is recursive. We incidentally obtain properties of
prefix-independent w-regular languages that may be of independent interest.
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Model Checking for Noisy Toric Words

1 Introduction

A toric word z € ¥¥ is obtained by considering a collection {S1, ..., Sk} of finitely many
disjoint open subsets of a torus X, a starting point a € X, and a rotation « such that for
every n, the point a + n+y is contained in (the closure of) one of the open sets above. A
coding o then associates each open set with a letter in 3, and we define x(n) = o(S,) where
a+ ny € cl(S,). Toric words are extensively studied symbolic dynamical systems (see [15,
Chap. 1] and [16]). A prime example is the class of Sturmian words, where X is the unit
circle identified by the interval [0, 1), and is partitioned as [0,7), [y, 1).

More recently, toric words have been identified to accurately capture the behaviour of
linear loops in program verification [8]. They also play a central role in the decidability of
the monadic second-order (MSO) theory of the structure (N; <,a}, ..., a}) as established by
[4]. We refer the reader to [5] for a survey. Such works hinge on the fact that toric words,
and more generally, traces of minimal compact dynamical systems, enjoy the combinatorial
property of uniform recurrence, which is a special case of almost periodicity.

These properties are defined and leveraged as follows. We say that a finite word w is a
factor of an infinite word x if u occurs in x; if w occurs infinitely often, we say that it is a
recurrent factor of x. A word x is recurrent when every factor u is recurrent; if moreover
for every w there is a bound on the gaps between consecutive occurrences of u, then x is
uniformly recurrent. A word x is almost-periodic if for every recurrent factor u, there is
a bound on the gaps between its consecutive occurrences. We have that x is effectively
almost-periodic if, furthermore: (i) given any index n, we can compute x(n); (ii) given any
finite word u, we can compute R, such that either all occurrences of u are in a prefix of
length R,, or every factor of length R, contains an occurrence of u. A classic result of
Seménov concerning runs of deterministic automata on almost-periodic words (see e.g., [11])
implies that given an w-regular language L and an effectively almost-periodic word z, one
can decide whether x € L.

Indeed, throughout this paper, we characterise w-regular languages as those recognised
by deterministic parity automata A = (Q, X, ginit, 7, col), where @ is a set of states, 3 is the
alphabet, gjnit is the initial state, 7 : Q x ¥ — @ is the transition function, and col : Q@ — N
is the colouring function (note that its image is finite). The automaton A accepts a word x
if the maximum colour visited infinitely often in the run is even.

The motivation of this work lies in the observation that the model obtained by using tori
to describe dynamical systems, while accurate, may still be imprecise. As an example [5],
consider the sequence z over the alphabet {—1,0,1} obtained by recording the sign of the
expression

sin(p + nd) + r(n),

where /7 is irrational, and r(n) converges to 0. Such an infinite word arises as the sign
pattern of a linear recurrence sequence (LRS, see Sec. 3) with two dominant characteristic
roots. Intuitively, as n grows larger, the sign pattern x should bear increasing resemblance
to the toric word y obtained by taking X to be the unit circle, a to be starting point with
angular coordinate ¢, the update v to be rotation by angle 6, and the partition of X to be
the union of open semicircular arcs and their endpoints. However, the indices at which x and
y disagree can still constitute an infinite set, and the sign pattern z can in fact be provably
non-toric [5, Cor. 6.9].

The question that arises is: under what circumstances can the language-membership
problem for the original trace be solved using the model torus?

In this example, we can in fact prove that z will be almost periodic, and moreover the
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set of recurrent factors of x will be the same as that of y. The dynamical system induced by
the orbit an irrational rotation on a unit circle partitioned into semicircular arcs is robust
in the sense that varying the starting point and adding diminishing noise do not alter the
almost-periodic nature of the trace, nor change the set of its recurrent factors.

The first contribution of this paper is a generalisation of the above phenomenon. We
shall use topological means to define a class of noise-robust dynamical systems and their sets
of noisy traces (Def. 1). We then prove in Thm. 2 that all noisy traces of a robust system
are almost-periodic and have the same set of recurrent factors. Thm. 4 then delineates when
noisy traces are effectively almost-periodic, and thus gives the ingredients to address our
motivating question above.

Our second contribution is an application to LRS: we combine our results (Thm. 4) with
the techniques of [9]. In Thm. 6, we show that the sign pattern x of a real algebraic LRS is
effectively almost periodic provided it satisfies one among a handful of spectral conditions.
By a direct application of Seménov’s result, given such an LRS and an w-regular language L,
we can decide whether x € L. In particular, Case (2) of Thm. 6 covers our running example.
We note that this case also applies to non-simple LRS; prior work in this setting [1, 9] is
restricted to simple LRS where it can be shown by number-theoretic means that the sign
pattern differs from the toric word in only finitely many positions.

Our third contribution is the result that noisy traces of a noise-robust dynamical system
are indistinguishable to any prefix-independent w-regular language, and inclusion is decidable
provided the common language L, of recurrent factors is recursive (Cor. 12). A prefix-
independent language [1, 3] L C X has the following defining property. Let x, 2" be words
such that 2’ can be obtained from z by making only finitely many edits. We have that
xz € L if and only if 2’ € L. Non-empty prefix-independent languages thus comprise a special
class of liveness properties; we also give properties of prefix-independent w-regular languages
(Props. 9, 10) that may be of independent interest. E.g., the uniform Borel probability
measure assigns a prefix-independent language measure either 0 or 1.

Finally, we shall observe that Sturmian words do not satisfy our robustness criteria. We
shall demonstrate noisy traces of Sturmian dynamical systems that are not almost-periodic,
and also show that querying such traces against prefix-independent w-regular languages
subsume Diophantine-hard problems.

2 Noise-Robust Dynamical Systems

In this section, we compile a set of properties that imply a dynamical system (X, T : X — X)
is robust. As outlined in the introduction, we seek to generalise the phenomenon observed
for the system defined by an irrational rotation on the 1-torus partitioned into semicircular
arcs, and the reader may use this as a running example to intuit the properties we impose
and the conclusions we draw.

Throughout this paper, we shall assume that X is a compact metric space with bounded
metric d such that every open ball B C X is connected. We shall assume that the dynamical
update T : X — X is a homeomorphism, and in particular, is bijective. This has the following
consequences.

1. Both T and T~! are homeomorphisms, and hence for every open set S, the image T'S
and pre-image T~1S are open sets.

2. Both T and T~! are uniformly continuous because X is compact. In particular, we can
define a modulus of continuity, i.e., a non-decreasing function 2 : R>g — R>¢, such that
for all o,/ € X we have d(Ta,Ta’) < Q(d(a, '), d(T " a, T 1a’) < Q(d(a,a')), the
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function €2 is continuous at 0, and (0) = 0. !
Our final requirement on the dynamics is that that the dynamical system (X,T) be
minimal, i.e., for all @ € X the orbit {T"a : n € N} is dense in X.

2.1 Partitions for the coding

Having set up the dynamics, we turn to the requirements on how the coding of an orbit will
be obtained. We partition X into finitely many disjoint open sets S1, ..., Sk, and a closed set
Z such that Ule S; is dense in X. Observe that Z is compact. We impose the independent
discrete orbit condition: for all ¢ € Z, and all n > 1, we must have that T"¢ ¢ Z. This
condition is technically helpful, and is reminiscent of its counterpart which is now a staple
working assumption in the study of interval exchange transformations [10].

A coding o surjectively maps X to a finite alphabet ¥ in an “almost continuous way”:
we have that o is constant on each of the open sets Sy, ..., Sk, and that if o(¢) = b for some
¢ € Z, then for every § > 0, there exists o ¢ Z such that d(«, () < § and o(a) = b.

We model noise as follows. Let N = {v : N = Rxq | lim, o v(n) = 0} be the set of
noise functions. We say that the noise function v converges effectively if for every § we can
compute N such that for all n > N we have v(n) < §. The function traces, : X x N — 25"
maps a starting point « and noise function v to the set of infinite words

traces, (o, v) = {x € £¥ | Vn.36. d(B8,T"a) < v(n) Ao(B) = xz(n)}. (1)

In other words, a noisy trace may code a point [ in the v(n)-ball around 7"« instead of
T« itself. By our requirements on the coding o, we can assume without losing generality
that 8 ¢ Z. Finally, we define

Traces, = U traces, (a, v). (2)
aceX,veN

We summarise our conditions in the following definition.

» Definition 1. A dynamical system (X, T, (S1,...,Sk, Z),0), where X is partitioned into

Sty 8k, Z, and o : X — ¥ is a coding, is said to be noise-robust if:

1. The space X is compact and admits a metric d, and moreover, every open ball B C X is
connected.

2. The update T : X — X is a homeomorphism, admits a modulus of continuity Q, and
induces a minimal dynamical system on X, i.e., for all « € X, the orbit {T"a | n € N}
is dense in X.

3. The partitions S1, ..., Sk are disjoint open sets, and their union is dense in X.

4. For all( € Z, and alln > 1, we have T"( ¢ Z.

It is straightforward to check that our running example of an irrational rotation on
the 1-torus partitioned into open semicircular arcs and their endpoints meets all the four
conditions. On the other hand, toric systems defining Sturmian words satisfy all but the
fourth condition: the distance between the endpoints of the intervals is the same as the angle
of rotation.

L For any § > 0, the set Bs = {(a,a’) € X x X : d(a,a’) < 8} is closed in the compact X x X, and hence
compact. Take Q(6) = 2 - max(q,ayep, max(d(Ta, Ta'), d(T e, T71)).
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2.2 Noise Robustness

» Theorem 2. Let (X,T,(S1,...,Sk,Z),0) be a noise-robust dynamical system. We have
that every x € Traces, is almost-periodic. Furthermore, there exists L, C X1 such that for
every x € Traces,, the set of recurrent factors of x is L.

Proof. We shall associate each word v € ¥* with an open set X,, C X. This assignment will
have the property that if the orbit falls in X, the next |u| letters of the coding will be an
occurrence of u provided there is no noise.

We assign X. = X for the empty word, and X3, = (Ui:U(Si):b Si) NT~1X,. Note that
here we use the fact that 7! is a homeomorphism that maps open sets to open sets. We
claim that L, = {u € 7 | X,, # {}}.

We shall first prove that if X, is non-empty, then w is a recurrent factor of all x € Traces,,
and furthermore, there is a bound R, such that for all x € Traces,, the gaps between
consecutive occurrences are eventually bounded by R,. Since X, is an open set, we can
choose a small enough § and construct a non-empty open set Y, C X, such that for all
a €Y, the é-ball around « is contained in X,.? We see that if Y, is visited when the noise
is less than 4, then it will mark an occurrence of u. Since the noise converges to 0, it would
suffice to prove that the gaps between visits to Y,, are bounded.

Since the dynamical system is minimal, we have that (J,_ T~ "Y, = X, i.e., the orbit of
every point in X eventually visits Y;,. Since Y}, is open and T~ is a homeomorphism, we get
that (T~"Y,)5%, is an open cover of X, which, due to compactness, admits a finite subcover
(T~"Y,)E_,. Thus, every point in X is either in Y,, or will visit Y,, in at most R steps under
T. This proves that u occurs infinitely often in any noisy trace x, and once the noise is
bounded by §, the gaps between occurrences of u in the trace are bounded by R, = R.

We now prove the converse, i.e., if X, is empty (which can happen only if the length
|u| > 1), then u can occur only finitely often in any noisy trace. We will do so by contradiction:
we will show that if a noisy trace contains infinitely many occurrences of u, then d(T™Z, Z) = 0

for some m with |m/| < |u|, which would contradict the independent discrete orbit condition.

Given J, consider a noisy trace = € traces, (o, v) such that z(n)---a2(n+1—1) is an
occurrence of u at an index where the noise is guaranteed to be less than 0, i.e., v(n+j) < ¢
for all j > 0. Let f,...,B3—1 denote T"a,...,T" ' 1a, and let vy,...,v,_1 denote the
corresponding perturbed versions. Recall we may assume without loss of generality that
Y0y -5 Y1—1 & Z. We make the following observations.

The points 7, .. .,7;—1 are all correctly placed, i.e., each ~y; falls in an open set S; that is

coded with the letter u(s).

There does not exist any point 3 such that 3,... 7'~ are all correctly placed, because

the set X, is empty.

In particular, there exists an ¢ such that 3; is incorrectly placed in some S’, while ;, which
is in the d-ball around it, is correctly placed in some S # S’. Since the §-ball is connected
(by property (1) of a robust system), it cannot be the union of disjoint open sets®, and must
contain some (; € Z, i.e., d(B;, () < 0.

Now, consider the points T%~;, ..., T""17%,. There necessarily exists some j # i such
that T7~%y; is incorrectly placed. By uniform continuity, we have that d(T7~¢8;, T7"ty;) <
Qli=(5), i.e., the incorrectly placed T7="y; is in the Q9= (§)-ball around S;, whereas the

2 Choose any a € X,, use that X, is open to get a ¢’-ball around « contained in X, let Y, be the
(6'/3)-ball around «, choose § = ¢’ /3, and apply the triangle inequality.
3 The open sets in this case are the intersections of the ball with each of Si, ..., Sk.
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correctly placed ; is in the d-ball around §;. By similar connectedness arguments above, we
get that the (max(, 2=(5)))-ball around B;, by virtue of containing both ~; and 77~y;,
contains a point (; € Z, or in other words, d(8;,¢;) < max (5, Q7 ~(4)).

We now use uniform continuity on 3;, ¢; to argue that d(3;, 77 7:¢;) < Ql7=(5). Applying
the triangle inequality to this and the result of the previous paragraph, we get that

d(T77¢;, ¢5) < max(6, QI =U(8)) + QlI=il(5).

We can now supply § = 1/2,1/4,..., and hence get a sequence of ((,{’) such that
min,,<ju d(T™¢,¢’) converges to 0. By compactness, any limit point ((,,(;) of this
sequence of ({,(’) lies in Z x Z, is guaranteed to exist, and by continuity (of the metric d,
homeomorphisms 7', 7!, and of the modulus of continuity ),

min d(ng‘)w Ci) =0,
Im|<|ul
which contradicts the independent discrete orbit condition.

We have thus proven that u is a recurrent factor if and only if X, is non-empty, and
that if X, is non-empty, the factor u occurs with bounded gaps once the noise is bounded
by some §,,. This establishes that for all € Traces,, x is almost-periodic, and the set of
recurrent factors is L, = {u | X, # {}}. <

We make some observations concerning effectiveness. To that end, define A : N — R as

A(n) = min d(T™Z,7),

|m|<n
and note that A(n) > 0 for n > 0.

» Lemma 3. Let L, C X, and let W C X% be a set of almost-periodic words such that
for every x € W, the set of recurrent factors of x is Ly. For every u € Ly, there exists R,
such that for every x € W, eventually every factor of length R, contains an occurrence of u.
Computing this R, Turing-reduces to deciding membership in L.

Proof. The existence of R, follows almost immediately by definition. Indeed, consider
arbitrary x € W. There exists R such that every length-R factor of x contains u. We can
assert R, < R, because in particular every recurrent length-R factor will have an occurrence
of u. To compute R,, we simply enumerate the elements of L, until we find a length R such
that all length-R members of L, contain an occurrence of u. It remains to observe that every
x € W has a suffix for which all length-R factors are recurrent. |

» Theorem 4. Let x C X be a noisy trace of a noise-robust dynamical system such that
L, is recursive and 2, A are computable. Let the noise function v of x converge effectively.
If for each n, we can compute x(n), then x is effectively almost-periodic. Thus, given such
x € X¥ and an w-regular language L, we can decide whether x € L.

Proof. We need to show how, given u € T, we can compute R, such that either u can
only occur in the length-R,, prefix of x, or u occurs in every length-R,, factor of x. One can
determine which of the cases holds by querying whether u € L.

Suppose u is not a recurrent factor. We compute ¢ small enough such that for all m with
|m| < |ul, we have max(d, Q™ (5)) + Q™ (d) < A(Ju|). From the proof of Thm. 2, we deduce
that there cannot be any occurrence of u at indices where the noise is less than §. Since the
noise function v converges effectively, we can compute R, such that for all n > R,,, we have
v(n) < 4, and hence u cannot occur at index n.
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In the case u is a recurrent factor, we can use the previous lemma to compute R, such
that = has a suffix where all length-R!, factors are recurrent, and contain an occurrence of wu.
It remains to compute the starting index R!/ of this suffix, and take R, = R, + R!. To do so,
we appeal to the previous case and compute a bound R!/ on the index of the last occurrence
of any length-R!, non-recurrent factor.

Finally, the last statement follows from the result of Seménov mentioned in the Introduction,
see [8, Chap. 3] for a detailed exposition. <

We remark that in our applications, the open subsets of the torus will be semi-algebraic.
This will allow us to effectively decide (see e.g., [1, App. A]), given any u, whether the
attendant open set X, is non-empty, or in other words, whether u € L.

3 Sign Descriptions of LRS

Recall that a linear recurrence sequence (LRS) of order d over a field K (we shall consider LRS
over real algebraic numbers) is a sequence (p, )52, that satisfies the recurrence relation iy, 14 =
ad—1fbntd—1+- -+ aopn, where ag # 0. We refer to the polynomial X —qg 1 X1 - —qq
as the characteristic polynomial of the LRS, and its roots are called the characteristic
roots. A characteristic root that is not repeated is called simple, an LRS is called simple
if all characteristic roots are simple. An LRS for which there is no pair A;, A; of distinct
characteristic roots such that A;/\; is a root of unity is called non-degenerate. It is well known
that any given LRS can be mechanically decomposed as the interleaving of non-degenerate
LRS (see e.g., [9]). We shall assume that the distinct characteristic roots Aq,..., Ay are
ordered in descending Euclidean absolute value, and shall refer to the roots with maximal
absolute value as dominant.
It is well known that LRS admit an exponential-polynomial closed form, i.e.,

m;—1

k
=D D it =D fi(m)AT

i=1 i=1

Here, we have that m; is the multiplicity of characteristic root \;, and can assume that
Zle m; = d and p;(m,—1) # 0.

The sign description of an LRS (u,)52, is the word x € {1, —1,0}* such that z(n) =
sign(uy,). Before we state the main result of this section, we record a lemma (see [5, Cor. 5.5],
[9, Thms. 8, 9]) that will be helpful in accounting for “degeneracies.”

» Lemma 5. Let xg,...,zq_1 be effectively almost-periodic toric words defined by open
semi-algebraic sets. The word x, defined as x(qd + r) = x.(q) is also toric, defined by open
semi-algebraic sets, and effectively almost-periodic.

We shall also use the following self-evident observation: if we can compute N such that
x(N, 00) is effectively almost-periodic, then z is effectively almost-periodic.

» Theorem 6. Let (1), be a real algebraic LRS that satisfies one of the following

conditons:

1. has a single real dominant root,

2. has two dominant roots whose ratio is not a root of unity,

3. has three dominant roots which are all simple, and the ratio of the complex conjugate pair
is mot a root of unity,

4. has order at most four.
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We can construct a Turing machine which witnesses that the sign description of (n)o2 s
effectively almost-periodic. Thus, given such an LRS and an w-regular language L, we can
decide whether the sign description x is in L.

Proof. Since precise computations can be carried out on the field of real algebraic numbers,
it is clear that given any n, we can always determine the n-th letter of the sign description.
We shall therefore focus on showing how, given a finite word u, we can compute R, such
that u either does not occur at any index beyond R,, or occurs in every length-R,, factor of
the sign description.

Case (1) is trivial. If there is a single real dominant root, then the sign description is
effectively eventually periodic with period at most 2.

We note that showing that the sign-description is effectively almost-periodic would
entail solving the Skolem problem, i.e., computing the set of indices at which the LRS is 0.
Fortunately, the cases of the statement are amenable to techniques used to solve the Skolem
problem for recurrences in the MSTV class, named after Mignotte, Shorey, Tijdeman [13],
and Vereshchagin [14], who independently showed that the Skolem problem is decidable for
LRS of order at most four. The key technical lemma uses Baker’s theory of linear forms in
logarithms. We refer the reader to [2, Sec. 3.2], [7, Sec. 3, 4] for expository proofs of the
following result, which makes the techniques of [9] effective at low orders.

» Lemma 7. Let (1) be a real algebraic LRS which has at most three dominant roots
A1, ...y Ar, and satisfies the property that the ratio of any pair of distinct dominant roots is
not a root of unity. We can compute an index N such that for alln > N,

k
>0 i)y

j=r+1

> fi(m)Ay
=1

The lemma has the following consequences for Cases (2) and (3).

Any word u that contains the letter 0 cannot be a factor of the sign description beyond
the index V.

In Case (3), beyond index N, the sign description of the given LRS matches that of
Zle DioA}’, which is in turn the same as the sign pattern of a sequence of the form
a+bcos(nf+ ) or a(—1)" +bcos(nf + ¢). This computable suffix of the sign description
is effectively uniformly recurrent by virtue of being a toric word?, see, e.g., [1, proof of
Thm. 3.1], [9, Thm. 8, Thm. 9].

The eventual effective uniform recurrence settles Case (3). We now turn to Case (2),
which is tackled by generalising the arguments in [5, Sec. 6.4]. Beyond index N, the sign
description of the LRS is the same as that of the sequence

mi—1

Z a;n? cos(nf + ¢ ),
§=0

none of whose terms are 0. Intuitively, the sign of each factor is driven by the term
A, — 1™~ cos(n@ + ©m, 1), and can be the opposite only if the cosine factor is less than

4 The former is obviously obtained as a coding of a rotation on a 1-torus, the latter is the interleaving
of two such codings, which is still toric by Lem. 5. Effectiveness follows because all computations to
determine whether an open interval corresponding to a putative factor is non-empty involve algebraic
numbers and semialgebraic sets.
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A/n for some effective A. More formally, the sign description of the above sequence is a
noisy trace of the noise-robust dynamical system defined by an irrational rotation on the
1-torus partitioned into semicircular arcs. We immediately obtain from Thm. 2 that the
sign description is almost-periodic. Furthermore, L, is recursive by semi-algebraic geometry,
the noise function converges effectively, the modulus of continuity Q(4) is simply §, and
A(n) = ming || <, M6 — dr| can be effectively under-approximated. We obtain from Thm. 4
that the noisy trace, i.e., the sign description, is effectively almost-periodic.

Only Case (4) remains. Three subcases arise: (i) All four roots are distinct and dominant;
(ii) There are fewer than four dominant roots, and there is no pair of distinct dominant roots
whose ratio is a root of unity; (iii) There are two or three dominant roots, and the ratio
between a distinct pair is a root of unity. Of these, subcase (ii) has been subsumed by prior
discussions.

In subcase (i), we have that the LRS is simple, has roots {£p, pe=} or {peti1 pe*i¥2}
and hence its sign pattern has a suffix that is effectively uniformly recurrent by virtue of
being toric [9, Thm. 11] (more precisely, the suffix of the sign pattern is the interleaving
of effectively almost-periodic toric words, and will inherit the property by Lem. 5). The
starting index of this suffix can be computed using Lem. 7 or by directly solving the Skolem
problem for the ensuing low-order non-degenerate LRS in the MSTV class. This identifies
when all of the interleaved non-degenerate LRS are guaranteed to be non-zero.

In subcase (iii), if there are three dominant roots, the LRS is of the form (£p)” +
pcos(nm/d + ) + (£7)", where 0 < v < p. It is easy to see that the sign description will
be effectively ultimately periodic. If there are two dominant roots, it is easy to see that the
sign pattern is effectively ultimately periodic, except if the remaining non-dominant roots
are complex conjugates and not roots of unity, and the contribution from dominant terms is
periodically 0. We can still apply Lem. 7 to identify when the non-dominant contribution
will persistently be non-zero, and then use Lem. 5 to deduce that the suffix of overall sign
description, which is the interleaving of effectively almost-periodic, toric sign descriptions of
low-order non-degenerate LRS, is itself toric and effectively almost-periodic.

To end the proof, the last statement follows from Seménov’s theorem, as in Thm. 4. <

There are known instances of order-five LRS where is Skolem problem is unresolved,
and instances of LRS with three dominant roots whose sign description is provably not
almost-periodic [1, Sec. 4], and instances of LRS with three dominant roots for which the
positivity and ultimate positivity problems (respectively, does the sign description contain
—1, does the sign description contain —1 only finitely many times) are unresolved [12, Sec. 5].

4 Prefix-Independent Verification

» Definition 8. An w-regular language L C X% is said to be prefix-independent if for all
u,v € X* and x € ¥, ux € L if and only if vx € L.

In other words, if z’ is obtained from z by making finitely many edits, then either
xz,2' € L or z,2’ ¢ L. We remark that any non-empty prefix-independent language is a
liveness property, but the liveness property (XX)*(aX)* is not a prefix independent language.

» Proposition 9. An w-regular language L C X% is prefiz-independent if and only if
L= U?Zl X*V¥, where Vi, ..., Vq are reqular languages not containing the empty word.

Proof. We assume without losing generality that L is non-empty.
Suppose L = Ule Y*V¥. Suppose, for the sake of contradiction, there exists a pair z, 2’
of words a finite edit-distance apart such that x € ¥*V* C L but =’ ¢ L. We have that
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T = uvivs ..., where for each n > 1, v, € V;. Since 2’ is only a finite edit-distance away from
x, it can be factorised as w' vy Um+1 - .., which witnesses that #’ € ¥*V, a contradiction.
Thus L = U?Zl ¥*V implies that L is prefix-independent.

Conversely, suppose L = Ule U;VY is prefix-independent. Clearly, L C U?Zl Ve,
We shall prove that the reverse inclusion also holds. To that end, consider x € ¥*V* C
U?Zl ¥*V#. This word is clearly a finite edit-distance away from a word =’ € U;V¥ C L.
Since L is prefix-independent, this implies € L, and hence L = ngl V2. |

The rest of this section is organised as follows. We first formalise the intuition that
prefix-independent w-regular languages comprise either “very dense” or “very sparse” subsets
of 3¢. This intuition is further reflected in the main result of the section: almost-periodic
words with the same set of recurrent factors are indistinguishable to a prefix-independent
w-regular language.

We say a word = € X% is disjunctive if the set of its recurrent factors is ¥*. Given an
alphabet X, we use Dy to denote the set of disjunctive words over it.

» Proposition 10. Let L C X% be a prefix-independent w-regular language. We have that
either Dy, C L or Dy, N L = {}. Furthermore, we can determine which is the case.

Proof. Consider a deterministic parity automaton A recognising L, and in particular, the
graph induced by it. We can prove [4, Thm. 4.16] (detailed proof in [6, App. A.4]) that in
the run on any disjunctive word z, the set of states visited infinitely often is precisely a
bottom strongly connected component. To determine whether the set of disjunctive words is
included in, or excluded from L, we check whether the highest colour in a bottom strongly
component is even or odd. Note that the parity must be consistent across different bottom
strongly components, otherwise the prefix-independence of L would be contradicted. (One
can make finitely many edits to a disjunctive word so that the run settles in any chosen
bottom strongly connected component; these edits, however, alter neither disjunctivity nor
membership in the language.) |

In other words, a prefix-independent w-regular language either contains almost all words,
or excludes almost all words. Here, the quantifier “almost all” is with respect to the uniform
Borel probability measure on $¢, which assigns the cylinder {uz | = € ¥} measure 1/|3|/"/.

The main result of this section is a slightly generalised reformulation of [1, Sec. 5], with
simplified techniques. (We leave gauging the extent of simplification to the discernment of
the reader.) We introduce an auxiliary technical notion before we prove the theorem.

In order to aggregate information about automaton runs, we define a journey to be a
tuple in @ x @ x N, which describes a finite run ggq; ... ¢ on a word ug . ..u;—1 by recording
the starting state gg, the ending state ¢;, and the maximum colour among those of q1, ..., q.
Clearly, if a word u can make the journey (¢1,¢2,c¢1) and a word v can make the journey
(2,43, c2), then the word uv can make the journey (g1, g3, max(cy,cz)). For a factorisation
into finite words uguy --- of an infinite word z, if each u; makes can make the journey
(¢i, Gi+1,¢i), then the automaton accepts x if and only if lim sup,cy ¢; is even.

» Theorem 11. Let W C X% be a set of almost-periodic words, and let L, C X* be such that
for all x € W, the set of recurrent factors of x is Ly. Let L C X be a prefix-independent
w-regular language. We have that W C L or W N L = {}. Furthermore, given an oracle for
membership in Ly, we can decide which of the above two cases holds.

Proof. We will show that for any z € W, we can decide whether x € L purely with oracle
queries to L,. Throughout this proof, we assume that L is recognised by a deterministic
parity automaton A = (Q, X, ¢init, A, col), and all states in A are reachable from ginjt.
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Observe, using Lem. 3, that given u € L, any arbitrary x € W can be written as
wuv vl - - -, where |v;| < R,, and uv;u € L, for all i > 1. Indeed, we choose w long enough
so that in the suffix obtained by deleting it, all factors of length at most 2|u| + R, are
recurrent, and all factors of length R, contain an occurrence of u. We remark that R, is
effective, but w need not be effective for the proof that follows.

We define the set window,, = {v | |v] < Ry, Auvu € L.} and observe that it is finite and
computable with oracle access to L,. In other words, W C ¥*(u - window,, ). We will use
this pattern to determine the highest colour seen infinitely often in a run of A.

We say that a factor u € L, is saturated with respect to A if for all ¢ € @ and all
v € window,, if u makes the journey (q,¢’,c) and wvu makes the journey (q,q”,c’), then
¢ = . In other words, the highest colour seen while reading uvu starting from any g must
have been already seen while reading the prefix u. Saturated factors help us determine
acceptance as follows. Let x = wuviuvs - - -, and let the corresponding sequence of journeys be
(g0, 41, ¢0), (q1,92,¢1), . ... By saturation, for all i, we get that co;41 > 2,42 and coj41 > cai43.
We now use prefix-independence.

Let (g4, ¢, ¢x) be a journey u can undertake such that for all other journeys (g, ¢”, ¢) of u,
¢ > ¢,. Let w’ be a word that takes giniz to ¢.. By prefix-independence, we have that x € L if
and only if @' = w'uviuvs - -+ € L. The new sequence of journeys is (qf, ¢4, ¢), (¢1, ¢, ¢1)s - - -
where ¢; = ¢, and ¢| = c,. The same saturation properties hold: c5; ; > c5; , and
Chip1 = Chips. However, ch; | > ¢y, and ¢| = c,. Hence, limsup; ¢; = c,.

We have just proven that an arbitrary x € W is accepted by A if and only if the colour
¢, effectively defined by a saturated factor u € Ly is even. It remains to prove that saturated
factors exist, and can be computed with oracle access to L.

We shall do so with a fix-point algorithm that returns a saturated factor. We associate
with each word w a function f, : @ — N, defined such that u makes the journey (q,q’, fu(q))
for some ¢’. We define a quasi-ordering on finite words and say that u < v if f,,(q) < f,(q)
for all ¢q. Clearly, if u is a prefix of v then u < v. In particular, for all v € window,,, u = uvu,
but for a saturated word u, uvu < u for all v € window,,. It is also easy to observe that this
quasi-ordering has finitely many (at most |Q|?) equivalence classes, and hence cannot admit
a strictly increasing chain of more than |Q|? words. Our algorithm thus starts with u € L.
In each iteration, it computes window, with queries to L,, and checks if u is saturated. If
yes, it returns w; if not, it iterates with wvu,v € window,, that is strictly above u in the
quasi-ordering. By the argument above, the algorithm runs for at most |Q|? iterations. <«

Applying Thms. 2 and 11 gives the following result.

» Corollary 12. Let (X,T,(S1,...,Sk,Z),0) be a noise-robust dynamical system, and let
L C X% be a prefiz-independent w-reqular language. We have that either Traces, C L or
Traces, N L = {}. Furthermore, if L, is recursive, the language of recurrent factors of words
in Traces,, then we can decide which of the above two cases holds.

5 The Sturmian Case

For Sturmian systems, the space X is the 1-torus (identified by the interval [0,1)), and the
dynamical update T is an irrational rotation -, i.e., @ is mapped to a + vy mod 1. Without
loss of generality, we assume v < 1/2. The partitions are [0,7) and [y,1), and the coding
maps these to 1 and 0 respectively. We see that Z = {0,~}, and T 0 0 = 7. Hence, Sturmian
systems are not noise-robust by our definition. More specifically, we can prove that if u € Ly,
the set of words for which X, is non-empty, then u is a recurrent factor of all (noisy) traces.
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However, if u ¢ L, the word u can still be a factor of some noisy traces, and in fact these
noisy traces can fail to be almost-periodic. Indeed, the independent discrete orbit property
needed to preclude this failure does not hold.

In the absence of noise, it is known that Sturmian words are uniformly recurrent and
have minimal factor complexity: there are exactly n 4+ 1 factors of length n. In particular,
the length-2 factors are 00,01,10. We shall show that if we allow noise, regardless of how
rapidly the noise converges to 0, there are starting points « such that the noisy trace has 11
as a recurrent factor, and moreover the gaps between the occurrences of 11 are unbounded.

Consider a noise function v such that for all n, v(n) > 0. Observe that 11 can only occur
as a factor if we perform a perturbation when

a+nye€ (1 - V(n)71) U [O,Z/(Tl+ 1))7
or by an appropriate shifting of coordinates,
a€ (—ny—v(n),—ny+vin+1)).

To define where to perform perturbations, we shall now construct a sequence of indices
ng, N1, ... having unbounded gaps (e.g., by choosing n;y; > n; + ¢+ 1), and a sequence
Ap D Ay D ... of non-empty closed intervals of the 1-torus, such that

A; C (=niy —v(ng), —ngy + v(ng + 1))

By the nested intervals theorem, we would then have that the intersection of these
intervals contains a point a, and for all n;,

ay € (—nyy — v(ng), —nyy + v(ng + 1)).

This would imply that «, has a noisy trace x, obtained by performing perturbations at each
of the n;’s (or (n; + 1)’s, as required), such that x has 11 as a recurrent factor, and the gaps
between consecutive occurrences of 11 are unbounded.

We now present the inductive construction of ng,n1,..., and Ag, A1,.... We can choose
ng arbitrarily, and take Ag to be a closed interval,

Ao C (—noy — v(ng), —noy + v(n; + 1)).

For the inductive step, assume that n;, A; have been constructed. Let B; C A; be an
open interval. By the (Kronecker/Weyl) equidistribution theorem, we know that there are
infinitely many n such that —ny € B;. We choose n;y; such that n;y; —n; > i+ 1, and
choose A;11 to be a closed interval in the non-empty intersection of two open intervals,

Ai+1 Q Bl n (777,1")/ — I/(Tli), —ng7y + 1/(774' + 1))

The infinite intersection of the A;’s is thus {ay}, where traces, (o, ) contains a word that is
not almost-periodic, and whose set of recurrent factors contains 11, which is not a factor of
any trace with noise 0.

Interestingly, however, if we were to change the Sturmian system by making the rotation
my instead of vy (where m is an integer, |m| > 1), then the new dynamical system would
indeed be noise-robust. This shows that a noisy Sturmian word, while itself not almost-
periodic, is an interleaving of almost-periodic noisy toric words. This is an analogue of [5,
Cor. 6.9]

The same arguments as above would allow us to encode the computations of Diophantine
approximation constants (e.g., inf n[ny + o], liminf n[ny + o], where even algorithmically
determining whether these quantities are 0 remains an open number-theoretic problem) using
queries such as, “given « and noise v lower-bounded by 1/n, does traces, (a, ) contain a
trace = in which the factor 11 occurs (respectively, occurs infinitely often)?”



447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

Author: Please use the \authorrunning macro

—— References

1

10

11

12

13

14

15

16

Shaull Almagor, Toghrul Karimov, Edon Kelmendi, Joél Ouaknine, and James Worrell.
Deciding omega-regular properties on linear recurrence sequences. 5(POPL), January 2021.
doi:10.1145/3434329.

Piotr Bacik. Completing the picture for the skolem problem on order-4 linear recurrence
sequences. TheoretiCS, Volume 4, Dec 2025. URL: https://theoretics.episciences.org/
14219, doi:10.46298/theoretics.25.28.

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joél
Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis
for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In
Bartek Klin, Stawomir Lasota, and Anca Muscholl, editors, 33rd International Conference on
Concurrency Theory (CONCUR 2022), volume 243 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 10:1-10:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.CONCUR.2022.10, doi:10.4230/LIPIcs.CONCUR.2022.10.

Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joél Ouaknine, Mihir Vahanwala, and
James Worrell. On the Decidability of Monadic Second-Order Logic with Arithmetic Predicates.
In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’24, New York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/
3661814 .3662119.

Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joél Ouaknine, Mihir Vahanwala, and
James Worrell. The monadic theory of toric words. Theoretical Computer Science, 1025:114959,
2025.

Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joél Ouaknine, Mihir Vahanwala, and
James Worrell. On the decidability of monadic second-order logic with arithmetic predicates,
2024. URL: https://arxiv.org/abs/2405.07953, arXiv:2405.07953.

Yuri Bilu. Skolem problem for linear recurrence sequences with 4 dominant roots (after mignotte,
shorey, tijdeman, vereshchagin and bacik), 2025. URL: https://arxiv.org/abs/2501.16290,
arXiv:2501.16290.

Toghrul Karimov. Algorithmic verification of linear dynamical systems, 2023. doi:http:
//dx.doi.org/10.22028/D291-41630.

Toghrul Karimov, Edon Kelmendi, Joris Nieuwveld, Joél Ouaknine, and James Worrell. The
power of positivity. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1-11, 2023. doi:10.1109/LICS56636.2023.10175758.

Michael Keane. Interval exchange transformations. Mathematische Zeitschrift, 141(1):25-31,
1975. doi:10.1007/BF01236981.

A. Muchnik, A. Semenov, and M. Ushakov. Almost periodic sequences. Theoretical Computer
Science, 304(1):1-33, 2003. doi:10.1016/S0304-3975(02)00847-2.

Joél Ouaknine and James Worrell. Positivity problems for low-order linear recurrence sequences.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’14, page 366-379, USA, 2014. Society for Industrial and Applied Mathematics.

R. Tijdeman, M. Mignotte, and T.N. Shorey. The distance between terms of an algebraic
recurrence sequence. Journal fir die reine und angewandte Mathematik, 349:63—76, 1984.
URL: http://eudml.org/doc/152622.

N. K. Vereshchagin. Occurrence of zero in a linear recursive sequence. Mathematical Notes of
the Academy of Sciences of the USSR, 38:609-615, 1985. doi:10.1007/BF01156238.

Peter Walters. An introduction to ergodic theory, volume 79. Springer Science & Business
Media, 2000.

Hermann Weyl. Uber die Gleichverteilung von Zahlen mod. Eins. Mathematische Annalen,
77(3):313-352, 1916.

XX:13


https://doi.org/10.1145/3434329
https://theoretics.episciences.org/14219
https://theoretics.episciences.org/14219
https://theoretics.episciences.org/14219
https://doi.org/10.46298/theoretics.25.28
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10
https://doi.org/10.4230/LIPIcs.CONCUR.2022.10
https://doi.org/10.1145/3661814.3662119
https://doi.org/10.1145/3661814.3662119
https://doi.org/10.1145/3661814.3662119
https://arxiv.org/abs/2405.07953
https://arxiv.org/abs/2405.07953
https://arxiv.org/abs/2501.16290
https://arxiv.org/abs/2501.16290
https://doi.org/http://dx.doi.org/10.22028/D291-41630
https://doi.org/http://dx.doi.org/10.22028/D291-41630
https://doi.org/http://dx.doi.org/10.22028/D291-41630
https://doi.org/10.1109/LICS56636.2023.10175758
https://doi.org/10.1007/BF01236981
https://doi.org/10.1016/S0304-3975(02)00847-2
http://eudml.org/doc/152622
https://doi.org/10.1007/BF01156238

	1 Introduction
	2 Noise-Robust Dynamical Systems
	2.1 Partitions for the coding
	2.2 Noise Robustness

	3 Sign Descriptions of LRS
	4 Prefix-Independent Verification
	5 The Sturmian Case

