

1 Model Checking for Noisy Toric Words

2 Mihir Vahanwala

3 MPI-SWS, Saarland Informatics Campus

4 — Abstract —

5 Toric words have recently gained attention as a means to model the behaviour of dynamical systems
6 such as linear loops. This work is concerned with describing when the toric model is precise enough
7 to decide whether the trace of a system is contained in an ω -regular language. Our contributions are
8 threefold. (i) We use topological means to generalise a class of toric words by defining noise-robust
9 dynamical systems and their sets of noisy traces. We prove that all noisy traces of a system are
10 almost-periodic, and have the same set of recurrent factors. (ii) We apply the abstract techniques
11 above to concrete sequences obtained as sign descriptions of real algebraic linear recurrence sequences
12 (LRS), and show that the language-membership problem for sign descriptions of LRS with few
13 dominant roots is decidable. (iii) We show that noisy traces of noise-robust dynamical systems are
14 indistinguishable to a prefix-independent ω -regular language, and inclusion is decidable provided
15 the common language of their recurrent factors is recursive. We incidentally obtain properties of
16 prefix-independent ω -regular languages that may be of independent interest.

17 **2012 ACM Subject Classification** Theory of computation → Logic and verification

18 **Keywords and phrases** Model checking, dynamical systems, almost-periodic words, linear recurrence
19 sequences, prefix-independent languages

20 **Digital Object Identifier** 10.4230/LIPIcs...

© Author. Please provide a copyright holder;

licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

21 **1 Introduction**

22 A toric word $x \in \Sigma^\omega$ is obtained by considering a collection $\{S_1, \dots, S_k\}$ of finitely many
 23 disjoint open subsets of a torus X , a starting point $\alpha \in X$, and a rotation γ such that for
 24 every n , the point $\alpha + n\gamma$ is contained in (the closure of) one of the open sets above. A
 25 coding σ then associates each open set with a letter in Σ , and we define $x(n) = \sigma(S_n)$ where
 26 $\alpha + n\gamma \in \text{cl}(S_n)$. Toric words are extensively studied symbolic dynamical systems (see [15,
 27 Chap. 1] and [16]). A prime example is the class of Sturmian words, where X is the unit
 28 circle identified by the interval $[0, 1)$, and is partitioned as $[0, \gamma), [\gamma, 1)$.

29 More recently, toric words have been identified to accurately capture the behaviour of
 30 *linear loops* in program verification [8]. They also play a central role in the decidability of
 31 the monadic second-order (MSO) theory of the structure $\langle \mathbb{N}; <, a_1^\mathbb{N}, \dots, a_k^\mathbb{N} \rangle$ as established by
 32 [4]. We refer the reader to [5] for a survey. Such words hinge on the fact that toric words,
 33 and more generally, traces of *minimal compact dynamical systems*, enjoy the combinatorial
 34 property of *uniform recurrence*, which is a special case of *almost periodicity*.

35 These properties are defined and leveraged as follows. We say that a finite word u is a
 36 *factor* of an infinite word x if u occurs in x ; if u occurs infinitely often, we say that it is a
 37 *recurrent* factor of x . A word x is recurrent when every factor u is recurrent; if moreover
 38 for every u there is a bound on the gaps between consecutive occurrences of u , then x is
 39 uniformly recurrent. A word x is almost-periodic if for every recurrent factor u , there is
 40 a bound on the gaps between its consecutive occurrences. We have that x is *effectively*
 41 almost-periodic if, furthermore: (i) given any index n , we can compute $x(n)$; (ii) given any
 42 finite word u , we can compute R_u such that either all occurrences of u are in a prefix of
 43 length R_u , or every factor of length R_u contains an occurrence of u . A classic result of
 44 Semёnov concerning runs of deterministic automata on almost-periodic words (see e.g., [11])
 45 implies that given an ω -regular language L and an effectively almost-periodic word x , one
 46 can decide whether $x \in L$.

47 Indeed, throughout this paper, we characterise ω -regular languages as those recognised
 48 by deterministic parity automata $\mathcal{A} = (Q, \Sigma, q_{\text{init}}, \tau, \text{col})$, where Q is a set of states, Σ is the
 49 alphabet, q_{init} is the initial state, $\tau : Q \times \Sigma \rightarrow Q$ is the transition function, and $\text{col} : Q \rightarrow \mathbb{N}$
 50 is the colouring function (note that its image is finite). The automaton \mathcal{A} accepts a word x
 51 if the maximum colour visited infinitely often in the run is even.

The motivation of this work lies in the observation that the model obtained by using tori
 to describe dynamical systems, while accurate, may still be imprecise. As an example [5],
 consider the sequence x over the alphabet $\{-1, 0, 1\}$ obtained by recording the sign of the
 expression

$$\sin(\varphi + n\theta) + r(n),$$

52 where θ/π is irrational, and $r(n)$ converges to 0. Such an infinite word arises as the sign
 53 pattern of a *linear recurrence sequence* (LRS, see Sec. 3) with two *dominant characteristic*
 54 *roots*. Intuitively, as n grows larger, the sign pattern x should bear increasing resemblance
 55 to the toric word y obtained by taking X to be the unit circle, α to be starting point with
 56 angular coordinate φ , the update γ to be rotation by angle θ , and the partition of X to be
 57 the union of open semicircular arcs and their endpoints. However, the indices at which x and
 58 y disagree can still constitute an infinite set, and the sign pattern x can in fact be provably
 59 non-toric [5, Cor. 6.9].

60 The question that arises is: under what circumstances can the language-membership
 61 problem for the original trace be solved using the model torus?

62 In this example, we can in fact prove that x will be almost periodic, and moreover the

63 set of recurrent factors of x will be the same as that of y . The dynamical system induced by
 64 the orbit an irrational rotation on a unit circle partitioned into semicircular arcs is *robust*
 65 in the sense that varying the starting point and adding diminishing *noise* do not alter the
 66 almost-periodic nature of the trace, nor change the set of its recurrent factors.

67 The first contribution of this paper is a generalisation of the above phenomenon. We
 68 shall use topological means to define a class of noise-robust dynamical systems and their sets
 69 of noisy traces (Def. 1). We then prove in Thm. 2 that all noisy traces of a robust system
 70 are almost-periodic and have the same set of recurrent factors. Thm. 4 then delineates when
 71 noisy traces are *effectively* almost-periodic, and thus gives the ingredients to address our
 72 motivating question above.

73 Our second contribution is an application to LRS: we combine our results (Thm. 4) with
 74 the techniques of [9]. In Thm. 6, we show that the sign pattern x of a real algebraic LRS is
 75 *effectively* almost periodic provided it satisfies one among a handful of spectral conditions.
 76 By a direct application of Semёnov's result, given such an LRS and an ω -regular language L ,
 77 we can decide whether $x \in L$. In particular, Case (2) of Thm. 6 covers our running example.
 78 We note that this case also applies to *non-simple* LRS; prior work in this setting [1, 9] is
 79 restricted to *simple* LRS where it can be shown by number-theoretic means that the sign
 80 pattern differs from the toric word in only finitely many positions.

81 Our third contribution is the result that noisy traces of a noise-robust dynamical system
 82 are indistinguishable to any *prefix-independent* ω -regular language, and inclusion is decidable
 83 provided the common language L_* of recurrent factors is recursive (Cor. 12). A prefix-
 84 independent language [1, 3] $L \subseteq \Sigma^\omega$ has the following defining property. Let x, x' be words
 85 such that x' can be obtained from x by making only finitely many edits. We have that
 86 $x \in L$ if and only if $x' \in L$. Non-empty prefix-independent languages thus comprise a special
 87 class of liveness properties; we also give properties of prefix-independent ω -regular languages
 88 (Props. 9, 10) that may be of independent interest. E.g., the uniform Borel probability
 89 measure assigns a prefix-independent language measure either 0 or 1.

90 Finally, we shall observe that Sturmian words do not satisfy our robustness criteria. We
 91 shall demonstrate noisy traces of Sturmian dynamical systems that are not almost-periodic,
 92 and also show that querying such traces against prefix-independent ω -regular languages
 93 subsume Diophantine-hard problems.

94 2 Noise-Robust Dynamical Systems

95 In this section, we compile a set of properties that imply a dynamical system $(X, T : X \rightarrow X)$
 96 is robust. As outlined in the introduction, we seek to generalise the phenomenon observed
 97 for the system defined by an irrational rotation on the 1-torus partitioned into semicircular
 98 arcs, and the reader may use this as a running example to intuit the properties we impose
 99 and the conclusions we draw.

100 Throughout this paper, we shall assume that X is a compact metric space with bounded
 101 metric d such that every open ball $B \subseteq X$ is connected. We shall assume that the dynamical
 102 update $T : X \rightarrow X$ is a homeomorphism, and in particular, is bijective. This has the following
 103 consequences.

- 104 1. Both T and T^{-1} are homeomorphisms, and hence for every open set S , the image TS
 105 and pre-image $T^{-1}S$ are open sets.
- 106 2. Both T and T^{-1} are uniformly continuous because X is compact. In particular, we can
 107 define a modulus of continuity, i.e., a non-decreasing function $\Omega : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$, such that
 108 for all $\alpha, \alpha' \in X$ we have $d(T\alpha, T\alpha') < \Omega(d(\alpha, \alpha'))$, $d(T^{-1}\alpha, T^{-1}\alpha') < \Omega(d(\alpha, \alpha'))$, the

XX:4 Model Checking for Noisy Toric Words

109 function Ω is continuous at 0, and $\Omega(0) = 0$.¹

110 Our final requirement on the dynamics is that the dynamical system (X, T) be
111 minimal, i.e., for all $\alpha \in X$ the orbit $\{T^n\alpha : n \in \mathbb{N}\}$ is dense in X .

112 2.1 Partitions for the coding

113 Having set up the dynamics, we turn to the requirements on how the coding of an orbit will
114 be obtained. We partition X into finitely many disjoint open sets S_1, \dots, S_k , and a closed set
115 Z such that $\bigcup_{i=1}^k S_i$ is dense in X . Observe that Z is compact. We impose the independent
116 discrete orbit condition: for all $\zeta \in Z$, and all $n \geq 1$, we must have that $T^n\zeta \notin Z$. This
117 condition is technically helpful, and is reminiscent of its counterpart which is now a staple
118 working assumption in the study of *interval exchange transformations* [10].

119 A coding σ surjectively maps X to a finite alphabet Σ in an “almost continuous way”:
120 we have that σ is constant on each of the open sets S_1, \dots, S_k , and that if $\sigma(\zeta) = b$ for some
121 $\zeta \in Z$, then for every $\delta > 0$, there exists $\alpha \notin Z$ such that $d(\alpha, \zeta) < \delta$ and $\sigma(\alpha) = b$.

122 We model noise as follows. Let $\mathcal{N} = \{\nu : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \mid \lim_{n \rightarrow \infty} \nu(n) = 0\}$ be the set of
123 noise functions. We say that the noise function ν *converges effectively* if for every δ we can
124 compute N such that for all $n \geq N$ we have $\nu(n) < \delta$. The function $\text{traces}_\sigma : X \times \mathcal{N} \rightarrow 2^{\Sigma^\omega}$
125 maps a starting point α and noise function ν to the set of infinite words

$$126 \quad \text{traces}_\sigma(\alpha, \nu) = \{x \in \Sigma^\omega \mid \forall n. \exists \beta. d(\beta, T^n\alpha) < \nu(n) \wedge \sigma(\beta) = x(n)\}. \quad (1)$$

127 In other words, a noisy trace may code a point β in the $\nu(n)$ -ball around $T^n\alpha$ instead of
128 $T^n\alpha$ itself. By our requirements on the coding σ , we can assume without losing generality
129 that $\beta \notin Z$. Finally, we define

$$130 \quad \text{Traces}_\sigma = \bigcup_{\alpha \in X, \nu \in \mathcal{N}} \text{traces}_\sigma(\alpha, \nu). \quad (2)$$

131 We summarise our conditions in the following definition.

132 ▶ **Definition 1.** A dynamical system $(X, T, \langle S_1, \dots, S_k, Z \rangle, \sigma)$, where X is partitioned into
133 S_1, \dots, S_k, Z , and $\sigma : X \rightarrow \Sigma$ is a coding, is said to be noise-robust if:

- 134 1. The space X is compact and admits a metric d , and moreover, every open ball $B \subseteq X$ is
135 connected.
- 136 2. The update $T : X \rightarrow X$ is a homeomorphism, admits a modulus of continuity Ω , and
137 induces a minimal dynamical system on X , i.e., for all $\alpha \in X$, the orbit $\{T^n\alpha \mid n \in \mathbb{N}\}$
138 is dense in X .
- 139 3. The partitions S_1, \dots, S_k are disjoint open sets, and their union is dense in X .
- 140 4. For all $\zeta \in Z$, and all $n \geq 1$, we have $T^n\zeta \notin Z$.

141 It is straightforward to check that our running example of an irrational rotation on
142 the 1-torus partitioned into open semicircular arcs and their endpoints meets all the four
143 conditions. On the other hand, toric systems defining Sturmian words satisfy all but the
144 fourth condition: the distance between the endpoints of the intervals is the same as the angle
145 of rotation.

¹ For any $\delta \geq 0$, the set $B_\delta = \{(\alpha, \alpha') \in X \times X : d(\alpha, \alpha') \leq \delta\}$ is closed in the compact $X \times X$, and hence compact. Take $\Omega(\delta) = 2 \cdot \max_{(\alpha, \alpha') \in B_\delta} \max(d(T\alpha, T\alpha'), d(T^{-1}\alpha, T^{-1}\alpha'))$.

146 2.2 Noise Robustness

147 ▶ **Theorem 2.** Let $(X, T, \langle S_1, \dots, S_k, Z \rangle, \sigma)$ be a noise-robust dynamical system. We have
 148 that every $x \in \text{Traces}_\sigma$ is almost-periodic. Furthermore, there exists $L_\star \subseteq \Sigma^+$ such that for
 149 every $x \in \text{Traces}_\sigma$, the set of recurrent factors of x is L_\star .

150 **Proof.** We shall associate each word $u \in \Sigma^*$ with an open set $X_u \subseteq X$. This assignment will
 151 have the property that if the orbit falls in X_u , the next $|u|$ letters of the coding will be an
 152 occurrence of u provided there is no noise.

153 We assign $X_\varepsilon = X$ for the empty word, and $X_{bu} = \left(\bigcup_{i: \sigma(S_i)=b} S_i \right) \cap T^{-1}X_u$. Note that
 154 here we use the fact that T^{-1} is a homeomorphism that maps open sets to open sets. We
 155 claim that $L_\star = \{u \in \Sigma^+ \mid X_u \neq \{\}\}$.

156 We shall first prove that if X_u is non-empty, then u is a recurrent factor of all $x \in \text{Traces}_\sigma$,
 157 and furthermore, there is a bound R_u such that for all $x \in \text{Traces}_\sigma$, the gaps between
 158 consecutive occurrences are eventually bounded by R_u . Since X_u is an open set, we can
 159 choose a small enough δ and construct a non-empty open set $Y_u \subseteq X_u$ such that for all
 160 $\alpha \in Y_u$, the δ -ball around α is contained in X_u .² We see that if Y_u is visited when the noise
 161 is less than δ , then it will mark an occurrence of u . Since the noise converges to 0, it would
 162 suffice to prove that the gaps between visits to Y_u are bounded.

163 Since the dynamical system is minimal, we have that $\bigcup_{n=0}^{\infty} T^{-n}Y_u = X$, i.e., the orbit of
 164 every point in X eventually visits Y_u . Since Y_u is open and T^{-1} is a homeomorphism, we get
 165 that $(T^{-n}Y_u)_{n=0}^{\infty}$ is an open cover of X , which, due to compactness, admits a finite subcover
 166 $(T^{-n}Y_u)_{n=0}^R$. Thus, every point in X is either in Y_u or will visit Y_u in at most R steps under
 167 T . This proves that u occurs infinitely often in any noisy trace x , and once the noise is
 168 bounded by δ , the gaps between occurrences of u in the trace are bounded by $R_u = R$.

169 We now prove the converse, i.e., if X_u is empty (which can happen only if the length
 170 $|u| > 1$), then u can occur only finitely often in any noisy trace. We will do so by contradiction:
 171 we will show that if a noisy trace contains infinitely many occurrences of u , then $d(T^m Z, Z) = 0$
 172 for some m with $|m| \leq |u|$, which would contradict the independent discrete orbit condition.

173 Given δ , consider a noisy trace $x \in \text{traces}_\sigma(\alpha, \nu)$ such that $x(n) \dots x(n+l-1)$ is an
 174 occurrence of u at an index where the noise is guaranteed to be less than δ , i.e., $\nu(n+j) < \delta$
 175 for all $j \geq 0$. Let $\beta_0, \dots, \beta_{l-1}$ denote $T^n \alpha, \dots, T^{n+l-1} \alpha$, and let $\gamma_0, \dots, \gamma_{l-1}$ denote the
 176 corresponding perturbed versions. Recall we may assume without loss of generality that
 177 $\gamma_0, \dots, \gamma_{l-1} \notin Z$. We make the following observations.

- 178 ■ The points $\gamma_0, \dots, \gamma_{l-1}$ are all correctly placed, i.e., each γ_i falls in an open set S_i that is
 179 coded with the letter $u(i)$.
- 180 ■ There does not exist any point β such that $\beta, \dots, T^{l-1} \beta$ are all correctly placed, because
 181 the set X_u is empty.

182 In particular, there exists an i such that β_i is incorrectly placed in some S' , while γ_i , which
 183 is in the δ -ball around it, is correctly placed in some $S \neq S'$. Since the δ -ball is connected
 184 (by property (1) of a robust system), it cannot be the union of disjoint open sets³, and must
 185 contain some $\zeta_i \in Z$, i.e., $d(\beta_i, \zeta_i) < \delta$.

186 Now, consider the points $T^{-i} \gamma_i, \dots, T^{l-1-i} \gamma_i$. There necessarily exists some $j \neq i$ such
 187 that $T^{j-i} \gamma_i$ is incorrectly placed. By uniform continuity, we have that $d(T^{j-i} \beta_i, T^{j-i} \gamma_i) <$
 188 $\Omega^{|j-i|}(\delta)$, i.e., the incorrectly placed $T^{j-i} \gamma_i$ is in the $\Omega^{|j-i|}(\delta)$ -ball around β_j , whereas the

² Choose any $\alpha \in X_u$, use that X_u is open to get a δ' -ball around α contained in X_u , let Y_u be the $(\delta'/3)$ -ball around α , choose $\delta = \delta'/3$, and apply the triangle inequality.

³ The open sets in this case are the intersections of the ball with each of S_1, \dots, S_k .

XX:6 Model Checking for Noisy Toric Words

189 correctly placed γ_j is in the δ -ball around β_j . By similar connectedness arguments above, we
190 get that the $(\max(\delta, \Omega^{|j-i|}(\delta)))$ -ball around β_j , by virtue of containing both γ_j and $T^{j-i}\gamma_i$,
191 contains a point $\zeta_j \in Z$, or in other words, $d(\beta_j, \zeta_j) < \max(\delta, \Omega^{|j-i|}(\delta))$.

We now use uniform continuity on β_i, ζ_i to argue that $d(\beta_j, T^{j-i}\zeta_i) < \Omega^{|j-i|}(\delta)$. Applying the triangle inequality to this and the result of the previous paragraph, we get that

$$d(T^{j-i}\zeta_i, \zeta_j) < \max(\delta, \Omega^{|j-i|}(\delta)) + \Omega^{|j-i|}(\delta).$$

We can now supply $\delta = 1/2, 1/4, \dots$, and hence get a sequence of (ζ, ζ') such that $\min_{|m| \leq |u|} d(T^m \zeta, \zeta')$ converges to 0. By compactness, any limit point (ζ_*, ζ'_*) of this sequence of (ζ, ζ') lies in $Z \times Z$, is guaranteed to exist, and by continuity (of the metric d , homeomorphisms T, T^{-1} , and of the modulus of continuity Ω),

$$\min_{|m| \leq |u|} d(T^m \zeta_*, \zeta'_*) = 0,$$

192 which contradicts the independent discrete orbit condition.

193 We have thus proven that u is a recurrent factor if and only if X_u is non-empty, and
194 that if X_u is non-empty, the factor u occurs with bounded gaps once the noise is bounded
195 by some δ_u . This establishes that for all $x \in \text{Traces}_\sigma$, x is almost-periodic, and the set of
196 recurrent factors is $L_* = \{u \mid X_u \neq \{\}\}$. \blacktriangleleft

We make some observations concerning effectiveness. To that end, define $\Delta : \mathbb{N} \rightarrow \mathbb{R}$ as

$$\Delta(n) = \min_{|m| \leq n} d(T^m Z, Z),$$

197 and note that $\Delta(n) > 0$ for $n > 0$.

198 **► Lemma 3.** *Let $L_* \subseteq \Sigma^+$, and let $W \subseteq \Sigma^\omega$ be a set of almost-periodic words such that
199 for every $x \in W$, the set of recurrent factors of x is L_* . For every $u \in L_*$, there exists R_u
200 such that for every $x \in W$, eventually every factor of length R_u contains an occurrence of u .
201 Computing this R_u Turing-reduces to deciding membership in L_* .*

202 **Proof.** The existence of R_u follows almost immediately by definition. Indeed, consider
203 arbitrary $x \in W$. There exists R such that every length- R factor of x contains u . We can
204 assert $R_u \leq R$, because in particular every recurrent length- R factor will have an occurrence
205 of u . To compute R_u , we simply enumerate the elements of L_* until we find a length R such
206 that all length- R members of L_* contain an occurrence of u . It remains to observe that every
207 $x \in W$ has a suffix for which all length- R factors are recurrent. \blacktriangleleft

208 **► Theorem 4.** *Let $x \subseteq \Sigma^\omega$ be a noisy trace of a noise-robust dynamical system such that
209 L_* is recursive and Ω, Δ are computable. Let the noise function ν of x converge effectively.
210 If for each n , we can compute $x(n)$, then x is effectively almost-periodic. Thus, given such
211 $x \in \Sigma^\omega$ and an ω -regular language L , we can decide whether $x \in L$.*

212 **Proof.** We need to show how, given $u \in \Sigma^+$, we can compute R_u such that either u can
213 only occur in the length- R_u prefix of x , or u occurs in every length- R_u factor of x . One can
214 determine which of the cases holds by querying whether $u \in L_*$.

215 Suppose u is not a recurrent factor. We compute δ small enough such that for all m with
216 $|m| \leq |u|$, we have $\max(\delta, \Omega^m(\delta)) + \Omega^m(\delta) < \Delta(|u|)$. From the proof of Thm. 2, we deduce
217 that there cannot be any occurrence of u at indices where the noise is less than δ . Since the
218 noise function ν converges effectively, we can compute R_u such that for all $n \geq R_u$, we have
219 $\nu(n) < \delta$, and hence u cannot occur at index n .

220 In the case u is a recurrent factor, we can use the previous lemma to compute R'_u such
 221 that x has a suffix where all length- R'_u factors are recurrent, and contain an occurrence of u .
 222 It remains to compute the starting index R''_u of this suffix, and take $R_u = R'_u + R''_u$. To do so,
 223 we appeal to the previous case and compute a bound R''_u on the index of the last occurrence
 224 of any length- R'_u non-recurrent factor.

225 Finally, the last statement follows from the result of Semenov mentioned in the Introduction,
 226 see [8, Chap. 3] for a detailed exposition.

227 We remark that in our applications, the open subsets of the torus will be semi-algebraic.
 228 This will allow us to effectively decide (see e.g., [1, App. A]), given any u , whether the
 229 attendant open set X_u is non-empty, or in other words, whether $u \in L_\star$.

230 3 Sign Descriptions of LRS

231 Recall that a linear recurrence sequence (LRS) of *order* d over a field \mathbb{K} (we shall consider LRS
 232 over real algebraic numbers) is a sequence $(\mu_n)_{n=0}^\infty$ that satisfies the recurrence relation $\mu_{n+d} =$
 233 $a_{d-1}\mu_{n+d-1} + \dots + a_0\mu_n$, where $a_0 \neq 0$. We refer to the polynomial $X^d - a_{d-1}X^{d-1} - \dots - a_0$
 234 as the *characteristic polynomial* of the LRS, and its roots are called the characteristic
 235 roots. A characteristic root that is not repeated is called *simple*, an LRS is called simple
 236 if all characteristic roots are simple. An LRS for which there is no pair λ_i, λ_j of distinct
 237 characteristic roots such that λ_i/λ_j is a root of unity is called *non-degenerate*. It is well known
 238 that any given LRS can be mechanically decomposed as the interleaving of non-degenerate
 239 LRS (see e.g., [9]). We shall assume that the distinct characteristic roots $\lambda_1, \dots, \lambda_k$ are
 240 ordered in descending Euclidean absolute value, and shall refer to the roots with maximal
 241 absolute value as *dominant*.

It is well known that LRS admit an exponential-polynomial closed form, i.e.,

$$\mu_n = \sum_{i=1}^k \sum_{j=0}^{m_i-1} p_{ij} n^j \lambda_i^n = \sum_{i=1}^k f_i(n) \lambda_i^n.$$

242 Here, we have that m_i is the multiplicity of characteristic root λ_i , and can assume that
 243 $\sum_{i=1}^k m_i = d$ and $p_{i(m_i-1)} \neq 0$.

244 The sign description of an LRS $(\mu_n)_{n=0}^\infty$ is the word $x \in \{1, -1, 0\}^\omega$ such that $x(n) =$
 245 $\text{sign}(\mu_n)$. Before we state the main result of this section, we record a lemma (see [5, Cor. 5.5],
 246 [9, Thms. 8, 9]) that will be helpful in accounting for “degeneracies.”

247 **Lemma 5.** *Let x_0, \dots, x_{d-1} be effectively almost-periodic toric words defined by open
 248 semi-algebraic sets. The word x , defined as $x(qd+r) = x_r(q)$ is also toric, defined by open
 249 semi-algebraic sets, and effectively almost-periodic.*

250 We shall also use the following self-evident observation: if we can compute N such that
 251 $x(N, \infty)$ is effectively almost-periodic, then x is effectively almost-periodic.

252 **Theorem 6.** *Let $(\mu_n)_{n=0}^\infty$ be a real algebraic LRS that satisfies one of the following
 253 conditons:*

- 254 1. *has a single real dominant root,*
- 255 2. *has two dominant roots whose ratio is not a root of unity,*
- 256 3. *has three dominant roots which are all simple, and the ratio of the complex conjugate pair
 257 is not a root of unity,*
- 258 4. *has order at most four.*

XX:8 Model Checking for Noisy Toric Words

259 We can construct a Turing machine which witnesses that the sign description of $(\mu_n)_{n=0}^\infty$ is
 260 effectively almost-periodic. Thus, given such an LRS and an ω -regular language L , we can
 261 decide whether the sign description x is in L .

262 **Proof.** Since precise computations can be carried out on the field of real algebraic numbers,
 263 it is clear that given any n , we can always determine the n -th letter of the sign description.
 264 We shall therefore focus on showing how, given a finite word u , we can compute R_u such
 265 that u either does not occur at any index beyond R_u , or occurs in every length- R_u factor of
 266 the sign description.

267 Case (1) is trivial. If there is a single real dominant root, then the sign description is
 268 effectively eventually periodic with period at most 2.

269 We note that showing that the sign-description is effectively almost-periodic would
 270 entail solving the Skolem problem, i.e., computing the set of indices at which the LRS is 0.
 271 Fortunately, the cases of the statement are amenable to techniques used to solve the Skolem
 272 problem for recurrences in the MSTV class, named after Mignotte, Shorey, Tijdeman [13],
 273 and Vereshchagin [14], who independently showed that the Skolem problem is decidable for
 274 LRS of order at most four. The key technical lemma uses Baker's theory of linear forms in
 275 logarithms. We refer the reader to [2, Sec. 3.2], [7, Sec. 3, 4] for expository proofs of the
 276 following result, which makes the techniques of [9] effective at low orders.

► **Lemma 7.** *Let $(\mu_n)_{n=0}^\infty$ be a real algebraic LRS which has at most three dominant roots
 $\lambda_1, \dots, \lambda_r$, and satisfies the property that the ratio of any pair of distinct dominant roots is
 not a root of unity. We can compute an index N such that for all $n \geq N$,*

$$\left| \sum_{i=1}^r f_i(n) \lambda_i^n \right| > \left| \sum_{j=r+1}^k f_j(n) \lambda_j^n \right|.$$

277 The lemma has the following consequences for Cases (2) and (3).

278 ■ Any word u that contains the letter 0 cannot be a factor of the sign description beyond
 279 the index N .

280 ■ In Case (3), beyond index N , the sign description of the given LRS matches that of
 $\sum_{i=1}^3 p_{i0} \lambda_i^n$, which is in turn the same as the sign pattern of a sequence of the form
 282 $a + b \cos(n\theta + \varphi)$ or $a(-1)^n + b \cos(n\theta + \varphi)$. This computable suffix of the sign description
 283 is effectively uniformly recurrent by virtue of being a toric word⁴, see, e.g., [1, proof of
 284 Thm. 3.1], [9, Thm. 8, Thm. 9].

The eventual effective uniform recurrence settles Case (3). We now turn to Case (2), which is tackled by generalising the arguments in [5, Sec. 6.4]. Beyond index N , the sign description of the LRS is the same as that of the sequence

$$\sum_{j=0}^{m_i-1} a_j n^j \cos(n\theta + \varphi_j),$$

285 none of whose terms are 0. Intuitively, the sign of each factor is driven by the term
 286 $a_{m_i-1} n^{m_i-1} \cos(n\theta + \varphi_{m_i-1})$, and can be the opposite only if the cosine factor is less than

⁴ The former is obviously obtained as a coding of a rotation on a 1-torus, the latter is the interleaving of two such codings, which is still toric by Lem. 5. Effectiveness follows because all computations to determine whether an open interval corresponding to a putative factor is non-empty involve algebraic numbers and semialgebraic sets.

287 A/n for some effective A . More formally, the sign description of the above sequence is a
 288 noisy trace of the noise-robust dynamical system defined by an irrational rotation on the
 289 1-torus partitioned into semicircular arcs. We immediately obtain from Thm. 2 that the
 290 sign description is almost-periodic. Furthermore, L_* is recursive by semi-algebraic geometry,
 291 the noise function converges effectively, the modulus of continuity $\Omega(\delta)$ is simply δ , and
 292 $\Delta(n) = \min_{d, |m| \leq n} |m\theta - d\pi|$ can be effectively under-approximated. We obtain from Thm. 4
 293 that the noisy trace, i.e., the sign description, is effectively almost-periodic.

294 Only Case (4) remains. Three subcases arise: (i) All four roots are distinct and dominant;
 295 (ii) There are fewer than four dominant roots, and there is no pair of distinct dominant roots
 296 whose ratio is a root of unity; (iii) There are two or three dominant roots, and the ratio
 297 between a distinct pair is a root of unity. Of these, subcase (ii) has been subsumed by prior
 298 discussions.

299 In subcase (i), we have that the LRS is simple, has roots $\{\pm\rho, \rho e^{\pm i\theta}\}$ or $\{\rho e^{\pm i\theta_1}, \rho e^{\pm i\theta_2}\}$,
 300 and hence its sign pattern has a suffix that is effectively uniformly recurrent by virtue of
 301 being toric [9, Thm. 11] (more precisely, the suffix of the sign pattern is the interleaving
 302 of effectively almost-periodic toric words, and will inherit the property by Lem. 5). The
 303 starting index of this suffix can be computed using Lem. 7 or by directly solving the Skolem
 304 problem for the ensuing low-order non-degenerate LRS in the MSTV class. This identifies
 305 when all of the interleaved non-degenerate LRS are guaranteed to be non-zero.

306 In subcase (iii), if there are three dominant roots, the LRS is of the form $(\pm\rho)^n +$
 307 $\rho^n \cos(n\pi/d + \varphi) + (\pm\gamma)^n$, where $0 < \gamma < \rho$. It is easy to see that the sign description will
 308 be effectively ultimately periodic. If there are two dominant roots, it is easy to see that the
 309 sign pattern is effectively ultimately periodic, except if the remaining non-dominant roots
 310 are complex conjugates and not roots of unity, and the contribution from dominant terms is
 311 periodically 0. We can still apply Lem. 7 to identify when the non-dominant contribution
 312 will persistently be non-zero, and then use Lem. 5 to deduce that the suffix of overall sign
 313 description, which is the interleaving of effectively almost-periodic, toric sign descriptions of
 314 low-order non-degenerate LRS, is itself toric and effectively almost-periodic.

315 To end the proof, the last statement follows from Semenov's theorem, as in Thm. 4. \blacktriangleleft

316 There are known instances of order-five LRS where the Skolem problem is unresolved,
 317 and instances of LRS with three dominant roots whose sign description is provably not
 318 almost-periodic [1, Sec. 4], and instances of LRS with three dominant roots for which the
 319 positivity and ultimate positivity problems (respectively, does the sign description contain
 320 -1 , does the sign description contain -1 only finitely many times) are unresolved [12, Sec. 5].

321 4 Prefix-Independent Verification

322 **► Definition 8.** An ω -regular language $L \subseteq \Sigma^\omega$ is said to be prefix-independent if for all
 323 $u, v \in \Sigma^*$ and $x \in \Sigma^\omega$, $ux \in L$ if and only if $vx \in L$.

324 In other words, if x' is obtained from x by making finitely many edits, then either
 325 $x, x' \in L$ or $x, x' \notin L$. We remark that any non-empty prefix-independent language is a
 326 liveness property, but the liveness property $(\Sigma\Sigma)^*(a\Sigma)^\omega$ is not a prefix independent language.

327 **► Proposition 9.** An ω -regular language $L \subseteq \Sigma^\omega$ is prefix-independent if and only if
 328 $L = \bigcup_{i=1}^d \Sigma^* V_i^\omega$, where V_1, \dots, V_d are regular languages not containing the empty word.

329 **Proof.** We assume without loss of generality that L is non-empty.

330 Suppose $L = \bigcup_{i=1}^d \Sigma^* V_i^\omega$. Suppose, for the sake of contradiction, there exists a pair x, x'
 331 of words a finite edit-distance apart such that $x \in \Sigma^* V_i^\omega \subseteq L$ but $x' \notin L$. We have that

XX:10 Model Checking for Noisy Toric Words

332 $x = uv_1v_2\dots$, where for each $n \geq 1$, $v_n \in V_i$. Since x' is only a finite edit-distance away from
 333 x , it can be factorised as $u'v_mv_{m+1}\dots$, which witnesses that $x' \in \Sigma^*V_i^\omega$, a contradiction.
 334 Thus $L = \bigcup_{i=1}^d \Sigma^*V_i^\omega$ implies that L is prefix-independent.

335 Conversely, suppose $L = \bigcup_{i=1}^d U_iV_i^\omega$ is prefix-independent. Clearly, $L \subseteq \bigcup_{i=1}^d \Sigma^*V_i^\omega$.
 336 We shall prove that the reverse inclusion also holds. To that end, consider $x \in \Sigma^*V_i^\omega \subseteq$
 337 $\bigcup_{i=1}^d \Sigma^*V_i^\omega$. This word is clearly a finite edit-distance away from a word $x' \in U_iV_i^\omega \subseteq L$.
 338 Since L is prefix-independent, this implies $x \in L$, and hence $L = \bigcup_{i=1}^d \Sigma^*V_i^\omega$. \blacktriangleleft

339 The rest of this section is organised as follows. We first formalise the intuition that
 340 prefix-independent ω -regular languages comprise either “very dense” or “very sparse” subsets
 341 of Σ^ω . This intuition is further reflected in the main result of the section: almost-periodic
 342 words with the same set of recurrent factors are indistinguishable to a prefix-independent
 343 ω -regular language.

344 We say a word $x \in \Sigma^\omega$ is *disjunctive* if the set of its recurrent factors is Σ^+ . Given an
 345 alphabet Σ , we use D_Σ to denote the set of disjunctive words over it.

346 \blacktriangleright **Proposition 10.** *Let $L \subseteq \Sigma^\omega$ be a prefix-independent ω -regular language. We have that
 347 either $D_\Sigma \subseteq L$ or $D_\Sigma \cap L = \{\}$. Furthermore, we can determine which is the case.*

348 **Proof.** Consider a deterministic parity automaton \mathcal{A} recognising L , and in particular, the
 349 graph induced by it. We can prove [4, Thm. 4.16] (detailed proof in [6, App. A.4]) that in
 350 the run on any disjunctive word x , the set of states visited infinitely often is precisely a
 351 bottom strongly connected component. To determine whether the set of disjunctive words is
 352 included in, or excluded from L , we check whether the highest colour in a bottom strongly
 353 component is even or odd. Note that the parity must be consistent across different bottom
 354 strongly components, otherwise the prefix-independence of L would be contradicted. (One
 355 can make finitely many edits to a disjunctive word so that the run settles in any chosen
 356 bottom strongly connected component; these edits, however, alter neither disjunctivity nor
 357 membership in the language.) \blacktriangleleft

358 In other words, a prefix-independent ω -regular language either contains almost all words,
 359 or excludes almost all words. Here, the quantifier “almost all” is with respect to the uniform
 360 Borel probability measure on Σ^ω , which assigns the cylinder $\{ux \mid x \in \Sigma^\omega\}$ measure $1/|\Sigma|^{|u|}$.

361 The main result of this section is a slightly generalised reformulation of [1, Sec. 5], with
 362 simplified techniques. (We leave gauging the extent of simplification to the discernment of
 363 the reader.) We introduce an auxiliary technical notion before we prove the theorem.

364 In order to aggregate information about automaton runs, we define a *journey* to be a
 365 tuple in $Q \times Q \times \mathbb{N}$, which describes a finite run $q_0q_1\dots q_l$ on a word $u_0\dots u_{l-1}$ by recording
 366 the starting state q_0 , the ending state q_l , and the maximum colour among those of q_1, \dots, q_l .
 367 Clearly, if a word u can make the journey (q_1, q_2, c_1) and a word v can make the journey
 368 (q_2, q_3, c_2) , then the word uv can make the journey $(q_1, q_3, \max(c_1, c_2))$. For a factorisation
 369 into finite words $u_0u_1\dots$ of an infinite word x , if each u_i makes can make the journey
 370 (q_i, q_{i+1}, c_i) , then the automaton accepts x if and only if $\limsup_{i \in \mathbb{N}} c_i$ is even.

371 \blacktriangleright **Theorem 11.** *Let $W \subseteq \Sigma^\omega$ be a set of almost-periodic words, and let $L_\star \subseteq \Sigma^*$ be such that
 372 for all $x \in W$, the set of recurrent factors of x is L_\star . Let $L \subseteq \Sigma^\omega$ be a prefix-independent
 373 ω -regular language. We have that $W \subseteq L$ or $W \cap L = \{\}$. Furthermore, given an oracle for
 374 membership in L_\star , we can decide which of the above two cases holds.*

375 **Proof.** We will show that for any $x \in W$, we can decide whether $x \in L$ purely with oracle
 376 queries to L_\star . Throughout this proof, we assume that L is recognised by a deterministic
 377 parity automaton $\mathcal{A} = (Q, \Sigma, q_{\text{init}}, \Delta, \text{col})$, and all states in \mathcal{A} are reachable from q_{init} .

378 Observe, using Lem. 3, that given $u \in L_*$, any arbitrary $x \in W$ can be written as
 379 $wuv_1uv_2u\cdots$, where $|v_i| < R_u$ and $uv_iu \in L_*$ for all $i \geq 1$. Indeed, we choose w long enough
 380 so that in the suffix obtained by deleting it, all factors of length at most $2|u| + R_u$ are
 381 recurrent, and all factors of length R_u contain an occurrence of u . We remark that R_u is
 382 effective, but w need not be effective for the proof that follows.

383 We define the set $\text{window}_u = \{v \mid |v| < R_u \wedge uvu \in L_*\}$ and observe that it is finite and
 384 computable with oracle access to L_* . In other words, $W \subseteq \Sigma^*(u \cdot \text{window}_u)^\omega$. We will use
 385 this pattern to determine the highest colour seen infinitely often in a run of \mathcal{A} .

386 We say that a factor $u \in L_*$ is *saturated* with respect to \mathcal{A} if for all $q \in Q$ and all
 387 $v \in \text{window}_u$, if u makes the journey (q, q', c) and uvu makes the journey (q, q'', c') , then
 388 $c = c'$. In other words, the highest colour seen while reading uvu starting from any q must
 389 have been already seen while reading the prefix u . Saturated factors help us determine
 390 acceptance as follows. Let $x = wuv_1uv_2\cdots$, and let the corresponding sequence of journeys be
 391 $(q_0, q_1, c_0), (q_1, q_2, c_1), \dots$. By saturation, for all i , we get that $c_{2i+1} \geq c_{2i+2}$ and $c_{2i+1} \geq c_{2i+3}$.
 392 We now use prefix-independence.

393 Let (q_*, q', c_*) be a journey u can undertake such that for all other journeys (q, q'', c) of u ,
 394 $c \geq c_*$. Let w' be a word that takes q_{init} to q_* . By prefix-independence, we have that $x \in L$ if
 395 and only if $x' = w'uv_1uv_2\cdots \in L$. The new sequence of journeys is $(q'_0, q'_1, c), (q'_1, q'_2, c'_1), \dots$,
 396 where $q'_1 = q_*$ and $c'_1 = c_*$. The same saturation properties hold: $c'_{2i+1} \geq c'_{2i+2}$ and
 397 $c'_{2i+1} \geq c'_{2i+3}$. However, $c'_{2i+1} \geq c_*$, and $c'_1 = c_*$. Hence, $\limsup_i c'_i = c_*$.

398 We have just proven that an arbitrary $x \in W$ is accepted by \mathcal{A} if and only if the colour
 399 c_* effectively defined by a saturated factor $u \in L_*$ is even. It remains to prove that saturated
 400 factors exist, and can be computed with oracle access to L_* .

401 We shall do so with a fix-point algorithm that returns a saturated factor. We associate
 402 with each word u a function $f_u : Q \rightarrow \mathbb{N}$, defined such that u makes the journey $(q, q', f_u(q))$
 403 for some q' . We define a quasi-ordering on finite words and say that $u \preceq v$ if $f_u(q) \leq f_v(q)$
 404 for all q . Clearly, if u is a prefix of v then $u \preceq v$. In particular, for all $v \in \text{window}_u$, $u \preceq uvu$,
 405 but for a saturated word u , $uvu \preceq u$ for all $v \in \text{window}_u$. It is also easy to observe that this
 406 quasi-ordering has finitely many (at most $|Q|^2$) equivalence classes, and hence cannot admit
 407 a strictly increasing chain of more than $|Q|^2$ words. Our algorithm thus starts with $u \in L_*$.
 408 In each iteration, it computes window_u with queries to L_* , and checks if u is saturated. If
 409 yes, it returns u ; if not, it iterates with $uvu, v \in \text{window}_u$ that is strictly above u in the
 410 quasi-ordering. By the argument above, the algorithm runs for at most $|Q|^2$ iterations. \blacktriangleleft

411 Applying Thms. 2 and 11 gives the following result.

412 **Corollary 12.** *Let $(X, T, \langle S_1, \dots, S_k, Z \rangle, \sigma)$ be a noise-robust dynamical system, and let
 413 $L \subset \Sigma^\omega$ be a prefix-independent ω -regular language. We have that either $\text{Traces}_\sigma \subseteq L$ or
 414 $\text{Traces}_\sigma \cap L = \{\}$. Furthermore, if L_* is recursive, the language of recurrent factors of words
 415 in Traces_σ , then we can decide which of the above two cases holds.*

416 5 The Sturmian Case

417 For Sturmian systems, the space X is the 1-torus (identified by the interval $[0, 1]$), and the
 418 dynamical update T is an irrational rotation γ , i.e., α is mapped to $\alpha + \gamma \bmod 1$. Without
 419 loss of generality, we assume $\gamma < 1/2$. The partitions are $[0, \gamma)$ and $[\gamma, 1)$, and the coding
 420 maps these to 1 and 0 respectively. We see that $Z = \{0, \gamma\}$, and $T \circ 0 = \gamma$. Hence, Sturmian
 421 systems are not noise-robust by our definition. More specifically, we can prove that if $u \in L_*$,
 422 the set of words for which X_u is non-empty, then u is a recurrent factor of all (noisy) traces.

XX:12 Model Checking for Noisy Toric Words

423 However, if $u \notin L_*$, the word u can still be a factor of some noisy traces, and in fact these
 424 noisy traces can fail to be almost-periodic. Indeed, the independent discrete orbit property
 425 needed to preclude this failure does not hold.

426 In the absence of noise, it is known that Sturmian words are uniformly recurrent and
 427 have minimal factor complexity: there are exactly $n + 1$ factors of length n . In particular,
 428 the length-2 factors are 00, 01, 10. We shall show that if we allow noise, regardless of how
 429 rapidly the noise converges to 0, there are starting points α such that the noisy trace has 11
 430 as a recurrent factor, and moreover the gaps between the occurrences of 11 are unbounded.

Consider a noise function ν such that for all n , $\nu(n) > 0$. Observe that 11 can only occur
 as a factor if we perform a perturbation when

$$\alpha + n\gamma \in (1 - \nu(n), 1) \cup [0, \nu(n + 1)),$$

or by an appropriate shifting of coordinates,

$$\alpha \in (-n\gamma - \nu(n), -n\gamma + \nu(n + 1)).$$

To define where to perform perturbations, we shall now construct a sequence of indices
 n_0, n_1, \dots having unbounded gaps (e.g., by choosing $n_{i+1} > n_i + i + 1$), and a sequence
 $A_0 \supseteq A_1 \supseteq \dots$ of non-empty closed intervals of the 1-torus, such that

$$A_i \subseteq (-n_i\gamma - \nu(n_i), -n_i\gamma + \nu(n_i + 1)).$$

By the nested intervals theorem, we would then have that the intersection of these
 intervals contains a point α_* , and for all n_i ,

$$\alpha_* \in (-n_i\gamma - \nu(n_i), -n_i\gamma + \nu(n_i + 1)).$$

431 This would imply that α_* has a noisy trace x , obtained by performing perturbations at each
 432 of the n_i 's (or $(n_i + 1)$'s, as required), such that x has 11 as a recurrent factor, and the gaps
 433 between consecutive occurrences of 11 are unbounded.

We now present the inductive construction of n_0, n_1, \dots , and A_0, A_1, \dots . We can choose
 n_0 arbitrarily, and take A_0 to be a closed interval,

$$A_0 \subseteq (-n_0\gamma - \nu(n_0), -n_0\gamma + \nu(n_0 + 1)).$$

For the inductive step, assume that n_i, A_i have been constructed. Let $B_i \subseteq A_i$ be an
 open interval. By the (Kronecker/Weyl) equidistribution theorem, we know that there are
 infinitely many n such that $-n\gamma \in B_i$. We choose n_{i+1} such that $n_{i+1} - n_i > i + 1$, and
 choose A_{i+1} to be a closed interval in the non-empty intersection of two open intervals,

$$A_{i+1} \subseteq B_i \cap (-n_i\gamma - \nu(n_i), -n_i\gamma + \nu(n_i + 1)).$$

434 The infinite intersection of the A_i 's is thus $\{\alpha_*\}$, where $\text{traces}_\sigma(\alpha_*)$ contains a word that is
 435 not almost-periodic, and whose set of recurrent factors contains 11, which is not a factor of
 436 any trace with noise 0.

437 Interestingly, however, if we were to change the Sturmian system by making the rotation
 438 $m\gamma$ instead of γ (where m is an integer, $|m| > 1$), then the new dynamical system would
 439 indeed be noise-robust. This shows that a noisy Sturmian word, while itself not almost-
 440 periodic, is an interleaving of almost-periodic noisy toric words. This is an analogue of [5,
 441 Cor. 6.9]

442 The same arguments as above would allow us to encode the computations of Diophantine
 443 approximation constants (e.g., $\inf n[n\gamma + \alpha]$, $\liminf n[n\gamma + \alpha]$, where even algorithmically
 444 determining whether these quantities are 0 remains an open number-theoretic problem) using
 445 queries such as, “given α and noise ν lower-bounded by $1/n$, does $\text{traces}_\sigma(\alpha, \nu)$ contain a
 446 trace x in which the factor 11 occurs (respectively, occurs infinitely often)?”

447

 References

448 1 Shaull Almagor, Toghrul Karimov, Edon Kelmendi, Joël Ouaknine, and James Worrell.
 449 Deciding omega-regular properties on linear recurrence sequences. 5(POPL), January 2021.
 450 [doi:10.1145/3434329](https://doi.org/10.1145/3434329).

451 2 Piotr Bacik. Completing the picture for the skolem problem on order-4 linear recurrence
 452 sequences. *TheoretCS*, Volume 4, Dec 2025. URL: <https://theoretics.episciences.org/14219>, [doi:10.46298/theoretics.25.28](https://doi.org/10.46298/theoretics.25.28).

453 3 Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël
 454 Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis
 455 for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In
 456 Bartek Klin, Sławomir Lasota, and Anca Muscholl, editors, *33rd International Conference on*
 457 *Concurrency Theory (CONCUR 2022)*, volume 243 of *Leibniz International Proceedings in*
 458 *Informatics (LIPIcs)*, pages 10:1–10:16, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
 459 Zentrum für Informatik. URL: <https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10>, [doi:10.4230/LIPIcs.CONCUR.2022.10](https://doi.org/10.4230/LIPIcs.CONCUR.2022.10).

460 4 Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joël Ouaknine, Mihir Vahanwala, and
 461 James Worrell. On the Decidability of Monadic Second-Order Logic with Arithmetic Predicates.
 462 In *Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science*,
 463 LICS ’24, New York, NY, USA, 2024. Association for Computing Machinery. [doi:10.1145/3661814.3662119](https://doi.org/10.1145/3661814.3662119).

464 5 Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joël Ouaknine, Mihir Vahanwala, and
 465 James Worrell. The monadic theory of toric words. *Theoretical Computer Science*, 1025:114959,
 466 2025.

467 6 Valérie Berthé, Toghrul Karimov, Joris Nieuwveld, Joël Ouaknine, Mihir Vahanwala, and
 468 James Worrell. On the decidability of monadic second-order logic with arithmetic predicates,
 469 2024. URL: <https://arxiv.org/abs/2405.07953>, [arXiv:2405.07953](https://arxiv.org/abs/2405.07953).

470 7 Yuri Bilu. Skolem problem for linear recurrence sequences with 4 dominant roots (after mignotte,
 471 shorey, tijdeman, vereshchagin and bacik), 2025. URL: <https://arxiv.org/abs/2501.16290>,
 472 [arXiv:2501.16290](https://arxiv.org/abs/2501.16290).

473 8 Toghrul Karimov. Algorithmic verification of linear dynamical systems, 2023. [doi:http://dx.doi.org/10.22028/D291-41630](http://dx.doi.org/10.22028/D291-41630).

474 9 Toghrul Karimov, Edon Kelmendi, Joris Nieuwveld, Joël Ouaknine, and James Worrell. The
 475 power of positivity. In *2023 38th Annual ACM/IEEE Symposium on Logic in Computer*
 476 *Science (LICS)*, pages 1–11, 2023. [doi:10.1109/LICS56636.2023.10175758](https://doi.org/10.1109/LICS56636.2023.10175758).

477 10 Michael Keane. Interval exchange transformations. *Mathematische Zeitschrift*, 141(1):25–31,
 478 1975. [doi:10.1007/BF01236981](https://doi.org/10.1007/BF01236981).

479 11 A. Muchnik, A. Semenov, and M. Ushakov. Almost periodic sequences. *Theoretical Computer*
 480 *Science*, 304(1):1–33, 2003. [doi:10.1016/S0304-3975\(02\)00847-2](https://doi.org/10.1016/S0304-3975(02)00847-2).

481 12 Joël Ouaknine and James Worrell. Positivity problems for low-order linear recurrence sequences.
 482 In *Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms*,
 483 SODA ’14, page 366–379, USA, 2014. Society for Industrial and Applied Mathematics.

484 13 R. Tijdeman, M. Mignotte, and T.N. Shorey. The distance between terms of an algebraic
 485 recurrence sequence. *Journal für die reine und angewandte Mathematik*, 349:63–76, 1984.
 486 URL: <http://eudml.org/doc/152622>.

487 14 N. K. Vereshchagin. Occurrence of zero in a linear recursive sequence. *Mathematical Notes of*
 488 *the Academy of Sciences of the USSR*, 38:609–615, 1985. [doi:10.1007/BF01156238](https://doi.org/10.1007/BF01156238).

489 15 Peter Walters. *An introduction to ergodic theory*, volume 79. Springer Science & Business
 490 Media, 2000.

491 16 Hermann Weyl. Über die Gleichverteilung von Zahlen mod. Eins. *Mathematische Annalen*,
 492 77(3):313–352, 1916.