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Abstract4

Toric words have recently gained attention as a means to model the behaviour of dynamical systems5

such as linear loops. This work is concerned with describing when the toric model is precise enough6

to decide whether the trace of a system is contained in an ω-regular language. Our contributions are7

threefold. (i) We use topological means to generalise a class of toric words by defining noise-robust8

dynamical systems and their sets of noisy traces. We prove that all noisy traces of a system are9

almost-periodic, and have the same set of recurrent factors. (ii) We apply the abstract techniques10

above to concrete sequences obtained as sign descriptions of real algebraic linear recurrence sequences11

(LRS), and show that the language-membership problem for sign descriptions of LRS with few12

dominant roots is decidable. (iii) We show that noisy traces of noise-robust dynamical systems are13

indistinguishable to a prefix-independent ω-regular language, and inclusion is decidable provided14

the common language of their recurrent factors is recursive. We incidentally obtain properties of15

prefix-independent ω-regular languages that may be of independent interest.16
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1 Introduction21

A toric word x ∈ Σω is obtained by considering a collection {S1, . . . , Sk} of finitely many22

disjoint open subsets of a torus X, a starting point α ∈ X, and a rotation γ such that for23

every n, the point α + nγ is contained in (the closure of) one of the open sets above. A24

coding σ then associates each open set with a letter in Σ, and we define x(n) = σ(Sn) where25

α + nγ ∈ cl(Sn). Toric words are extensively studied symbolic dynamical systems (see [15,26

Chap. 1] and [16]). A prime example is the class of Sturmian words, where X is the unit27

circle identified by the interval [0, 1), and is partitioned as [0, γ), [γ, 1).28

More recently, toric words have been identified to accurately capture the behaviour of29

linear loops in program verification [8]. They also play a central role in the decidability of30

the monadic second-order (MSO) theory of the structure ⟨N; <, aN
1 , . . . , aN

k ⟩ as established by31

[4]. We refer the reader to [5] for a survey. Such works hinge on the fact that toric words,32

and more generally, traces of minimal compact dynamical systems, enjoy the combinatorial33

property of uniform recurrence, which is a special case of almost periodicity.34

These properties are defined and leveraged as follows. We say that a finite word u is a35

factor of an infinite word x if u occurs in x; if u occurs infinitely often, we say that it is a36

recurrent factor of x. A word x is recurrent when every factor u is recurrent; if moreover37

for every u there is a bound on the gaps between consecutive occurrences of u, then x is38

uniformly recurrent. A word x is almost-periodic if for every recurrent factor u, there is39

a bound on the gaps between its consecutive occurrences. We have that x is effectively40

almost-periodic if, furthermore: (i) given any index n, we can compute x(n); (ii) given any41

finite word u, we can compute Ru such that either all occurrences of u are in a prefix of42

length Ru, or every factor of length Ru contains an occurrence of u. A classic result of43

Semënov concerning runs of deterministic automata on almost-periodic words (see e.g., [11])44

implies that given an ω-regular language L and an effectively almost-periodic word x, one45

can decide whether x ∈ L.46

Indeed, throughout this paper, we characterise ω-regular languages as those recognised47

by deterministic parity automata A = (Q, Σ, qinit, τ, col), where Q is a set of states, Σ is the48

alphabet, qinit is the initial state, τ : Q × Σ → Q is the transition function, and col : Q → N49

is the colouring function (note that its image is finite). The automaton A accepts a word x50

if the maximum colour visited infinitely often in the run is even.51

The motivation of this work lies in the observation that the model obtained by using tori
to describe dynamical systems, while accurate, may still be imprecise. As an example [5],
consider the sequence x over the alphabet {−1, 0, 1} obtained by recording the sign of the
expression

sin(φ + nθ) + r(n),

where θ/π is irrational, and r(n) converges to 0. Such an infinite word arises as the sign52

pattern of a linear recurrence sequence (LRS, see Sec. 3) with two dominant characteristic53

roots. Intuitively, as n grows larger, the sign pattern x should bear increasing resemblance54

to the toric word y obtained by taking X to be the unit circle, α to be starting point with55

angular coordinate φ, the update γ to be rotation by angle θ, and the partition of X to be56

the union of open semicircular arcs and their endpoints. However, the indices at which x and57

y disagree can still constitute an infinite set, and the sign pattern x can in fact be provably58

non-toric [5, Cor. 6.9].59

The question that arises is: under what circumstances can the language-membership60

problem for the original trace be solved using the model torus?61

In this example, we can in fact prove that x will be almost periodic, and moreover the62
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set of recurrent factors of x will be the same as that of y. The dynamical system induced by63

the orbit an irrational rotation on a unit circle partitioned into semicircular arcs is robust64

in the sense that varying the starting point and adding diminishing noise do not alter the65

almost-periodic nature of the trace, nor change the set of its recurrent factors.66

The first contribution of this paper is a generalisation of the above phenomenon. We67

shall use topological means to define a class of noise-robust dynamical systems and their sets68

of noisy traces (Def. 1). We then prove in Thm. 2 that all noisy traces of a robust system69

are almost-periodic and have the same set of recurrent factors. Thm. 4 then delineates when70

noisy traces are effectively almost-periodic, and thus gives the ingredients to address our71

motivating question above.72

Our second contribution is an application to LRS: we combine our results (Thm. 4) with73

the techniques of [9]. In Thm. 6, we show that the sign pattern x of a real algebraic LRS is74

effectively almost periodic provided it satisfies one among a handful of spectral conditions.75

By a direct application of Semënov’s result, given such an LRS and an ω-regular language L,76

we can decide whether x ∈ L. In particular, Case (2) of Thm. 6 covers our running example.77

We note that this case also applies to non-simple LRS; prior work in this setting [1, 9] is78

restricted to simple LRS where it can be shown by number-theoretic means that the sign79

pattern differs from the toric word in only finitely many positions.80

Our third contribution is the result that noisy traces of a noise-robust dynamical system81

are indistinguishable to any prefix-independent ω-regular language, and inclusion is decidable82

provided the common language L⋆ of recurrent factors is recursive (Cor. 12). A prefix-83

independent language [1, 3] L ⊆ Σω has the following defining property. Let x, x′ be words84

such that x′ can be obtained from x by making only finitely many edits. We have that85

x ∈ L if and only if x′ ∈ L. Non-empty prefix-independent languages thus comprise a special86

class of liveness properties; we also give properties of prefix-independent ω-regular languages87

(Props. 9, 10) that may be of independent interest. E.g., the uniform Borel probability88

measure assigns a prefix-independent language measure either 0 or 1.89

Finally, we shall observe that Sturmian words do not satisfy our robustness criteria. We90

shall demonstrate noisy traces of Sturmian dynamical systems that are not almost-periodic,91

and also show that querying such traces against prefix-independent ω-regular languages92

subsume Diophantine-hard problems.93

2 Noise-Robust Dynamical Systems94

In this section, we compile a set of properties that imply a dynamical system (X, T : X → X)95

is robust. As outlined in the introduction, we seek to generalise the phenomenon observed96

for the system defined by an irrational rotation on the 1-torus partitioned into semicircular97

arcs, and the reader may use this as a running example to intuit the properties we impose98

and the conclusions we draw.99

Throughout this paper, we shall assume that X is a compact metric space with bounded100

metric d such that every open ball B ⊆ X is connected. We shall assume that the dynamical101

update T : X → X is a homeomorphism, and in particular, is bijective. This has the following102

consequences.103

1. Both T and T −1 are homeomorphisms, and hence for every open set S, the image TS104

and pre-image T −1S are open sets.105

2. Both T and T −1 are uniformly continuous because X is compact. In particular, we can106

define a modulus of continuity, i.e., a non-decreasing function Ω : R≥0 → R≥0, such that107

for all α, α′ ∈ X we have d(Tα, Tα′) < Ω(d(α, α′)), d(T −1α, T −1α′) < Ω(d(α, α′)), the108
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function Ω is continuous at 0, and Ω(0) = 0. 1
109

Our final requirement on the dynamics is that that the dynamical system (X, T ) be110

minimal, i.e., for all α ∈ X the orbit {T nα : n ∈ N} is dense in X.111

2.1 Partitions for the coding112

Having set up the dynamics, we turn to the requirements on how the coding of an orbit will113

be obtained. We partition X into finitely many disjoint open sets S1, . . . , Sk, and a closed set114

Z such that
⋃k

i=1 Si is dense in X. Observe that Z is compact. We impose the independent115

discrete orbit condition: for all ζ ∈ Z, and all n ≥ 1, we must have that T nζ /∈ Z. This116

condition is technically helpful, and is reminiscent of its counterpart which is now a staple117

working assumption in the study of interval exchange transformations [10].118

A coding σ surjectively maps X to a finite alphabet Σ in an “almost continuous way”:119

we have that σ is constant on each of the open sets S1, . . . , Sk, and that if σ(ζ) = b for some120

ζ ∈ Z, then for every δ > 0, there exists α /∈ Z such that d(α, ζ) < δ and σ(α) = b.121

We model noise as follows. Let N = {ν : N → R≥0 | limn→∞ ν(n) = 0} be the set of122

noise functions. We say that the noise function ν converges effectively if for every δ we can123

compute N such that for all n ≥ N we have ν(n) < δ. The function tracesσ : X × N → 2Σω

124

maps a starting point α and noise function ν to the set of infinite words125

tracesσ(α, ν) = {x ∈ Σω | ∀n.∃β. d(β, T nα) < ν(n) ∧ σ(β) = x(n)}. (1)126

In other words, a noisy trace may code a point β in the ν(n)-ball around T nα instead of127

T nα itself. By our requirements on the coding σ, we can assume without losing generality128

that β /∈ Z. Finally, we define129

Tracesσ =
⋃

α∈X,ν∈N
tracesσ(α, ν). (2)130

We summarise our conditions in the following definition.131

▶ Definition 1. A dynamical system (X, T, ⟨S1, . . . , Sk, Z⟩, σ), where X is partitioned into132

S1, . . . , Sk, Z, and σ : X → Σ is a coding, is said to be noise-robust if:133

1. The space X is compact and admits a metric d, and moreover, every open ball B ⊆ X is134

connected.135

2. The update T : X → X is a homeomorphism, admits a modulus of continuity Ω, and136

induces a minimal dynamical system on X, i.e., for all α ∈ X, the orbit {T nα | n ∈ N}137

is dense in X.138

3. The partitions S1, . . . , Sk are disjoint open sets, and their union is dense in X.139

4. For all ζ ∈ Z, and all n ≥ 1, we have T nζ /∈ Z.140

It is straightforward to check that our running example of an irrational rotation on141

the 1-torus partitioned into open semicircular arcs and their endpoints meets all the four142

conditions. On the other hand, toric systems defining Sturmian words satisfy all but the143

fourth condition: the distance between the endpoints of the intervals is the same as the angle144

of rotation.145

1 For any δ ≥ 0, the set Bδ = {(α, α′) ∈ X × X : d(α, α′) ≤ δ} is closed in the compact X × X, and hence
compact. Take Ω(δ) = 2 · max(α,α′)∈Bδ

max(d(T α, T α′), d(T −1α, T −1α′)).
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2.2 Noise Robustness146

▶ Theorem 2. Let (X, T, ⟨S1, . . . , Sk, Z⟩, σ) be a noise-robust dynamical system. We have147

that every x ∈ Tracesσ is almost-periodic. Furthermore, there exists L⋆ ⊆ Σ+ such that for148

every x ∈ Tracesσ, the set of recurrent factors of x is L⋆.149

Proof. We shall associate each word u ∈ Σ∗ with an open set Xu ⊆ X. This assignment will150

have the property that if the orbit falls in Xu, the next |u| letters of the coding will be an151

occurrence of u provided there is no noise.152

We assign Xε = X for the empty word, and Xbu =
(⋃

i:σ(Si)=b Si

)
∩ T −1Xu. Note that153

here we use the fact that T −1 is a homeomorphism that maps open sets to open sets. We154

claim that L⋆ = {u ∈ Σ+ | Xu ̸= {}}.155

We shall first prove that if Xu is non-empty, then u is a recurrent factor of all x ∈ Tracesσ,156

and furthermore, there is a bound Ru such that for all x ∈ Tracesσ, the gaps between157

consecutive occurrences are eventually bounded by Ru. Since Xu is an open set, we can158

choose a small enough δ and construct a non-empty open set Yu ⊆ Xu such that for all159

α ∈ Yu, the δ-ball around α is contained in Xu.2 We see that if Yu is visited when the noise160

is less than δ, then it will mark an occurrence of u. Since the noise converges to 0, it would161

suffice to prove that the gaps between visits to Yu are bounded.162

Since the dynamical system is minimal, we have that
⋃∞

n=0 T −nYu = X, i.e., the orbit of163

every point in X eventually visits Yu. Since Yu is open and T −1 is a homeomorphism, we get164

that (T −nYu)∞
n=0 is an open cover of X, which, due to compactness, admits a finite subcover165

(T −nYu)R
n=0. Thus, every point in X is either in Yu or will visit Yu in at most R steps under166

T . This proves that u occurs infinitely often in any noisy trace x, and once the noise is167

bounded by δ, the gaps between occurrences of u in the trace are bounded by Ru = R.168

We now prove the converse, i.e., if Xu is empty (which can happen only if the length169

|u| > 1), then u can occur only finitely often in any noisy trace. We will do so by contradiction:170

we will show that if a noisy trace contains infinitely many occurrences of u, then d(T mZ, Z) = 0171

for some m with |m| ≤ |u|, which would contradict the independent discrete orbit condition.172

Given δ, consider a noisy trace x ∈ tracesσ(α, ν) such that x(n) · · · x(n + l − 1) is an173

occurrence of u at an index where the noise is guaranteed to be less than δ, i.e., ν(n + j) < δ174

for all j ≥ 0. Let β0, . . . , βl−1 denote T nα, . . . , T n+l−1α, and let γ0, . . . , γl−1 denote the175

corresponding perturbed versions. Recall we may assume without loss of generality that176

γ0, . . . , γl−1 /∈ Z. We make the following observations.177

The points γ0, . . . , γl−1 are all correctly placed, i.e., each γi falls in an open set Si that is178

coded with the letter u(i).179

There does not exist any point β such that β, . . . T l−1β are all correctly placed, because180

the set Xu is empty.181

In particular, there exists an i such that βi is incorrectly placed in some S′, while γi, which182

is in the δ-ball around it, is correctly placed in some S ≠ S′. Since the δ-ball is connected183

(by property (1) of a robust system), it cannot be the union of disjoint open sets3, and must184

contain some ζi ∈ Z, i.e., d(βi, ζi) < δ.185

Now, consider the points T −iγi, . . . , T l−1−iγi. There necessarily exists some j ̸= i such186

that T j−iγi is incorrectly placed. By uniform continuity, we have that d(T j−iβi, T j−iγi) <187

Ω|j−i|(δ), i.e., the incorrectly placed T j−iγi is in the Ω|j−i|(δ)-ball around βj , whereas the188

2 Choose any α ∈ Xu, use that Xu is open to get a δ′-ball around α contained in Xu, let Yu be the
(δ′/3)-ball around α, choose δ = δ′/3, and apply the triangle inequality.

3 The open sets in this case are the intersections of the ball with each of S1, . . . , Sk.
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correctly placed γj is in the δ-ball around βj . By similar connectedness arguments above, we189

get that the (max(δ, Ω|j−i|(δ)))-ball around βj , by virtue of containing both γj and T j−iγi,190

contains a point ζj ∈ Z, or in other words, d(βj , ζj) < max(δ, Ω|j−i|(δ)).191

We now use uniform continuity on βi, ζi to argue that d(βj , T j−iζi) < Ω|j−i|(δ). Applying
the triangle inequality to this and the result of the previous paragraph, we get that

d(T j−iζi, ζj) < max(δ, Ω|j−i|(δ)) + Ω|j−i|(δ).

We can now supply δ = 1/2, 1/4, . . ., and hence get a sequence of (ζ, ζ ′) such that
min|m|≤|u| d(T mζ, ζ ′) converges to 0. By compactness, any limit point (ζ⋆, ζ ′

⋆) of this
sequence of (ζ, ζ ′) lies in Z × Z, is guaranteed to exist, and by continuity (of the metric d,
homeomorphisms T, T −1, and of the modulus of continuity Ω),

min
|m|≤|u|

d(T mζ⋆, ζ ′
⋆) = 0,

which contradicts the independent discrete orbit condition.192

We have thus proven that u is a recurrent factor if and only if Xu is non-empty, and193

that if Xu is non-empty, the factor u occurs with bounded gaps once the noise is bounded194

by some δu. This establishes that for all x ∈ Tracesσ, x is almost-periodic, and the set of195

recurrent factors is L⋆ = {u | Xu ̸= {}}. ◀196

We make some observations concerning effectiveness. To that end, define ∆ : N → R as

∆(n) = min
|m|≤n

d(T mZ, Z),

and note that ∆(n) > 0 for n > 0.197

▶ Lemma 3. Let L⋆ ⊆ Σ+, and let W ⊆ Σω be a set of almost-periodic words such that198

for every x ∈ W , the set of recurrent factors of x is L⋆. For every u ∈ L⋆, there exists Ru199

such that for every x ∈ W , eventually every factor of length Ru contains an occurrence of u.200

Computing this Ru Turing-reduces to deciding membership in L⋆.201

Proof. The existence of Ru follows almost immediately by definition. Indeed, consider202

arbitrary x ∈ W . There exists R such that every length-R factor of x contains u. We can203

assert Ru ≤ R, because in particular every recurrent length-R factor will have an occurrence204

of u. To compute Ru, we simply enumerate the elements of L⋆ until we find a length R such205

that all length-R members of L⋆ contain an occurrence of u. It remains to observe that every206

x ∈ W has a suffix for which all length-R factors are recurrent. ◀207

▶ Theorem 4. Let x ⊆ Σω be a noisy trace of a noise-robust dynamical system such that208

L⋆ is recursive and Ω, ∆ are computable. Let the noise function ν of x converge effectively.209

If for each n, we can compute x(n), then x is effectively almost-periodic. Thus, given such210

x ∈ Σω and an ω-regular language L, we can decide whether x ∈ L.211

Proof. We need to show how, given u ∈ Σ+, we can compute Ru such that either u can212

only occur in the length-Ru prefix of x, or u occurs in every length-Ru factor of x. One can213

determine which of the cases holds by querying whether u ∈ L⋆.214

Suppose u is not a recurrent factor. We compute δ small enough such that for all m with215

|m| ≤ |u|, we have max(δ, Ωm(δ)) + Ωm(δ) < ∆(|u|). From the proof of Thm. 2, we deduce216

that there cannot be any occurrence of u at indices where the noise is less than δ. Since the217

noise function ν converges effectively, we can compute Ru such that for all n ≥ Ru, we have218

ν(n) < δ, and hence u cannot occur at index n.219
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In the case u is a recurrent factor, we can use the previous lemma to compute R′
u such220

that x has a suffix where all length-R′
u factors are recurrent, and contain an occurrence of u.221

It remains to compute the starting index R′′
u of this suffix, and take Ru = R′

u + R′′
u. To do so,222

we appeal to the previous case and compute a bound R′′
u on the index of the last occurrence223

of any length-R′
u non-recurrent factor.224

Finally, the last statement follows from the result of Semënov mentioned in the Introduction,225

see [8, Chap. 3] for a detailed exposition. ◀226

We remark that in our applications, the open subsets of the torus will be semi-algebraic.227

This will allow us to effectively decide (see e.g., [1, App. A]), given any u, whether the228

attendant open set Xu is non-empty, or in other words, whether u ∈ L⋆.229

3 Sign Descriptions of LRS230

Recall that a linear recurrence sequence (LRS) of order d over a field K (we shall consider LRS231

over real algebraic numbers) is a sequence (µn)∞
n=0 that satisfies the recurrence relation µn+d =232

ad−1µn+d−1 + · · ·+a0µn, where a0 ≠ 0. We refer to the polynomial Xd −ad−1Xd−1 −· · ·−a0233

as the characteristic polynomial of the LRS, and its roots are called the characteristic234

roots. A characteristic root that is not repeated is called simple, an LRS is called simple235

if all characteristic roots are simple. An LRS for which there is no pair λi, λj of distinct236

characteristic roots such that λi/λj is a root of unity is called non-degenerate. It is well known237

that any given LRS can be mechanically decomposed as the interleaving of non-degenerate238

LRS (see e.g., [9]). We shall assume that the distinct characteristic roots λ1, . . . , λk are239

ordered in descending Euclidean absolute value, and shall refer to the roots with maximal240

absolute value as dominant.241

It is well known that LRS admit an exponential-polynomial closed form, i.e.,

µn =
k∑

i=1

mi−1∑
j=0

pijnjλn
i =

k∑
i=1

fi(n)λn
i .

Here, we have that mi is the multiplicity of characteristic root λi, and can assume that242 ∑k
i=1 mi = d and pi(mi−1) ̸= 0.243

The sign description of an LRS (µn)∞
n=0 is the word x ∈ {1, −1, 0}ω such that x(n) =244

sign(µn). Before we state the main result of this section, we record a lemma (see [5, Cor. 5.5],245

[9, Thms. 8, 9]) that will be helpful in accounting for “degeneracies.”246

▶ Lemma 5. Let x0, . . . , xd−1 be effectively almost-periodic toric words defined by open247

semi-algebraic sets. The word x, defined as x(qd + r) = xr(q) is also toric, defined by open248

semi-algebraic sets, and effectively almost-periodic.249

We shall also use the following self-evident observation: if we can compute N such that250

x(N, ∞) is effectively almost-periodic, then x is effectively almost-periodic.251

▶ Theorem 6. Let (µn)∞
n=0 be a real algebraic LRS that satisfies one of the following252

conditons:253

1. has a single real dominant root,254

2. has two dominant roots whose ratio is not a root of unity,255

3. has three dominant roots which are all simple, and the ratio of the complex conjugate pair256

is not a root of unity,257

4. has order at most four.258
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We can construct a Turing machine which witnesses that the sign description of (µn)∞
n=0 is259

effectively almost-periodic. Thus, given such an LRS and an ω-regular language L, we can260

decide whether the sign description x is in L.261

Proof. Since precise computations can be carried out on the field of real algebraic numbers,262

it is clear that given any n, we can always determine the n-th letter of the sign description.263

We shall therefore focus on showing how, given a finite word u, we can compute Ru such264

that u either does not occur at any index beyond Ru, or occurs in every length-Ru factor of265

the sign description.266

Case (1) is trivial. If there is a single real dominant root, then the sign description is267

effectively eventually periodic with period at most 2.268

We note that showing that the sign-description is effectively almost-periodic would269

entail solving the Skolem problem, i.e., computing the set of indices at which the LRS is 0.270

Fortunately, the cases of the statement are amenable to techniques used to solve the Skolem271

problem for recurrences in the MSTV class, named after Mignotte, Shorey, Tijdeman [13],272

and Vereshchagin [14], who independently showed that the Skolem problem is decidable for273

LRS of order at most four. The key technical lemma uses Baker’s theory of linear forms in274

logarithms. We refer the reader to [2, Sec. 3.2], [7, Sec. 3, 4] for expository proofs of the275

following result, which makes the techniques of [9] effective at low orders.276

▶ Lemma 7. Let (µn)∞
n=0 be a real algebraic LRS which has at most three dominant roots

λ1, . . . , λr, and satisfies the property that the ratio of any pair of distinct dominant roots is
not a root of unity. We can compute an index N such that for all n ≥ N ,∣∣∣∣∣

r∑
i=1

fi(n)λn
i

∣∣∣∣∣ >

∣∣∣∣∣∣
k∑

j=r+1
fj(n)λn

j

∣∣∣∣∣∣ .

The lemma has the following consequences for Cases (2) and (3).277

Any word u that contains the letter 0 cannot be a factor of the sign description beyond278

the index N .279

In Case (3), beyond index N , the sign description of the given LRS matches that of280 ∑3
i=1 pi0λn

i , which is in turn the same as the sign pattern of a sequence of the form281

a + b cos(nθ + φ) or a(−1)n + b cos(nθ + φ). This computable suffix of the sign description282

is effectively uniformly recurrent by virtue of being a toric word4, see, e.g., [1, proof of283

Thm. 3.1], [9, Thm. 8, Thm. 9].284

The eventual effective uniform recurrence settles Case (3). We now turn to Case (2),
which is tackled by generalising the arguments in [5, Sec. 6.4]. Beyond index N , the sign
description of the LRS is the same as that of the sequence

mi−1∑
j=0

ajnj cos(nθ + φj),

none of whose terms are 0. Intuitively, the sign of each factor is driven by the term285

ami−1nmi−1 cos(nθ + φmi−1), and can be the opposite only if the cosine factor is less than286

4 The former is obviously obtained as a coding of a rotation on a 1-torus, the latter is the interleaving
of two such codings, which is still toric by Lem. 5. Effectiveness follows because all computations to
determine whether an open interval corresponding to a putative factor is non-empty involve algebraic
numbers and semialgebraic sets.
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A/n for some effective A. More formally, the sign description of the above sequence is a287

noisy trace of the noise-robust dynamical system defined by an irrational rotation on the288

1-torus partitioned into semicircular arcs. We immediately obtain from Thm. 2 that the289

sign description is almost-periodic. Furthermore, L⋆ is recursive by semi-algebraic geometry,290

the noise function converges effectively, the modulus of continuity Ω(δ) is simply δ, and291

∆(n) = mind,|m|≤n |mθ − dπ| can be effectively under-approximated. We obtain from Thm. 4292

that the noisy trace, i.e., the sign description, is effectively almost-periodic.293

Only Case (4) remains. Three subcases arise: (i) All four roots are distinct and dominant;294

(ii) There are fewer than four dominant roots, and there is no pair of distinct dominant roots295

whose ratio is a root of unity; (iii) There are two or three dominant roots, and the ratio296

between a distinct pair is a root of unity. Of these, subcase (ii) has been subsumed by prior297

discussions.298

In subcase (i), we have that the LRS is simple, has roots {±ρ, ρe±iθ} or {ρe±iθ1 , ρe±iθ2},299

and hence its sign pattern has a suffix that is effectively uniformly recurrent by virtue of300

being toric [9, Thm. 11] (more precisely, the suffix of the sign pattern is the interleaving301

of effectively almost-periodic toric words, and will inherit the property by Lem. 5). The302

starting index of this suffix can be computed using Lem. 7 or by directly solving the Skolem303

problem for the ensuing low-order non-degenerate LRS in the MSTV class. This identifies304

when all of the interleaved non-degenerate LRS are guaranteed to be non-zero.305

In subcase (iii), if there are three dominant roots, the LRS is of the form (±ρ)n +306

ρn cos(nπ/d + φ) + (±γ)n, where 0 < γ < ρ. It is easy to see that the sign description will307

be effectively ultimately periodic. If there are two dominant roots, it is easy to see that the308

sign pattern is effectively ultimately periodic, except if the remaining non-dominant roots309

are complex conjugates and not roots of unity, and the contribution from dominant terms is310

periodically 0. We can still apply Lem. 7 to identify when the non-dominant contribution311

will persistently be non-zero, and then use Lem. 5 to deduce that the suffix of overall sign312

description, which is the interleaving of effectively almost-periodic, toric sign descriptions of313

low-order non-degenerate LRS, is itself toric and effectively almost-periodic.314

To end the proof, the last statement follows from Semënov’s theorem, as in Thm. 4. ◀315

There are known instances of order-five LRS where is Skolem problem is unresolved,316

and instances of LRS with three dominant roots whose sign description is provably not317

almost-periodic [1, Sec. 4], and instances of LRS with three dominant roots for which the318

positivity and ultimate positivity problems (respectively, does the sign description contain319

−1, does the sign description contain −1 only finitely many times) are unresolved [12, Sec. 5].320

4 Prefix-Independent Verification321

▶ Definition 8. An ω-regular language L ⊆ Σω is said to be prefix-independent if for all322

u, v ∈ Σ∗ and x ∈ Σω, ux ∈ L if and only if vx ∈ L.323

In other words, if x′ is obtained from x by making finitely many edits, then either324

x, x′ ∈ L or x, x′ /∈ L. We remark that any non-empty prefix-independent language is a325

liveness property, but the liveness property (ΣΣ)∗(aΣ)ω is not a prefix independent language.326

▶ Proposition 9. An ω-regular language L ⊆ Σω is prefix-independent if and only if327

L =
⋃d

i=1 Σ∗V ω
i , where V1, . . . , Vd are regular languages not containing the empty word.328

Proof. We assume without losing generality that L is non-empty.329

Suppose L =
⋃d

i=1 Σ∗V ω
i . Suppose, for the sake of contradiction, there exists a pair x, x′

330

of words a finite edit-distance apart such that x ∈ Σ∗V ω
i ⊆ L but x′ /∈ L. We have that331
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x = uv1v2 . . ., where for each n ≥ 1, vn ∈ Vi. Since x′ is only a finite edit-distance away from332

x, it can be factorised as u′vmvm+1 . . ., which witnesses that x′ ∈ Σ∗V ω
i , a contradiction.333

Thus L =
⋃d

i=1 Σ∗V ω
i implies that L is prefix-independent.334

Conversely, suppose L =
⋃d

i=1 UiV
ω

i is prefix-independent. Clearly, L ⊆
⋃d

i=1 Σ∗V ω
i .335

We shall prove that the reverse inclusion also holds. To that end, consider x ∈ Σ∗V ω
i ⊆336 ⋃d

i=1 Σ∗V ω
i . This word is clearly a finite edit-distance away from a word x′ ∈ UiV

ω
i ⊆ L.337

Since L is prefix-independent, this implies x ∈ L, and hence L =
⋃d

i=1 Σ∗V ω
i . ◀338

The rest of this section is organised as follows. We first formalise the intuition that339

prefix-independent ω-regular languages comprise either “very dense” or “very sparse” subsets340

of Σω. This intuition is further reflected in the main result of the section: almost-periodic341

words with the same set of recurrent factors are indistinguishable to a prefix-independent342

ω-regular language.343

We say a word x ∈ Σω is disjunctive if the set of its recurrent factors is Σ+. Given an344

alphabet Σ, we use DΣ to denote the set of disjunctive words over it.345

▶ Proposition 10. Let L ⊆ Σω be a prefix-independent ω-regular language. We have that346

either DΣ ⊆ L or DΣ ∩ L = {}. Furthermore, we can determine which is the case.347

Proof. Consider a deterministic parity automaton A recognising L, and in particular, the348

graph induced by it. We can prove [4, Thm. 4.16] (detailed proof in [6, App. A.4]) that in349

the run on any disjunctive word x, the set of states visited infinitely often is precisely a350

bottom strongly connected component. To determine whether the set of disjunctive words is351

included in, or excluded from L, we check whether the highest colour in a bottom strongly352

component is even or odd. Note that the parity must be consistent across different bottom353

strongly components, otherwise the prefix-independence of L would be contradicted. (One354

can make finitely many edits to a disjunctive word so that the run settles in any chosen355

bottom strongly connected component; these edits, however, alter neither disjunctivity nor356

membership in the language.) ◀357

In other words, a prefix-independent ω-regular language either contains almost all words,358

or excludes almost all words. Here, the quantifier “almost all” is with respect to the uniform359

Borel probability measure on Σω, which assigns the cylinder {ux | x ∈ Σω} measure 1/|Σ||u|.360

The main result of this section is a slightly generalised reformulation of [1, Sec. 5], with361

simplified techniques. (We leave gauging the extent of simplification to the discernment of362

the reader.) We introduce an auxiliary technical notion before we prove the theorem.363

In order to aggregate information about automaton runs, we define a journey to be a364

tuple in Q × Q ×N, which describes a finite run q0q1 . . . ql on a word u0 . . . ul−1 by recording365

the starting state q0, the ending state ql, and the maximum colour among those of q1, . . . , ql.366

Clearly, if a word u can make the journey (q1, q2, c1) and a word v can make the journey367

(q2, q3, c2), then the word uv can make the journey (q1, q3, max(c1, c2)). For a factorisation368

into finite words u0u1 · · · of an infinite word x, if each ui makes can make the journey369

(qi, qi+1, ci), then the automaton accepts x if and only if lim supi∈N ci is even.370

▶ Theorem 11. Let W ⊆ Σω be a set of almost-periodic words, and let L⋆ ⊆ Σ∗ be such that371

for all x ∈ W , the set of recurrent factors of x is L⋆. Let L ⊆ Σω be a prefix-independent372

ω-regular language. We have that W ⊆ L or W ∩ L = {}. Furthermore, given an oracle for373

membership in L⋆, we can decide which of the above two cases holds.374

Proof. We will show that for any x ∈ W , we can decide whether x ∈ L purely with oracle375

queries to L⋆. Throughout this proof, we assume that L is recognised by a deterministic376

parity automaton A = (Q, Σ, qinit, ∆, col), and all states in A are reachable from qinit.377
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Observe, using Lem. 3, that given u ∈ L⋆, any arbitrary x ∈ W can be written as378

wuv1uv2u · · · , where |vi| < Ru and uviu ∈ L⋆ for all i ≥ 1. Indeed, we choose w long enough379

so that in the suffix obtained by deleting it, all factors of length at most 2|u| + Ru are380

recurrent, and all factors of length Ru contain an occurrence of u. We remark that Ru is381

effective, but w need not be effective for the proof that follows.382

We define the set windowu = {v | |v| < Ru ∧ uvu ∈ L⋆} and observe that it is finite and383

computable with oracle access to L⋆. In other words, W ⊆ Σ∗(u · windowu)ω. We will use384

this pattern to determine the highest colour seen infinitely often in a run of A.385

We say that a factor u ∈ L⋆ is saturated with respect to A if for all q ∈ Q and all386

v ∈ windowu, if u makes the journey (q, q′, c) and uvu makes the journey (q, q′′, c′), then387

c = c′. In other words, the highest colour seen while reading uvu starting from any q must388

have been already seen while reading the prefix u. Saturated factors help us determine389

acceptance as follows. Let x = wuv1uv2 · · · , and let the corresponding sequence of journeys be390

(q0, q1, c0), (q1, q2, c1), . . .. By saturation, for all i, we get that c2i+1 ≥ c2i+2 and c2i+1 ≥ c2i+3.391

We now use prefix-independence.392

Let (q⋆, q′, c⋆) be a journey u can undertake such that for all other journeys (q, q′′, c) of u,393

c ≥ c⋆. Let w′ be a word that takes qinit to q⋆. By prefix-independence, we have that x ∈ L if394

and only if x′ = w′uv1uv2 · · · ∈ L. The new sequence of journeys is (q′
0, q′

1, c), (q′
1, q′

2, c′
1), . . .,395

where q′
1 = q⋆ and c′

1 = c⋆. The same saturation properties hold: c′
2i+1 ≥ c′

2i+2 and396

c′
2i+1 ≥ c′

2i+3. However, c′
2i+1 ≥ c⋆, and c′

1 = c⋆. Hence, lim supi c′
i = c⋆.397

We have just proven that an arbitrary x ∈ W is accepted by A if and only if the colour398

c⋆ effectively defined by a saturated factor u ∈ L⋆ is even. It remains to prove that saturated399

factors exist, and can be computed with oracle access to L⋆.400

We shall do so with a fix-point algorithm that returns a saturated factor. We associate401

with each word u a function fu : Q → N, defined such that u makes the journey (q, q′, fu(q))402

for some q′. We define a quasi-ordering on finite words and say that u ⪯ v if fu(q) ≤ fv(q)403

for all q. Clearly, if u is a prefix of v then u ⪯ v. In particular, for all v ∈ windowu, u ⪯ uvu,404

but for a saturated word u, uvu ⪯ u for all v ∈ windowu. It is also easy to observe that this405

quasi-ordering has finitely many (at most |Q|2) equivalence classes, and hence cannot admit406

a strictly increasing chain of more than |Q|2 words. Our algorithm thus starts with u ∈ L⋆.407

In each iteration, it computes windowu with queries to L⋆, and checks if u is saturated. If408

yes, it returns u; if not, it iterates with uvu, v ∈ windowu that is strictly above u in the409

quasi-ordering. By the argument above, the algorithm runs for at most |Q|2 iterations. ◀410

Applying Thms. 2 and 11 gives the following result.411

▶ Corollary 12. Let (X, T, ⟨S1, . . . , Sk, Z⟩, σ) be a noise-robust dynamical system, and let412

L ⊂ Σω be a prefix-independent ω-regular language. We have that either Tracesσ ⊆ L or413

Tracesσ ∩ L = {}. Furthermore, if L⋆ is recursive, the language of recurrent factors of words414

in Tracesσ, then we can decide which of the above two cases holds.415

5 The Sturmian Case416

For Sturmian systems, the space X is the 1-torus (identified by the interval [0, 1)), and the417

dynamical update T is an irrational rotation γ, i.e., α is mapped to α + γ mod 1. Without418

loss of generality, we assume γ < 1/2. The partitions are [0, γ) and [γ, 1), and the coding419

maps these to 1 and 0 respectively. We see that Z = {0, γ}, and T ◦ 0 = γ. Hence, Sturmian420

systems are not noise-robust by our definition. More specifically, we can prove that if u ∈ L⋆,421

the set of words for which Xu is non-empty, then u is a recurrent factor of all (noisy) traces.422
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However, if u /∈ L⋆, the word u can still be a factor of some noisy traces, and in fact these423

noisy traces can fail to be almost-periodic. Indeed, the independent discrete orbit property424

needed to preclude this failure does not hold.425

In the absence of noise, it is known that Sturmian words are uniformly recurrent and426

have minimal factor complexity: there are exactly n + 1 factors of length n. In particular,427

the length-2 factors are 00, 01, 10. We shall show that if we allow noise, regardless of how428

rapidly the noise converges to 0, there are starting points α such that the noisy trace has 11429

as a recurrent factor, and moreover the gaps between the occurrences of 11 are unbounded.430

Consider a noise function ν such that for all n, ν(n) > 0. Observe that 11 can only occur
as a factor if we perform a perturbation when

α + nγ ∈ (1 − ν(n), 1) ∪ [0, ν(n + 1)),

or by an appropriate shifting of coordinates,

α ∈ (−nγ − ν(n), −nγ + ν(n + 1)).

To define where to perform perturbations, we shall now construct a sequence of indices
n0, n1, . . . having unbounded gaps (e.g., by choosing ni+1 > ni + i + 1), and a sequence
A0 ⊇ A1 ⊇ . . . of non-empty closed intervals of the 1-torus, such that

Ai ⊆ (−niγ − ν(ni), −niγ + ν(ni + 1)).

By the nested intervals theorem, we would then have that the intersection of these
intervals contains a point α⋆, and for all ni,

α⋆ ∈ (−niγ − ν(ni), −niγ + ν(ni + 1)).

This would imply that α⋆ has a noisy trace x, obtained by performing perturbations at each431

of the ni’s (or (ni + 1)’s, as required), such that x has 11 as a recurrent factor, and the gaps432

between consecutive occurrences of 11 are unbounded.433

We now present the inductive construction of n0, n1, . . ., and A0, A1, . . .. We can choose
n0 arbitrarily, and take A0 to be a closed interval,

A0 ⊆ (−n0γ − ν(n0), −n0γ + ν(ni + 1)).

For the inductive step, assume that ni, Ai have been constructed. Let Bi ⊆ Ai be an
open interval. By the (Kronecker/Weyl) equidistribution theorem, we know that there are
infinitely many n such that −nγ ∈ Bi. We choose ni+1 such that ni+1 − ni > i + 1, and
choose Ai+1 to be a closed interval in the non-empty intersection of two open intervals,

Ai+1 ⊆ Bi ∩ (−niγ − ν(ni), −niγ + ν(ni + 1)).

The infinite intersection of the Ai’s is thus {α⋆}, where tracesσ(α⋆) contains a word that is434

not almost-periodic, and whose set of recurrent factors contains 11, which is not a factor of435

any trace with noise 0.436

Interestingly, however, if we were to change the Sturmian system by making the rotation437

mγ instead of γ (where m is an integer, |m| > 1), then the new dynamical system would438

indeed be noise-robust. This shows that a noisy Sturmian word, while itself not almost-439

periodic, is an interleaving of almost-periodic noisy toric words. This is an analogue of [5,440

Cor. 6.9]441

The same arguments as above would allow us to encode the computations of Diophantine442

approximation constants (e.g., inf n[nγ + α], lim inf n[nγ + α], where even algorithmically443

determining whether these quantities are 0 remains an open number-theoretic problem) using444

queries such as, “given α and noise ν lower-bounded by 1/n, does tracesσ(α, ν) contain a445

trace x in which the factor 11 occurs (respectively, occurs infinitely often)?”446
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