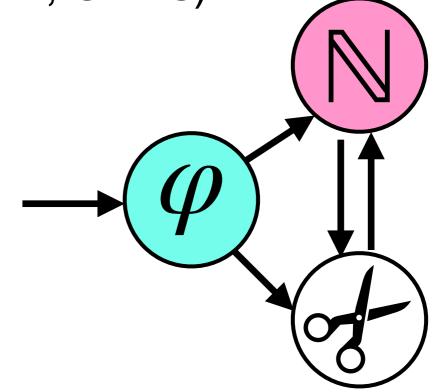
On the Monadic Second-Order Theory of Arithmetic Predicates

- Valérie Berthé (Université de Paris, IRIF, CNRS)
- Toghrul Karimov (MPI-SWS)
- Joris Nieuwveld (MPI-SWS)
- Joël Ouaknine (MPI-SWS)
- Mihir Vahanwala (MPI-SWS)
- James Worrell (University of Oxford)



Automata Seminar, IRIF October 11, 2024

Research questions can often be exposed through playful riddles

Are there infinitely many n, m such that:

- 1. n is a power of 3; m is a power of 2
- 2. The units place digits of n, m are 9, 8 respectively
- 3. m is the smallest power of 2 larger than n, and their difference is at least 100

$$n = 4782969$$
, $m = 8388608$

...?

The riddle is an example of how we can push the expressive limits of Monadic Second-Order (MSO) Theory of the natural numbers with order

 $\langle \mathbb{N}; < \rangle$

But what is MSO Logic?

(over the structure of the natural numbers with order)

Statements in MSO logic have two kinds of variables: those that refer to numbers, and those that refer to sets of numbers

So why is MSO Logic important?

To practitioners:

for its ability to serve as a framework to reason about systems' execution traces

To theoreticians:

for its profound connections to formal language theory, and its place at the frontiers of decidability

Our research question

What expressive power can be added to the MSO Theory of the natural numbers with order while retaining its decidability?

$$x = y$$

$$\neg (x < y) \land \neg (y < x)$$

$$x = 0$$

$$\forall y \cdot x \le y$$

$$y = x + 1$$

$$x < y \land \neg \exists z \cdot (x < z < y)$$

Variables can refer to numbers x, y, ... or to sets X, Y, ... of numbers

The logic allows us to express that x is an element of X

X is the empty set

$$\forall y . y \notin X$$

$$X \subseteq Y$$

$$\forall x. (x \in X \Rightarrow x \in Y)$$

X has infinitely many elements

$$\forall x . \exists y . (x < y \land y \in X)$$

Second-Order variables X, Y, \dots allow us to define some interesting unary *predicates*

X is even

 $\exists X. (x \in X \land 0 \in X \land \forall y. (y \in X \Leftrightarrow y+1 \notin X))$

MSO Theory of $\langle \mathbb{N}; < \rangle$: Sentences

Variables occurring in a formula are either free or bound to a quantifier

A formula with only bound variables is called a sentence

 $\forall X. (\exists x. x \in X) \Rightarrow (\exists x. x \in X \land \forall y. (y \in X \Rightarrow x \leq y))$

Every non-empty set has a minimum element

Deciding an MSO Theory

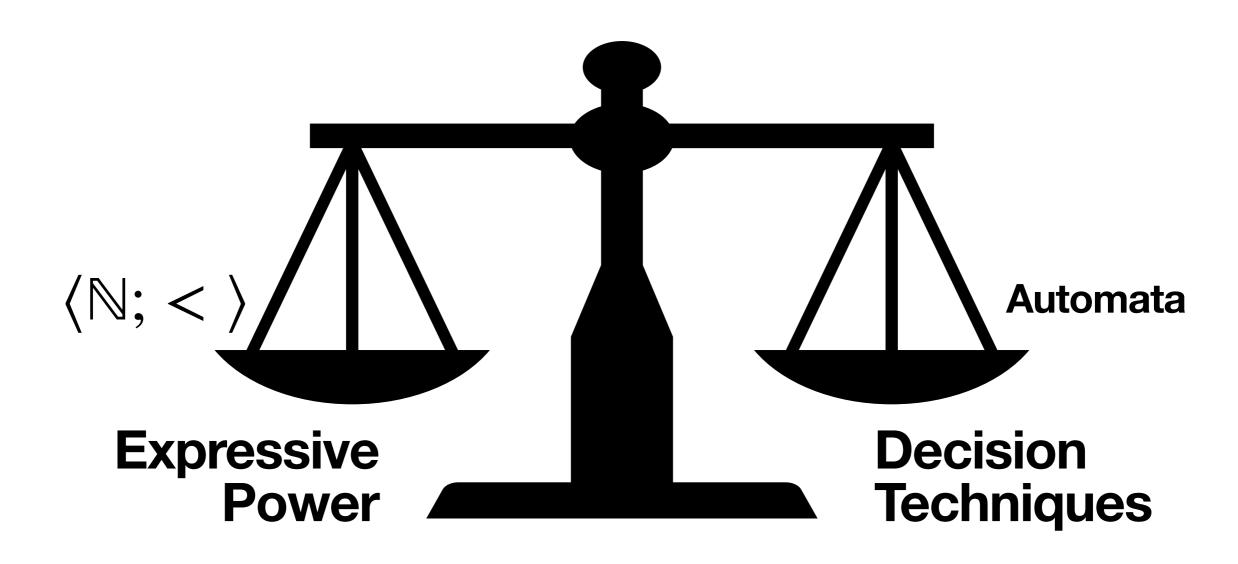
$$\forall X. (\exists x. x \in X) \Rightarrow (\exists x. x \in X \land \forall y. (y \in X \Rightarrow x \leq y))$$

Every non-empty set has a minimum element

Büchi (1962) showed how to decide:

Context	MSO Theory of $\langle \mathbb{N}; < \rangle$
Input	A sentence
Output	Whether the input sentence is true

Büchi's work



Expanding the MSO Theory of $\langle \mathbb{N}; < \rangle$

However, the expressive power is not enough to assert, for instance:

x is a perfect square

x is a power of 2

Adding such predicates results in an expanded theory $\langle \mathbb{N}; <, P_1, ..., P_d \rangle$

Deciding expanded MSO Theories [Elgot and Rabin, 1966]

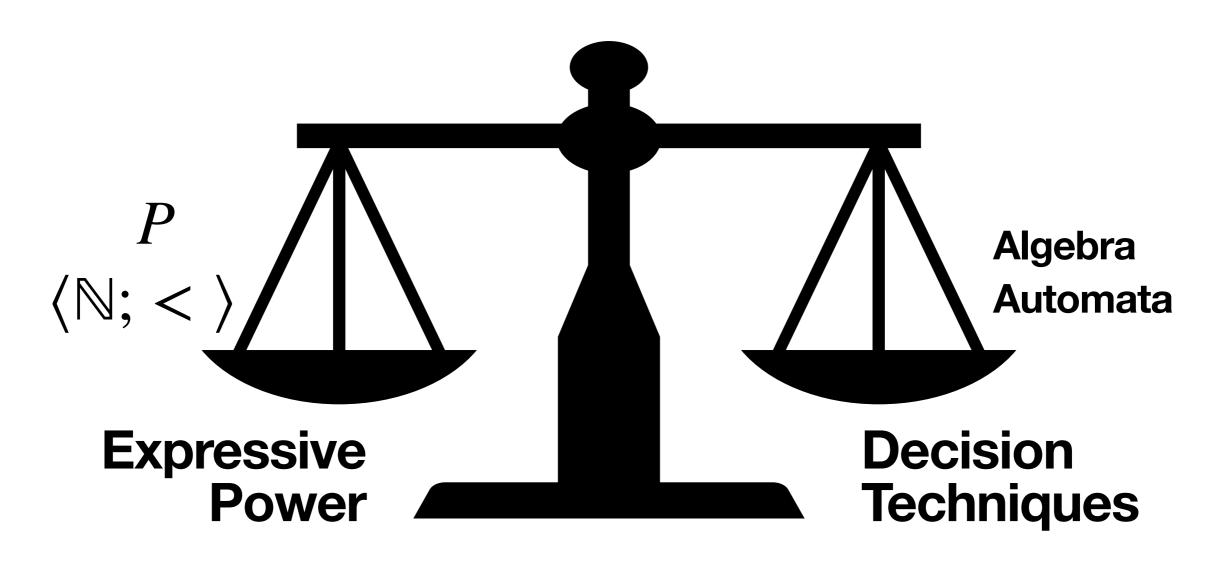
It is known how to decide:

Context	MSO Theory of $\langle \mathbb{N}; <, Pow_2 \rangle$
Input	A sentence
Output	Whether the input sentence is true

and also:

Context	MSO Theory of $\langle \mathbb{N}; <, Pow_3 \rangle$
Input	A sentence
Output	Whether the input sentence is true

State of the art [Carton and Thomas, 2002]



Sentence in MSO Theory of

$$\langle \mathbb{N}; <, Pow_2, Pow_3 \rangle$$

There are infinitely many n, m such that:

$$\forall x \exists n \exists m . x < n < m \land ...$$

n is a power of 3; m is a power of 2

$$n \in Pow_3 \land m \in Pow_2 \land \dots$$

The units place digits of n, m are of 9, 8 respectively

$$n \in \mathsf{Units}_9 \land m \in \mathsf{Units}_8 \land \dots$$

m is the smallest power of 2 larger than n, and their difference is at least 100

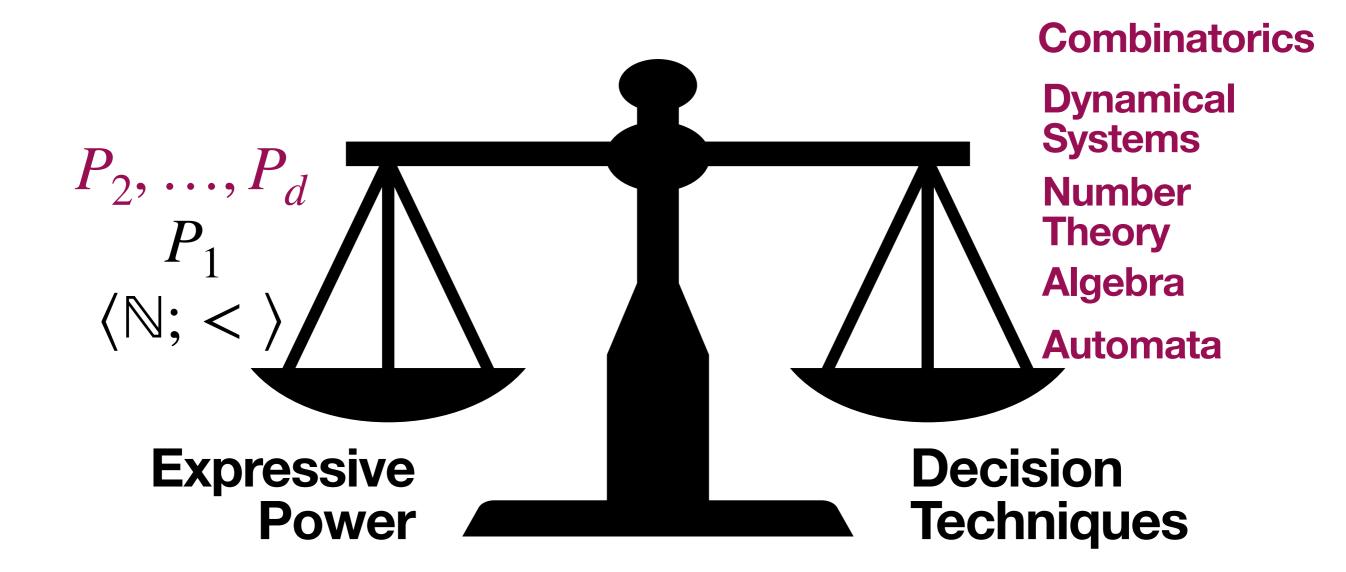
$$(n+100 \le m) \land \neg \exists k . (k \in Pow_2 \land n < k < m)$$

We show that...

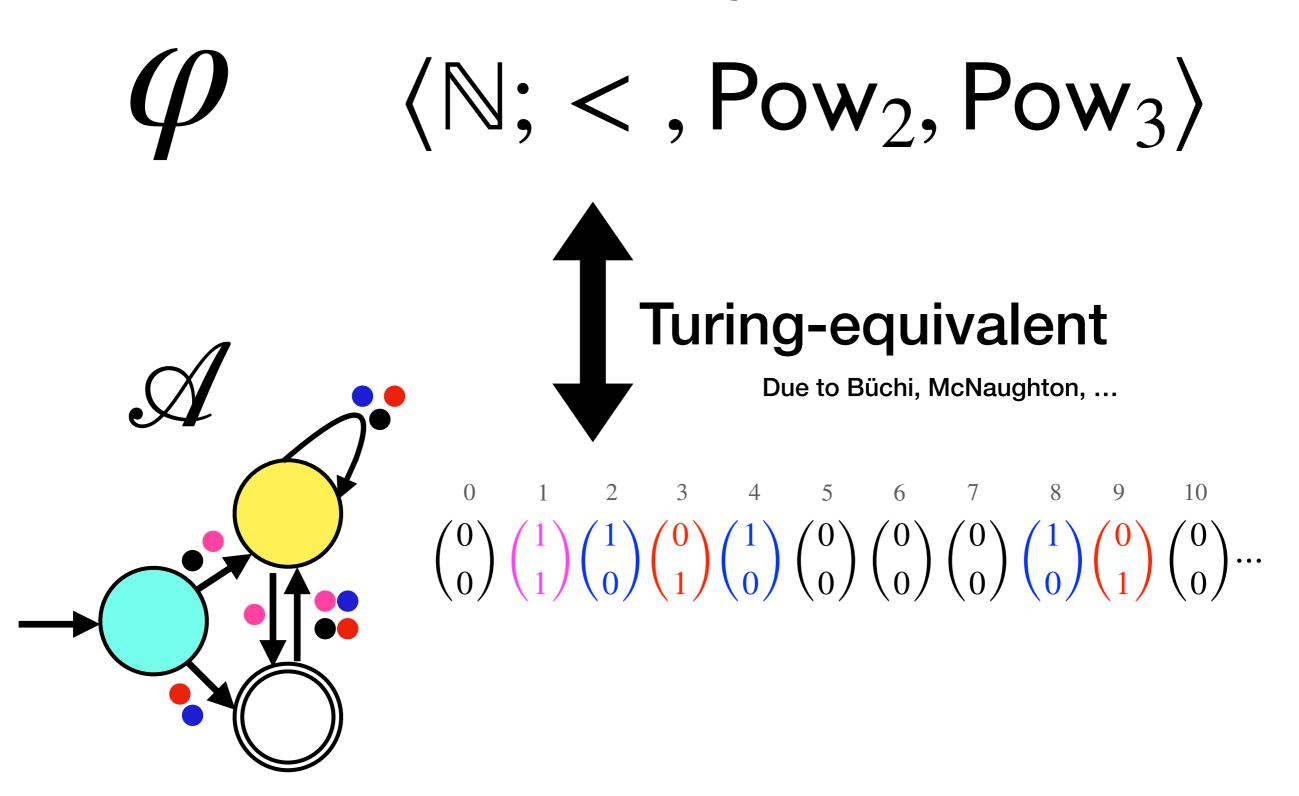
The MSO Theory of $\langle \mathbb{N}; < , Pow_2, Pow_3 \rangle$ is decidable.

Context	MSO Theory of $\langle \mathbb{N}; <, Pow_2, Pow_3 \rangle$
Input	A sentence
Output	Whether the input sentence is true

Our contribution



Sentence holds in Theory



Automaton accepts characteristic word

Characteristic word $\langle \mathbb{N}; <, Pow_2, Pow_3 \rangle$

$$\beta = \binom{0}{0} \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{0}{1} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{1}{0} \binom{0}{1} \binom{0}{1} \binom{0}{0} \cdots$$

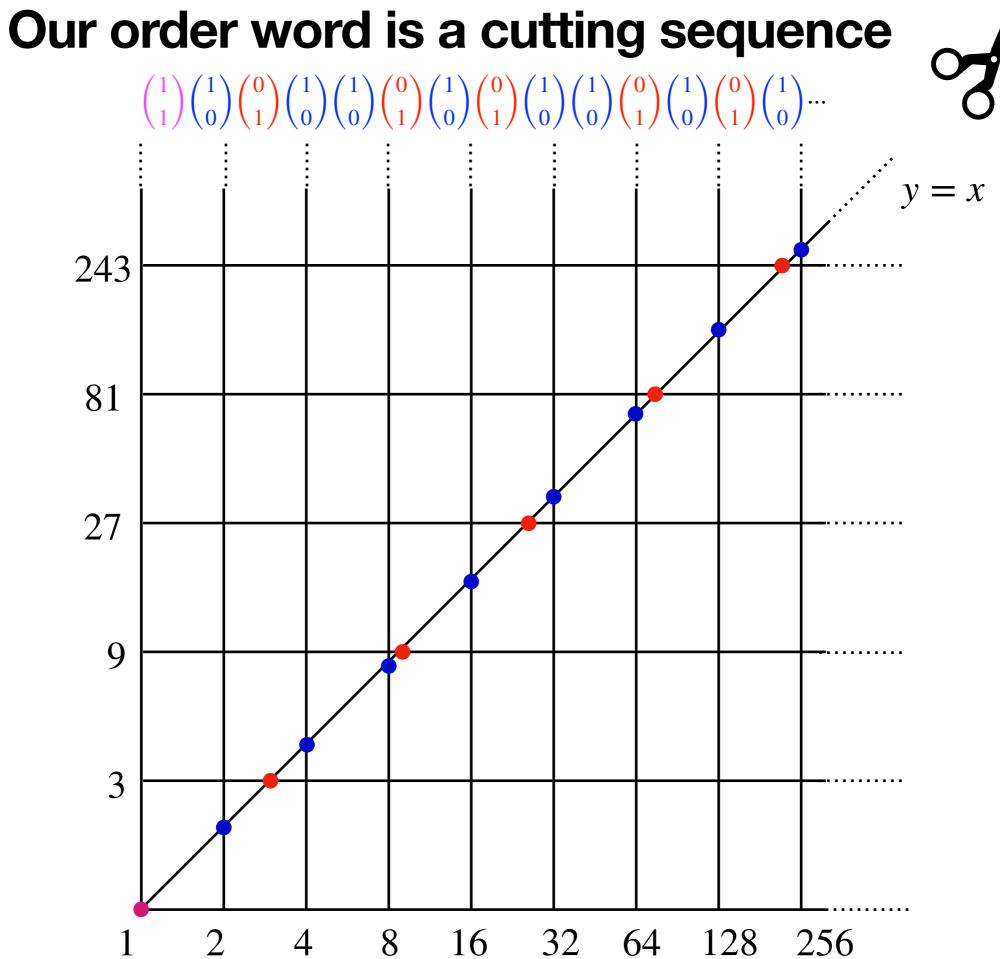
Acceptance Problem

 $Acc_{\beta} := Is the run of a given automaton <math>\mathscr{A}$ on β (Muller) accepting?

trivially reduces to
$$Acc_{\alpha}$$

Order word

$$\alpha = \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{1} \cdots$$



Cutting sequences are almost-periodic: a crucial combinatorial property

For every finite word w, there exists $R \in \mathbb{N}$ such that either:

1) w does not occur in the suffix $\alpha(R)$...

2) For all $j \in \mathbb{N}$, w occurs in the segment $\alpha(j) \cdots \alpha(j + R - 1)$

$$j$$
 $j+R$

Our α is effectively almost-periodic, because we can compute R(w)

Theorem (Semenov)

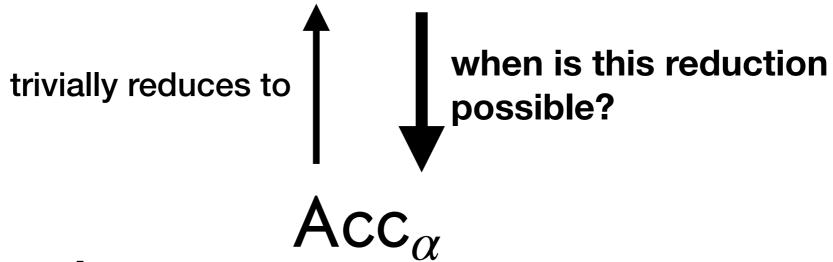
If α is effectively almost-periodic, then Acc_{α} is decidable.

Characteristic word $\langle \mathbb{N}; <, Pow_2, Pow_3 \rangle$

$$\beta = \binom{0}{0} \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{0}{1} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{1}{0} \binom{0}{1} \binom{0}{1} \binom{0}{0} \cdots$$

Acceptance Problem

 $Acc_{\beta} := Is the run of a given automaton <math>\mathscr{A}$ on β (Muller) accepting?

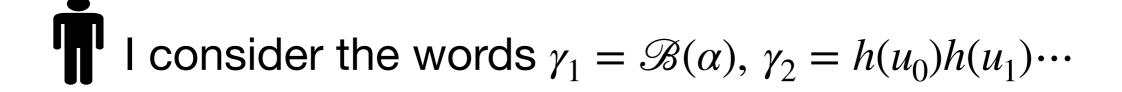


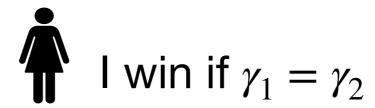
Order word

$$\alpha = \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{0}{1} \cdots$$

$\alpha \in \Sigma^{\omega}, \beta \in \Gamma^{\omega}$, and Samson v. Delilah

I will give a finite monoid M and a morphism $h: \Gamma^* \to M$





If Delilah always wins, then Acc_{β} reduces to Acc_{α} .

Monoids describe Automata

Word
$$u(0)u(1)\cdots u(\ell-1) \in \Gamma^*$$

Run
$$q_i = r_0^{u(0)} \xrightarrow{u(1)} \overset{u(\ell-1)}{\cdots} \xrightarrow{u(\ell-1)} = q_j$$

$$\langle q_i, q_j, \{r_1, ..., r_\ell\} \rangle$$
 from to via set of states

A word defines a function from states to journeys

$$\frac{u(q_i) = \langle q_i, q_j, V_1 \rangle}{v \circ u(q_i) = uv(q_i) = \langle q_i, q_k, V_1 \cup V_2 \rangle} \quad \text{Composition}$$

The functions form a finite monoid M, the map h from words to functions naturally defines a morphism

From natural monoids to automaton acceptance

$$\beta = u_0 u_1 \dots \in \Gamma^{\omega}, \alpha \in \Sigma^{\omega} \qquad \mathcal{A} = (Q, q_{\mathsf{init}}, \Gamma, \delta, \mathsf{Muller}(\mathcal{F}))$$

$$\mathcal{B} = (R, r_{\mathsf{init}}, \Sigma, M, \delta'') \qquad \gamma = \mathcal{B}(\alpha) = h(u_0)h(u_1) \dots \in M^{\omega}$$

$$\mathcal{A}' = (Q', q'_{\mathsf{init}}, \Sigma, \delta', \mathsf{Muller}(\mathcal{F}'))$$

The run of \mathscr{A}' on α gives a sequence of journeys made by \mathscr{A} on β

$$Q' = Q \times 2^{Q} \times R$$
$$q'_{\text{init}} = \langle q_{\text{init}}, \{\}, r_{\text{init}} \rangle$$

$$\delta'(\langle q_1, V_1, r_1 \rangle, \sigma) = \langle q_2, V_2, r_2 \rangle$$
 where

 \mathscr{B} prints $m_0 \cdots m_{\ell-1} \in M^*$ upon reading σ in state r_1 and moves to r_2 $m_0 \cdot m_1 \cdot \cdots \cdot m_{\ell-1} = m \in M$ $m(q_1) = \langle q_1, q_2, V_2 \rangle$

The run of \mathscr{A}' on α gives a sequence of journeys made by \mathscr{A} on β

$$\begin{split} \langle q_{\mathsf{init}}, \{\}, r_{\mathsf{init}} \rangle & \xrightarrow{\alpha(0)} \langle q_1, V_1, r_1 \rangle \xrightarrow{\alpha(1)} \langle q_2, V_2, r_2 \rangle \\ & \qquad \qquad h(u_0) \cdots h(u_{i_0-1}) \qquad \qquad h(u_{i_0}) \cdots h(u_{i_1-1}) \\ & \qquad \qquad \mathsf{apply to } q_{\mathsf{init}} \qquad \qquad \mathsf{apply to } q_1 \\ & \qquad \qquad \langle q_{\mathsf{init}}, q_1, V_1 \rangle \qquad \qquad \langle q_1, q_2, V_2 \rangle \end{split}$$

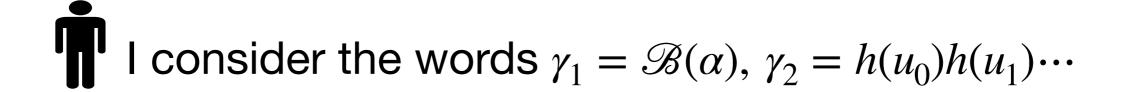
A state is visited infinitely often if and only if infinitely many journeys traverse through it

$$F' \in \mathcal{F}' \Leftrightarrow \left(\bigcup_{\langle q, V, r \rangle \in F'} V\right) \in \mathcal{F}$$

 \mathscr{A} accepts β iff \mathscr{A}' accepts α

$\alpha \in \Sigma^{\omega}, \beta \in \Gamma^{\omega}$, and Samson v. Delilah

I will give a finite monoid M and a morphism $h: \Gamma^* \to M$



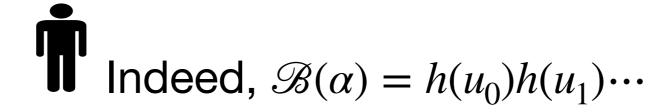
If Delilah always wins, then Acc_{β} reduces to Acc_{α} .

Winning Ways: Transduction

 $\beta = \mathcal{A}(\alpha)$ for some transducer \mathcal{A}

I will give a finite monoid M and a morphism $h: \Gamma^* \to M$

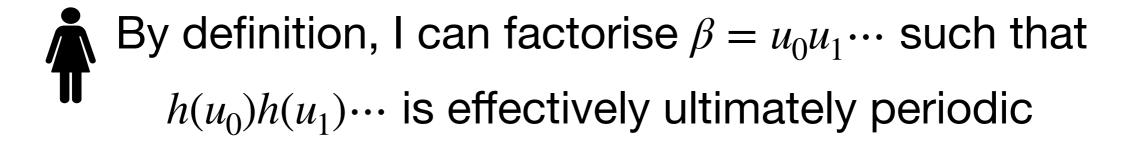
I factorise $\beta = u_0 u_1 \cdots$ such that \mathscr{A} prints u_n upon reading $\alpha(n)$ and construct \mathscr{B} as $h \circ \mathscr{A}$

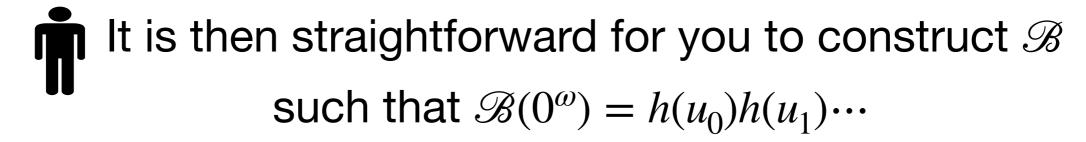


Winning Ways: **Effectively Profinitely Ultimately Periodic Words**

 β is effectively profinitely ultimately periodic

I will give a finite monoid M and a morphism $h: \Gamma^* \to M$







Increasing function $f: \mathbb{N} \to \mathbb{N}$ is Effectively PUP if the sequence $0^{f(1)-f(0)}, 0^{f(2)-f(1)}, \dots$ is Effectively PUP

Delilah's Dream Run: Composition

Consider effectively PUP functions $f_1, ..., f_d$ $\beta \in \{0,1,\dots,d\}^{\omega}$

$$\beta(n) = j \text{ if } n \in \text{Im}(f_1 \circ \cdots \circ f_j) \text{ but } n \notin \text{Im}(f_1 \circ \cdots \circ f_{j+1})$$

E.g.
$$f_1(n) = n^2$$
, $f_2(n) = 2^n$, $\beta(n) \ge 1$ for squares, $\beta(n) = 2$ for powers of 4, $\beta = 12002000010\cdots$

How do your victories for n^2 , 2^n compose?

Let
$$\beta^{(0)} = \beta$$
, $\beta^{(j)} \in \{j, ..., d\}^{\omega}$, and express
$$\beta^{(j)} = j^{f_{j+1}(0)} \cdot \beta^{(j+1)}(0) \cdot j^{f_{j+1}(1) - f_{j+1}(0) - 1} \cdot \beta^{(j+1)}(1) \cdot \cdots$$
 e.g. $\beta^{(1)} = 1221211112 \cdots$, $\beta^{(2)} = 2222 \cdots$

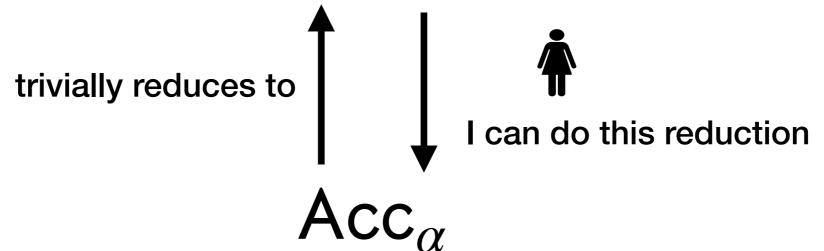
 $\mathrm{Acc}_{eta^{(j)}}$ reduces to $\mathrm{Acc}_{eta^{(j+1)}}$, and the chain proves Acc_{eta} decidable

Characteristic word $\langle \mathbb{N}; <, Pow_2, Pow_3 \rangle$

$$\beta = \binom{0}{0} \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{0}{1} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{0}{1} \binom{0}{1} \binom{0}{0} \cdots$$

Acceptance Problem

 $Acc_{\beta} := Is the run of a given automaton <math>\mathscr{A}$ on β (Muller) accepting?



Order word

$$\alpha = \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{0}{1} \cdots$$

$\alpha \in \Sigma^{\omega}, \beta \in \Gamma^{\omega}$, and Samson v. Delilah

I will give a finite monoid M and a morphism $h: \Gamma^* \to M$

The factorisation is $\beta = 0^{k_0}\alpha(0) \cdot 0^{k_1}\alpha(1) \cdot \cdots$ I respond with a transducer $\mathcal B$

To win, you need $\mathscr{B}(\alpha) = h\left(0^{k_0}\alpha(0)\right) \cdot h\left(0^{k_1}\alpha(1)\right) \cdots$ What is your plan to track $h\left(0^{k_j}\right)$?

Modular arithmetic! For any fixed p, I know what the current letter of α corresponds to, mod p I can thus deduce how many intervening 0's there are, modulo p

But not all monoids are cyclic

I can easily find N, p such that $h(0^n) = h(0^{n+p}) \text{ for all } n \ge N$

$$h(0^n) = h(0^{n+p})$$
 for all $n \ge N$

The plan to use periodicity can come undone... But don't you need a sparsity condition? What if $k_j < N$?

This happens only finitely many times, which I can moreover enumerate

Corollary of Baker's Theorem

For all $N \in \mathbb{N}$, the inequality in n, m

$$|2^n - 3^m| \leq N$$

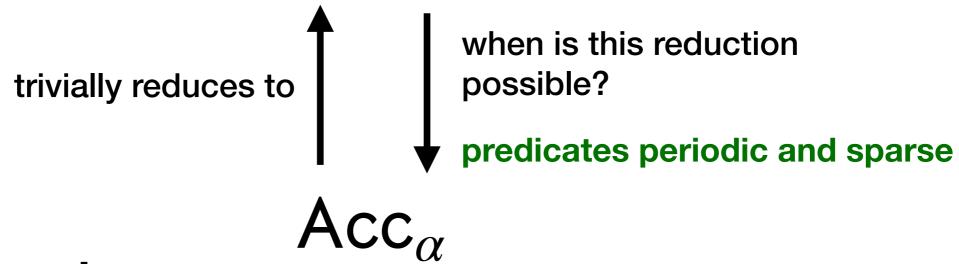
has finitely many solutions which can moreover be effectively enumerated.

Characteristic word

$$\beta = \binom{0}{0} \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{0}{0} \binom{1}{0} \binom{0}{1} \binom{0}{0} \cdots$$

Acceptance Problem

 $Acc_{\beta} := Is the run of a given automaton <math>\mathscr{A}$ on β (Muller) accepting?



Order word

$$\alpha = \binom{1}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{0}{1} \cdots$$

Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

Turing-equivalent for sparse, periodic predicates

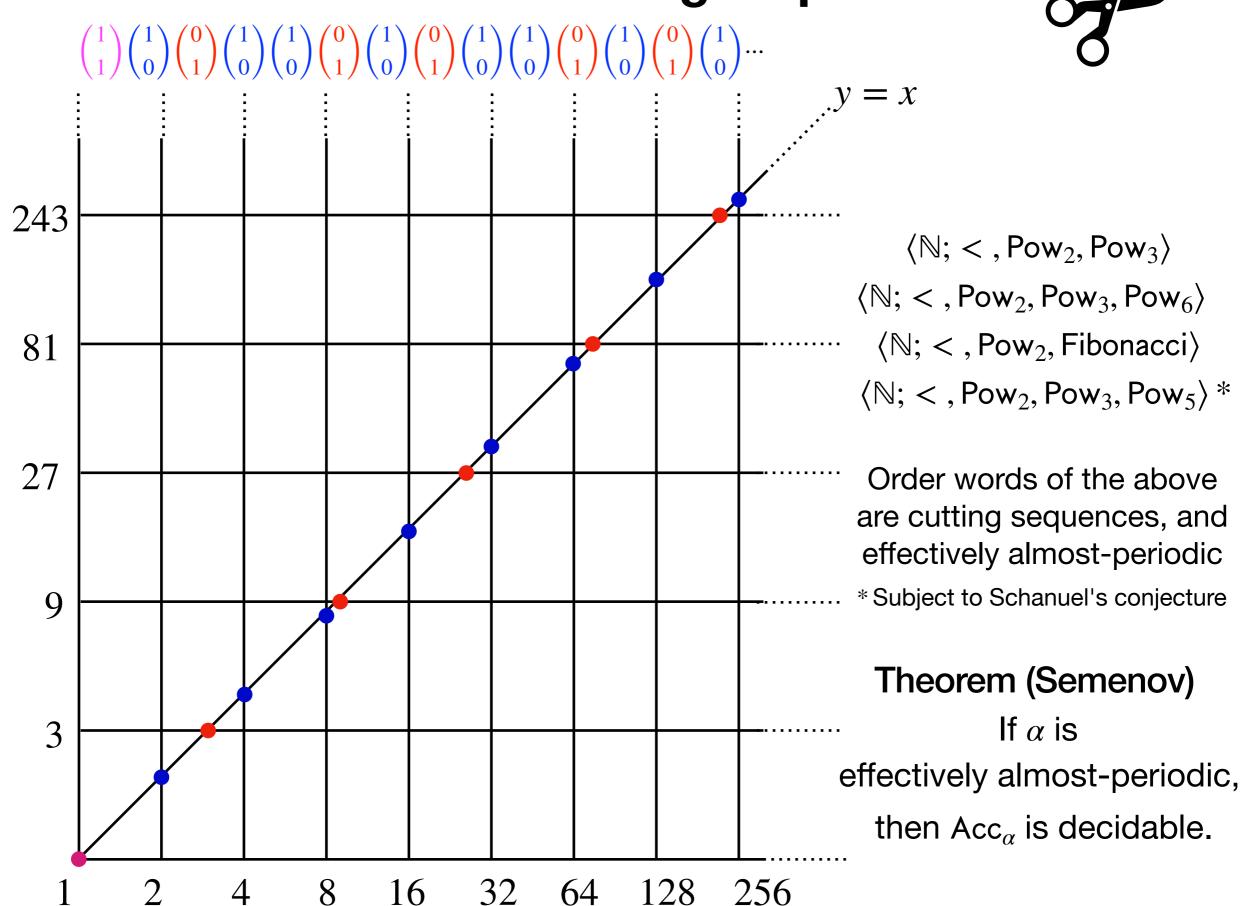
$$\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3 \rangle$$

 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Fibonacci} \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Squares} \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Factorials} \rangle$

A given automaton accepts the order word

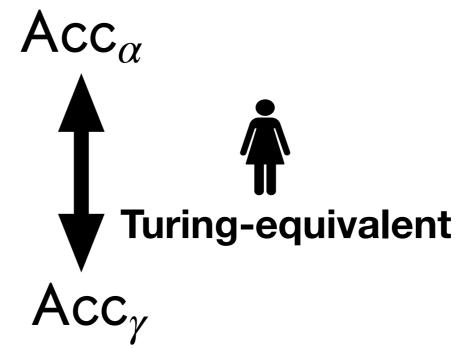
Order words are often traces of dynamical systems, and have nice combinatorial properties

Some order words are cutting sequences



Some order words are driven by numeration systems

 α is the order word of $\langle \mathbb{N}; \langle , Pow_2, Squares \rangle$



 γ is the binary expansion of $\sqrt{2}$

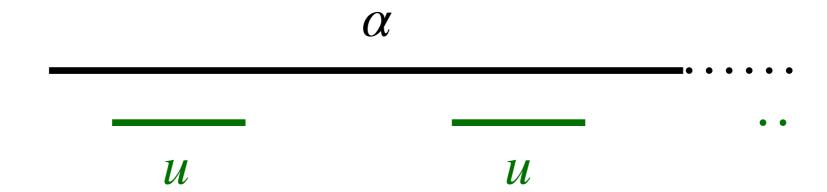
$$\sqrt{2} = 1.0110101000001001111001...$$

This chaotic-looking string is conjectured to be weakly normal

Weak Normality: Predictability in Chaos

$$\sqrt{2} = 1.0110101000001001111001...$$

A word $\alpha \in \Sigma^{\omega}$ is weakly normal if every $u \in \Sigma^+$ occurs as a factor of α infinitely often.



If α is weakly normal then Acc_{α} is decidable.

Proof: Murphy's Law

Anything that can happen, will happen.

Consider the graph induced by the automaton

Fact 1

For any bottom strongly connected component (SCC) S, there exists $u_{\text{tour}} \in \Sigma^+$ such that starting in any $q \in S$ and reading u_{tour} is guaranteed to visit all states in S

Fact 2

For any non-bottom SCC S, there exists $u_{\rm esc} \in \Sigma^+$ such that starting in any $q \in S$ and reading $u_{\rm esc}$ is guaranteed to end in a state not in S

Inference

The set of states visited infinitely often by the run on a weakly normal word is precisely a bottom SCC.

Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

Turing-equivalent for sparse, periodic predicates

$$\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3 \rangle$$

 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Fibonacci} \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Squares} \rangle$
 $\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Factorials} \rangle$

A given automaton accepts the order word

Order words are often traces of dynamical systems, and have nice combinatorial properties

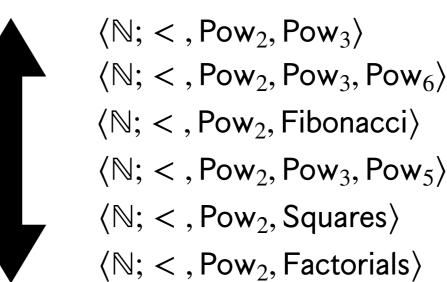
Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

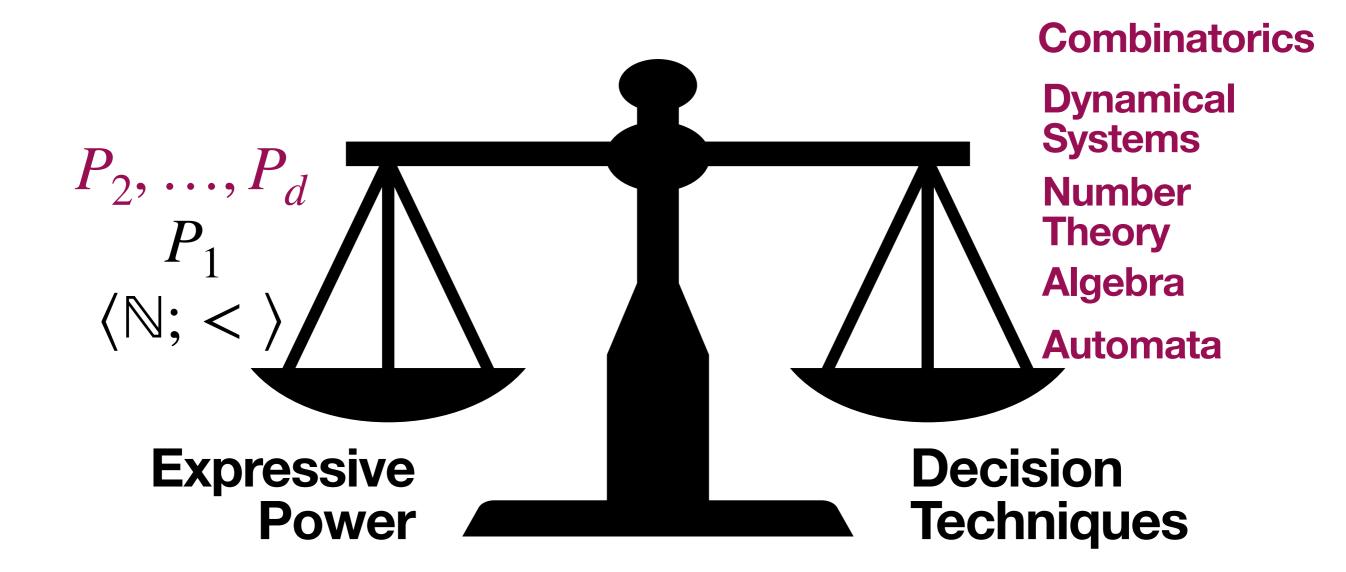
Turing-equivalent for sparse, periodic predicates



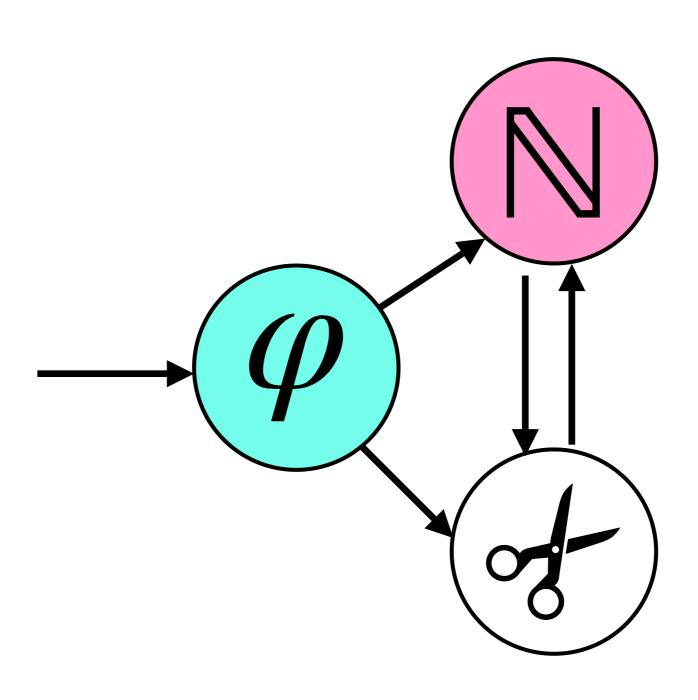
A given automaton accepts the order word

```
 \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3 \rangle \qquad \qquad \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Squares} \rangle * * \\ \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle \qquad \qquad \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Factorials} \rangle ? \\ \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Fibonacci} \rangle \qquad * \mathsf{Subject to Schanuel's conjecture} \\ \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle * \qquad * \mathsf{Assuming the binary expansion of } \sqrt{2} \\ \text{is weakly normal}
```

Our contribution



Thank You!



Thank You!

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

Turing-equivalent for sparse, periodic predicates


```
\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3 \rangle

\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle

\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Fibonacci} \rangle

\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle

\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Squares} \rangle

\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Factorials} \rangle
```

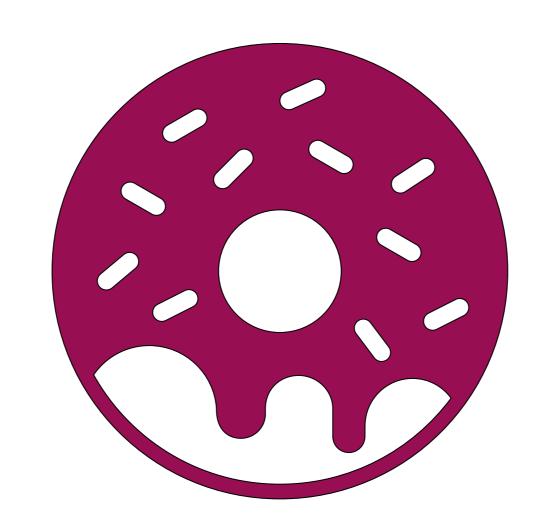
A given automaton accepts the order word

```
\langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3 \rangle \qquad \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Squares} \rangle^{**} \\ \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_6 \rangle \qquad \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Factorials} \rangle^{?} \\ \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Fibonacci} \rangle \qquad *Subject to Schanuel's conjecture \\ \langle \mathbb{N}; <, \mathsf{Pow}_2, \mathsf{Pow}_3, \mathsf{Pow}_5 \rangle^{*} \qquad *Assuming the binary expansion of <math>\sqrt{2} is weakly normal
```

Schanuel's Conjecture

Given any n complex numbers $z_1, ..., z_n$ that are linearly independent over the rational numbers \mathbb{Q} , the field extension $\mathbb{Q}(z_1, ..., z_n, e^{z_1}, ..., e^{z_n})$ has transcendence degree at least n over \mathbb{Q} .

We need a donut.



More technically, a torus

Order word through a compact dynamical system

A point starts at \mathbf{O} and travels around torus in steps of $\log_3 2$

arc length $\log_3 2 \approx 0.63$ $\mathbf{P_2}$ 0 P_3

circumference 1

Number line perspective

one revolution \equiv triple the number arc $\theta \equiv 3^{\theta} \times$

one step \equiv double the number trajectory \equiv powers of 2 cross $\mathbf{O} \equiv$ cross a power of 3

purple arc
$$\equiv \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

blue arc
$$\equiv \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdots$$