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Research questions can often be exposed
through playful riddles

Are there infinitely many 7, m such that:

1. nis apower of 3; m is a power of 2

2. The units place digits of n, m are 9, 8 respectively

3. m is the smallest power of 2 larger than n, and
their difference is at least 100

n=4782969, m = 8388603
. ?



The riddle is an example of
how we can push the expressive limits of

Monadic Second-Order (MSO) Theory of
the natural numbers with order

(N; <)



But what is MSO Logic?

(over the structure of the natural numbers with order)

Statements in MSO logic have two kinds of
variables: those that refer to numbers,
and those that refer to sets of numbers



So why is MSO Logic important?

To practitioners:
for its ability to serve as a framework to reason about
systems’ execution traces

To theoreticians:
for its profound connections to formal language theory,
and its place at the frontiers of decidability



Our research question

What expressive power can be added to the
MSO Theory of the natural numbers with order
while retaining its decidability”?



MSO Theory of (N; <)

X =Y
“(x <y) Ay < Xx)



MSO Theory of (N; <)

x =0

Vy. x <y

y = x+1

x<yA-dz.(x<z<Yy)



MSO Theory of (N; <)

Variables can refer to numbers x, ), ...

ortosets X, Y ... of numbers

The logic allows us to express that
X is an element of X

X is the empty set
Vy.y& X



MSO Theory of (N; <)
XCY

Vi.xceX=>xeY)

X has infinitely many elements

Vix.dy. x<yAy€X)



MSO Theory of (N; <)

Second-Order variables X, Y, ... allow us to
define some interesting unary predicates

X IS even

X.xeXAN0eXAVy. e X y+]l € X))



MSO Theory of (N; < ): Sentences

Variables occurring in a formula are either
free or bound to a quantifier

A formula with only bound variables iIs
called a sentence

VX.(dx.x e X) => (EIx.xEX/\‘v’y.(y cX=>x Sy))
Every non-empty set has a minimum element



Deciding an MSO Theory

VX.(dx.x e X) = (EIx.xEX/\‘v’y.(y eEX=>x Sy))
Every non-empty set has a minimum element

Buchi (1962) showed how to decide:

Context MSO Theory of (N; <)

Input A sentence

Output Whether the input sentence is true
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Expanding the MSO Theory of (N; < )

However, the expressive power is hot enough
to assert, for instance:

X Is a perfect square

X is a power of 2

Adding such predicates results in an
expanded theory (N; < ,P;,...,P,)



Deciding expanded MSO Theories
[Elgot and Rabin, 1966]

It iIs known how to decide:

Context MSO Theory of (N; <, Pow,)
Input A sentence
Output Whether the input sentence is true
and also:
Context MSO Theory of (N; <, Pows)
Input A sentence

Output Whether the input sentence is true




State of the art
[Carton and Thomas, 2002]
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Sentence in MSO Theory of m
(N; <, Pow,, Pows)
There are infinitely many », m such that:
Vxdndm.x<n<mA...

n Is a power of 3; m is a power of 2

n € Pows A m € Pows A ...

The units place digits of n, m are of 9, 8 respectively
n € Unitsg A m € Unitsg A ...

m IS the smallest power of 2 larger than #,
and their difference is at least 100

(n+100 < m) A—-dk.(k € Powy, An < k < m)



We show that...

The MSO Theory of (N; <, Pow,, Pows) is decidable.

Context MSO Theory of (N; <, Pow,, Pows)

Input A sentence

Output Whether the input sentence is true
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Sentence holds in Theory

@ (N; <,Pow,, Pows)

Turing-equivalent

Due to Buichi, McNaughton, ...

00000000

OGO )

Automaton accepts characteristic word



Characteristic word (N; <, Pow,, Pows)

£ = () (060066 6) 6 6)(0) 6)-

Acceptance Problem

Accg := Is the run of a given automaton & on g
(Muller) accepting?

trivially reduces to T

Acc,,

Order word

a= (1)) ()06 ()06 )6)6)G)-



Our order word is a cutting sequence

HOOEOHOAECNE:

243 .........

81 .........

27 .........

1 2 4 8 16 32 64 128 256



Cutting sequences are almost-periodic:
a crucial combinatorial property

For every finite word w, there exists R € N such that either:

1) w does not occur in the suffix a(R)---

R

w

Our «a is effectively almost-periodic, because we can compute R(w)

Theorem (Semenov)

If o Is effectively almost-periodic, then Acc, is decidable.



Characteristic word (N; <, Pow,, Pows)

B= ) ()6)()06) (6) 6) () () (1) (o)

Acceptance Problem

Accg := Is the run of a given automaton & on g
(Muller) accepting?

. when is this reduction
trivially reduces to :
possible?

Acc,,

Order word

a=(1){e)() () ) (1)) (1)) ) ()



a e X’ f el and Samson v. Delilah

'ﬂ' | will give a finite monoid M and a morphism A : T"* > M

[ J
“ | respond with a transducer % and a factorisation g = ugu,---

'n‘ | consider the words y; = %B(a), y, = h(ug)h(u,)---

If Delilah always wins, then Accg reduces to Acc,, .



Monoids describe Automata
Word uQu(l)---u(—-1)elI™*

u@©)  w(l)  u@ -1
Run 4 =Ty =171 = = = Ig =4

(4 q; {ri, .. re})

Journey from to via set of states

A word defines a function from states to journeys

u(g;) = (4 d;s Vi) V(Qj) = <q]'9 > V2)

Composition

vou(q;) = uv(q;) = (%’» G, V1 U V2>

The functions form a finite monoid M, the map /
from words to functions naturally defines a morphism



From natural monoids to automaton acceptance
p=ugu;-- €', aex? A = (0, g, I, 6, Muller(F))
B =R, 1.2, M35 y = B(a) = h(ug)h(u,)--- € M®

A= (0, g 2, 0", Muller(F7))
The run of &/’ on a gives a sequence of journeys
made by & on

O =0x%x2¢%R
Gt = (Ginit> L }> Tinit)

6'({q1> V1, 11), 6) = (qa, V>, 1) Where
AB prints my---m,_, € M* upon reading o In state r, and moves to r,
My-My- My =meM m(q,) = (q1> 4 V2)



The run of &/’ on a gives a sequence of journeys
made by & on

a(0) a(l)
<qinit’ {1 rinit> > <C]1a Vi, ”1> > <C]2a Vs, ”2>
h(ug)---h(u; ) h(u; )--h(u; _)
apply to g, apply to g,
<Qinit» q1 V1> <C]1a 47, V2>

A state is visited infinitely often if and only if
infinitely many journeys traverse through it

Fre#F < U VieF
(q,V,r)EF"

of accepts p iff &/’ accepts a



a e X’ f el and Samson v. Delilah

'ﬂ' | will give a finite monoid M and a morphism A : T"* > M

[ J
“ | respond with a transducer % and a factorisation g = ugu,---

'n‘ | consider the words y; = %B(a), y, = h(ug)h(u,)---

If Delilah always wins, then Accg reduces to Acc,, .



Winning Ways: Transduction

p = 9 (a) for some transducer &f

'ﬂ' | will give a finite monoid M and a morphism h: T"* > M

@
@ | factorise f = uyu,--- such that & prints u, upon reading a(n)
and construct % as ho o

w Indeed, JB(a) = h(uo)h(ul)

@
T Accg reduces to Acc,.



Winning Ways:
Effectively Profinitely Ultimately Periodic Words
p is effectively profinitely ultimately periodic

'ﬂ‘ | will give a finite monoid M and a morphism A : T"* - M

By definition, | can factorise = uyu,--- such that

§

h(uy)h(u,)--- is effectively ultimately periodic

'ﬁ‘ It is then straightforward for you to construct &%
such that %(0”) = h(uy)h(u,)---

@
B Acc,is decidable

Increasing function f: N — N is Effectively PUP if the sequence
o/~ /@~ is Effectively PUP



Delilah’s Dream Run: Composition

Consider effectively PUP functions £, ..., f,
pe{0,.1,...,d}"
pn) =jifne€lm(fye-of) butn & Im(f o of )

@ E.g. fi(n) = n%, f,(n) =2", p(n) > 1 for squares,
p(n) = 2 for powers of 4, f = 12002000010---

'n'l How do your victories for n2, 2" compose?

Let s =B, pU) € {j,...,d}*, and express
ﬂ(j) =j1§+1(0) .ﬂ(j+1)(()) .jJ§+1(1)—J§+1(0)—1 .ﬂ(j+1)(1) -

e.g. pV = 122121112.--, f® = 2222...

I'n1 Accgi) reduces to Accsi+n, and the chain proves Accy decidable



Characteristic word (N; <, Powsy, P0W3>
0

5= 0ONOOOOO0E-

Acceptance Problem

Accg := Is the run of a given automaton & on g
(Muller) accepting?

trivially reduces to @
| can do this reduction
Acc,,

Order word

@ = (1)(0) (1)) ) () ()66 G)-



a e X’ f el and Samson v. Delilah

'n' | will give a finite monoid M and a morphism i : T"'* - M

The factorisation is # = 0%a(0) - 0%a(1) - ---
| respond with a transducer &%

§

,ﬁ, To win, you need %(a) = h (0%a(0)) - h (0M1a(1))---
What is your plan to track # (O"f) ?

. Modular arithmetic! For any fixed p, | know what
@ the current letter of a corresponds to, mod p
| can thus deduce how many intervening

0's there are, modulo p



'“‘ But not all monoids are cyclic

e | can easily find N, p such that
@ h(0™) = h(0"P) foralln > N

'ﬁ‘ The plan to use periodicity can come undone...
But don't you need a sparsity condition? What if k&, < N7?

@ This happens only finitely many times,

which | can moreover enumerate

Corollary of Baker’s Theorem

For all N € N, the inequality in n, m
12" = 3" <N

has finitely many solutions which can moreover be effectively enumerated.



Characteristic word

£= () 06066 6)6) (6) () ()

Acceptance Problem

Accg := Is the run of a given automaton & on g
(Muller) accepting?

when is this reduction
trivially reduces to possible?

predicates periodic and sparse

Acc,,

Order word

a=(1){e)() () ) (1)) (1)) ) ()



Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

(N; <

(N; <

Turing-equivalent (N: <
for sparse, periodic ’

predicates (N; <

(N; <

(N; <

, Pow,, Pow3)

, Pow,, Pows, Powg)
, Pow,, Fibonacci)

, Pow,, Pow;, Pows)
, Pow,, Squares)

, Pow,, Factorials)

A given automaton accepts the order word

Order words are often traces of dynamical systems,
and have nice combinatorial properties



Some order words are cutting sequences : (,

OO0

243 .........
(N; <, Pow,, Pows)

(N; <, Pow,, Pows, Powg)
{1 —T— 1T T T 1T T 1" (N; < , Pow,, Fibonacci)
(N; <, Pow,, Pows, Pows) *

2T T T T T AT T 1 Order words of the above
are cutting sequences, and
effectively almost-periodic

Ob————1+—4¢—F—F+—F+—T1+—1 * Subject to Schanuel's conjecture

Theorem (Semenov)

3 ......... |f o iS
effectively almost-periodic,

then Acc, is decidable.

1 2 4 8 16 32 64 128 256



Some order words are driven by
numeration systems

a Is the order word of (N; < , Pow,, Squares)

Acc,,

)

Turing-equivalent

Acc
y IS the binary expansion of \/5

Y

/2 = 1.0110101000001001111001...

This chaotic-looking string is conjectured to be
weakly normal



Weak Normality:
Predictability in Chaos

v/2 = 1.0110101000001001111001...

A word a € 2“ Is weakly normal if
every u € X% occurs as a factor of a infinitely often.

04

If a is weakly normal then Acc, is decidable.



Proof: Murphy’s Law
Anything that can happen, will happen.

Consider the graph induced by the automaton

Fact 1

For any bottom strongly connected component (SCC) S, there exists
u,.,, € £ such that starting in any ¢ € S and reading u,,,,
IS guaranteed to visit all states in §

Fact 2

For any non-bottom SCC §, there exists
u,.. € £+ such that starting in any ¢ € S and reading u
IS guaranteed to end in a state not in S

€SsC

Inference

The set of states visited infinitely often by the run
on a weakly normal word is
precisely a bottom SCC.



Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

(N; <

(N; <

Turing-equivalent (N: <
for sparse, periodic ’

predicates (N; <

(N; <

(N; <

, Pow,, Pow3)

, Pow,, Pows, Powg)
, Pow,, Fibonacci)

, Pow,, Pow;, Pows)
, Pow,, Squares)

, Pow,, Factorials)

A given automaton accepts the order word

Order words are often traces of dynamical systems,
and have nice combinatorial properties



Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word
(N; <, Pow,, Pows)

Turing-equivalent (N; <, Pow,, Pows, Powg)

for sparse, periodic (N; <, Pow,, Fibonacci)

predicates (N; < , Pow,, Pows, Pows)
(N; <, Pow,, Squares)

(N; <, Pow,, Factorials)

A given automaton accepts the order word

(N; <, Pow,, Pows) (N; <, Pow,, Squares) * *
(N; <, Pow,, Pows, Powg) (N; <, Pow,, Factorials)?
(N; <, Pow,, Fibonacci) * Subject to Schanuel's conjecture

* Assuming the binary expansion of \/5
(N; <, Pow,, Pows, Pows) * is weakly normal
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Thank You!

@@D
+



Thank You!

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word
(N; <, Pow,, Pows)

Turing-equivalent (N; <, Pow,, Pows, Powg)

for sparse, periodic (N; <, Pow,, Fibonacci)

predicates (N; < , Pow,, Pows, Pows)
(N; <, Pow,, Squares)

(N; <, Pow,, Factorials)

A given automaton accepts the order word

(N; <, Pow,, Pows) (N; <, Pow,, Squares) * *
(N; <, Pow,, Pows, Powg) (N; <, Pow,, Factorials)?
(N; <, Pow,, Fibonacci) * Subject to Schanuel's conjecture

* Assuming the binary expansion of \/5
(N; <, Pow,, Pows, Pows) * is weakly normal



Schanuel’s Conjecture

Given any n complex numbers zi, ..., z, that are linearly independent over
the rational numbers Q, the field extension Q(zi, ..., zn, €4, ..., €%y

has transcendence degree at least n over Q.


https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Rational_number
https://en.wikipedia.org/wiki/Field_extension
https://en.wikipedia.org/wiki/Transcendence_degree

We need a donut.

More technically, a torus



Order word through a compact dynamical system

A point starts at O and travels
around torus in steps of log; 2

arc lengthlog;2 ~ 0.63

circumference 1

Number line perspective

one revolution = triple the number

arc 0 = 3% x
one step = double the number

trajectory = powers of 2

cross O = cross a power of 3

urple arc = U 1
purp =\ 0
1
bluearcs<>
0

-0 06O



