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Research questions can often be exposed
through playful riddles

Are there infinitely many 7, m such that:

1. nis apower of 3; m is a power of 2

2. The units place digits of n, m are 9, 8 respectively

3. m is the smallest power of 2 larger than n, and
their difference is at least 100

n=4782969, m = 8388603
. ?



The riddle is an example of
how we can push the expressive limits of

Monadic Second-Order (MSO) Theory of
the natural numbers with order

(N; <)



But what is MSO Logic?

(over the structure of the natural numbers with order)

Statements in MSO logic have two kinds of
variables: those that refer to numbers,
and those that refer to sets of numbers



So why is MSO Logic important?

To practitioners:
for its ability to serve as a framework to reason about
systems’ execution traces

To theoreticians:
for its profound connections to formal language theory,
and its place at the frontiers of decidability



Our research question

What expressive power can be added to the
MSO Theory of the natural numbers with order
while retaining its decidability”?



MSO Theory of (N; <)

X =Y
“(x <y) Ay < Xx)



MSO Theory of (N; <)

x =0

Vy. x <y

y = x+1

x<yA-dz.(x<z<Yy)



MSO Theory of (N; <)

Variables can refer to numbers x, ), ...

ortosets X, Y ... of numbers

The logic allows us to express that
X is an element of X

X is the empty set
Vy.y& X



MSO Theory of (N; <)
XCY

Vi.xceX=>xeY)

X has infinitely many elements

Vix.dy. x<yAy€X)



MSO Theory of (N; <)

Second-Order variables X, Y, ... allow us to
define some interesting unary predicates

X IS even

X.xeXAN0eXAVy. e X y+]l € X))



MSO Theory of (N; < ): Sentences

Variables occurring in a formula are either
free or bound to a quantifier

A formula with only bound variables iIs
called a sentence

VX.(dx.x e X) => (EIx.xEX/\‘v’y.(y cX=>x Sy))
Every non-empty set has a minimum element



Deciding an MSO Theory

VX.(dx.x e X) = (EIx.xEX/\‘v’y.(y eEX=>x Sy))
Every non-empty set has a minimum element

Buchi (1962) showed how to decide:

Context MSO Theory of (N; <)

Input A sentence

Output Whether the input sentence is true
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Expanding the MSO Theory of (N; < )

However, the expressive power is hot enough
to assert, for instance:

X Is a perfect square

X is a power of 2

Adding such predicates results in an
expanded theory (N; < ,P;,...,P,)



Deciding expanded MSO Theories
[Elgot and Rabin, 1966]

It iIs known how to decide:

Context MSO Theory of (N; <, Pow,)
Input A sentence
Output Whether the input sentence is true
and also:
Context MSO Theory of (N; <, Pows)
Input A sentence

Output Whether the input sentence is true




State of the art
[Carton and Thomas, 2002]
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Sentence in MSO Theory of m
(N; <, Pow,, Pows)
There are infinitely many », m such that:
Vxdndm.x<n<mA...

n Is a power of 3; m is a power of 2

n € Pows A m € Pows A ...

The units place digits of n, m are of 9, 8 respectively
n € Unitsg A m € Unitsg A ...

m IS the smallest power of 2 larger than #,
and their difference is at least 100

(n+100 < m) A—-dk.(k € Powy, An < k < m)



We show that...

The MSO Theory of (N; <, Pow,, Pows) is decidable.

Context MSO Theory of (N; <, Pow,, Pows)

Input A sentence

Output Whether the input sentence is true
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Sentence holds in Theory

@ (N; <,Pow,, Pows)

Turing-equivalent

Due to Buichi, McNaughton, ...

00000000

OGO )

Automaton accepts characteristic word



Characteristic word

@ = (o) (1)) (1)) (0) () (o) (6) (1) (o)

Acceptance Problem

Acc, := Does the run of a given automaton & on «
visit state ¢ infinitely often?

. when is this reduction
trivially reduces to :
possible?

Acc,
Order word

o’ = (1)(0)(1)(0) () () (o) (1) (0) ) ()



Reduction: Idea

Construct &’ such that the run of &’ on o’
simulates the run of & on a



Automata are inherently periodic

0 = ...()fj.a’[j]... (0)

¢
small Lﬂj large Q
/ \ stem T ()
stem loop Q
ki=1¢; k;=¢; mod p,,



Our predicates are sparse

For our predicates,
we can compute n, such that for all j > n_,

¢; Is large enough to enter a loop in </

Corollary of Baker’s Theorem

For all N € N, the inequality in n,m
12" = 3" <N

has finitely many solutions which can moreover be effectively enumerated.



The simulation only nheeds modular arithmetic

a = ...ij . a’[]]

stem loop

first n, blocks infinite suffix



Our predicates are periodic

As an example, let p_, = 10

What remainders do the powers of 2
leave when divided by 107

(1, 2, 4, 8, 16, 32, 64, 128, 256,...)
Remainders eventually cycle between 2, 4, 8, 6

Similarly, remainders left by the powers of 3
cycle between 1, 3, 9, 7

The pattern is eventually periodic for any p,

We use this to track £; mod p,,



How do we track #;mod p,? a=--0"-alj]--
We keep track of:

A) The remainder left by the last seen power of 2
e.g. 512 =2 mod 10

B) The remainder left by the last seen power of 3
e.g. 729 =9 mod 10

C) The remainder left by the last seen letter a’[j — 1]
e.g. 729 =9 mod 10

Upon reading the current letter a’[j]:

1) The letter indicates whether it is a power of 2 or 3
e.g. 1024 =219

2) Our memory lets us deduce its remainder
e.g. 1024 = 4 mod 10, because 4 follows 2 in the cycle

3) Our memory lets us deduce ¢; mod p,
e.g.¢;=4-9-1)mod 10 =4 mod 10



Characteristic word

@ = (o) (1)) (1)) (0) () (o) (6) (1) (o)

Acceptance Problem

Acc, := Does the run of a given automaton & on «
visit state ¢ infinitely often?

when is this reduction
trivially reduces to possible?

predicates periodic and sparse

Acc,
Order word

o’ = (1)(0)(1)(0) () () (o) (1) (0) ) ()



Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word

Turi alent (N; <, Pow,, Pows)

uring-equivalen .

for sparse, periodic (N; <, Pow, Pf’w% PO‘.”6>

predicates (N; <, Pow,, Fibonacci)
(N; <, Pow,, Pows, Pows)
(N; <, Pow,, Squares)

A given automaton accepts the order word



Our order word is a cutting sequence

HOOEOHOAECNE:

243 .........

81 .........

27 .........

1 2 4 8 16 32 64 128 256



Cutting sequences are almost-periodic:
a crucial combinatorial property

For every finite word w, there exists R € N such that either:

1) w does not occur in the suffix a’[R...]

R

Our o’ is effectively almost-periodic, because we can compute R(w)



Theorem (Semenov)

If o’ is effectively almost-periodic, then Acc, is decidable.



Deciding whether...

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word
(N; <, Pow,, Pows)

Turing-equivalent (N; <, Pow,, Pows, Powg)

for sparse, periodic (N; <, Pow,, Fibonacci)

predicates (N; < , Pow,, Pows, Pows)
(N; <, Pow,, Squares)

(N; <, Pow,, Factorials)

A given automaton accepts the order word

(N; <, Pow,, Pows) (N; <, Pow,, Squares) * *
(N; <, Pow,, Pows, Powg) (N; <, Pow,, Factorials)?
(N; <, Pow,, Fibonacci) * Subject to Schanuel's conjecture

* Assuming the binary expansion of \/5
(N; <, Pow,, Pows, Pows) * is weakly normal
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Thank You!

@@D
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Thank You!

A given sentence holds in a theory

Turing-equivalent

A given automaton accepts the characteristic word
(N; <, Pow,, Pows)

Turing-equivalent (N; <, Pow,, Pows, Powg)

for sparse, periodic (N; <, Pow,, Fibonacci)

predicates (N; < , Pow,, Pows, Pows)
(N; <, Pow,, Squares)

(N; <, Pow,, Factorials)

A given automaton accepts the order word

(N; <, Pow,, Pows) (N; <, Pow,, Squares) * *
(N; <, Pow,, Pows, Powg) (N; <, Pow,, Factorials)?
(N; <, Pow,, Fibonacci) * Subject to Schanuel's conjecture

* Assuming the binary expansion of \/5
(N; <, Pow,, Pows, Pows) * is weakly normal
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We need a donut.

More technically, a torus



Order word through a compact dynamical system

A point starts at O and travels
around torus in steps of log; 2

arc lengthlog;2 ~ 0.63

circumference 1

Number line perspective

one revolution = triple the number

arc 0 = 3% x
one step = double the number

trajectory = powers of 2

cross O = cross a power of 3

urple arc = U 1
purp =\ 0
1
bluearcs<>
0

-0 06O



