
Corrections to the paper:
Overcoming Memory Weakness with Unified Fairness

[Published] Abdulla, P.A., Atig, M.F., Godbole, A., Krishna, S., Vahanwala, M. (2023). Overcoming Memory Weakness with Unified Fairness. In:
Enea, C., Lal, A. (eds) Computer Aided Verification. CAV 2023. Lecture Notes in Computer Science, vol 13964. Springer, Cham. https://doi.org/
10.1007/978-3-031-37706-8_10
[Full version] Abdulla, P.A., Atig, M.F., Godbole, A., Krishna, S., Vahanwala, M.: Overcoming memory weakness with unified fairness (2023).
https://arxiv.org/abs/2305.17605

Parosh Abdulla

Mohamed Faouzi Atig

Adwait Godbole

Shankaranarayanan Krishna

Mihir Vahanwala

https://doi.org/10.1007/978-3-031-37706-8_10
https://doi.org/10.1007/978-3-031-37706-8_10
https://arxiv.org/abs/2305.17605

The inaccuracy

In Section 3.3 of the paper, and subsequently in Appendix A, we
discuss the instantiation of the framework to various memory models.

However, the instantiations to FIFO and RMO are incorrect, and
misrepresent the models. This was due to misunderstandings, for
which we apologise.

It is also worth remarking here that the framework, as presented in the
paper, applies only to models that prohibit reads from racing. The
framework cannot be applied as is to models such as RMO and ARM.

However, this error does not take away from the main
contribution of the paper, viz. identifying a perspective that
naturally lends itself to reasonable and algorithmically amenable
definitions of fairness and thus lays the foundation for the verification
of liveness in the setting of weak memory.

Sketching an extension of the framework

In order to handle models like RMO and ARM, where reads are
allowed to race (however, writes by the same process to the same
variable still do not race), the framework can be augmented by a data
structure that keeps a (heap-like) buffer of pending reads, with some
constraints to keep track of which overtakes are prohibited by
dependencies caused by program semantics.

In a transition, a pending read can be popped from the top of the
(heap-)buffer, and justified using a write in a message channel visible
to the process.

This retains the ideas central to the fairness definitions: we only
need keep track of information that affects the execution’s future
(pending reads, writes yet to become stale), thereby leading to a
notion of configuration size. The arguments that motivate bounding
the configuration size still hold, and hence Section 4, which was the
main novelty, continues to hold as well.

In this document…

Precise corrections to the instantiations, and a discussion of the
correct RMO and ARM, will be conducted in a carefully revised
version

In this document, we shall address the inaccuracies in Section 3.3
of the original.

We specify sources defining the models we consider, briefly justify
relative strengths when comparable, and give litmus tests
demonstrating increasing strength, or incomparability.

Model See for definition and/or alternate semantics

Sequential Consistency
(SC)

[1] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Trans. Comput. C-28,9 (Sept. 1979), 690-691.

Total Store Order (TSO)
[2] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal Musuvathi. 2010. On
the verification problem for weak memory models. SIGPLAN Not. 45, 1 (January 2010), 7–18. https://
doi.org/10.1145/1707801.1706303, [4, Section 8, Appendix D]

Strong Release-Acquire
(SRA)

[3, Sections 3-4] Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent Shared
Memory? ACM Trans. Program. Lang. Syst. 44, 2, Article 8 (June 2022), 55 pages. https://doi.org/
10.1145/3505273

Release-Acquire (RA) [3, Sections 3-4], [5, Section 2.2]

Partial Store Order (PSO)
[4, Section 8, Appendix D] CORPORATE SPARC International, Inc. 1994. The SPARC architecture
manual (version 9). Prentice-Hall, Inc., USA.
[2]

Weak Release-Acquire
(WRA) [3, Sections 3-4]

Strong Coherence
(StrongCOH)

[5, Section 2.3] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis.
2021. Making weak memory models fair. Proc. ACM Program. Lang. 5, OOPSLA, Article 98 (October
2021), 27 pages. https://doi.org/10.1145/3485475

ARM
[6, Sections 4, 6] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc
Maranget. Armed Cats: Formal Concurrency Modelling at Arm. ACM Trans. Program. Lang. Syst. 43, 2,
Article 8 (June 2021), 54 pages. https://doi.org/10.1145/3458926

Relaxed Memory
Ordering (RMO)

[4, Section 8, Appendix D]

FIFO Consistency
[7] Lipton, R., Sandberg, J.: PRAM: a scalable shared memory. Technical report CS-TR-180-88, Princeton University (1988)
[8] Ahamad, M., Neiger, G., Burns, J.E. et al. Causal memory: definitions, implementation, and programming. Distrib Comput 9,
37–49 (1995). https://doi.org/10.1007/BF01784241

https://doi.org/10.1145/1707801.1706303
https://doi.org/10.1145/3505273
https://doi.org/10.1145/3485475
https://doi.org/10.1145/3458926
https://doi.org/10.1007/BF01784241

FIFO

ARM

RMO

StrongCOH

WRA

RA SRA

PSO TSO SC

Relative Strength of Memory Models: An arrow from A to B
denotes that all behaviours of B are allowed by A.

Blue denotes that the underlying reachability is decidable, purple
denotes it is undecidable.

Turquoise arrows indicate that relative strength follows from design.
The orange arrow indicates the enforcement of acquire semantics on reads.
Brown arrows indicate the enforcement of multi copy atomicity on the
memory model.

x = 1 y = 1

a1 = y //1
membar
a2 = x //0
membar
a3 = x //1

b1 = x //1
membar
b2 = y //0
membar
b3 = y //1

(1) {SRA, FIFO}, not {RMO, ARM}

x = 1
y = 1
x = 2
y = 2

a1 = x //1
x = 3
a2 = y //0
a3 = y //2
a4 = x //3

(2) TSO, not FIFO

x = 1
a = x //0

(3) ARM,
not {RMO, FIFO, StrongCOH, WRA}

a1 = x //1
a2 = *a1 //0
y = 1

b1 = y //1
b2 = *b1 //0
x = 1

(4) RMO,
not {ARM, FIFO, StrongCOH, WRA}

x = 1
y = 1

a1 = y //1
a2 = x //0

(5)
PSO, not {FIFO, WRA}

x = 1
a = x //1
y = 1

b1 = y //1
b2 = x //0

(6) FIFO, not WRA

The instruction a = *b reads the data at memory location
whose address is stored in register b into register a

x = 1 x = 2
a1 = x //1
a2 = x //2

b1 = x //2
b2 = x //1

(7) {FIFO, WRA, RMO, ARM}, not StrongCOH

x = 1
y = 2
a = y //1

y = 1
x = 2
b = x //1

(8) RA, not SRA

SC TSO SRA RA PSO WRA StrongCOH ARM RMO FIFO

SC - 2 2 2 2 2 2 3 4 1

TSO X - 1 1 5 1 1 3 4 1

SRA X X - 8 5 7 5 3 4 6

RA X X X - 5 7 5 3 4 6

PSO X X 1 1 - 7 1 3 4 1

WRA X X X X 5 - 5 3 4 6

StrongCOH X X X X X 7 - 3 4 7

ARM X X 1 1 X 1 1 - 4 1

RMO X X 1 1 X 1 1 3 - 1

FIFO X 2 2 2 2 2 2 3 4 -

Entry in Column A, Row B is number j: Litmus test j is allowed by A but prohibited by B

Entry in Column A, Row B is X: Any behaviour allowed by A is also allowed by B

