1 Determinization

Given an w-regular language, it is often very useful to have a deterministic au-
tomaton that recognizes it, e.g., in synthesis we construct the game between
the system and environment from a deterministic automaton that recognizes
the winning plays of the system player. Unfortunately, deterministic Biichi au-
tomata only recognize a strict subset of the class of w-regular languages. In
this chapter, we resolve this shortcoming by introducing parity automata and
Muller automata, whose respective acceptance conditions are more expressive.1
We show that deterministic parity and deterministic Muller automata recognize
precisely the class of w-regular languages. We observe that the complemen-
tation of these deterministic automata to be a straightforward operation, and
establish as a corollary that the class of w-regular languages is closed under
complementation.

1.1 Intuition: Determinization via Subset Tracking

We begin by recalling the classic subset tracking method to determinize finite-
word automata: given a finite-word automaton N = (X,Q,I,T, F), we con-
struct a deterministic finite-word automaton D = (Z,?Q,I ,T',F) that uses
its states to track the subset of states that A could possibly be in, and ac-
cepts if the final state of the run intersects F. More formally, we have that
T'(S1,0,53) holds if and only if Sy = {¢2 | (¢1,0,92) € T and ¢; € S1}, and
F={S|SNF +a}.

This idea, which tracks whether there exists a run that ends in an accepting
state, cannot be naively applied to Biichi automata, for the obvious reason that
accepting runs on infinite words do not end. We use a judicious extension of
this idea to determine, soundly and completely, whether there exists an infinite
run that visits the set of accepting states infinitely often.

Our key insight is as follows:

Lemma 1.1. A Biichi automaton (X,Q, 1, T, BUCHI(F)) accepts a € ¥¥ if and
only if there exist words ug,uq,... € X*\{e}, and sets Sy, S1,952,... C Q such
that So = I and:

1. The infinite concatenation ug - uy - -+ = Q.

2. Foralln, and all gn41 € Sn41, there exists q, € Sy, such that upon reading
Uy, qn has a Tun to q,41 that visits® a state in F.

Enforcing the second requirement is where the idea of subset tracking plays
its part. We prove the lemma before proceeding further.

Proof. Only If. If the automaton accepts the word, then we have an accepting
run, and we can use the infinitely many indices where it visits accepting sets

I This exposition aims to do so in a way that shows the reader (or listener) how they could
have come up with the conditions themselves.
2By “visits”, we mean, “has a transition that enters”.



to identify the factors wug,uq,..., and accordingly choose S7,Ss,... to be the
singleton sets that respectively contain the corresponding state reached in the
run.

If. It is slightly more involved to prove that the word has an accepting
run if the conditions on ug,uy,... and Sy, S1,S2,... are met. For this, given
ug, U1, . .., and Sp, S1, 5%, ..., we construct an infinite graph whose vertices are
UieN,qui (g,%) i.e., the graph has infinitely many partitions, and the i-th par-
tition has vertices corresponding to the states in S;. Edges are drawn only
between consecutive partitions; there is an edge from (gq,%) to (¢’,7 + 1) if and
only if g, upon reading u;, has a run to ¢’ that visits a state in F.

Notice that an accepting run corresponds to an infinite path in the graph
starting at a vertex of the form (g,0). To prove that such a path exists, we show
that the graph contains an infinite, but finitely branching tree rooted at some
vertex of the form (g,0), and apply Konig’s lemma. 3

The required tree is easily seen to exist: by construction of the graph, all
nodes have finitely many successors. Moreover, by the given conditions, all
nodes necessarily have a predecessor. Thus, any node is reachable from some
ancestor in the 0-th partition. Since there are only finitely many vertices in
the 0-th partition, at least one of them must have infinitely many descendants,
giving us an infinite tree.

We can thus conclude that the existence of ug,uq,... and Sy, S1,S5s, ... im-
plies the acceptance of the word. O

1.2 Safra Trees: Hierarchical Subset Tracking

As suggested by Lemma 1.1, the idea to follow runs of (X, Q,I,T, BUCHI(F))
on a € ¥ is to do subset tracking, but with additional book-keeping to mark
checkpoints when each state in the current subset could have been reached
from some state in the previous checkpoint via an accepting state. Without
loss of generality, we shall make the technical assumption that our given Biichi
automaton has a unique distinguished initial state with no incoming transitions,
i.e., I= {qinit}-

We explain the core concepts with a simplified illustration.

We start with a single root instance of subset tracking with the beginning of
the run as its initial checkpoint, and obtain a sequence of sets {ginit} = So, S1, - - -,
where for each i, S;+1 = {q| 3¢’ € S;. (¢',a(i),q) € T}. A checkpoint will have
been reached if for some 5,,, all states in S, can be reached from ¢,;; by a run
that visits an accepting state.

Our need for additional book-keeping thus arises when S,, intersects F' for
some n. If S,, C F, then we can immediately mark a checkpoint for our root;
however this need not always be the case. Let the intersection be Sj C S,,.

At this point, we create a child instance of subset tracking which begins by
recording Sj. The initial checkpoint for the new tracking is the moment of its

3 An important and well-known corollary of Kénig’s lemma is that every infinite but finitely
branching tree has an infinite path.



birth recording Sj: indeed, by construction, all states in S C F can be reached
from ginir by a run that visits an accepting state.

Now, we run both instances of subset tracking. The subsequent combined
trace would be (Sy41,57), (Snt2,5%), ..., where by construction, S; C Sy ;.

Here, S;- is the subset of states of S,,4; which have runs from ginie (the previ-
ous checkpoint of the root instance) that visit an accepting state. What happens
when S}, = S,,1x? This is the moment where all states in the root tracking in-
stance can be reached from an initial state via an accepting state. We hence
mark a checkpoint for the root tracking instance. This is also the moment where
the book-keeping done by the child instance is rendered redundant. Hence, we
delete it.

A few natural questions arise when considering how to generalize this scheme:

e Can the child instance have children of its own? Which tracking instance
is forked when S; intersects F'? The child, the root, or both?

e Is the root tracking instance forked again when S, ; contains an accepting
state that is not in S}?

e Can any tracking instance be adjudged to have reached a checkpoint? If
so, when? What should then happen to its descendant instances?

The general construction records the state of our tracking scheme with a
(Safra) tree whose nodes correspond to tracking instances, and are moreover
ranked by their age. The root instance has rank 1, its oldest child, if it has
children, has rank 2, and so on. Indeed, any instance can have children, and be
adjudged to have reached a checkpoint: its initial checkpoint is its moment of
creation (the root, at creation, only tracks {ginit }; any other instance, at creation,
tracks exclusively accepting states). An instance reaches a checkpoint when
every state it tracks has a run from the previous checkpoint via an accepting
state: as illustrated above, this is what its children will help it determine.

Our first goal towards determinization is to construct a tracking
scheme such that the word has an accepting run if and only if the
scheme, whilst reading the word, creates a tracking instance that
celebrates infinitely many checkpoints.

To ensure that there are only finitely many possible trees, and that they
suffice for our goal, we enforce some invariants.

For any node v, let S be the subset that it is currently tracking, and let
S1, ..., 8% be the subsets its children v1,. .., vy are tracking. We have that:

e S',..., 5% are non-empty and disjoint.

e The union S’ = ST U---U S? is a strict subset of S; if Sy was the subset
that v held at its previous checkpoint, S’ is the set of states g such that
there is a run that visits an accepting state from some state in Sy to q.



Analogously to our illustrative example, if we are to maintain the latter
invariant, when the subset S held in a node v equals the union S’ of the subsets
held in its children, the node v celebrates a checkpoint, and we delete all its
descendants. We now describe how our tracking scheme works for a given Biichi
automaton (X, Q, {ginit}, T, BUCHI(F')) in more detail.

Recall that the state consists of a tree, whose nodes correspond to subset
tracking instances. We define the function tracking that maps nodes to the
subsets they hold. Nodes are ranked by age, and are further annotated with a
flag that indicates whether their corresponding tracking instance is celebrating
a checkpoint. The initial state is a tree with a single celebrating node root, and
tracking(root) = ginit.

Upon reading a letter o, the successor state in our tracking scheme is ob-
tained by performing the following steps (we assume that for loops are traversed
from oldest to youngest node).

1. Mark each node v as not celebrating.
2. For each node v do tracking(v) < {¢' | ¢ € tracking(v) A (¢q,0,q¢") € T}.

3. For each node v, create a fresh child v'; tracking(v’) < tracking(v) N F.
Record v’ to be the youngest node, and flag it to be celebrating.

4. We now ensure that sibling nodes hold disjoint sets: For each node v, and
each node v’ that is a younger sibling of v or a descendant of a younger
sibling of v, do tracking(v’) + tracking(v’) \ tracking(v).

5. For each node v, if tracking(v) = @, delete v (all its descendants are also
guaranteed to be deleted, as they contain subsets of tracking(v)).

6. For each node v, if tracking(v) is equal to the union of the sets held by its
children, then delete all descendants of v, and mark v as celebrating.

The following is seen to hold by construction.

Lemma 1.2. Consider any node v of the tree that records the state of our
tracking scheme, and let vy,...,vq be its children (ordered by age, oldest to
youngest). We have the following invariants:

e tracking(vy),...,tracking(vg) are non-empty and disjoint.

e The union S’ = tracking(vy) U --- U tracking(vq) is a strict subset of
tracking(v); if So was tracking(v) at its previous checkpoint, S’ is the set
of states q such that there is a run that visits an accepting state from some
state in Sy to q.

Definition 1.3. A node is called persistent if it is never deleted. Observe, in
particular, that it is necessarily for a mode to be persistent for it to celebrate
infinitely often.

We are now ready to revisit our first goal.



Lemma 1.4. The automaton N = (2, Q, {qinit, T, BUCHI(F)}) accepts a € £¢
if and only if our corresponding tracking scheme, whilst following o, creates a
node that celebrates infinitely often.

Proof. If. Assume our tracking scheme, whilst following «, creates a node v
that celebrates infinitely often. We shall show that there exist sets {gnit} =
So, 51,52, ... C Q and words ug, u1, ... (whose infinite concatenation equals «)
such that for each i, each state in S;11 has a run on u; to it from some state in
S; that moreover visits a final state. Applying Lemma 1.1 would then establish
the acceptance of a by N.

Indeed, the existence of such sets and words follows directly from the defini-
tion of celebrating checkpoints. The sets Sy (iff v = root), S1, S5 ... are precisely
the outputs tracking(v) at moments where v is celebrating, and ug, u1,... are
the intervening words. If v is not the root node, we take ug be the word that
leads to the creation of v, and have that S; C F.*

Only If. We shall consider an accepting run p = p(0)p(1)--- of N on
«, and prove by contradiction that our tracking scheme must create a node
that celebrates infinitely often whilst reading . Observe that the scheme is
guaranteed to create persistent nodes if there is an accepting run: root is one of
them.

Now, suppose towards a contradiction that all persistent nodes celebrate
only finitely often. Since only finitely many (in fact at most |Q|-many) nodes
can co-exist, there exists an index N at which all persistent nodes have been
created and have finished celebrating, and all non-persistent nodes that were
created before the youngest persistent node have been deleted.

We say that a node v accounts for a state g if ¢ € tracking(v), it accounts
for a run p at time j if p(j) € tracking(v). Given p is accepting, we show that
if a non-celebrating node v eventually always accounts for p, then it has a child
v’ that eventually always accounts for p. Since root always accounts for p and
assumed to be non-celebrating, and all persistent nodes are also assumed to
be non-celebrating, this would imply that there are infinitely many persistent
nodes: a contradiction.

Consider a non-celebrating node v that eventually always accounts for p
(after index N), and consider the first visit p makes to an accepting state in
this phase. By Lemma 1.2, from this visit on, p must always be accounted for
by some child of v, because v itself never celebrates. This accountability can
only pass from younger to older children, and would eventually need to stay
forever with a persistent child v’. O

1.3 Construction of a Deterministic Automaton

We are now equipped to construct a deterministic automaton that has our track-
ing scheme at its core and recognizes £(N). The infinite run of a word on this
automaton needs to have a mechanism to identify that there is a persistent node

4Recall that by convention, a node celebrates upon its creation.



which moreover celebrates infinitely often. The states of our automaton, there-
fore need to capture information about nodes celebrating, and being deleted.

We observe that in any run of our tracking scheme, from some point on, some
¢ of the oldest nodes will be persistent, and if the j-th oldest node is deleted,
then it must be that 5 > i.

This gives us some intuition: in the long run, a node of rank 7 being deleted
is a more decisive event than a node of rank i celebrating; but for j > i, a node
of rank j being deleted is mitigated by a node of rank 7 celebrating. We thus
assign priorities to events: a node of rank i being deleted is at priority 2¢ — 1,
this node celebrating is at priority 2i, e.g. the catastrophe of the root being
deleted has priority 1, in case there exists an infinite run, the persistent root
celebrating has priority 2, and so on.

Formulated this way, we ask that the highest priority to be recorded
infinitely often be even, i.e., correspond to a celebration.

Suppose the highest priority to be recorded infinitely often is 2i, for some
1. This implies that nodes of rank 1,...,7 are deleted only finitely often, which
means that from some point on, the 7 oldest nodes are persistent. Among these,
the i-th oldest node celebrates infinitely often, implying that A" accepts the
word being followed (Lemma 1.4).

Conversely, suppose that the highest priority to be recorded infinitely often
is 2¢ — 1 for some i. This implies that only ¢ — 1 nodes are persistent (if ¢ nodes
are persistent, the i-th oldest keeps getting deleted, a contradiction), and none
of them celebrate infinitely often, giving us that N does not accept the word
being followed (Lemma 1.4). Similarly, if the highest priority is 2|Q| + 1, it
means that eventually, no node celebrates, and there definitely is no accepting
run of N on the word being followed.

Thus, the state of our automaton will store the state of our tracking scheme
(i.e., a Safra tree), and an additional book-keeping component called report,
which records the priority of the most important event to have occurred to the
nodes of the predecessor tree while obtaining the current tree.

If the report is 2¢, it means that all of the 7 oldest nodes in the previous tree
have been retained in the current tree, and moreover that the i-th oldest node
of the previous tree is mapped to a celebrating node in the current tree.

If the report is 2i — 1, it means that all of the ¢ — 1 oldest nodes of the
previous tree have been retained, but none of them are mapped to a currently
celebrating node, and that the i-th oldest node of the previous tree has been
deleted. If the report is 2|@| + 1, it means that there have been no celebrations
or deletions among the nodes of the predecessor tree.

To accept, we shall require that the highest priority reported infinitely often
be even. We now formally record the full construction for completeness’ sake.

Construction 1.5 (The Automaton). Given a complete automaton

N = (Ean {Qinit}7T7 BUCHI(F)),



we construct an equivalent deterministic automaton

D = (X, Treesg, {treeinit }, A, ACC)

as follows.
A state tree € Treesq is a tuple

(nodes, root, ranking, parent, tracking, report),

where each component is as follows:

nodes is a set of (at most |Q|) nodes, which form the tree,
root is the distinguished root node of the tree (if non-empty),

ranking : nodes — {1,...,|Q|} maps each node to its position when the
nodes are sorted by age; ranking(root) =1,

parent : nodes\{root} — nodes maps each node to its parent, thus defining
the structure of the tree,

tracking : nodes — 2@\ {a},

report € {1,2,....,2/Q| - 1,2/Q].2|Q| +1}.

We must have that for all nodes v, vy, vy:

(Uu|parent(u):v tracking(u)) C tracking(v),

if parent(vy) = parent(vs) then tracking(vy) N tracking(vy) = @.

The initial state treeiny has a single node root, such that tracking(root) = {ginit},
and report = 2.

The deterministic transition relation A is defined as per the program to com-
pute the successor Safra tree. More precisely, given treei, o the unique tree trees
such that (treey, o, trees) € A is obtained by following steps (for loops assumed
to operate from oldest to youngest node).

1.
2.

treep <— treey, ranka temp < rank;.
For all v € nodes,, tracking,(v) < {¢' | ¢ € trackingy(v) A (q,0,¢") € T'}.

For all v € nodesy, add v' to nodesy; tracking,(v) < tracking,(v) N F,
ranks temp (V') < |nodesy| + 1, parenty(v') < v.

. For all v,v" € nodesy, if v’ is a younger sibling of v, or a descendant of a

younger sibling of v, tracking,(v') + tracking,(v’) \ tracking,(v).

Let HighestCelebrate be the minimum i such that ranks temp(v) = i and
tracking,(v) = Uu‘parentz(u):v tracking, (u).



6. Let HighestDelete be the minimum i such that rankgiemp(v) = ¢ and
either tracking,(v) = @, or some ancestor v’ satisfies tracking,(v') =

Uu\parentg (u)=2’ tracki ngs (u) .

7. For all v € nodesy such that tracking,(v) = |
delete all descendants of v.

)= tracking, (u),

wu|parenty (u)=

8. For all v € nodesy such that tracking,(v) = &, delete v.

9. Define ranky to be the order of the remaining nodess, when sorted by
rankQ,temp-

10. report, < min(2|Q| + 1,2 - HighestCelebrate, 2 - HighestDelete — 1).
Finally, we define

Acc = {7 | 7 € Treesy) Aliminf ((n).report) is even},
n

i.e., the smallest number (highest priority) reported infinitely often is even.

Through our construction, we have discovered what is called a deterministic
parity automaton over infinite words.

Definition 1.6 (Parity Automata). A parity automaton is given as
(2,Q,I, T, PARITY(F)),

where the parity acceptance condition is given by a partition F of @ into sets
F\,Fy, ..., Fy, and is defined to be satisfied by a run p € Q% if°

min{i | Inf(p) N F; # @} is even.
We have proven the following through our construction and its correctness.

Theorem 1.7. For every Biichi automaton N, we can construct a deterministic
parity automaton D such that LIN) = L(D).

As we shall discuss later in the course, the corresponding parity games form
perhaps the most interesting class of infinite games, and play a key role in
verification and synthesis. Finding fast algorithms for parity games is an active
research topic, with several (albeit as yet impractical) quasi-polynomial-time
algorithms.

5Some sources use the maximum instead. The two conventions are obviously and easily
interchangeable, and their relative convenience depends on the context. We will clarify if we
use the alternate convention in another context.



1.4 Complementation

To prove that Blichi automata, and hence w-regular languages are closed under
complementation, we shall establish two facts: (1) deterministic parity automata
are closed under complementation; (2) for every deterministic parity automa-
ton, we can construct an equivalent Biichi automaton. The latter would also
prove that deterministic parity automata recognize precisely the class w-regular
languages.

The first fact is quite easily observed.

Construction 1.8. The complement of a complete and deterministic parity
automaton
D= (,Q,{Gnit}, T, PARITY(FY, ..., Fy))

18
D' = (%,Q,{ginit}, T, PARITY(F], ..., Fy, Fy, 1)),
where F{ = @, and fori > 1, F/ = F;_4.

The idea to construct a Biichi automaton N that is equivalent to a given
deterministic parity automaton D is for A is to initially emulate D, non-
deterministically guess an even index ¢, and subsequently run on an incomplete,
but deterministic partial emulation of D with states F; U---U F,;. The guess is
validated if the subsequent run is infinite, and visits F; infinitely often.

Construction 1.9. Given a parity automaton
A= (2, Q, {qnit}, A, PARITY(FY, ..., Fy)),
we can construct an equivalent Bilichi automaton
N = (2,Q" {ginic}, T, BUCHI(F")),

where
Q=QuU |J (FuUFu---UF) x{2i},
1<i<|d/2]

guess = {(q,0,(¢,2i)) | (¢,0,q9") € AN € Fj where j > 2i},
validate = {((¢,2i),0,(¢',2i)) | (¢,0,¢") € ANq € FjAq € Fji where j,j" > 2i},
T = A U guess U validate,
F'={(g,2i) | g € Fai}.
We have thus established:

Theorem 1.10. Deterministic parity automata recognize precisely the class of
w-regular languages.

Theorem 1.11. The class of w-reqular languages is closed under complemen-
tation.



Theorem 1.12. Given a Biichi automaton N', we can construct a Biichi au-
tomaton N such that L(N) is the complement of L(N).

Proof. We use Construction 1.5 to get a deterministic parity automaton D that
is equivalent to A; Construction 1.8 to then complement D to D’; and finally
Construction 1.9 to obtain a Biichi automaton N equivalent to D’. O

1.5 Deterministic Automata: Muller Acceptance

One of the pieces of intuition we gained through Construction 1.5 is that if a
class of deterministic automata is to be as powerful as Biichi automata, then
the acceptance condition must express not only that desirable states are visited
infinitely often, but also that undesirable states are visited only finitely often.

It is sometimes easy to work with the verbose Muller acceptance condition,
which enforces such requirements explicitly, as opposed to the implicit enforce-
ment by the parity acceptance condition.

Definition 1.13 (Muller Automata). A Muller automaton is given as
(%,Q,1,T, MULLER(F)),

where the Muller acceptance condition is given by a table F = {Fy,..., Fq},
where Fy, ..., F; € Q, and is defined to be satisfied by a run p € Q% if

Inf(p) € F.

As an example, consider the deterministic Muller automaton over the al-
phabet {a,b} with states qq,qp, initial state q,, for all ¢, (q,a,q,) € T and
(¢,b,q5) € T. If the acceptance condition is MULLER({{qq4}, {qa,q}}), it recog-
nizes the language of words with infinitely many a’s. If the acceptance condition
is MULLER({{¢s}}) instead, it recognizes the language of words with finitely
many a’s.

Exercise 1.14. Given and complete and deterministic Muller automaton recog-
nizing the language L C 3%, show how to construct a complete and deterministic
Muller automaton recognizing the language X\ L.

Exercise 1.15. Given a complete and deterministic parity automaton Dp, show
how to construct an equivalent deterministic Muller automaton Dy;.

Exercise 1.16. Given a Muller automaton A, show how to construct an equiv-
alent Biichi automaton N .

Hint: As in Construction 1.9, N needs to gquess the set of infinitely visited
states, and validate its guess. However, during the validation, it needs to ensure
that not only are states outside the guessed set inaccessible, but also that states
within the guessed set are visited infinitely often. For this, consider using the
book-keeping trick from the construction to intersect Bilichi automata.

‘We conclude this section with a language-theoretic fact, which is most readily
proven through Muller automata.
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Theorem 1.17. A language L C X% is w-regular if and only if it a Boolean
combination of languages W1, ..., Wq where Wy, ... , Wy C ¥* are regular.

Proof. If. The languages I/I—/1>, ceey I/I—/>d are recognizable by deterministic Biichi
automata, and hence clearly w-regular. We have shown that the class of w-
regular languages is closed under Boolean operations, and hence deduce that L
must be w-regular.

Only If. We take as our premise that L is an w-regular language, and obtain
a complete and deterministic Muller automaton (X, Q, {ginit}, A, MULLER(F))
that recognizes it. Now, for ¢ € @, we define W, to be the regular language
accepted by the deterministic finite-word automaton (X, Q, {gnit}, A, {q}), and
observe that the run of the Muller automaton on a word « visits a state g
infinitely often if and only if « € VI—/;. By the definition of the Muller acceptance
condition, we have that

c=U (A" ]n{NEm] ],

FeF q€F q¢F

which is a Boolean combination of limits of regular languages, as desired. [

11



