Preservation theorems for transducer outputs

Valérie Berthé, Herman Goulet-Ouellet, Toghrul Karimov, Dominique Perrin, **Mihir Vahanwala**

Research School-Conference of Combinatorics, Automata, and Number Theory 2025 CIRM, Marseille

Combinatorial virtues feat. the Fibonacci word

0100101001001...

Morphic:
$$x_{fib} = \sigma_{fib}(x_{fib})$$
, where $\sigma_{fib}(0) = 01$, $\sigma_{fib}(1) = 0$

Recurrent: every factor occurs infinitely often Furthermore, it is linearly, and hence uniformly recurrent

(linearly) bounded gaps between occurrences of u

Well-defined factor frequencies

For every u, $\lim_{N\to\infty} \frac{1}{N} |\{i: i < N, x[i, \infty) \in u\Sigma^{\omega}\}|$ is well-defined

Suppose a word $x \in \Sigma^{\omega}$ is

Morphic (Linearly, Uniformly) Recurrent

Well-defined factor frequencies

We feed x to an automaton $\mathcal{A} = (Q, q_{\text{init}}, \Sigma, \delta)$ to get run $y \in (Q \times \Sigma)^{\omega}$

Are these properties preserved?

The run of a substitutive word is morphic

$$x \in \Sigma^{\omega}, \ x = \sigma(x)$$

$$Q, q_{\mathsf{init}}, \Sigma, \delta_0) = \mathcal{A}_0$$

$$y_{n+1}$$

$$\delta_{n+1}(q, a) = \delta_n(q, \sigma(a))$$

$$\tau_n(q, a) = (s_0, b_0) \cdots (s_k, b_k)$$

$$\sigma(a) = b_0 \cdots b_k$$

$$s_0 = q, s_{i+1} = \delta_n(s_i, b_i)$$

$$y_N$$

$$y_{N+p} = y_N, y_0 = \tau_0 \cdots \tau_{N-1}(y_N), y_N = \tau_N \cdots \tau_{N+p-1}(y_N + p)$$

Suppose a word $x \in \Sigma^{\omega}$ is

Morphic (Linearly, Uniformly) Recurrent

Well-defined factor frequencies

Does the run $y \in (Q \times \Sigma)^{\omega}$ of \mathscr{A} on x have these properties?

Theorem (Semënov et al., Pritykin).

If x is uniformly (resp. linearly) recurrent, then y has a suffix that is uniformly (resp. linearly) recurrent

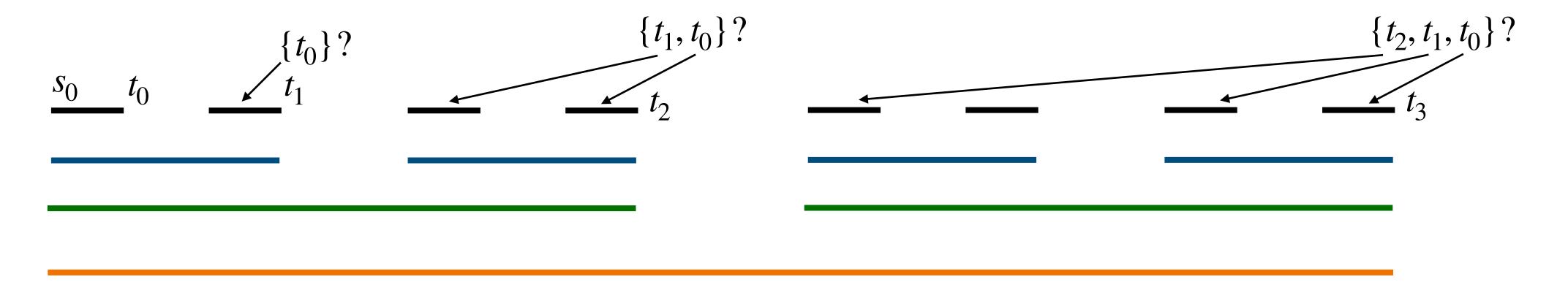
We can further prove:

- The corresponding statement holds for recurrent words
- Furthermore, we can effectively identify the suffix

A flavour of the Semënov argument

Assume that \mathscr{A} is a permutation automaton, i.e., each letter induces a permutation of Q (the transitions are reversible)

If x is recurrent, so is the run y: any occurrence of v in y has another to its right Suppose v is the run on u_0 starting in s_0 and ending in t_0



There are finitely many states, this process saturates in at most |Q| + 1 iterations

We can also argue that uniform and linear recurrence are preserved

The other special case: no reversibility

Let $\mathscr A$ be a reset automaton, i.e., the transition function induced by each letter is either the identity or constant do nothing reset to a state

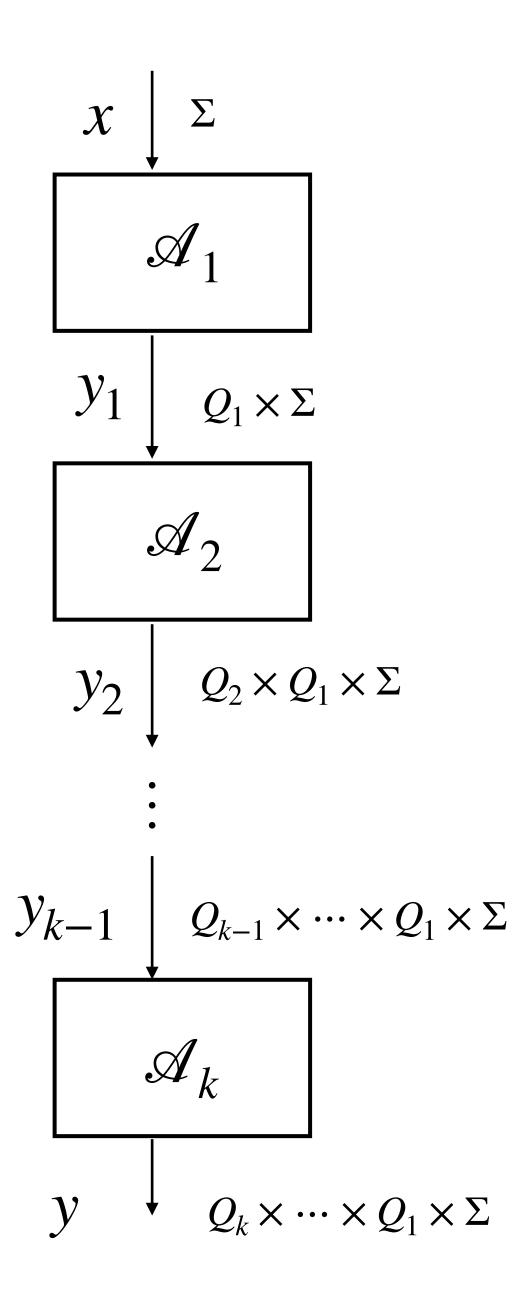
Let x be recurrent and let the first reset letter occur at position N

The run y of \mathscr{A} on x is recurrent starting at position N+1

The linear and uniform recurrence of y, as applicable, can readily be argued

Preservation of recurrence holds for cascades of special automata

permutation automata, reset automata



$$Q = Q_k \times \cdots \times Q_1$$

$$\delta((q^k, ..., q^1), a)$$

$$=$$

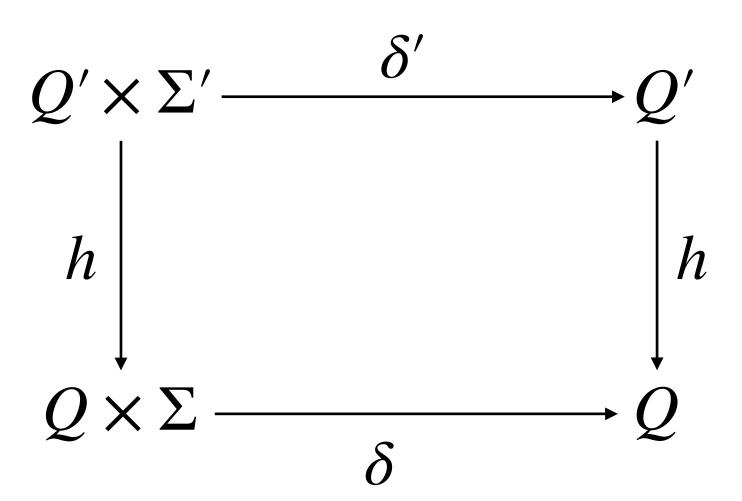
$$\left(\delta_k(q^k, (q^{k-1}, ..., q^1, a)), ..., \delta_j(q^j, (q^{j-1}, ..., q^1, a)), ..., \delta_1(q^1, a)\right)$$

Preservation of recurrence holds for cascades of special automata

permutation automata, reset automata

Theorem (Krohn-Rhodes).

Every automaton can be simulated by a cascade of special automata



commutative diagram of primed automaton simulating unprimed automaton through morphism h

Preservation of recurrence holds for all automata

Suppose a word $x \in \Sigma^{\omega}$ has some of the following properties

Morphic (Linearly, Uniformly) Recurrent (Well-defined factor frequencies

Yes for reset, and hence counter-free automata

Does the run $y \in (Q \times \Sigma)^{\omega}$ of \mathscr{A} on x have these properties?

¹ A corollary of the Krohn-Rhodes theorem is that any counter-free automaton can be simulated by a cascade of resets.

The other special case: no reversibility

Let $\mathscr A$ be a reset automaton, i.e., the transition function induced by each letter is either the identity or constant do nothing reset to a state

Let x be recurrent and let the first reset letter occur at position N

The run y of \mathscr{A} on x is recurrent starting at position N+1

The linear and uniform recurrence of y, as applicable, can readily be argued

Suppose a word $x \in \Sigma^{\omega}$ has some of the following properties

Morphic

(Linearly, Uniformly) Recurrent 🗸

Well-defined factor frequencies

Yes for reset, and hence counter-free automata

Not necessarily for permutation automata

Yes, if Boshernitzan's condition holds

E.g., primitive morphic words, linearly recurrent words, Sturmian words, almost all IETs, a large class of 1D-toric words, Arnoux-Rauzy words with bounded partial quotients, ...

Does the run $y \in (Q \times \Sigma)^{\omega}$ of \mathscr{A} on x have these properties?

Primitive morphic --> Linearly recurrent --> Boshernitzan --> Factor frequencies

¹ A corollary of the Krohn-Rhodes theorem is that any counter-free automaton can be simulated by a cascade of resets.

0100101001001...

The first 13 letters of the Fibonacci word

0:8 occurrences, frequency 0.615

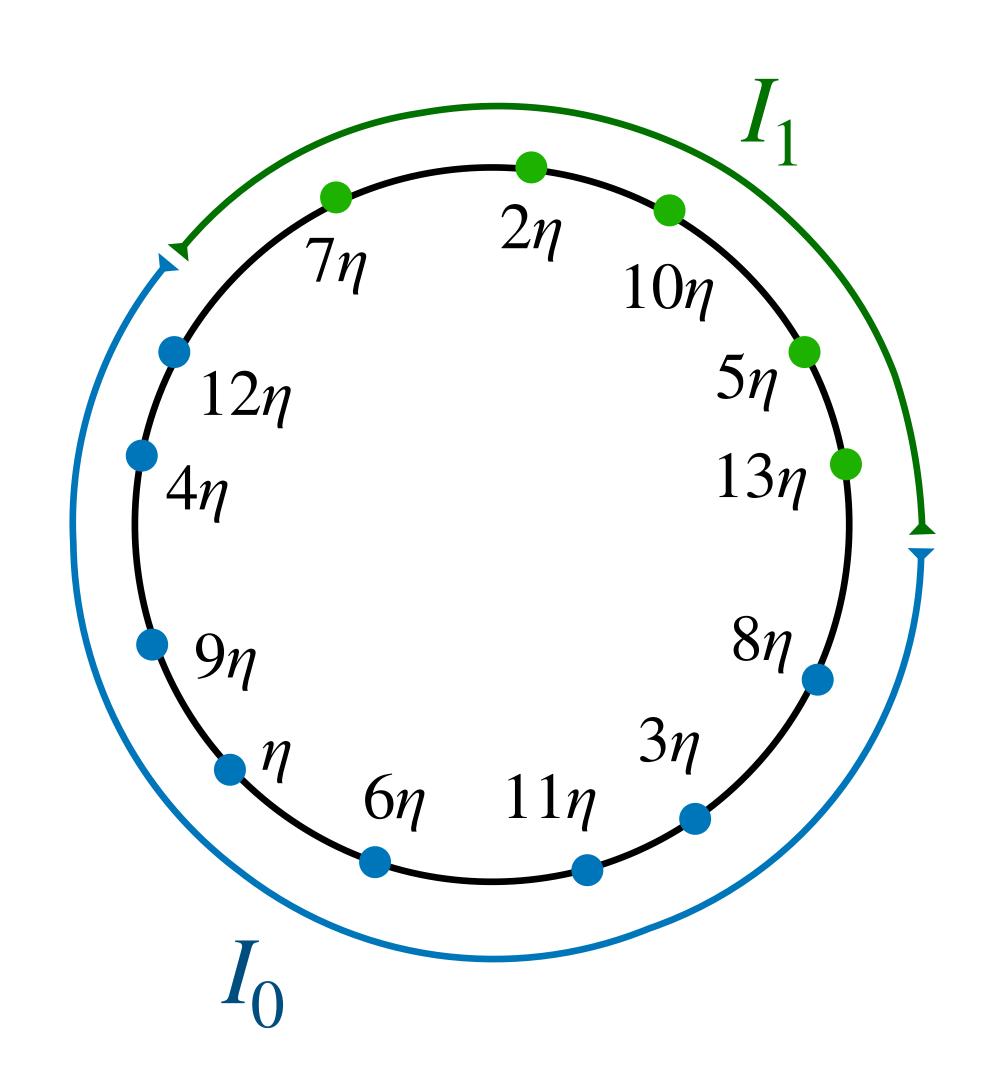
1:5 occurrences, frequency 0.385

In the limit,

0 occurs with frequency $1/\phi \approx 0.618$

1 occurs with frequency $1/\phi^2 \approx 0.382$

as the coding of a rotation by $\eta = 1/\phi$ around a circle of circumference 1



$$I_{au} = I_a \cap (I_u - \eta)$$

frequency of factor *u*

length of arc I_u

Trace

Fibonacci word

generated by

Topological Dynamical System

Rotation

Observation

attributed to

Causing Region

 $arc I_{u}$

factor *u*

The punchline, when ergodic theory applies, is:

temporal frequency of observation equals spatial measure of causing region

temporal frequency of observation equals spatial measure of causing region

The "default" topological dynamical system

trace $x \in \Sigma^{\omega}$

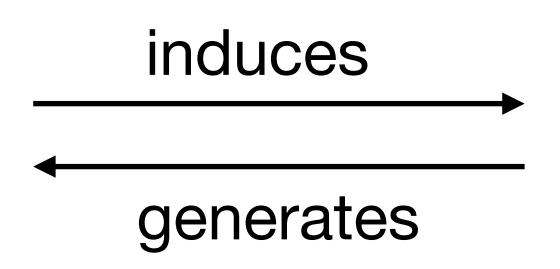
endow Σ^{ω} with the product topology

shift operator $T: \Sigma^{\omega} \to \Sigma^{\omega}$, $T(a_0 a_1 a_2 \cdots) = a_1 a_2 \cdots$

Shift (space) $X \subseteq \Sigma^{\omega}$: closure of orbit $(x, Tx, T^2x, ...)$

When and how does this realise the ergodic dream?

 $x \in \Sigma^{\omega}$



Topological Dynamical System

 $\mathsf{shift}\, X\subseteq \Sigma^\omega, \mathsf{operator}\ T$

Observation

factor *u*

attributed to

Causing Region

cylinder $[u] \subseteq X$

 $[u] = X \cap u\Sigma^{\omega}$

Temporal frequency

$$\lim_{N \to \infty} \frac{1}{N} \left| \{ i : i < N, x[i, \infty) \in u\Sigma^{\omega} \} \right|$$

equals

Spatial measure

 $\mu([u])$

We want sensible, invariant measures, i.e., $\mu(L) = \mu(T^{-1}L)$

We consider shifts *X* that have a unique invariant measure In such shifts, all words have well-defined factor frequencies (Oxtoby's theorem)

Suppose a word $x \in \Sigma^{\omega}$ has some of the following properties

Morphic

(Linearly, Uniformly) Recurrent

Well-defined factor frequencies

Yes for reset, and hence counter-free automata

Not necessarily for permutation automata

Yes, if Boshernitzan's condition holds

E.g., primitive morphic words, linearly recurrent words, Sturmian words, almost all IETs, a large class of 1D-toric words, Arnoux-Rauzy words with bounded partial quotients, ...

Does the run $y \in (Q \times \Sigma)^{\omega}$ of \mathscr{A} on x have these properties?

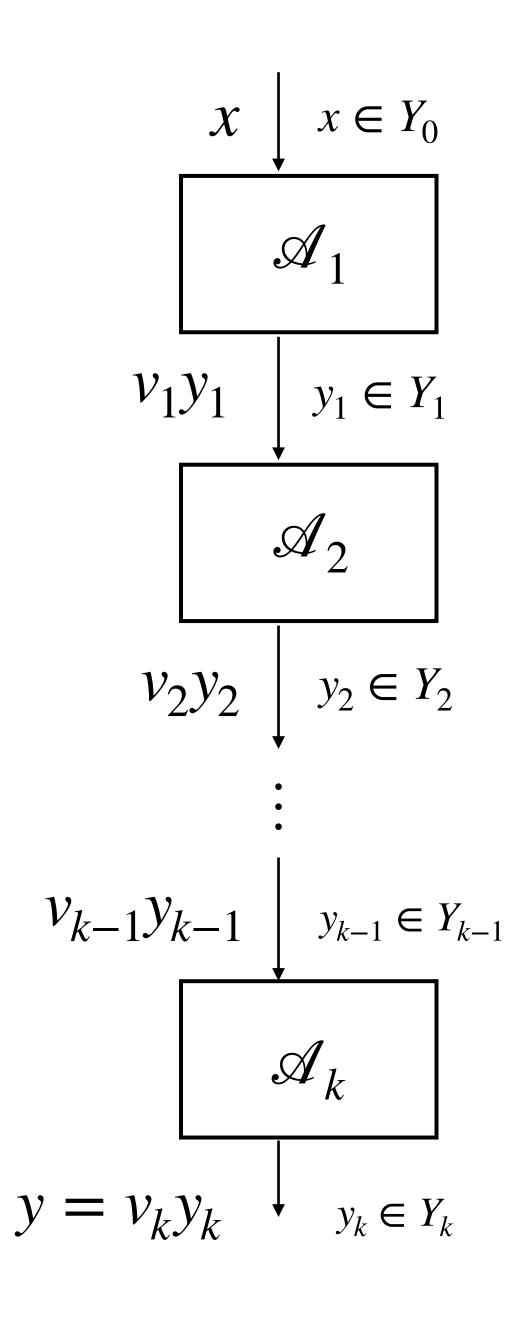
Primitive morphic --> Linearly recurrent --> Boshernitzan --> Factor frequencies

Boshernitzan's condition

If a minimal shift X has an invariant measure μ such that

$$\liminf_{n\to\infty} \left(n \cdot \min_{\{u:|u|=n\}} \mu([u]) \right) > 0$$

then μ is the unique invariant measure of X



Lemma

If Y_i satisfies Boshernitzan's condition then so does Y_{i+1}

Corollary

If Y_0 satisfies Boshernitzan's condition then x, y have well-defined factor frequencies

Bonus

If x is primitive morphic with computable factor frequencies then so is y_k

Suppose a word $x \in \Sigma^{\omega}$ has some of the following properties

Morphic

(Linearly, Uniformly) Recurrent

Well-defined factor frequencies

Yes for reset, and hence counter-free automata

Not necessarily for permutation automata

Yes, if Boshernitzan's condition holds

E.g., primitive morphic words, linearly recurrent words, Sturmian words, almost all IETs, a large class of 1D-toric words, Arnoux-Rauzy words with bounded partial quotients, ...

Does the run $y \in (Q \times \Sigma)^{\omega}$ of \mathscr{A} on x have these properties?

Thank You!

Extra technical slides

Consider $x \in X$ and permutation automaton \mathscr{A}

The run y is obtained from the the skew product $G \rtimes X$

The group G is the transition group of \mathscr{A} , the morphism $\varphi: \Sigma \to G$

The dynamical transition of $G \bowtie X$ is given by T

$$T \circ (g, ax) = (g \cdot \varphi(a), x)$$

Let v be the run on u starting in q, let C be the coset that maps q_{init} to q. We hope that the frequency of v is the measure of (C, [u])

But is $G \bowtie X$ even minimal?

Does its relevant minimal component have a unique invariant measure?

But is $G \bowtie X$ even minimal?

Key construct: cobounding map α from X to set $\mathscr C$ of cosets of $H \leq G$ By definition, α is required to be continuous

X is partitioned into finitely many (clopen) cylinders on which α is constant. The argument uses the minimality and compactness of X

Define
$$Y_{\alpha} = \{(g, x) : g \in \alpha(x)\} \subseteq G \rtimes X$$

The point: if H is a minimal subgroup for which a cobounding map exists then Y_{α} is minimal

Note, however, that there are |G|/|H| choices of Y_{α} , we make the one aligning with the run of \mathscr{A}

Does Y_{α} have a unique invariant measure?

Let H be the minimal subgroup for which cobounding α exists Let $\mathscr C$ be the set of right cosets of H

Recall $Y_{\alpha} = \{(g, x) : g \in \alpha(x)\}$. Does Y_{α} have a unique invariant measure?

Consider
$$Z_{\alpha} = \{(C, x) : \alpha(x) = C\} \subseteq \mathscr{C} \rtimes X$$

 Z_{α} is isomorphic to X, and in particular has a unique invariant measure

To define the invariant measure on Z_{α} , recall that X is partitioned into cylinders on which α is constant. To determine whether a cylinder exists in Z_{α} at all, we can use Semënov's theorem

An invariant measure for
$$Y_{\alpha}$$
 : $\mu_{Y}(g,L) = \frac{1}{|H|} \mu_{Z}(Hg,L)$

Intuitively, this distributes mass equally to all elements of the coset

Could this be *the* invariant measure for Y?

An invariant measure for
$$Y_{\alpha}: \mu_{Y}(g, [u]) = \frac{1}{|H|} \mu_{Z}(Hg, [u]) = \frac{1}{|H|} \mu_{X}([u])$$

For u long enough Intuitively, this distributes mass equally to all elements of the coset

Could this be *the* invariant measure for Y?

Suppose μ_X is the unique invariant measure by virtue of satisfying

$$\liminf_{n\to\infty} \min_{|u|=n} n\mu_X([u]) > 0,$$

the Boshernitzan condition which is sufficient for unique ergodicity

Then, by inspection, μ_Y also satisfies the Boshernitzan condition and is indeed the unique invariant measure of Y_α

Let \mathscr{A} be a permutation automaton and let x be such that its shift X has a unique invariant measure that satisfies the Boshernitzan condition

The run y has a shift $Y\cong Y_\alpha$ which also has a unique invariant measure that satisfies the Boshernitzan condition, and hence y has well-defined factor frequencies

We can also show that the Boshernitzan condition is preserved by reset automata modulo a finite prefix of the run

In the Boshernitzan case, we can then apply the Krohn-Rhodes theorem and establish that the run inherits the property of well-defined factor frequencies