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Abstract

Dynamic Bayesian networks (DBNs) are compact graphical
representations used to model probabilistic systems where in-
terdependent random variables and their distributions evolve
over time. In this paper, we study the verification of the evo-
lution of conditional-independence (CI) propositions against
temporal logic specifications. To this end, we consider two
specification formalisms over CI propositions: linear tem-
poral logic (LTL), and non-deterministic Büchi automata
(NBAs). This problem has two variants. Stochastic CI prop-
erties take the given concrete probability distributions into
account, while structural CI properties are viewed purely in
terms of the graphical structure of the DBN. We show that
deciding if a stochastic CI proposition eventually holds is at
least as hard as the Skolem problem for linear recurrence se-
quences, a long-standing open problem in number theory. On
the other hand, we show that verifying the evolution of struc-
tural CI propositions against LTL and NBA specifications is
in PSPACE, and is NP- and coNP-hard. We also identify nat-
ural restrictions on the graphical structure of DBNs that make
the verification of structural CI properties tractable.

1 Introduction
Bayesian networks (BNs) (Pearl 1985, 1988a; Neapolitan
1989) are prominent tools in both data science and artifi-
cial intelligence that enable modeling and reasoning under
uncertainty. BNs succinctly represent a full joint probabil-
ity distribution by using a directed acyclic graph (DAG) as
a template to capture dependencies between variables and
prescribe the probability distribution of each variable condi-
tioned on its parents. BNs have successfully been applied in
medical AI (Lucas, van der Gaag, and Abu-Hanna 2004)),
computer vision (Wu et al. 2007), natural language process-
ing (Manning and Schütze 1999), robotics (Thrun, Burgard,
and Fox 2005), fault diagnosis (Jemal et al. 2003), bioinfor-
matics (Friedman 2000), and risk assessment (Fenton and
Neil 2012).

Dynamic Bayesian Networks (DBNs) extend BNs to de-
scribe systems where the outcomes modeled by random vari-
ables evolve with time (Murphy 2002; Koller and Friedman
2009). DBNs succinctly represent a sequence of full joint
probability distributions of a set of random variables, i.e., a
DBN prescribes an initial joint probability distribution for
the variables V0, and also prescribes the joint distribution

of Vt+1, the variables at time step (or time slice) t + 1, con-
ditioned on the variables Vt at time step t. These are re-
spectively given by an initial BN and a step BN, and their
corresponding DAGs are collectively referred to as the DBN
template. To make a concrete DBN, the template is instanti-
ated with conditional probability distributions (CPDs). The
temporal dimension of DBNs has motivated applications in
robotics (Thrun, Burgard, and Fox 2005), bioinformatics
(Friedman 2000), systems biology (Palaniappan and Thia-
garajan 2012), engineering and fault diagnosis in dynamical
systems (Meng et al. 2024; Jemal et al. 2003), and speech
recognition (Zweig and Russell 1998).

Example 1.1. To illustrate DBNs and DBN-templates, con-
sider a system coordinating different probabilistic compo-
nents either having access only to low-security information
or also to high-security information. In each time step t,
the low-security components provide an input Lt and the
high-security components provide an input Ht. The system
then produces a low-security output Ot and a high-security
output St (S for secret). The dependencies between these
variables are depicted in the DBN-template depicted in Fig-
ure 1a: The initial template marked with 0 expresses that
initially O0 depends only on L0 and S0 depends only on
H0. All other pairs of variables are independent. The step
template depicted below uses the variables L, O, S, and H
representing the variables at the current time step as well as
copies L′, O′, S′, and H ′ representing the variables at the
next time step. For example, this template captures that the
next low-security input Lt+1 always depends directly only
on the previous low-security input Lt and output Ot. To
represent all (direct) dependencies between variables in the
timed sequence of variables, the template can be unfolded
into one infinite directed acyclic graph (DAG), called the
unfolding of the DBN-template, as depicted in Figure 1b.

A DBN based on this DBN-template additionally consists
of the CPDs for each variable in the initial template and for
each primed variable in the step template given its parents.
Assuming that all variables take only values 0 and 1, an ex-
ample CPD for the variable L′ in the step template is de-
picted in Figure 1c. For each combination of values of the
parent variables L and O, it specifies the probability with
which L′ takes value 0 and 1. This CPD is applied at each
time step in the unfolding of the DBN. For variables without
parents, such as L0 and H0 in the initial template, the CPDs
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(b) Unfolding of the DBN-template.
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(c) Example of a CPD.

Figure 1: The DBN-template described in Example 1.1 and its unfolding as well as an example CPD.

specify the probabilities with which they take value 0 and 1.

A fundamental concern (see, e.g., (Heckerman, Geiger,
and Chickering 1995)) in reasoning about probabilistic mod-
els is the characterization and/or deduction of stochastic
conditional independence (CI) of sets X and Y of random
variables given the values of a set Z, denoted (X ⊥Y ∣ Z).

In seminal work, (Geiger, Verma, and Pearl 1990) show
that the truth of these CI propositions, which satisfy the
graphoid axioms, can be deduced from the underlying
DAG template in the case of BNs. Specifically, they de-
fine structural conditional independence through the effi-
ciently testable graphical notion of d-separation, denoted as
(X á Y ∣ Z) when Z d-separates X and Y. They then
show soundness: if (X á Y ∣ Z), then (X ⊥ Y ∣ Z) for
all conditional probability distributions. Subsequently, Meek
(1995) showed a form of completeness: i.e., if (X áY ∣ Z)
fails then (X ⊥ Y ∣ Z) also fails for all but a (Lebesgue)
measure-0 set of conditional probability distribution param-
eters.

DBNs can naturally be associated with an infinite se-
quence of BNs, with the t-th term being obtained by un-
folding up to time slice t. We call a statement of the form
(X á Y ∣ Z) (respectively, (X ⊥ Y ∣ Z)) an atomic
proposition of structural (respectively, stochastic) CI, and
say that it holds at time t if (Xt á Yt ∣ Zt) (respectively,
(Xt ⊥ Yt ∣ Zt)) holds in the unfolding of the DBN up
to time t. Given a collection A of structural (respectively,
stochastic) CI propositions, the DBN defines a trace, i.e., an
infinite word over the alphabet 2A whose t-position records
which of the propositions hold at time t.

In this paper, we concern ourselves with checking the
properties of the trace, such as: is (X áY ∣ Z) ever false? In
Example 1.1, is the output always independent of the secret
given the low-security input? In a system, is it always the
case that if inputs I1, I2 are independent, then so are outputs
O1,O2?

To express temporal properties of systems, the use of
temporal logics such as linear temporal logic (LTL) and of
non-deterministic Büchi automata (NBAs), capturing all ω-
regular languages, has emerged as a success story over the
past decades (see, e.g., (Baier and Katoen 2008)). We aim to
employ these formalisms to talk about the temporal aspects
of CIs.

Example 1.2. The three properties mentioned above are ex-
pressed in LTL as: (i) ¬(X áY ∣ Z), where is the tem-
poral modality for “eventually”; (ii) (O á S ∣ L), where

is the temporal modality for “globally”, and dual to ; (iii)
((I1 á I2)→ (O1 á O2)).
Given an LTL formula φ over the set of atomic proposi-

tions A or an NBA B over the alphabet 2A, the structural
CI model-checking problem for DBN-templates now asks
whether the trace of a DBN-template satisfies φ or is ac-
cepted by B, respectively. The stochastic CI model-checking
problem for DBNs asks the analogous question for the trace
of a DBN with respect to a set of stochastic CI propositions.

1.1 Contributions
1. In Section 3, we introduce temporal specification mech-

anisms for the evolution of structural or stochastic CI
propositions in DBN-templates and DBNs, respectively,
using LTL and NBAs. We formulate the resulting struc-
tural and stochastic CI model-checking problems.

2. In Section 4, we show that the structural CI model-
checking problems of DBN-templates against LTL for-
mulas and against NBAs are both in PSPACE and NP-
hard as well as coNP-hard. Under the natural restriction
that the initial template of a DBN-template only contains
edges that also appear as intra-slice edges in the step tem-
plate, we prove that the problems are in P.

3. Given full DBNs with CPDs, we show in Section 5
that checking eventual stochastic CI is as hard as the
Skolem problem for linear recurrence sequences, a fa-
mous number-theoretic problem whose decidability sta-
tus has been open for many decades. This implies that a
decidability result for the stochastic CI model-checking
problems is out of reach without a breakthrough in ana-
lytic number theory.

1.2 Related work
The question how to detect structural CIs in BNs has
been answered in the 1980s and 1990s by showing that d-
separation characterizes all structural CIs that follow from
the structure of a BN, that this is equivalent to stochas-
tic CI under all choices of CPDs, and by showing that
the d-separation can compute these structural CIs in poly-
nomial time (see (Pearl 1988b; Geiger, Verma, and Pearl
1990; Meek 1995)). Exactly determining whether a stochas-
tic CI holds requires exact computation of the necessary
conditional probability distributions. Methods for approxi-
mate testing of conditional independence of discrete random
variables, however, are an active area of research (see, e.g.,



(Canonne et al. 2018; Teymur and Filippi 2020)). Orthog-
onally, seminal work by Boutilier et al. (1996) studies so-
called context-sensitive independence expressing that vari-
ables might only be independent under specific assignments
of values to other variables. Like stochastic CI, this kind of
independence depends on the concrete CPDs.

We are not aware of thorough studies of d-separation and
the detection of CIs in DBNs, let alone the formal verifica-
tion of temporal properties of CIs in DBNs. Regarding other
extension of BNs, Shen et al. (2019) study CIs in testing
BNs, an extension of BNs representing a set of probability
distributions instead of a singly distributions, and show that
d-separation can still be used to detect structural CIs.

2 Preliminaries
Probability spaces and conditional independence. We
assume knowledge of the basics of probability theory
(Klenke 2007), and record the relevant prerequisites in the
technical appendix for completeness. In this paper, we work
with discrete random variables. Disjoint tuples of random
variables X,Y are considered conditionally independent
given Z (denoted as (X ⊥ Y ∣ Z)), if for any values x,y,z
(provided Pr[Z = z)] > 0, the following holds: Pr(X =
x,Y = y ∣ Z = z) = Pr(X = x ∣ Z = z) ⋅Pr(Y = y ∣ Z = z).
Bayesian networks A Bayesian network (BN) is a type of
probabilistic graphical model that expresses a set of vari-
ables and their conditional dependencies using a directed
acyclic graph (DAG), where each node represents a variable,
and the edges indicate direct probabilistic dependencies be-
tween the variables.
Definition 2.1 (Bayesian Network). A Bayesian network
(BN) over a finite set V of discrete random variables is a
tuple B = ⟨V,E ,P⟩, where:
• Each element of V is represented as a vertex of a DAG;
• The set of directed edges is E ⊆V ×V; we call the DAG
⟨V,E⟩ the template of the BN.

• The probability distribution of V is expressed in terms
of a collection P of conditional probability distributions
(CPDs), i.e., for each variable X with parents pa(X) =
Y, P prescribes Pr[X = x ∣Y = y] for all possible x,y.

We refer to the set of all BNs with a given BN-template T
as the family Fam(T ).

As an illustrative scenario, consider a BN where all vari-
ables are binary. Then P consists of ∑X∈V 2∣pa(X)∣ param-
eters, each term of the summation counting the number of
parameters required to prescribe the probability of X being
1, depending on the values taken by its parents.
Definition 2.2 (d-paths and d-separation). Given a BN-
template (i.e., DAG) T = (V,E) and three pairwise dis-
joint sets X,Y,Z ⊆V of nodes, a d-path from X to Y with
respect to Z is a sequence W0, . . . ,Wk of nodes with the
following properties:
• W0 ∈X and Wk ∈Y,
• for each i < k, either (Wi,Wi+1) ∈ E or (Wi+1,Wi) ∈ E
• for all 0 < i < k, if the node Wi has an outgoing edge to
Wi−1 or Wi+1 (or both), then Wi /∈ Z,

• for all 0 < i < k, if the node Wi has incoming edges from
both Wi−1 and Wi+1, then one of the descendants of Wi

is in Z (we consider a node to be its own descendant and
ancestor). We call such a node Wi a collider and say that
the collision is attributed to the descendants of Wi in Z.

If there is no such path, we say that Z d-separates X and Y.
In this case, we write (X á Y ∣ Z) and say that X and Y
are structurally independent given Z.

We remark that both structural and stochastic conditional
independence (CI) satisfy the graphoid axioms (Geiger,
Verma, and Pearl 1990, p. 511, (4a)-(4d)) (see also (Spohn
1980) for a proof of the stochastic case). Structural CI via
d-separation in a BN-template T is known to be equivalent
to stochastic CI in all members of the family Fam(T ).
Theorem 2.3 (Soundness and completeness of d-separa-
tion, (Pearl 1988b), (Meek 1995)). Given a BN-template
T = ⟨V,E⟩ and pairwise disjoint sets of random variables
X,Y,Z ⊆ V, the following two statements are equivalent
and can be checked in polynomial time:
• (X áY ∣ Z),
• for all BNs in Fam(T ), we have (X ⊥ Y ∣ Z), i.e., X

and Y are (stochastically) independent given Z.

Dynamic Bayesian networks (DBNs). We use Dynamic
Bayesian networks (Murphy 2002; Koller and Friedman
2009) to model probabilistic systems where the entities cap-
tured by random variables evolve over time. Formally, con-
sider a finite set V of random variables. We track the evo-
lution of V with time through a countably infinite sequence
(Vt)∞t=0 of copies of the random variables in V.

The evolution itself is modeled as a dynamical sys-
tem whose state at time t is a BN involving the variables
⋃t

i=0V
t. The initial BN is given by ⟨V0,E0,P0⟩.

We use a copy V′ of the random variables to express the
update dynamics, which at each step t ≥ 1, introduce the
variables Vt with parents in Vt−1 ∪Vt, while keeping the
rest of the network unchanged. Formally, we have a step tem-
plate which is a BN-template with variables V ∪ V′ and
edge relation E step ⊆ (V∪V′)×V′. Semantically, if X ′ has
parents Y ′i1 , . . . , Y

′
iℓ
, Yj1 , . . . , Yjk in the step template, then

for each t ≥ 1, Xt has parents Y t
i1
, . . . , Y t

iℓ
, Y t−1

j1
, . . . , Y t−1

jk
.

Finally, we have the conditional probability distribution pa-
rameters Pstep which prescribe Pr[X ′ = x ∣ pa(X ′) = y]
for all x,y. Semantically, we have that the distribution of
Xt conditioned on its parents is the same for all t ≥ 1.

We can thus specify a DBN via ⟨V,E0,P0,E step,Pstep⟩.
Its structural properties are given by the tuple TDBN =
⟨V,E0,E step⟩, which we refer to as a DBN-template. Anal-
ogous to BNs, we refer to the set of all DBNs with a
given template TDBN as the family Fam(TDBN). As ex-
plained earlier, in a DBN of binary variables, P0 con-
sists of ∑X∈V0 2∣pa(X)∣ parameters, and Pstep consists of
∑X∈V′ 2∣pa(X)∣ parameters.

We say that a DBN-template is restricted if whenever
(X0, Y 0) ∈ E0, we also have that (X ′, Y ′) ∈ E step. So, the
dependencies that exist initially at time step 0 also have to be
present at all later time steps, which is captured by their pres-
ence in the step template between the corresponding primed



variables. The DBN-template depicted in Figure 1 is an ex-
ample of a restricted DBN template.

Equivalence of DBNs with Markov Chains. That the se-
mantics of a DBN can be expressed in terms of the evolution
of a Markov chain is folklore. For completeness, we state
two elementary lemmas expressing this fact formally and
defer the constructions that establish them to the appendix.

Lemma 2.4. Given a DBN with k binary random variables,
we can construct an equivalent Markov chain with 2k states.

Given a Markov chain with K states, we can construct an
equivalent DBN with ⌈logK⌉ binary random variables.

3 Specification formalisms for temporal
conditional independence properties

In this paper, we study the verification of DBNs and DBN-
templates against linear-temporal properties regarding the
evolution of conditional independencies (CIs) over time. For
DBN-templates with variables V we use atomic proposi-
tions of the form (X á Y ∣ Z), which we call structural
CI propositions. We say that (X á Y ∣ Z) holds in DBN-
template T at time t if (Xt á Yt ∣ Zt) holds in the unfold-
ing of T to a BN-template after t time steps. Similarly, for
full DBNs with concrete CPDs, we use stochastic CI propo-
sitions (X ⊥ Y ∣ Z) that hold at time t in a DBN B if
(Xt ⊥Yt ∣ Zt) holds in the BN formed at time t. A first re-
sult connecting structural CI and stochastic CI is immediate
(for completeness, the proof can be found in the appendix):

Proposition 3.1. If (Xt á Yt ∣ Zt) in a DBN-template T
for some t, then, (Xt ⊥Yt ∣ Zt) in every DBNB ∈ Fam(T ).

The converse direction, i.e., the completeness of d-
separation for DBNs, however, turns out to be intricate. We
discuss this issue in Section 6.

Remark 3.2. The finite-horizon problem, that is, deciding
whether a structural or stochastic CI statement holds at a
fixed time t, can be solved in time polynomial in t and in the
size of the DBN(-template) via unfolding. Although solv-
ing it in logarithmic time remains an open question, this pa-
per focuses on infinite-horizon problems concerning the full
temporal evolution.

Trace of a DBN(-template). For any (finite) set A of such
structural CI propositions, a DBN-template defines a trace
τ ∈ (2A)ω , i.e., an infinite word over the alphabet 2A, where
the letter at position t indicates which propositions hold at
time t. Likewise, a full DBN defines a trace τ ∈ (2B)ω for
any (finite) set B of stochastic CI propositions.

We seek to verify whether the trace τ of a DBN-template
or of a DBN satisfies a logical specification. We use the no-
tation τ(t), to refer to the t-th position of τ , and the notation
τ[t ∶ ∞] to refer to the suffix of τ starting at position t, e.g.,
τ[0 ∶ ∞] = τ , τ[t ∶ ∞][t′ ∶ ∞] = τ[t + t′ ∶ ∞].
Linear temporal logic (LTL). We consider two common
logical formalisms (for a comprehensive exposition of which
the reader is referred to (Baier and Katoen 2008)). The first
is linear temporal logic (LTL, introduced in (Pnueli 1977)),
whose formulae φ over a set of atomic propositions A are

syntactically given by the grammar φ ∶= a ∣ ¬φ ∣ φ∧φ ∣ φ ∣
φU φ where a ∈ A is an atomic proposition. The operator
is called “next” and the operator U is called “until”. Seman-
tically, it is defined recursively whether an infinite word τ
over 2A satisfies an LTL formula (written τ ⊧ φ) as follows:
• τ ⊧ a if and only if a ∈ τ(0),
• τ ⊧ ¬φ if and only if τ /⊧ φ,
• τ ⊧ φ1 ∧ φ2 if and only if both τ ⊧ φ1 and τ ⊧ φ2,
• τ ⊧ φ if and only if τ[1 ∶ ∞] ⊧ φ,
• τ ⊧ φ1 U φ2 if and only if there exists t s.t. τ[t ∶ ∞] ⊧ φ2

and for all t′ < t, τ[t′ ∶ ∞] ⊧ φ1.
For notational convenience, we allow access to all the usual
Boolean connectives, true, false, as well as the temporal
modalities (“eventually”; φ is equivalent to true U φ)
and its dual (“globally”; φ is equivalent to ¬ ¬φ).

E.g., consider the DBN-template given in Example 1.1.
We can use d-separation to argue that the structural formula
(O á S ∣ L) holds, i.e., (Ot á St ∣ Lt) holds for all t.

Using the temporal LTL-operators, also more involved prop-
erties can be expressed: the formula (X áY)U ¬(Y á Z),
e.g., expresses that the sets of variables X and Y are struc-
turally independent at least until Y and Z are dependent.

For LTL, we investigate the following two problems:

• Structural LTL model-checking of DBN-templates:
For a DBN-template T with variables V and an LTL for-
mula φ over the set A of structural CI propositions using
V, decide whether the trace τ ∈ (2A)ω of T satisfies φ.

• Stochastic LTL model-checking of DBNs: For a DBN
B with variables V and an LTL formula φ over the set
B of stochastic CI propositions using V, decide whether
the trace τ ∈ (2B)ω of B satisfies φ.

We indeed employ d-separation as a tool to reason more
generally about specifications involving only structural in-
dependence propositions in Section 4. On the other hand,
we prove that evaluating stochastic formulae as simple as
(X ⊥ Y ) can be number-theoretically hard (Lemma 5.1)

showing that a decidability result for stochastic LTL or NBA
model-checking of DBNs is out of reach without a break-
through in number theory.

Non-deterministic Büchi automata (NBAs). The second
formalism we consider is that of nondeterministic Büchi au-
tomata (NBAs, introduced in (Richard Büchi 1966)), which
express precisely the class of ω-regular temporal properties.
An NBA is a tupleA = (Q,Σ,∆,Q0, F ) where Q is a finite
set of states, Σ is the alphabet, ∆ ⊆ Q × Σ ×Q is the tran-
sition relation, Q0 ⊆ Q is the set of initial states and F ⊆ Q
is the set of accepting states. A run of A on an infinite word
τ = w0w1w2 ⋅ ⋅ ⋅ ∈ Σω is a sequence ρ = q0q1 . . . of states
such that q0 ∈ Q0 and (qi,wi, qi+1) ∈ ∆ for each i ∈ N. The
run ρ is accepting if qj ∈ F for infinitely many j ∈ N. We
say that A accepts τ if there exists an accepting run on τ .

We remark that it is known that NBAs are strictly more
expressive than LTL formulae, however translating an LTL
formula into an equivalent NBA can lead to an exponential
increase in size. The resulting NBA model-checking prob-
lems we consider are:



• Structural NBA model-checking of DBN-templates:
For a DBN-template T with variables V and an NBA
A over the alphabet 2A where A is the set of struc-
tural CI propositions using V, decide whether the trace
τ ∈ (2A)ω of T is accepted by A.

• Stochastic NBA model-checking of DBNs: For a DBN
B with variables V and an NBA A over the alphabet 2B
where B is the set of stochastic CI propositions over V,
decide if the trace τ ∈ (2B)ω of B is accepted by A.

4 Structural conditional independence
In this section, we study the properties of the trace τ ∈ (2A)ω
of a DBN-template with variables V with respect to a set A
of structural CI propositions and show how to check whether
the trace satisfies a logical specification. The main result we
will establish is the following:
Main result 4.1. The structural LTL and NBA model-
checking problems for DBN-templates are in PSPACE and
NP-hard as well as coNP-hard.

For restricted DBN-templates, the structural LTL and
NBA model-checking problems are in PTIME.

To prove this result, we will show that the trace of a DBN-
template with respect to structural CI propositions is ulti-
mately periodic by virtue of being represented as the run of a
deterministic transition system with 2O(∣V∣

2) states. We shall
further demonstrate that in this transition system, a state can
be represented in O(∣V∣2) space, the successor can be com-
puted in time polynomial in ∣V∣, and the labeling function
(i.e., which propositions hold in a given state) can be com-
puted in time polynomial in ∣V∣, ∣A∣. We then rely on the
well-known results that checking whether all traces of an
N -state transition system are accepted by a size K NBA can
be done in nondeterministic space O(polylog (N ⋅K)) and
whether all traces satisfy a size-M LTL formula φ can be
done in nondeterministic space O(polylog N ⋅poly M) (see
(Vardi and Wolper 1986) and, e.g., (Baier and Katoen 2008,
Proof of Lemma 5.47) for a detailed presentation).1

The improved complexity for restricted DBN-templates
follows from the insight that the trace of a restricted DBN-
template on variables V is constant from time ∣V∣2 onwards.

To convey a feeling for the hardness results, we first pro-
vide an example of a family of DBN-templates whose traces
have periods exponential in the number of used variables:
Example 4.2. The k-th DBN-template of this
family has variables X0,X1, . . . ,Xk as well as
W1,0,W1,1,W2,0, . . . ,Wk,0,Wk,1, . . . ,Wk,pk−1, where
pi refers to the i-th prime. The initial template has edges
of the form (X0

i−1,W
0
i,0) and (X0

i ,W
0
i,0) for all i, and the

step template has edges (X0,X
′
0), (Xk,X

′
k), and edges

from Wi,r to W ′
i,r+1(mod pi). By construction, we have

(X0 á Xk ∣ {W1,0, . . .Wk,0}) if and only if the timestep t
is divisible by all of 2,3, . . . , pk (see Figure 2). Intuitively,
we go from X0 to Xk via “islands” X1, . . . ,Xk−1. The

1Provided one can compute the label and successor of a state in
the transition system in polylog N space, which, in our case, we
show we can as N = 2O(∣V∣

2
) and so polylog N = poly ∣V∣.

Xi−1 Wi,0 Wi,1 Wi,pi−1 Xi

X ′i−1 W ′

i,0 W ′

i,1 W ′

i,pi−1 X ′i

. . .

. . .

Figure 2: Bridge between islands Xi−1 and Xi. Initial tem-
plate in dashed green edges.

“bridge” between successive islands Xi−1,Xi uses the
edges of the initial template, and is open precisely when t
is divisible by pi, i.e., a collision can be attributed to W t

i,0.
We need all bridges to be open simultaneously to make
the journey: this gives us a period 2 ⋅ 3 ⋅ ⋯ ⋅ pk, which is
exponential in ∣V∣ = (k + 1) + 2 + 3 +⋯ + pk.

We establish NP-hardness of deciding whether (X á
Y ∣ Z) holds: we reduce from the NP-complete intersec-
tion problem for unary DFA (Blondin and Mckenzie 2014).
Since we also have access to the negated formula, we can
also reduce from the complementary problem. Further, both
properties can be expressed by fixed NBAs, and we get the
following result whose proof is an adaptation of the example
above, and given in the technical appendix.

Lemma 4.3. The LTL and NBA model-checking problems
with structural-independence propositions are hard for NP
as well as for coNP.

4.1 DBN traces through transition systems
We shall now prove the PSPACE upper bounds for the struc-
tural model-checking problems by showing that any trace of
a DBN-template with variables V and structural indepen-
dence propositions A can be obtained as the run of a de-
terministic transition system with 2O(∣V∣

2) states, each of
whose states can be represented in O(∣V∣2) space, whose
successor function can be computed in time polynomial in
∣V∣, and whose labelling function can be computed in time
polynomial in ∣V∣, ∣A∣.

We start by making a key observation about d-paths:
Claim 1: If there exists a d-path from X to Y with respect
to a set Z of size k in an arbitrary BN, there is one with at
most k collisions, all of which occur inside Z.

The above claim (see technical appendix for proof) mo-
tivates us to compute the pairs in {Xt, Y t, Zt

1, . . . , Z
t
k} that

are connected by collision-free paths in order to determine
whether there is a d-path relative to Zt from Xt to Y t. How-
ever, we must be slightly careful: a path that concatenates
collision-free paths via edges (Zt,Xt) and (Zt, Y t) is ac-
tually blocked by Zt.

Construction of the transition system. We construct a
transition system S = (Q, q0,→,A,L), where Q will be the
state space with an initial state q0, → a deterministic suc-
cessor relation, A the set of structural CI propositions, and
L∶Q→ 2A the labeling function. The states in S will be BN-
templates that represent the connections via collision-free d-
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Figure 3: An example of a DBN-template T with its un-
folding and the transition system S constructed from T .
Variables Uij without outgoing edges are omitted. Note,
e.g., that the variable U13 is connected to W1 and W2 after
two time steps reflecting that there is a collision-free d-path
W 2

1 ,W
1
1 ,W

1
2 ,W

2
3 connecting W 2

1 and W 2
3 in the unfolding

through the previous time slices.

paths in the DBN-template at some time t. For an illustration
of all steps of the construction, see Figure 3.

State space and labeling function: The representative BN-
template for time t = 0 is simply the initial BN-template. The
representative BN-templates for times t > 0 use variables
V = {W1, . . . ,Wn}, and auxiliary variables U = {Uij ∶
1 ≤ i, j ≤ n}, corresponding to unordered pairs of distinct
i, j. The edge (Wi,Wj) is always present if and only if
(W ′

i ,W
′
j) is an edge in the step-template BN. In the rep-

resentative at time t, we additionally draw edges (Uij ,Wi)
and (Uij ,Wj) if there is a collision-free d-path from W t

i
to W t

j in the original DBN-template, and the intermediate
vertices along this path do not belong to Vt. Note how
the latter requirement rules out the possibility of a path
being blocked by an observed variable. So, by definition,
(X á Y ∣ Z) holds at time t in the DBN if and only if
(Xt á Yt ∣ Zt) holds in the representative BN-template;
running d-separation queries on the latter settles the issue of
the labelling function, which hence can be computed in time
polynomial in ∣V∣ and A.

We observe that for t > 0, there are 2(
∣V∣
2
) possible repre-

sentatives, depending on the choice of which Uij are made
parents, each representable as a graph with O(∣V∣2) ver-
tices. This establishes the size requirements described at the
beginning of Section 4.

Transition relation: Above, the transition relation of the
reachable part of the state space is implicitly given by fol-
lowing the time steps. Now, we describe how to compute
the successor of a representative BN-template B on V ∪U

directly in polynomial time. For this, consider the graph with
vertices U∪V∪V′∪U′. Draw edges in the subgraph induced
by U∪V as prescribed by B, and edges in (V∪V′)× (V′)
as prescribed by the step template. Now, for each i /= j, we
add edges from U ′ij to W ′

i and W ′
j if there is an A ∈ U ∪V

that can reach W ′
i and W ′

j in the graph constructed so far
without using edges inside V′.

The correctness of this construction can be seen as fol-
lows: If A is in V, this is a collision-free d-path from W ′

i
to W ′

j . If A ∈ U it has edges to some Bi ∈ V reaching W ′
i

and Bj ∈ V reaching W ′
j . The edges to Bi and Bj repre-

sent a collision-free d-path which can then be extended to a
collision-free d-path from W ′

i to W ′
j . Finally, we restrict the

graph to V′ ∪U′ to obtain the successor of B. Clearly, this
successor can be computed in time polynomial in ∣V∣.

PSPACE upper bound: So, we have constructed the de-
terministic transition system satisfying the requirements de-
scribed at the beginning of Section 4 and conclude:
Theorem 4.4. The structural LTL and NBA model-checking
problems for DBN-templates are in PSPACE.

4.2 The special case of restricted DBNs
The difficulty of exponentially long periods is circumvented
when we consider restricted DBNs: in this case, the trace is
constant from position t = ∣V∣2 onwards. To show this, we
argue that for restricted DBNs, all times t > ∣V∣2 have the
same representative. Since going all the way to V0 does not
give access to any “new” connecting edges in this setting.
Formally (see technical appendix for proof):
Claim 2: In a restricted DBN-template, if there is a
collision-free path from Xt to Y t, there is one that goes back
at most ∣V∣2 time slices.

Thus, in the case of restricted DBN, the trace is ultimately
constant after at most ∣V∣2 time steps, and the entire transi-
tion system can be computed in time polynomial in ∣V∣, ∣A∣.
This reduced complexity allows us to use standard tech-
niques (see technical appendix for precise details) to show:
Theorem 4.5. The LTL and NBA model-checking problems
for restricted DBNs with structural-independence proposi-
tions can be solved in polynomial time.

5 Stochastic conditional independence
In this section, we establish the number-theoretic hardness
of reasoning about stochastic CIs when concrete conditional
probability distributions are given. Specifically, we shall
show that deciding whether formulae of the form (X ⊥
Y ) hold is at least as hard as the Skolem problem for ratio-
nal linear recurrence sequences (LRS).

A rational LRS of order k is a sequence (un)∞n=0 of ra-
tional numbers satisfying the recurrence relation un+k =
ak−1un+k−1+⋯+a0un, where ak−1, . . . , a0 are rational num-
bers with a0 ≠ 0. It is given by the coefficients a0, . . . , ak−1,
and the initial terms u0, . . . , uk−1. The Skolem problem
takes as input an LRS, where the recurrence relation and ini-
tial terms are respectively encoded as a companion matrix
A ∈ Qk×k and a vector u ∈ Qk, and asks whether there exists
an n such that un = 0, i.e., Anu contains a 0-entry.



The Skolem problem has been open for nearly a century
(Everest et al. 2003; Tao 2008). It is open even if we restrict
the LRS to have order five (Ouaknine and Worrell 2012). It is
known to be decidable at orders four and below (Tijdeman,
Mignotte, and Shorey 1984; Vereshchagin 1985).
Lemma 5.1 (Skolem hardness). Consider a rational LRS
of order k, given by its companion matrix A ∈ Qk×k, and
vector u ∈ Qk of initial values. We can compute a DBN
with ⌈log k⌉ + 2 binary variables X,Z1, . . . , Zℓ, Y where
ℓ = ⌈log k⌉ and rational conditional probabilities, such that
(X ⊥ Y ) holds if and only if the LRS has a zero term.
The reduction, which we defer to the technical appendix,

uses (Aghamov et al. 2025, Cor. 1) to “embed” the given
LRS into a Markov chain (M,v), and then lemma 2.4 to
convert the Markov chain into a DBN. We remark that as
a corollary, our construction can also be used to reduce the
closely related Positivity problem for LRS (see, e.g., (Ouak-
nine and Worrell 2014) for arguments of number-theoretic
hardness) to the problem of deciding whether Y always
“positively influences” X .

6 Discussion: faithfulness in DBNs
Theorem 3.1 demonstrates an analog of Theorem 2.3 for
DBNs, albeit in one direction. However, in future work, we
aim to formally prove that the concept of structural indepen-
dence is faithful to stochastic independence in DBNs, estab-
lishing a complete analog of Theorem 2.3 for DBNs. The
distinction from the known result is that, when transitioning
to DBNs, we impose constraints on the parameters by identi-
fying the distributions of the same variables across different
time slices. This reduces the dimensionality of the parame-
ter space, leading to a strictly smaller family of admissible
Bayesian networks at any given time t.

We say that the parameters ⟨P0,Pstep⟩ are t-unfaithful
if (X ⊥ Y ∣ Z) holds at time t but (X á Y ∣
Z) does not. They are called unfaithful if this occurs for
some t. In other words, unfaithful parameters are those for
which the structural and stochastic conditional independen-
cies diverge.

We briefly argue why proving the analog of Theorem 2.3
would suffice. Indeed, recall that by definition, if (Xt ⊥Yt ∣
Zt), then for every x,y,z, we must have that the expression

Pr[(Xt,Yt,Zt) = (x,y,z)] ⋅Pr[Zt = z]
−Pr[(Xt,Zt) = (x,z)] ⋅Pr[(Yt,Zt) = (y,z)]

is equal to 0. We observe that in the DBN setting, we can use
Lemma 2.4 to argue that the above expression is a (degree
O(t)) polynomial in the parameters ⟨P0,Pstep⟩. In partic-
ular, if the polynomial is not identically 0, then for all but
a measure-0 set of parameters, it returns a nonzero value.
Proving an analog of Theorem 2.3 would help us deduce
that if structural dependence holds, the corresponding poly-
nomial cannot be identically 0.

Using that zero-sets of polynomials have measure 0 and
are closed under countable unions, we deduce that unfaithful
parameters form a measure-0.

We remark that the proof of Theorem 2.3 in (Meek
1995, Section 6.4) relies on a local dependence condition:

if (X,Y ) is an edge, then X and Y must be dependent. In
Bayesian networks, CPDs can be chosen so that variables
along a d-path are locally dependent, while all others remain
independent of any other variables. This is not possible in
dynamic Bayesian networks, where temporal and structural
constraints prevent such isolation. This limitation is a key
obstacle to extending the argument to the DBN setting. A
potential approach is to consider a CPD where a variable
takes value 1 with higher probability whenever the major-
ity of its parents are 1. While we focus on binary variables
here, establishing the result in this setting would yield the
general case as a straightforward corollary. Another promis-
ing direction comes from algebraic statistics (?), which ap-
plies tools from algebraic geometry and combinatorics to
study statistical models, especially those involving discrete
data. In Bayesian networks, it encodes conditional indepen-
dencies as polynomial equations and analyzes the resulting
algebraic varieties to understand structural and probabilis-
tic properties. Another line of attack could also possibly in-
volve observing that the sequence of polynomials charac-
terizing conditional (in)dependence at time t forms a linear
recurrence over the field of multivariate rational functions,
and judiciously appealing to the Skolem-Mahler-Lech theo-
rem (the set of zeroes of a linear recurrence over a field of
characteristic 0 is the union of a finite set and finitely many
effective arithmetic progressions).

7 Conclusion

We introduced LTL-based and NBA-based specification for-
malisms to express temporal properties of CIs in DBNs.
These formalisms can express desirable system properties
such as non-interference in security applications and open
the possibility to verify systems against all kinds of desir-
able specifications regarding the temporal evolution of CIs.

We restricted here to CI propositions that state CIs be-
tween variables at the same time slice. Our techniques, how-
ever, offer the possibility to introduce CI propositions talk-
ing about variables at different time slices. A syntax for such
propositions could, e.g., be (X+2 á Y ∣ Z+1), which holds
at time point t in a DBN-template if (Xt+2 áYt ∣ Zt+1). If
the entries expressing the time shifts are bounded by some
k given in unary, out model-checking algorithm for DBN-
templates can be adapted without increasing the asymptotic
complexity: We can adapt the construction of the determinis-
tic transition system encoding the trace of the DBN-template
by letting the states consist of BN-representatives that un-
fold the step template for k steps before adding the “tun-
nelling through”-layer of variables encoding the existence
of collision-free d-paths between variables.

Regarding stochastic CIs in DBNs, our Skolem-hardness
result is sobering regarding the potential of verifying sys-
tems against temporal specifications with respect to stochas-
tic CI statements—which might come as a surprise. The key
to obtain this hardness result was establishing the intricate
connection between LRSs and DBNs.
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Technical Appendix to Temporal Properties
of Conditional Independence in Dynamic
Bayesian Networks

A Probability theory preliminaries
A probability space is a measure space given by a triple
(Ω,F , P ). Here, Ω is the sample space, i.e., a non-empty
set of mutually exclusive and collectively exhaustive out-
comes (e.g., the set {HH, HT, TH, TT} of outcomes of two
coin tosses). The set of events F is a σ-algebra, i.e., a set
of subsets of Ω, called events, which includes Ω, and is
closed under complement, countable union, and hence also
countable intersection by De Morgan’s law (in our exam-
ple we can define F to have 16 events). Finally, P ∶ F →
[0,1] is the probability measure which satisfies P (Ω) = 1
and σ-additivity, i.e., if {Ai}i is a countable collection of
pairwise disjoint sets, then P (⋃iAi) = ∑i P (Ai) (e.g.,
P ({}) = 0, P ({HH}) = 1/4, P ({HT}) = 1/4, P ({TH}) =
1/3, P ({TT}) = 1/6).

A random variable X on a probability space (Ω,F , P )
is a measurable function from Ω to a measurable space
S2, called its support, i.e., for any measurable T ⊆ S,
X−1(T ) ∈ F . We call X discrete if S is countable, and bi-
nary if S = {0,1}. In this paper, we shall work with discrete
random variables, which will often be binary for simplicity.
Given x ∈ S, we write pX(x) = Pr[X = x] = P ({ω ∈
Ω ∶ X(ω) = x}). For example, for the random variable
X which indicates whether the second coin shows Heads,
pX(1) = 7/12. We analogously define pX ∶ S → [0,1] for a
finite tuple X of discrete random variables with support S.

B Proofs of equivalence with Markov chains
We first formally establish the equivalence of DBNs with
Markov chains, and then give the reduction from the Skolem
problem via its formulation in terms of Markov chains
(Aghamov et al. 2025).

Lemma 2.4. Given a DBN with k binary random variables,
we can construct an equivalent Markov chain with 2k states.

Given a Markov chain with K states, we can construct an
equivalent DBN with ⌈logK⌉ binary random variables.

Proof. To show the first claim, we describe how to obtain a
Markov chain from a DBN: Each of the states of the Markov
chain (labelled 0,1, . . . ,2k−1) indicates, through the binary
expansion of the label, one of the 2k possible configurations
of the random variables. E.g., the state 1 indicates all vari-
ables are 0, except X0 = 1.

The conditional probabilities in the step-template network
enable us to compute the update matrix M of the Markov
chain, column by column (our linear algebraic convention
takes the matrix to be column-stochastic, i.e., the columns
are distributions and sum up to 1). The (ℓ,m)-th entry is the
probability of the configuration being ℓ, given the previous
configuration was m.

For the second claim, we show how to encode a Markov
chain in a DBN: We assume, without loss of generality, that

2We equip S with σ-algebra F ′ and measure µ ∶ F ′ → R.

the Markov chain has K = 2k+1 states, labelled 0,1, . . . ,2k−
1. This can be done by adding extra states whose only transi-
tions are self-loops. Our main idea is to perform the previous
construction “in reverse.”

To that end, we name the required random variables
X0, . . . ,Xk, and interpret their configuration at the cur-
rent time slice as indicating the state the Markov chain is
in. In the step-template network, each X ′i depends upon
X0, . . . ,Xk,X

′
k, . . . ,X

′
i+1. The idea is the same as that of a

binary search: given the previous state of the Markov chain
was m (given by Xk, . . . ,X0), we first consider the con-
ditional distribution of the most significant bit X ′k of the
current state, and then that of the (k − 1)-st bit X ′k−1 given
Xk, . . . ,X0,X

′
k, and so on.

C A faithfulness result
Proposition 3.1. If (Xt á Yt ∣ Zt) in a DBN-template T
for some t, then, (Xt ⊥Yt ∣ Zt) in every DBNB ∈ Fam(T ).

Proof. Suppose that (Xt á Yt ∣ Zt). Let B ∈ Fam(T ) be
an arbitrary DBN, and let B0∶t denote its unfolding into a BN
over time slices 0 to t. Note that (Xt á Yt ∣ Zt) holds iff
there is no d-path wrt Zt from Xt to Yt in the BN-template
T 0∶t. By Theorem 2.3, it follows that (Xt ⊥Yt ∣ Zt).

D Structural independence-related proofs
Lemma 4.3. The LTL and NBA model-checking problems
with structural-independence propositions are hard for NP
as well as for coNP.

Proof. Assume we are given unary DFAs A1, . . . ,Ak. Re-
call that each Ai is given by a set Qi = {Qi,0, . . . ,Qi,mi}
of states, unary alphabet {a}, the initial state Qi,0, transition
function δi ∶ Qi → Qi, and set of accepting states Fi ⊆ Qi.
The intersection problem asks whether there exists t ≥ 0
such that at is accepted by all the given automata. We encode
this as a DBN with variables {X0, . . . ,Xk}∪Q1⋯∪Qk. Let
F = F1 ∪ ⋯ ∪ Fk. In the initial template, we build bridges
(X0

i−1,Q
0
i,0), (X0

i ,Q
0
i,0). In the step template, we connect

(X0,X
′
0), (Xk,X

′
k), and (Qi,j , δi(Qi,j)′).

We then observe that at is accepted by all automata if and
only if (X0 áXk ∣ F) holds at time t. To see this, note that a
d-path from Xt

0 to Xt
k first has to go up to X0

0 . Then, it has to
move to Q0

1,0 from there, it can only continue to X0
1 if Q0

1,0
(or one of its decendants) can serve as a collider. This is only
possible if an element of Ft is reachable from Q0

1,0, which
is the case if and only if the word at leads to an accepting
state in A1. Analogously, at also has to be accepted by all
other given unary DFAs.

Claim 1: If there exists a d-path from X to Y with respect
to a set Z of size k in an arbitrary BN, there is one with at
most k collisions, all of which occur inside Z.
Proof. Suppose, for the sake of contradiction, a d-path with
the fewest collisions has more than k collisions. Then, by
the pigeonhole principle there exists Z ∈ Z to which more
than one collision is attributed. Let the first and last of these
collisions occur at W1,W2 respectively. Since they have Z



as a common ancestor, there exists a path from W1 to W2

with a single collision inside Z. We use this path to “tun-
nel through” and replace the given d-path with one that has
fewer collisions: a contradiction, as desired.

Claim 2: In a restricted DBN-template, if there is a
collision-free path from Xt to Y t, there is one that goes back
at most ∣V∣2 time slices.
Proof. Suppose, for the sake of contradiction, a path with
the lowest “traceback” goes back more than ∣V∣2 time slices.
Then, by the pigeonhole principle, there exist i < j such that
the path enters and exits Vt−i and Vt−j at the same pair of
variables. We can thus replace the path from Vt−i with the
path from Vt−j and get a collision-free path with a smaller
traceback: a contradiction, as desired.

Theorem 4.5. The LTL and NBA model-checking problems
for restricted DBNs with structural-independence proposi-
tions can be solved in polynomial time.

Proof. The case of NBA model checking is immediate. We
can construct an automaton whose language is precisely the
trace τ , intersect it with the given NBA, and check the result
for non-emptiness, all in polynomial time (Baier and Katoen
2008, Chapter 4.3).

To check whether an ultimately constant trace satisfies
an LTL formula φ, we adopt a dynamic programming ap-
proach, memoizing for 0 ≤ t ≤ ∣V∣2 + 1 = T whether a suffix
τ[t ∶ ∞] satisfies a subformula φ′ of φ. We populate entries
from larger to smaller t, and simpler to more complex φ.
Atomic propositions and Boolean connectives are handled
in the obvious way. The suffix from time t = T satisfies φ′
if and only if it satisfies φ′; it satisfies φ1 U φ2 if and only if
it satisfies φ2. For smaller t, the suffix from time t satisfies
φ′ if and only if the suffix from time t + 1 satisfies φ; it

satisfies φ1 U φ2 if and only if it either satisfies φ2, or it sat-
isfies φ1 and the suffix from t + 1 satisfies φ1 U φ2. Having
populated the table, we check whether the suffix from t = 0
satisfies the given φ.

E Proof of Skolem-hardness
Lemma 5.1 (Skolem hardness). Consider a rational LRS
of order k, given by its companion matrix A ∈ Qk×k, and
vector u ∈ Qk of initial values. We can compute a DBN
with ⌈log k⌉ + 2 binary variables X,Z1, . . . , Zℓ, Y where
ℓ = ⌈log k⌉ and rational conditional probabilities, such that
(X ⊥ Y ) holds if and only if the LRS has a zero term.

Proof. We construct a DBN such that at the n-th time step:

• The event Y = 1 occurs unconditionally with probability
1/2.

• The difference Pr[X = 1∣Y = 1] − Pr[X = 1∣Y = 0] is
2−nρnη times the n-th term of the LRS, where η, ρ are
positive rational constants.

At a high level, the construction proceeds as follows:

1. We use (Aghamov et al. 2025, Cor. 1) to “embed” the
given instance (A,u) of order k into an ergodic Markov
chain (M,v) of order k + 1.

2. We encode the states of the Markov chain with binary
variables, or “bits” X,Z0, . . . , Zℓ, where X indicates
whether the system is in the first state, and all other states
are indicated by the usual binary encoding introduced in
Lemma 2.4. This ensures that using even restricted DBNs
suffices for the reduction.

3. In the DBN, the current values of X,Z0, . . . , Zℓ depend
on not only on the previous values, but also on the cur-
rent value of Y . If Y = 1, the distribution of current val-
ues is obtained from the previous values as per the con-
struction in Lem. 2.4. Otherwise, the distribution is “fast-
forwarded” to the stationary distribution s of M .

We remark that as a corollary, our construction can also
be used to reduce the closely related Positivity problem for
LRS (see, e.g., (Ouaknine and Worrell 2014) for arguments
of number-theoretic hardness) to the problem of deciding
whether Y always “positively influences” X . Let s ∈ Qk+1
be the uniform distribution, and S be the square matrix
whose columns are all s. By (Aghamov et al. 2025, Cor. 1),
we can compute an ergodic Markov chain M and an initial
distribution v (both with all entries rational) such that for all
n,

Mnv = s + ηρn [ I
−1⊺k
]Anu, (1)

where η, ρ are positive rational constants, and 1k denotes the
vector with all entries equal to 1.

We label the states of the Markov chain as α,0,1, . . . , k −
1, and encode them with bits X,Z0, . . . , Zℓ. The encoding
of α has X = 1 and all other bits 0, the encoding of any
other state i has X = 0 and other bits set according to the
binary representation of i. Clearly, this uses ⌈log k⌉ + 1 bits.

We shall also index the rows and columns of M by
α,0,1, . . . , k − 1, such that α corresponds to the topmost,
and leftmost.

To construct the DBN including the additional bit c, we
replicate the construction of Lem. 2.4. The initial Bayesian
network is set up so that valid state encodings with Y = 0
each get half the probability prescribed by s, and valid state
encodings with Y = 1 each get half the probability pre-
scribed by v.

For the step-template, we have that the current value of Y
is unconditionally assigned uniformly at random. If Y = 1,
the conditional distribution of bits X,Z0, . . . , Zℓ is the same
as that prescribed by M , i.e., if the previous values encoded
a valid state i, then the conditional probability of valid en-
coding j is the (j, i)-th entry of M ; if the previous value was
an invalid encoding i, then the current value is deterministi-
cally i. Similarly, if Y = 0: if the previous values encoded a
valid state i, then all valid encodings j are assigned proba-
bility 1/(k + 1), if the previous encoding i was invalid, then
the current encoding is deterministically i.

We note that only the valid encodings are reachable, and
1
2
[M M
S S

] is an equivalent Markov chain for (the reach-

able configurations of) the DBN, and the initial distribution

is 1
2
[v
s
].



Intuitively, at step n, the probability that X,Z1, . . . , Zℓ

encode state i is the probability that there was never a fast-
forward (which is 2−n−1) times what the probability would
be according to the Markov chain (which is e⊺iM

nv), plus
the probability there was a fast-forward times the stationary
probability (which is e⊺i s), where ei is the vector whose en-
try at index i is 1 and other entries are 0.

Formally, at step n,
Pr[X = 1] = 1

2n+1 e
⊺
αM

nv + 2n+1−1
2n+1 ⋅ 1

k+1 .
We can also check this via the equivalent Markov chain

of the DBN. We can show via a simple induction, and using
the facts that MS = SM = SS = S, that

[M M
S S

]
n

= [M
n + (2n−1 − 1)S Mn + (2n−1 − 1)S

2n−1S 2n−1S ]

Using the fact that Sv = s, we have that at step n, the distri-

bution is 1
2n+1 [

Mnv + (2n − 1)s
2ns

].

Observe that Pr[X = 1 ∣ Y = 1] = 1
2n

e⊺αM
nv+ 2n−1

2n
⋅ 1
k+1 ,

and that Pr[X = 1 ∣ Y = 0] = 1
k+1 , and their difference is

1
2n
(e⊺αMnv − 1

k+1). Recall that by the embedding 1 of the
LRS by (Aghamov et al. 2025, Cor. 1), this can be rewritten
as 2−nηρn(e⊺Anu), i.e., a scaled version of the LRS. We
have thus shown that at time n, Pr[X = 1 ∣ Y = 1]−Pr[X =
1 ∣ Y = 0] = 2−nηρnu(n), where u(n) is the n-th term of
the LRS, and η, ρ are rational constants. The reductions of
Skolem to eventual independence of X and Y and Positivity
to global causation of X by Y is complete.


