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Abstract. We consider the verification of ω-regular linear temporal
properties of concurrent programs running under weak memory seman-
tics. We observe that in particular, these properties may enforce liveness
clauses, whose verification in this context is seldom studied. The chal-
lenge lies in precluding demonic nondeterminism arising due to schedul-
ing, as well as due to multiple possible causes of weak memory consis-
tency. We systematically account for the latter with a generic operational
model of programs running under weak memory semantics, which can be
instantiated to a host of memory models. This generic model serves as the
formal basis for our definitions of fairness to preclude demonic nondeter-
minism: we provide both language-theoretic and probabilistic versions,
and prove them equivalent in the context of the verification of ω-regular
linear temporal properties. As a corollary of this proof, we obtain that
under our fairness assumptions, both qualitative and quantitative ver-
ification Turing-reduce to close variants of control state reachability: a
safety-verification problem.
A preliminary version of this article appeared in the proceedings of CAV
2023 [5].

1 Introduction

Concurrent programs consist of multiple processes performing computations and
sharing access to a memory of global variables. Decomposing a program into mul-
tiple processes may be necessitated by the setting, e.g. a distributed (financial)
database, or may helpfully separate concerns, e.g. a power plant controller where
there are different processes to listen for sensor input, perform physics compu-
tations, render an output reading, actuate a control setting, and so on. Given
their prevalence, the formal verification of concurrent programs is naturally an
important challenge.

When writing concurrent programs, it is most intuitive to assume the pro-
cesses as being fully synchronized via the shared memory, i.e. the execution of
the program is some interleaving of the executions of the component processes,
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and a read from a shared variable returns the value written by the most recent
write to that variable in the interleaving. The notion of Sequential Consistency
(SC) [28] captures this intuition, and makes programs quite amenable to proofs
of correctness.

However, real-world applications prioritize not only mathematical correctness
but also performance; the latter often higher because it is easier to evaluate. As
one would expect, the synchronization enforced by SC comes at a high perfor-
mance cost, and is foregone in practice. We say that programs run under weak
memory semantics: here, the adjective ‘weak’ qualifies the consistency guar-
antees offered by the shared memory. Typically, a process’ accesses to shared
memory may be reordered if they are independent enough, buffers and caches
may fetch reads from shared variables speculatively, and/or procrastinate the
propagation of writes.

As an example, Fig. 1 illustrates weak behavior that cannot be attributed to
any sequentially consistent execution, but is permitted on ARM and POWER
machines. The observed reads are possible if, for instance, in the second process,
the write to x is reordered before the (independent) read from y.

a = x; //1

y = 1;

b = y; //1

x = 1;

Fig. 1. Load buffering in a very simple concurrent program. Assume initially x = y = 0.

As a somewhat dual example, Fig. 2 illustrates weak behavior that cannot be
attributed to any sequentially consistent execution, but is permitted on ARM,
POWER, as well as x86 TSO machines, even if instructions may not be locally
reordered. This is because the writes may reside in local buffers, forcing both
reads to obtain their values from the globally available initialization.

y = 1;

isync;

a = x; //0

x = 1;

isync;

b = y; //0

Fig. 2. Store buffering. Assume initially x = y = 0, and that the instructions cannot
be (locally) reordered.

It is clear that permitting weak behavior introduces several sources of nonde-
terminism beyond the basic scheduling nondeterminism of SC, and thus makes
the verification task significantly more complex. This is because in general, spec-
ifications can enforce not only safety (a bad event never occurs) but also liveness
(a desirable event is guaranteed to occur). Proving the latter requires appropriate
fairness assumptions on the resolution of nondeterminism. These, in turn, can
only be made on a model of concurrent programs that can distinguish demonic
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nondeterminism. These challenges are arguably why the literature on verifying
liveness for programs running under weak memory semantics is relatively sparse,
despite the extensive work on verifying safety: it is only recently [3,26] that we
have seen efforts to verify liveness.

The burden of formal verification (beyond safety) notwithstanding, relaxing
consistency requirements improves performance as well as scalability, making
concurrent programming all the more viable, and consequently, formal verifi-
cation all the more critical. This article is a step in the direction of developing
systematic formal verification techniques for concurrent programs running under
weak memory semantics. Our key ingredient is the fairness assumption that (a)
declares there is no “discernible” pattern in the resolution of nondeterminism,
and (b) restricts the extent of weak behavior, which is quantified by our generic
transition-system-based (i.e. operational) model of such programs.

1.1 Preliminaries: Concurrent Programs and Verification Goal

To establish the scope of this article, a few preliminary remarks are in order.
Throughout this paper, we shall assume that a concurrent program P consists
of a fixed finite set of processes or threads (usually denoted p0, p1, . . . ) that
execute instructions to operate over a finite data domain D. These processes
have finitely many local variables or registers (denoted by letters a, b, c) and
share access to a finite global set X of locations or memory addresses or global
variables5 (denoted by letters x, y, z). Each location (likewise, register) holds a
value (usually represented by a positive integer) from D, and is assumed to be
initialized to a special value 0.

We consider a simple C-like programming language that includes operations
on D6, goto statements, conditional jumps, non-deterministic branching, reading
from shared memory into a local variable, writing a constant or a local value to
shared memory, instructions to synchronize across processes, and atomic combi-
nation(s) of reads from and writes to memory.

The control state gives for each process the current position of the program
counter (pointer to the next instruction to be completely executed) and the
current values of local variables. In our formulation, there are only finitely many
possible control states for any given program.

We assume that programmer intent is captured by the evolution of the con-
trol state. As an example, consider the following linear temporal property that
could be imposed on the observation traces of the control state of a program
with processes p0, p1, p2: “Eventually, p0 terminates (T0), and subsequently, p1
and p2 alternate in having exclusive access to the critical section (Ci).” The ver-
ification community would specify this requirement as the ω-regular language
Σ∗T0 ((N

∗C1N
∗C2)

ω + (N∗C2N
∗C1)

ω). It is such (ω-regular linear temporal)

5 By convention, when we simply say ‘variable’, we mean ‘global variable’.
6 Elements of D may be interpreted as data as well as pointers. In this paper, our
concern is primarily the semantics of the shared memory accesses; it suffices to
abstract away the semantics of the local computations, since the domain D is finite.
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specifications7 that we wish to verify the evolution of control state against. We
now discuss how we model concurrent systems to achieve this verification goal.

1.2 Modeling the System

In writing code to meet requirements, the programmer uses the synchroniza-
tion guarantees made by the semantics of programming language. To actually
execute, however, programs need to be compiled to instructions executable by
the machine they run on. Naturally, the implementation of how the compiled
machine code is executed must respect the semantic guarantees of the program-
ming language. The implementation details of reads, writes, and synchronization
primitives are given by a memory model, which is an abstract description of the
machine executing the program (Fig. 3).

Fig. 3. Concurrency from a programmer’s perspective

Memory models, when declared axiomatically, map an execution to a (pos-
sibly infinite) graph, and enforce its validity a posteriori by prohibiting certain
patterns in the graph. This paradigm is helpful to programmers because it con-
veys the semantic structure of the code that can be relied upon for correctness.
Operational models, on the other hand, construct transition systems whose runs
correspond to program executions: as [9, Introduction] notes, they are prefer-
able to hardware designers and verification engineers. This is because it is a
more natural setting to respectively describe performance optimizations, and
track various aspects of a system as it evolves with time.

7 We remark that we adopt model-checking as our verification paradigm of choice as
it appears better suited that deductive reasoning to the level of abstraction we are
working at.
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For verification in particular, ω-regular specifications can be encoded as
Muller automata, which can then be composed quite naturally with a transition-
system-based operational model of the execution (see Def. 1). Satisfaction of the
specification by traces of the system becomes equivalent to a connectivity prop-
erty of the graph underlying the composite transition system.

We thus propose a generic operational model (illustrated in Fig. 7, further
outlined in Sec. 2, and instantiated in Sec. 3) as an abstraction of the Executing
Machine of Fig. 3 to apply our verification techniques (sketched in Fig. 4). By
a generic model, we mean a “blueprint” with certain abstract “parameters”,
which, when instantiated, defines specific memory models. These models can
have architectural origins, e.g. x86 models (RMO, PSO, TSO), the ARMmemory
model, the proposed model for IBM POWER, or semantic origins, e.g. (soundly
strengthened) fragments of C/C++11 such as Strong-Release-Acquire (SRA), or
even origins from distributed systems, e.g. Weak-RA, parallel snapshot isolation.

The notion of a generic model for weak memory is not a novelty in itself. See
[11, Section 4] for a generic axiomatic model, and [11, Section 7] and [10] for
generic operational models. These advances, especially the latter, while inspira-
tional to our techniques, do not entirely overcome our modeling challenges.

1.3 Fairness and Verification

Although generic models have been developed and proven useful, we note that
the primary focus of weak memory verification, and hence modeling, has been
on safety, i.e. the absence of fatal bugs: the modeling needed only be good
enough to determine the reachability of undesirable control states. However,
recall that more general specifications can also require liveness, i.e. the guarantee
of desirable outcomes eventually occurring (e.g. process p0 terminating). This
can be done only if we make fairness assumptions on the model to preclude the
inherent non-determinism from being so demonic that favorable outcomes are
denied the opportunity to occur (e.g. the scheduler never picks p0 to run). As
indicated in Fig. 4, which sketches our verification approach, admitting fairness
is a key feature of the modeling if verification techniques are to be applicable.

As refinements to a mathematical model of concurrent programs, it does
not behoove fairness assumptions to be too ad hoc. Furthermore, as they are
necessitated by practical concerns, they must also be grounded in real-world
observations. Thus, in the verification of specifications more general than safety,
the challenge lies not only in identifying appropriate definitions of fairness, but
also in devising sufficiently perspicuous frameworks to describe memory models
in a way that seamlessly admits natural fairness definitions. We illustrate how
we overcome these challenges with two examples.

The program in Fig. 5 needs the second process to read the write x = 1 to
terminate. The first process keeps alternating between writing 1 and 2 to x until
then. It would be unfair if the second process is always scheduled to read when 1
has just been written, but never when 2 has just been written. Transition fairness
prohibits this: it enforces that if a program state is visited infinitely often, then
every available transition is taken infinitely often. Technically, we need a stronger
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Fig. 4. Our blueprint to use fairness for the verification of linear temporal specifications
on the evolution of control state

definition (see Def. 3): if a state is visited infinitely often, then the sequence of
transition choices taken does not follow any “discernible” pattern.

while (y != 1) {

x= 1; x = 2;

}

while (x != 1) {}

y = 1;

Fig. 5. Transition fairness is required to guarantee termination even under SC

As the program in Fig. 6 illustrates, mere transition fairness is not enough.
For this program to terminate, at least one of the processes must read the other’s
write. However, this is not guaranteed to happen if store buffering is permitted
(as in TSO) and the writes are issued more often than they are “flushed”. This is
an instance of “overly weak” behavior, and needs to be precluded with a notion
of memory fairness.

Fortunately, our generic framework explicitly quantifies the extent of weak
behavior: in any model, it can be attributed to buffering of reads and writes,
and/or to globally available writes under propagation, and is hence quantified
by the total number of buffered accesses and writes under propagation. We can
thus postulate definitions of memory fairness, restricting this quantity (see Defs.
5, 7).
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do {x = 1;}

until (x == 2 or y == 1);

y = 1;

do {x = 2;}

until (x == 1 or y == 1);

y = 1;

Fig. 6. Memory fairness is required to guarantee termination

In the conventional setting, we enforce the fairness of Def. 3 in conjunction
with either Def. 5 or Def. 7. The probabilistic analog of the second conjunction
is given by Def. 8. Thm. 2 shows that all these alternate fairness assumptions are
in a sense equivalent in the context of verification of ω-regular linear temporal
properties. As a corollary of the proof, we obtain that both qualitative and
quantitative verification reduce to close variants of control state reachability: a
safety-verification problem.

1.4 Our Contributions

This article extends [5], which appeared in the proceedings of CAV 2023, on the
fronts of both modeling as well as verification.

Modeling We augment the framework introduced in [5], allowing us to capture
behaviors such as speculation and racing reads (load buffering), in addition to
the originally supported store buffering and delays in propagation of writes.
The augmented framework is thereby capable of mirroring operational def-
initions of more sophisticated models such as ARMv8 [9] and POWER [11,
Section 7]. The new framework is also more interpretable, in that buffered
writes are explicitly distinguished from globally available writes under prop-
agation. We acknowledge that [5] misrepresents the models of RMO [37,
Section 8 and Appendix D] and PRAM/FIFO consistency (see, e.g. [29, Sec-
tion 3] and [7, Section 3]).

Verification Analogous to [5], we make appropriate fairness assumptions and
Turing-reduce the qualitative and quantitative verification of ω-regular tem-
poral properties8 to close variants of control state reachability queries. The
definition of memory fairness is, in spirit, the same as that in [5] because
the augmented framework indeed continues to quantify the extent of weak
behavior: it is straightforward to generalize the definitions of “configuration
size” and “plain configurations”. In order to verify more general linear tem-
poral properties than termination and repeated reachability, however, we
need a stronger language-theoretic definition of fairness. Nevertheless, we
prove this definition equivalent to its probabilistic analog (Thm. 2).

Structure of the Paper We present the operational model in Sec. 2, briefly
explain instantiations to specific models in Sec. 3, and subsequently define both

8 The preliminary work [5] handled only termination and repeated control state reach-
ability.



8 P. A. Abdulla et. al.

language-theoretic as well as the analogous probabilistic fairness notions and
discuss the application of textbook model-checking techniques for verification
in Sec. 4. Our verification techniques Turing-reduce to variants of control state
reachability problems for weak memory models. In Sec. 5, we discuss how con-
ventional techniques might be adapted to solve our close variants of control
state reachability. Finally, we discuss related work in Sec. 6 and offer concluding
remarks in Sec. 7.

2 Modeling

In this section, we explain the generic operational model that we outline and
demonstrate our generic operational model in Fig. 7.

Fig. 7. A high-level architecture of our generic operational model, referred to as the
Executing Machine in Fig. 3
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We remark that being a complete or authoritative source for memory models
of commodity architectures such as x86, ARM, or POWER is beyond the scope
of this paper, due to the sheer nuance. Nevertheless, we hope to demonstrate that
our generic operational model captures them in spirit, meets the requirements
of modularity, genericity, and perspicuity, and can be proposed as an intuitive
framework for architects to document their intent and designs.

The framework attributes weak behavior to two kinds of performance opti-
mizations:

1. A process p might locally reorder instructions that perform memory trans-
actions, provided they are sufficiently independent. This is facilitated by the
transaction buffer.

2. A write made global (i.e. flushed from the buffer) by a process pi might not
be immediately propagated to another process pj . This delay is modeled by
the message propagation unit.

2.1 Compiled Code

We start understanding the framework by considering how it extends the con-
trol state: this is done in the “compiled code” component. To begin with, the
program must be “compiled to” our model of the executing machine. The archi-
tecture that it is intended to be run on must also be taken into account since
our framework reorders instructions rather freely by default. In our framework,
compiled code mostly resembles source code, except for the insertions of instruc-
tions that ensure that the synchronization implied by programming language
semantics and architectural decisions is made explicit.

Compilation This default ability to reorder instructions, if not checked by
compilation interventions, leads to gross over-approximations for two reasons.
First, some reads and writes of issued in a programming language carry syn-
chronizing semantics, e.g. all memory transactions issued in a language with
Sequential Consistency (SC) semantics, C++ acquire loads and release stores.
Moreover, some architectural models like x86 TSO (and even PSO, albeit to a
lesser extent) prevent certain kinds of instruction reorderings. Our “compilation”
captures programming language semantics and architectural rules by marking
out and creating dependencies and/or inserting synchronizing instructions (see,
resp. dependencies and fences in Sec. 2.2).

As a semantic example, acquire loads may not be overtaken by any transac-
tions, and release stores may not overtake any transactions9. Compilation must
make these constraints explicit to the executing machine which may otherwise
reorder transactions. On POWER machines, a lightweight fence is placed before
release stores, and a branch and an instruction synchronization fence are placed

9 ARMv8 [9,32] further enforces that acquire loads may not overtake release stores; to
the best of our knowledge this strengthening is not corroborated by any programming
language standard.
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after acquire loads [15,35]. ARMv8 has added load acquire and store release
instructions with similar fence semantics to support direct compilation [9,32].
Our compilation of such transactions to emulations of ARM or POWER on our
framework mirror these fence insertions.

As an architectural example, consider the x86 architecture, where TSO is a
strengthening of RMO where reads are acquire and writes are release by default
[37, Appendix D]. Here, our compilation scheme inserts fences for architectural,
rather than semantic reasons. The distinction is subtle: if a real-world program
were to be compiled to a TSO machine, release writes and acquire reads would
respectively be mapped to regular writes and reads. However, we are compiling
a program to run on our framework (which reorders instructions liberally) as
it would on a TSO machine. Hence, we insert load-load and load-store barriers
after every read, and store-store barriers after every write.

State The state of the “compiled code” component of our executing machine
is a slight extension of the control state that is actually exposed to the pro-
grammer. As discussed above, the compilation may insert instructions to make
synchronization semantics of the program explicit. Thus, translating the pro-
gram counter (PC) and register values (Reg) of this component to the exposed
control state is straightforward.

The additional feature is the speculation tracker (ST), which steps through
the code line by line, “guessing” the program order, i.e. sequence of executed in-
structions. As it does so, the ST adds the memory transactions it crosses to the
transaction buffer. We shall soon discuss how the buffer manages and performs
the transactions: from the source code component’s perspective, the buffer is
responsible for driving the progress of the program counter (PC) and the atten-
dant updates of register values (Reg), and also resetting the ST when branch
misprediction is discovered. This progress in PC and Reg is then immediately
conveyed verbatim to the Finite Control State exposed to the programmer.

The right of Fig. 7 illustrates an example: the ST indicates that transactions
up until writing to location y from the register b have been speculated ; the PC
indicates that the next instruction is a read from the location x that will update
the register b; finally, consistent with the progress of the PC, Reg indicates that
a = 1, b = 0, c = 0. At the next step, the transaction buffer can move the PC
forward and convey progress along with the update of register b to 1.

There are details such as the fence instruction, and the speculation of an
unresolved write W(y, ?) to location y that our explanation has not yet specified.
In order to do so, we need to understand the transaction buffer.

2.2 Transaction Buffer

The transaction buffer maintains a loose downward program-ordered “queue” of
memory transactions and indicates the position of the program counter (PC). Its
structure captures the idea that although the PC steps through the instructions
in program order, speculation affords more flexibility in performing them: the
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resolution of data, address, and control dependencies can be optimized, values
that reads need to return can be loaded eagerly from shared memory, and sim-
ilarly writes can be stored to shared memory at leisure. In order to be satisfied
(resp. flushed), a read (resp. write) transaction can “jump the queue”. How-
ever, the overtaking, i.e. passing an unsatisfied read or an unflushed write, is
constrained due to requirements enforced by processor self-consistency, depen-
dencies, and fences. Before discussing these terms, we explain the working of the
transaction buffer through an example.

Example We return to our running example in the right of Fig. 7. The buffer
may flush the write to x, or satisfy the read from x using the buffered write
preceding it in program order. There are two reasons why the write to y may
not be flushed: the first reason is that the value to be written is unresolved, and
depends on the read from x into register b; the second reason is that this write
must cross a fence which prevents reordering the first three instructions with the
last two.

In our example, we take the next transition to satisfy the read from x. This
resolves the dependent write W(y, ?). In general, reads can also resolve address
and control dependencies: the latter can result in (wrongly) speculated trans-
actions getting discarded. The buffer can then choose to move the PC past the
read R(x): when it does so, it notifies the source code component of the changes
in PC and Reg, and also of resets in ST, if the read revealed a branch was
mispredicted.

The transaction buffer tracks speculated instructions, manages the satisfac-
tion of reads and the flushing of writes, and drives the PC. Transactions in the
buffer are either active or passive. In the sequel, “overtaking” only considers
jumping the active transactions in the queue.

Reads are active until they are satisfied, writes are active until they are
flushed. Passive transactions are removed from the buffer upon being crossed by
the PC. The PC can cross a read only if it is passive. If a write is flushed after
being crossed by the PC, then it is directly removed from the buffer. Transactions
that are found to be part of a mispredicted branch are immediately removed from
the buffer, regardless of whether they are active.

Observe that the buffer continues to hold satisfied reads precisely until the
PC steps across them (however, a transaction passing a satisfied read on its
way to the front of the queue is not considered an overtake), but a write may
await flushing even after being crossed by the PC. We also note that: (1) all
transactions ahead of the one indicated by the PC must be writes; (2) the buffer
holds all transactions from the PC to the ST (but some of them may be passive).

Processor Self-Consistency Processor self-consistency refers to basic coher-
ence requirements: (a) writes by the same process to the same location may
never race; (b) a read may never have the chance to be satisfied (i.e. take its
value from) by a write that comes later in program order; (c) if a read is satisfied



12 P. A. Abdulla et. al.

by a write made by the same process, it must have chosen the most recent write
to that location before it in program order.

Furthermore, prohibiting reads by the same process to the same location
from racing gives the stronger guarantee of SC-per-location. Several models for-
bid such load-load hazards that may be helpful optimizations: as notable excep-
tions, they were allowed by the RMO model of SPARC [37], and pre-POWER 4
machines [38]. As [11, Section 4.8] acknowledges, declaring full SC-per-location
rather than processor self-consistency as an axiom may be perceived as con-
troversial. We prefer to not enforce SC-per-location (since we explicitly discuss
RMO), but instead give two types of reads, racing, and hazard-free, distinguished
by whether they may be overtaken by reads to the same location.

Dependencies Dependencies capture the possibility that whether, where, and
what a transaction will contribute to the shared memory is determined by the
outcomes of instructions preceding it in program order. The above are referred
to as control, address, and data dependencies respectively. In the example in the
right of Fig. 7 the write to y has an unresolved data dependency on the read from
x, which is yet to be satisfied. Satisfying the read will resolve the dependency,
and determine the write.

Dependencies directly constrain the overtaking in a buffer. For a read, ad-
dress dependencies must be resolved before the buffer considers it eligible to be
satisfied, either by a preceding local resolved write, or a globally available write
from the propagation unit. For a write, all dependencies must be resolved before
the buffer considers it eligible to be flushed to the message propagation unit. In
an operational model of the buffer, dependencies restrict the racing indirectly
too: a read (resp. write) may not be satisfied (resp. flushed) if in doing so, it
could violate processor self-consistency by overtaking an unresolved transaction.

Fences Fences are the programmers’ (and compilers’) tools to explicitly impose
synchronization within and across processes through additional constraints on
the order in which transactions are executed, and on the order in which writes
propagate. We shall explicitly consider only a few common types of fences:

full fence waits for preceding transactions to exit the buffer to be flushed; suc-
ceeding transactions must wait for the fence to be flushed before they can
be satisfied or flushed (assumed universally available),

lightweight synchronization can never be overtaken by writes, can only be
overtaken by succeeding reads when all preceding reads have been satisfied,
can only be flushed when all preceding writes have been flushed (part of
POWER instruction set),

instruction synchronization successors may only be satisfied or flushed after
the PC crosses the fence; the fence itself is not flushed like a write but merely
exits the buffer like a read (part of POWER instruction set),

load acquire a read that no transaction may overtake (part of ARMv8 instruc-
tion set),
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store release a write that may not overtake any transaction and may not be
overtaken by a load acquire (part of ARMv8 instruction set),

membar combinations of barriers that prevent succeeding reads and/or writes
from overtaking preceding read and/or writes (part of x86 instruction sets).

Fences are cumulative if they further enforce constraints on the order in
which writes are propagated 10. Cumulativity is ensured by definition in multi-
copy-atomic models like ARMv8 and the x86 family. In non-multi-copy-atomic
models, cumulative fences like the full fence and lightweight synchronization
are flushed to memory like writes, non-cumulative fences such as instruction
synchronization leave the buffer like reads upon being crossed by the PC.

Other varied nuances (such as input/output barriers) are beyond the scope
of this article; for our purposes, we shall abstractly consider other fences as
barriers that prevent certain transactions from racing ahead, and may either
be flushed from the buffer to enforce cumulativity, or be removed like a read.
Crucially, a read cannot be satisfied, or a write cannot be flushed, if there is a
fence preventing it from “overtaking its way to the front” of the queue.

The transaction buffer may pick a read to be satisfied (resp. a write
to be flushed) only if doing so is guaranteed to preserve processor self-
consistency, is well-determined by dependencies, and does not violate
fences.

We observe that some fences have a clogging effect on the buffer. When
fences such as the full fence, instruction synchronization (isync), load acquire,
or a combination of load-load and load-store membar are issued, it is impossible
for succeeding transactions to be satisfied or flushed until the fence leaves the
buffer. We may thus assume that instructions succeeding a clogging fence are
not speculated until the fence leaves the buffer.

In particular, if we make the ARMv8 assumption that acquire loads may not
overtake release stores, then all instructions are clogging in a program where all
reads are acquire and all writes are release. There is no non-trivial speculation,
and weak behavior can be completely attributed to the message propagation
unit: this is the case for causal models like WRA, RA, and SRA. 11

Handling Atomic Read-Modify-Writes (RMW) Some instructions, e.g.
CAS, FADD, have semantics that atomically combine reads and writes. For
simplicity, we assume that they have release and acquire semantics: they have
the synchronization effect of a full fence, and must be satisfied directly from
memory.

10 See Sec. 2.3 for terminology used in this paragraph.
11 Technically, RA and related models use message propagation axioms that make spec-

ulation redundant even without the ARMv8 non-overtaking assumption: essentially,
even the relaxed loads are hazard-free, and the propagation unit subsumes store
buffering. As for ARMv8, it uses the trivial message propagation unit, and hence a
program entirely composed of release-acquire accesses takes Sequentially Consistent
semantics, as the official documentation acknowledges.

https://developer.arm.com/documentation/102336/0100/Load-Acquire-and-Store-Release-instructions
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2.3 Message Propagation Unit

We shall now briefly discuss the mechanism underlying the satisfaction of reads.
We have seen that reads may (in fact, often must) be satisfied by a program-
order preceding write, if available in the buffer. However, if there is no such write
in the buffer, a read by process p must be satisfied by a write from the message
propagation unit that has been propagated to it.

At any given point in the execution of a program, there is a finite set of
non-redundant writes that are globally available to satisfy reads. For multi-copy
atomic models such as TSO, PSO, RMO [37], and ARMv8 [9], there is only one
globally available write per location, which is propagated to all processes. In
these models, the weak behavior is entirely attributed to the transaction buffer.
When a write to location x is flushed to the propagation unit, it immediately
replaces the existing write.

More generally, this set may be unbounded: writes flushed from the trans-
action buffer need not be propagated to all other processes instantaneously. It
does, however have some causal structure: propagation of writes to a process p
makes writes “causally before” them redundant to p. As a basic instance, recall
that writes to the same location by the same process may never race. Thus, if
process p0 writes x = 1 followed by x = 2, and process p1 uses the latter to
satisfy a read, then in subsequently satisfied reads, p1 cannot use the first write
as a source, because it has been rendered redundant.

Memory models and the accompanying fence semantics can create further
causal dependencies. Fences often have notions of cumulativity, e.g. if process p0
writes x = 1, issues a cumulative fence, and then writes y = 1, then the propaga-
tion of y = 1 to process p1 implies the propagation of x = 1 too. Such cumulativ-
ity achieves synchronization across processes: observing a write a thread made
after a cumulative fence also informs the reading thread of knowledge the writer
had at the time the fence was issued. The above example is the message passing
idiom, which is a characteristic of causally consistent memory models such as
Release-Acquire (RA) and related models SRA, WRA (see, e.g. [24, Sections
3-4] for an exposition).

Even in the presence of relaxed memory accesses like those allowed by POWER,
the very semantics of acquire reads and release writes declares the cumulative
synchronization described above. The standard compilation scheme of C/C++
to POWER [15,35] inserts lightweight synchronization before release writes, and
fake control branches followed by instruction synchronization after acquire reads.
If all reads are acquire and all writes are release and the compilation proceeds
as above, then [25] shows that the POWER model is equivalent to SRA.

We adapt the techniques of [5] to construct the propagation unit. The unified
framework of [5] was a graph-based structure that captured several memory
models. It recorded write messages as nodes and their dependencies as edges,
and deleted nodes once their corresponding writes were rendered redundant to
all processes. In this paper, our framework assumes that all the dependencies
combine to form a partial order that the propagation must respect, i.e. that the
graph of [5] is acyclic.
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A partially ordered propagation unit sacrifices the ability to capture RA
and other fragments of the C++ memory model. However, it does capture the
memory models of architectures that programs are eventually compiled to, e.g.
POWER [11, Propagation axiom, Fig. 18]. Rather than only programming lan-
guage semantics, it is the architecture’s implementation of the semantics that
governs executions. It is the latter we focus on: our framework can capture SRA,
suggested in [11, Section 4.7] as a means for RA to fit the axiomatic framework
developed for POWER, and subsequently formally proposed and studied in [25].

The partially ordered structure The message propagation unit maintains a
partially ordered collection of write messages and fence declarations. The partial
order < is read “ordered before”; if u < v, we say that u is a predecessor of v
and that v is a successor of u; by the downward closure of a subset S of a partial
order, we mean the set T = {u : u ≤ v for some v ∈ S}. A set that is equal to
its downward closure is called downward closed. Dually, we can also define the
upward closure of S, and an upward closed set.

Each fence declaration records the identity of the process that issued it. Each
write message records:

– the variable written to, and the value written;
– the identity of the process that wrote it; 12

– a flag to indicate whether the write can be used as the source of an RMW
(a write can be successfully “overwritten” by an RMW at most once);

– the set of processes that have seen the message, either by writing it them-
selves, or by using it to satisfy a read;

– the set of processes for which it is redundant.

Proposition 1 (Invariants). The message propagation unit maintains the
following properties of the partial order.

Enabled Read For every process p and location x, there is at least one write
v to x that can be used as the source of an RMW and is not redundant to p.

Per-Location Coherence For every location x, the set of writes to x is totally
ordered.

Causal Propagation For any location x, the set of messages to x that are
redundant to any process p is always downward closed.

Coherent Observation For any process p and messages u, v to variable x that
are not redundant to p, if v is seen by p, then it cannot be that u < v.

Atomicity If messages v0 < v1 < · · · < vn are writes to location x such that for
all i < n, vi+1 is an RMW overwriting vi, then for all writes u to x distinct
from v0, . . . , vn, if u < vn then u < v0, and dually if v0 < u then vn < u.

12 This, like the first component, is static and can only take finitely many values. For
technical convenience, we may choose to not record this component explicitly, but
instead assume that the program can be modified to incorporate this information in
the value being written.
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No Garbage For every write message v, there is at least one process p such
that v is not redundant to p; for every fence declaration f , there is at least
one write message such that v < f .

Most notable non-multi-copy-atomic memory models (POWER, SRA) en-
force per-location coherence (often referred to as modification order in C++
parlance). Furthermore, maintaining the atomicity invariant is trivial, as incom-
ing writes are always placed at the end of the total order.

In order to discuss models like WRA and PRAM/FIFO Consistency, which
are of interest as models for distributed systems, we weaken per-location co-
herence to po-loc. We include FIFO/PRAM consistency only for completeness’
sake to rectify the misrepresentation in [5], and do not treat RMWs in FIFO.
For WRA, we postulate weak atomicity.

po-loc For every process p and location x, the writes made by p to x are totally
ordered, and the total order is the same as their program order.

Weak Atomicity Two RMWs may not read from the same write.

The maintenance of these invariants are straightforward to adapt from that
of the ones we discuss in this section. We refer the reader to Sec. 3 for further
discussion on instantiations.

Read A read from location x by process p is satisfied as follows:

Satisfy Choose a write message v0 to x that is not redundant to p and seen by
p, and use its value to satisfy the read.

Join to accumulate Mark the following set of messages as redundant to p:
{u : ∃v. (u and v write to the same variable) ∧ (u < v ≤ v0)}.

Garbage collection Delete all write messages that become redundant to all
processes, and then delete all fences that have no predecessor.

The join step from above ensures that the cumulative propagation effects
enforced by the memory model and fences are conveyed to the reading process
upon making an observation: if, by way of synchronization, the writer of v0 were
then “aware” of a write v to variable y, then a write u to y that is ordered before
v must necessarily become redundant to a process p that reads v0.

We present a closely related transition.

Silent Update This transition chooses a process p, location x, and a message v
to location x, which is currently not redundant to p. The message v is marked as
seen by p.13 In order to preserve the coherent observation invariant, all messages
u to x such that u < v are marked redundant to p. Garbage collection then
deletes all writes that are redundant to all processes, and subsequently all fences
that have no predecessor.

13 Alternately, the update step can also choose to mark this message as redundant to
p if doing so does not violate the Enabled Read invariant.
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Write We now describe the insertion of a fresh write by a process p to location
x into the partial order. The insertion must respect the rules of the governing
memory model, and also maintain the framework invariants of propagation order,
location coherence, and atomicity. Of the five components of a write message,
the first two are obvious. The incoming message is initially eligible to be a source
of an RMW, and is seen only by the writing thread. The set of processes for
which this message is redundant is empty at the time of insertion.

Report accumulated observations The latest cumulative fence issued by p,
if present, is added as a predecessor of the write.

Place as maximal element The incoming write is ordered after all the exist-
ing writes to x.

Preserve coherent observation Mark all writes u to x such that u < v as
redundant to p.

Garbage collection Delete all write messages that become redundant to all
processes, and then delete all fences that have no predecessor.

Fence When a process p issues a cumulative fence, it is added as a fresh maximal
element in the partial order. The set of predecessors of the newly inserted element
is the downward closure of the set which is the union of:

– the set of write messages seen by p.
– the set of fences issued by p

RMW Recall that we assume RMW operations to have release-acquire seman-
tics. Thus, we atomically execute a read, issue a fence, execute a write, and mark
the message read from as ineligible to source an RMW. Note that we necessarily
read from the write that is maximal in the total coherence order for the location.

Strong (Full) Fence A strong (full) fence is implemented as an RMW to an
otherwise unused location.

3 Instantiating Our Framework

In this section, we briefly describe various memory models with the help of
example litmus tests, and thus intuit how our framework can be instantiated to
specific models. Table 1 summarizes the sources we use for each of the models
we consider.

3.1 Multi-Copy-Atomic Models

In models such as RMO, ARMv8, PSO, and TSO, weak behavior is attributed
entirely to instruction reordering in the transaction buffer. The message prop-
agation unit always consists of a single write per variable, which is rendered
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Memory Models Sources Notes

RMO, PSO, TSO [37, Section 8, Appendix D] Official documentation of SPARCv9

PSO, TSO [14] Decidability of control state reachability

TSO [3] Probabilistic verification

ARM(v8) [9,32] Formal modeling by ARM

POWER [11] Model based on extensive testing

SRA [25] Proposed to strengthen C/C++ RA

WRA* [16,24] A minimal model of causal consistency

SRA, WRA* [24] Decidability of control state reachability

PSI* [24, Section 3.1] Parallel Snapshot Isolation

FIFO/PRAM* [29] and [7, Section 3] FIFO Consistency

Table 1. A summary of sources we use for memory models. Models marked * are
relevant as consistency models for distributed systems.

x = 1; y = 1;

a1 = x; //1

isync;

b1 = y; //0

b2 = y; //1

isync;

a2 = x; //0

Fig. 8. IRIW: forbidden by multi-copy-atomic models, permitted by non-multi-copy-
atomic models

redundant upon a new write to that variable being flushed from a buffer. The in-
dependent reads of independent writes (IRIW) litmus test (Fig. 8) distinguishes
multi-copy-atomic models from non-multi-copy-atomic ones.

In the program of Fig. 8, the isync (instruction synchronization) ensures that
the reading threads satisfy the reads in program order. The reading threads have
no choice but to satisfy their reads from the propagation unit. The execution
of the first reading thread implies that the write to x was flushed before the
write to y; the execution of the second reading thread implies the opposite. This
contradictory behavior cannot be observed on multi-copy-atomic models.

However, these independent writes, if placed in a non-trivial propagation unit
of a non-multi-copy-atomic model, can be propagated in different orders to the
reading threads, and permit the observation illustrated in Fig. 8.

RMO The Relaxed Memory Order (RMO) model of SPARC(v9) enforces pro-
cessor self-consistency, dependencies, and has a set of fences, as specified in [37,
Appendix D]. Interestingly, it does not enforce SC-per-location, making it the
only model to allow the behavior illustrated in Fig. 9: here, in the absence of ex-
plicit synchronization, the program-order-later load into b is allowed to overtake
the load into a. To quote the documentation itself [37, §8.4.4.1].

Relaxed Memory Order places no ordering constraints on memory ref-
erences beyond those required for processor self-consistency. When or-
dering is required, it must be provided explicitly in the programs using
MEMBAR instructions.
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a = x; //1

b = x; //0
x = 1;

Fig. 9. Loads from the same location racing: permitted only by RMO, this particular
violation of SC-per-location is forbidden by all other models we consider.

ARMv8 This model is excellently documented in [9,32]. It enforces SC-per-
location, forbidding the behavior of Fig. 9. Overtaking in the buffer is constrained
by SC-per-location and preserved program order. We also recall that ARMv8 has
introduced load-acquire and store-release instructions in its instruction set; see
§Fences of Sec. 2.2.

In contemporary descriptions of memory models, dependencies are captured
by the notion of preserved program order. In descriptions of multi-copy-atomic
models, it makes no technical difference when preserved program order also
subsumes fences, but if there is no multi-copy-atomicity, fences have additional
synchronization duties in the propagation unit, and must be distinguished.

PSO The Partial Store Order (PSO) model of SPARC(v9) strengthens RMO
by forbidding reads from being overtaken. Our abstract executing machine im-
plements PSO by inserting a (load-load and load-store) memory barrier after
every read.

TSO The Total Store Order (TSO) model of SPARC(v9) and x86 strengthens
PSO by further forbidding writes from racing. Our abstract executing machine
implements TSO by inserting a (load-load and load-store) memory barrier after
every read, as well as a (store-store) memory barrier after every store.14 We
observe that by construction, loads in TSO take acquire semantics, and stores
take release semantics. Indeed, TSO is formally shown stronger than SRA [25].

3.2 Non-Multi-Copy-Atomic Models

We now consider models where weak behavior can also be attributed to delays
in the message propagation unit. In all models except WRA and PRAM/FIFO
Consistency, the partial order of propagation enforces per-location coherence,
i.e. the set of writes to the same location is totally ordered (see Fig. 10).

POWER We refer to the model of [11], which was validated by extensive testing
on hardware. The overtaking in the transaction buffer is constrained by preserved
program order (corresponding to dependencies) and fences. Fences have further
synchronization duties: they are responsible for creating causal dependencies to
refine the propagation (partial) order [11, Fig. 18].

14 The official documentation places the barrier after, but it can also be placed before
to have the effect of allowing only stores to be buffered in a disciplined queue.
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x = 1; x = 2;

a1 = x; //1

isync;

a2 = x; //2

a1 = x; //2

isync;

a2 = x; //1

Fig. 10. Models that enforce per-location-coherence forbid this outcome, as the writes
to x must be totally ordered, and earlier writes must be rendered redundant upon
reading later ones. Both WRA and FIFO, however, allow this outcome.

We illustrate the cumulativity of fences through two examples. The cumula-
tivity of the lightweight fence is shown in Fig. 11. It ensures that the write to y
is ordered after that to x. Thus, upon reading the write to y, the initial write to
x is rendered redundant, forbidding the illustrated outcome.

x = 1;

lwsync;

y = 1;

b = y; //1

isync;

a = x; //0

Fig. 11. Message passing. The annotated outcome is forbidden in POWER as well as
in WRA, as the assumption of per-location coherence is not used.

The full fence (sync) provides even stronger synchronization. To illustrate it,
we revisit the IRIW example and make a slight modification (see Fig. 12): the
isync instructions in the readers are replaced by sync fences, which are flushed to
the propagation unit. These fences must be totally ordered in the buffer, in the
order in which they are flushed. Without loss of generality, we assume that the
first reader flushes its fence first. This full fence is ordered after the write x = 1.
When the second reader flushes its fence, it is ordered after the first fence, and
by transitivity, also after the write x = 1. Recall that fences are implemented as
release-acquire RMWs to an otherwise unused location: thus, this flush renders
the initial write to x as redundant to the second reader. The behavior illustrated
in Fig. 12 is therefore forbidden.

x = 1; y = 1;

a1 = x; //1

sync;

b1 = y; //0

b2 = y; //1

sync;

a2 = x; //0

Fig. 12. IRIW+sync: forbidden by POWER as well as by WRA

SRA SRA stands for Strong Release-Acquire. It was identified in [11, Section
4.7] as a means to make the propagation under RA partially ordered, and for-
mally developed in [25]. As [25] proves, the standard compilation scheme of
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[15,35] (place lwsync before every write, place a fake control dependency and
isync after every read) to POWER results in SRA. This is also how we compile
SRA programs to our executing machine.

Under SRA, reads thus have a clogging effect on the buffer, and writes by
a process may not race. Such disciplined store buffering is subsumed by the
propagation unit. In our framework, we can thus assume that the weak behavior
of SRA is entirely attributed to the propagation unit, and transaction buffers
are always empty, i.e. the PC and ST coincide, and transactions are instantly
flushed or satisfied.

To summarize: transactions are satisfied from, or flushed to the propagation
unit in program order, the model is causally consistent (because writes accu-
mulate the observations made by the author), and incoming writes are always
placed as maximal elements of the total coherence order of the location.

PSI Parallel Snapshot Isolation (PSI) is a consistency model used in databases
and distributed systems that offers scalability and availability in large-scale geo-
replicated systems [13]. Following [24, Section 3.1], we consider the restriction of
PSI to single-instruction transactions. If all writes are replaced by RMWs, SRA
precisely captures PSI.

WRA WRA, as formulated in [24], stands for Weak Release Acquire, and is a
causally consistent model. WRA (without RMWs) is equivalent to a basic causal
consistency model called CC in [16], when CC is applied to the standard sequen-
tial specification of a key- value store supporting read and write operations.

In order to run WRA, our executing machine must not insist on a total per-
location coherence order in its propagation unit: it must simply require that
writes by the same process to the same location be totally ordered. The com-
pilation scheme from source code is the same as that for SRA: lwsync before
writes, and control with isync after reads.

RMWs only require weak atomicity: no two RMWs may read from the same
write. Nevertheless, RMWs can still be used to implement a full fence [24, Ex-
ample 3.9]. Notice that we used this observation in the iriw+sync litmus test of
Fig. 12.

Consequently, WRA can be summarized similarly to SRA (differences em-
phasized): transactions are satisfied from, or flushed to the propagation unit in
program order, the model is causally consistent (because writes accumulate the
observations made by the author), and incoming writes are always placed as
maximal elements of the total po-loc order of the writes made to the location by
the writing process.

Interestingly, WRA allows a particular form of store-forwarding, illustrated
in Fig. 13. This is because there is no mechanism in the propagation unit to
order the writes by different processes, and reading one does not render the
other redundant.
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x = 1;

a = x; //2

b = x; //1

x = 2;

Fig. 13. Store forwarding. Synchronization instructions inserted at compile time are
left implicit. This outcome is allowed by WRA.

FIFO Consistency Finally, for completeness15, we discuss FIFO Consistency
[29, Section 3] (see also [7, Section 3]). We do not treat RMWs for lack of
coherence in the model (this lack of coherence is by design, since the model is
most often intended for distributed systems). Our framework needs adaptations
to accommodate FIFO, but the key idea of a partially ordered propagation unit
remains valid.

The FIFO protocol is as follows: each process maintains a local copy of the
shared memory. A read fetches the value held in the local copy. A write overwrites
a local copy, and broadcasts a message. The local copy may be overwritten by
a broadcast from another process at any time. It is guaranteed that messages
from any process will overwrite any local buffer in program order.

This means that FIFO can “pass” messages (the outcome of Fig. 11 is forbid-
den under FIFO when the synchronizing instructions are edited appropriately),
but is unable to “relay” messages: see Fig. 14. This is because under FIFO Con-
sistency, the writes of the first and second processes are propagated independently
to the third process.

x = 1;
a = x; //1

y = 1;

b = y; //1

c = x; //0

Fig. 14. Message relay. The annotated outcome is forbidden if the program is compiled
as WRA, but allowed if the program is compiled as FIFO.

It turns out that FIFO is incomparable to the models we have seen: the
protocol is incompatible with store buffering, as the litmus test in Fig. 15 shows.
The annotated outcome is observed under TSO if the second process reads x to
a1 and y to a2 right between the flushing of x = 1 and of y = 1, reads from y to
a3 after the flushing of y = 2, and forwards x = 3 from the buffer to satisfy the
read of x to a4.

If the program were running under the FIFO protocol, then upon the execu-
tion of the first three instructions of the second process, we know that the write
x = 1 had been conveyed to the local copy, it was subsequently overwritten by
x = 3, but the write y = 1 is yet to be conveyed because the local copy still
contains the initial value. The next read implies, by the FIFO property that both

15 (and to atone for the misrepresentation in [5])
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y = 2 and x = 2 have been conveyed to the local copy, the latter overwriting
x = 3. Hence, it is subsequently impossible to read x = 3 into a4.

x = 1;

y = 1;

x = 2;

y = 2;

a1 = x; //1

x = 3;

a2 = y; //0

a3 = y; //2

a4 = x; //3

Fig. 15. Store-buffering behavior allowed by TSO but forbidden by FIFO (appropriate
barriers implicit)

We now express the FIFO protocol with our framework. We keep the com-
pilation of FIFO programs to our executing machine abstract, as it requires a
non-standard instruction set for the required synchronization. Instead, we sim-
ply declare the policy of the transaction buffers, and structure and maintenance
of the partially ordered message propagation unit.

The transaction buffers are always assumed to be empty, i.e. all instructions
have a clogging effect. The program counter and speculation tracker always co-
incide, reads are satisfied immediately, writes are flushed immediately.

The key design choice of FIFO is that there is no global synchronization.
However, all writes by the same process are totally ordered, and the total order
is the same as the program order. Thus, the partial order of the propagation
unit consists of one chain per process. However, elements from distinct chains
are always incomparable.

To capture FIFO, we require that for each process p and location x, exactly
one message to x be both seen by and not redundant to p. Thus, if a message is
marked as seen to p during an update step or a write, then other non-redundant
messages that were earlier marked seen become redundant. The ensuing garbage
collection then ensures that po-earlier writes to that variable also become re-
dundant.

FIFO Update Choose a process p, location x, and message v0 to x that is not
redundant to p. Mark v0 as seen by p. Other non-redundant (to p) messages
to x that are seen by p get marked redundant, and garbage collection ensues.
Mark the following set of messages as redundant to p:
{u : ∃v. (u and v write to the same variable) ∧ (u < v ≤ v0)}.
Then, mark messages v such that v ≤ v0 and v is not redundant to p as seen
by p. If v is a message to y, other non-redundant (to p) messages to y that
are seen by p get marked redundant, and garbage collection ensues.

FIFO Read Return the value held in the unique non-redundant message to x
seen by p.



24 P. A. Abdulla et. al.

4 Fairness for Verification

Equipped with an understanding of our generic operational model of weak mem-
ory, we are ready to resume discussing our verification objective. We would like
to verify ω-regular temporal specifications on the evolution of the control state
such as, “Eventually, p0 terminates, and subsequently, p1 and p2 alternate in
having exclusive access to the critical section.”

4.1 Model Checking

The standard textbook method of verifying a transition system satisfies an ω-
regular property16 is to construct its synchronous product with a finite automa-
ton, and check repeated reachability of states in the product transition system.
This is the basis of our approach as well, which we illustrate in Fig. 4. The
alphabet of the automaton is the finite set of control states of the program (all
possible configurations of program counters and register values). We remark that
we use a deterministic automaton (with Muller acceptance condition to get the
expressive power of ω-regular languages) to ensure that the fairness assumptions
on the composite, or annotated, system only have one source of non-determinism
to constrain: that arising from the original system.

More formally, we let Γ be the set of states of the (instantiated) executing
machine, and C be the finite set of control states of the concurrent program
P.17 The deterministic finite automaton A has a set Q of states, starts in initial
state q0, reads the alphabet C, has a transition function ∆ : Q × C → Q, and
the Muller acceptance condition, given by F ⊆ 2Q. The automaton A accepts a
trace α ∈ Cω if and only if F ∈ F , where F is the set of states visited infinitely
often by the run of A on α.

Definition 1 (Synchronous Composition). Let a given program P and
memory model induce a state space C × Γ , and let A be a deterministic Muller
automaton over the alphabet C. The state space of the annotated system is defined
as Q × C × Γ . The initial state is (∆(q0, cinit), cinit, γinit). For every transition
(c, γ) to (c′, γ′) in the original system, and every state q ∈ Q, we define the
transition (q, c, γ) to (∆(q, c′), c′, γ′) in the annotated system.

Computing the possible sets of infinitely-often-visited automaton states in
the synchronous product is central to the verification techniques. However, it is
important to specify what “possible” means for the results to be meaningful:
can the space of possibilities contain any execution trace?

16 We assume all our properties to be stutter-insensitive, because the underlying sys-
tem has silent transitions (flushes and updates) that are abstract to the programmer.
Stutter insensitivity means that only the sequence of distinct control states is rele-
vant, e.g. aaatbbtaatbbbt . . . is regarded equivalent to atbtatbt . . . by the property.

17 Our definition of Γ subsumes C, but as motivated, we decide to make the exposition
of the control state to the verification techniques explicit.
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Specifications that have a liveness clause, e.g. “Eventually p0 terminates...”
have a trivial, albeit unreasonable infinite runs that violate them, e.g. a run that
never schedules p0. Here, the scheduler is being adversarially unfair.

As a more involved, but trivially constructed counterexample to the speci-
fication, consider a situation where p0 needs to read flags set by p1 and p2 in
order to terminate. This may never happen if the transaction buffers of p0, p1,
and p2 are not flushed (thereby restricting p0 to reading its own writes), or if
the writes flushed by p1 and p2 are never propagated to p0. In these cases, the
memory subsystem, which is supposed to serve as a medium of communication
between the processes, is clearly doing a poor job: the weak memory is arguably
too weak to be fair.

We thus need to restrict the set of “possible” runs to those that satisfy some
notion of transition fairness, and do not exhibit unfettered weak behavior.

4.2 Transition Fairness

The basic idea of transition fairness [12] is that if a non-deterministic choice is
presented infinitely often, then each of the available options must also be taken
infinitely often.

Definition 2 (Transition Fairness). A run α ∈ Γω of a transition system
with state space Γ is transition-fair, if: for every state γ ∈ Γ that is visited
infinitely often, each transition enabled from γ is also taken infinitely often.

Transition fairness is often assumed in solving repeated reachability queries.
Our verification task is to determine the repeated reachability of states in the
composite system, which are of the form (q, , ) ∈ Q × C × Γ , and hence, we
would like the composite system to be transition fair. However, we can only
declare fairness assumptions on the executing machine.

Unfortunately, there is a caveat: a transition fair run of the original system
may not correspond to a transition fair run of the composite/annotated system.
Each available choice of transition from state (c, ) of the original system being
taken infinitely often does not imply that each available choice is also taken
infinitely often from the composite state (q, c, ). If (c, ) had successors (c0, )
and (c1, ) that it chose alternately, the run would be transition fair. However,
an automaton can track the parity of the number of times c is visited, through
states q0 and q1. In the composite system, the transition to c1 would be enabled
infinitely often from the repeatedly visited (q0, c, ), but never taken.

Although the run of the composite system being transition fair is not logi-
cally guaranteed, it would nevertheless be so with probability 1 were the non-
determinism to be resolved stochastically. Thus, this caveat is inapplicable in
the probabilistic setting because the choice is resolved in a memoryless manner.

To guarantee that the annotated system is transition fair, the resolution
of nondeterminism in the original system indeed needs to be memoryless. Our
proposed fairness notion on the original system is inspired by the α-fairness
identified by Pnueli and Zuck [31, Section 5].
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Definition 3 (α-Transition Fairness). A run α ∈ Γω of a transition system
state space Γ is α-transition fair, if for every deterministic finite automaton
with states Q, the corresponding run β ∈ (Q× Γ )ω in synchronous composition
(Definition 1) with state space Q× Γ is transition-fair.

We enforce α-transition fairness on the executing machine. Although it seems
quite restrictive from a language-theoretically perspective, the above definition
merely declares that there is no automatic “pattern” to the scheduler’s decision
making. This is a reasonable abstraction for verification techniques: if we chose
to abstract the choice of transitions as probabilistic, then runs would be α-
transition fair with probability 1.18

4.3 Memory Fairness

Transition fairness, on its own, unfortunately fails to preclude unfairly weak
behavior, because the unbounded buffers of our model enable the condition to
be vacuously satisfied: A run could simply choose to never flush its buffers, thus
visiting a new state at every time-step.

We need a notion of memory fairness to supplement transition fairness. It
is here that the perspicuity of our framework comes to the fore. Recall that
we explicitly attribute weak behavior to transaction buffering and delays in the
propagation unit. By construction, these structures only keep track of relevant
information: the buffer discards mispredicted transactions, retains writes only
till they are flushed, and retains reads only till their values are returned to
the control state; the propagation unit garbage-collects writes that have been
rendered redundant to each process. Thus, our framework quantifies the extent
of weak behavior through its state: larger the total size of the memory subsystem
(buffers and the set of the propagation unit), weaker the behavior.

Definition 4 (Configuration Size). The size of state γ ∈ Γ of the executing
machine is defined as the total number of transactions (both active and passive)
in the transaction buffers, plus the total number of messages in the propagation
unit.

The memory fairness definitions we propose can be summarized as, “Restrict
the growth of the configuration size.” We note that overly weak behavior is rarely
observed in practice [19,34]. We explaining this by noting that the physical hard-
ware that implements the caching and buffering is inherently finite-state, and
flushed regularly. Informally, the finite footprint of the system architecture (eg.
micro-architecture) implies a bound, albeit hard to compute, on the size of the
configurations of the executing machine. Thus, we use the notion of configuration
size to define:

18 The set of runs that are unfair when composed with some fixed A has measure 0;
the set of α-transition unfair runs is a countable union over all automata, and hence
also has measure 0.
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Definition 5 (Size Bounded Executions). An execution γ0γ1 · · · ∈ Γω is
said to be size bounded, if there exists an N such that for all n ∈ N, γn has size
at most N . If this N is specified, we refer to the execution as N -bounded.

The notion of size-boundedness is an excellent start to the objective of re-
stricting the growth of the configuration size. However, it is not immediately
clear how this fairness condition integrates with verification techniques. If N is
known but large, the ensuing finite-state model checking might still be infeasi-
ble. This is also the reason why we need techniques more general than model
checking parametrized by N , if the bound is unknown.

We observe that if we enforce both size boundedness and α-transition fair-
ness, then arbitrarily long sequences of flushes and silent updates will be taken
infinitely often. This means that configurations of minimal size will also be vis-
ited infinitely often.

Definition 6 (Plain Configurations). A configuration is called plain if:

– The transaction buffer is empty, i.e. the speculation tracker coincides with
the program counter, and no writes await flushing.

– The message propagation unit has exactly one message per location.
– All messages are seen by all processes.

Intuitively, plain configurations epitomize SC-like behavior as they are states
where the processes are fully synchronized (see Sec. 5.1 for further discussion).
The repeated reachability of plain configurations is the “limit” of N -bounded
fairness as N diverges to infinity. We use this intuition for our key definition of
memory fairness.

Definition 7 (Repeatedly Plain Executions). An execution γ0γ1 · · · ∈ Γω

is said to be repeatedly plain, if γn is a plain configuration for infinitely many n.

In the classical, i.e. non-probabilistic setting, we enforce either size-bounded
α-transition fairness, or repeatedly plain α-transition fairness on the executing
machine.

4.4 Probabilistic Memory Fairness

Quantitative verification is motivated by the argument that conventional logic
does not inherently capture the nuance of real-world systems and expectations.
For example, a 1% bound on the probability of failure is much more indicative
than a declaration that a system might fail. Even in our setting, viewing the
transition system from a quantitative (probabilistic) perspective implicitly pro-
duced a much more intuitive definition of a stronger transition fairness (Sec. 4.2)
than an explicit language-theoretic one.

One can consider the quantitative verification of programs running under
weak memory too. The executing machine is naturally viewed as an infinite-state
transition system, and transitions can be assigned probabilities, thus inducing
a Markov chain. Typical questions on the Markov-chain executing machine in-
clude:
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1. Is an ω-regular property almost surely satisfied (i.e. with probability 1)?
2. Approximately with what probability is an ω-regular property satisfied?

The above include liveness properties, and we indeed need notions of fairness
analogous to the conventional setting. We already have α-transition fairness,
and so we need to assign transition probabilities in a way that makes the system
memory-fair too.

Definition 8 (Probabilistic Memory Fairness). A Markov-chain executing
machine is considered to satisfy probabilistic memory fairness if a plain config-
uration is reached infinitely often with probability one.

This parallel has immense utility because verifying liveness properties for a
class of Markov chains called decisive Markov chains19 is well studied. In [6], it
is established that the existence of a finite attractor, i.e a finite set of states F
that is repeatedly reached with probability 1, is sufficient for decisiveness. The
above definition asserts that the set of plain configurations is a finite attractor.

4.5 Equivalence of Fairness Notions

In [5], it was proven that size bounded transition fairness20, repeatedly plain
transition fairness, and probabilistic memory fairness are equivalent with respect
to the representative liveness problems of repeated control state reachability and
termination. We restate the result here (the obvious analogous statement holds
for termination).

Theorem 1 (Equivalence result of [5]). There exists N0 ∈ N such that for
all N ≥ N0, the following are equivalent for any control state (program counters
and register values) c:

1. All N -bounded transition fair runs visit c infinitely often.
2. All repeatedly plain transition fair runs visit c infinitely often.
3. c is visited infinitely often under probabilistic memory fairness with proba-

bility 1.

We adapt the proof to make an extended claim.

Theorem 2 (Extended Equivalence Result). Let P be a concurrent pro-
gram with control states C, and let Γ be the set of states of the executing machine.
Let A be a deterministic automaton with states Q recognizing a stutter-insensitive
ω-regular language with Muller acceptance given by F ⊆ 2Q. There exists an N0,
depending on the program, executing machine, and A, such that for all N ≥ N0,
the following are equivalent.

19 In these Markov chains, for every set S of states, with probability 1, the run either
eventually reaches S, or eventually reaches a state γ from which S is unreachable.
There is 0 probability of a run being forever indecisive about reaching S.

20 The original paper always considered regular transition fairness, not the α-
strengthening.
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1. A accepts all control state traces generated N -bounded α-fair runs of the
executing machine.

2. A accepts all control state traces generated repeatedly plain α-fair runs of
the executing machine.

3. A control state trace generated by a probabilistic memory fair executing ma-
chine is accepted by A with probability 1.

Proof. In this proof, we shall work with the synchronous product (Def. 1) of
automaton, control state, and executing machine. Our state space is there-
fore Q × C × Γ . Note that the “choice” of transition lies entirely with Γ : this
choice drives the next value of the C-component, and further cascades to the
Q-component. We shall refer to Q× C as annotated control state.

We shall show that the possible sets of automaton states seen infinitely often
in a run is the same in all cases, i.e. S ⊆ Q can be the set of states visited
infinitely often by some run in Case 1 iff it can be so in Case 2 iff it can be
so in Case 3. All three cases are guaranteed to accept runs if and only if all
possibilities of infinitely visited states S1, . . . , Sk ∈ F . We begin to observe the
parallels with Thm. 1: the setting involves repeated reachability of annotated
control states, and declaring α-transition fairness on Γ gives transition fairness
of the composite system.

We define a directed connectivity graph G(N), parametrized by N . It has a
fixed finite set of vertices, one corresponding to each (q, c, γp) ∈ Q×C × Γplain.
We refer to this finite restriction of the state space of the composite transition
system as annotated plain configurations. In G(N), we draw an edge from (q, c, γ)
to (q′, c′, γ′) iff (q′, c′, γ′) can be reached from (q, c, γ) via configurations of size
at most N . Each vertex v of G(N) also records a set R ⊆ Q: for the vertex
corresponding to (q, c, γ),

R(v) = {q′ : (q′, c′, γ′) is N -reachable from (q, c, γ) for some c ∈ C, γ′ ∈ Γ},

where N -reachable stands for reachable via configurations of size at most N .
We similarly define G(∞), where there is no bound on the size of intermediate

configurations in the reachability requirements to draw an edge or add an element
to the R-set of a vertex. We note:

1. There are only finitely many possibilities for G(N).
2. G is monotone. As N increases, edges can only be added to G(N), and states

can only be added to the R-set of any node. Monotonicity and finiteness
guarantee saturation, i.e. there exists an N0 such that for all N ≥ N0,
G(N) = G(N0).

3. Any witness of reachability is necessarily finite, hence the saturated graph
is the same as G(∞), i.e. we can define G = G(N0) = G(∞).

This G defined in the last point will serve as our canonical object to establish
the equivalence of the fairness conditions. Now, let V1, . . . , Vk be the bottom
strongly connected components (BSCCs) of G reachable from the node vinit ∈ G
corresponding to (∆(qinit, cinit), cinit, γinit).
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Define Si = ∪v∈Vi
R(v). (i) We will argue that for every Si, there is a non-zero

probability (and hence fair runs corresponding to Cases 1 and 2 such) that the
set of automaton states visited infinitely often is Si. (ii) Conversely, we will also
show that with probability 1 (resp. given fairness of Cases 1 and 2), the set of
automaton states visited infinitely often by a run is one among S1, . . . , Sk. This
implies that the guarantee on automaton acceptance holds iff {S1, . . . , Sk} ⊆ F .

For (i), since Vi is a reachable BSCC, there is a finite path in the transi-
tion system that enters it. This serves as the prefix of the set of runs whose
infinitely-visited set is Si. Let the probability of such paths being taken be
µi > 0. Probabilistic memory fairness guarantees that plain configurations are
visited infinitely often with probability 1: thus a non-empty subset of annotated
plain configurations in Vi will be repeatedly visited with non-zero probability
µi. Markov fairness then guarantees that given that a state a visited infinitely
often, all states reachable via a finite path will also be visited infinitely often
with probability 1. Thus, with probability µi, all annotated plain configurations
of Vi are visited infinitely often. Finally, we apply transition fairness to argue
that with probability µi, all automaton states accessible from Vi (by definition,
Si) are precisely the ones visited infinitely often.

The converse (ii) follows immediately in the probabilistic setting, because
Markov fairness along with memory fairness guarantees that the probabilities
µi of landing in BSCC Vi, and hence visiting Si infinitely often, add up to 1.
Similarly, avoiding a BSCC forever violates the conjunction of transition and
memory fairness. As we argued for (i), we can show that α-transition-fair and
memory fair runs must necessarily access all reachable automaton states in Si,
having entered Vi.

Thus, infinitely visited sets of fair runs can be any of S1, . . . , Sk, and must
be one of them. Automaton acceptance is guaranteed iff {S1, . . . , Sk} ⊆ F .
The definitions of S1, . . . , Sk yield the same sets, independent of the fairness
condition. This concludes the proof of equivalence of fairness notions. ⊓⊔

4.6 Verification Algorithms

We now discuss how the proof of Thm. 2 gives us algorithms for both conven-
tional and quantitative verification. The key structure is the connectivity graph
G, whose vertices correspond to annotated plain configurations, record automa-
ton states reachable from these configurations, and edges indicate reachability
between annotated plain configurations. All our techniques Turing-reduce to the
construction of the graph G, which, as discussed in Sec. 5 involves queries which
are slightly refined instances of control state reachability. In the rest of this
section, we shall assume that G has been constructed.

The conventional model checking algorithm (and the almost-sure model check-
ing algorithm in the probabilistic setting) are derived immediately from the proof
of Thm. 2. Given G, we simply find its BSCCs V1, . . . , Vk, read off the corre-
sponding state-sets S1, . . . , Sk ∈ 2Q (where Si = ∪v∈Vi

R(v)), and check that
{S1, . . . , Sk} ⊆ F .
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Quantitative Model Checking To solve the quantitative model checking
problem (i.e. approximate, to arbitrary precision, the probability that automaton
A accepts the trace of control states produced by the run), the principle is the
same. We start by identifying accepting BSCCs: V is an accepting BSCC iff
S = ∪v∈V R(v) is in F . Let the accepting BSCCs be U1, . . . , Uℓ. By the same
arguments as in the proof of Thm. 2, the probability of acceptance is equal to
the probability that a run of the composite system reaches an accepting BSCC.

It now remains to approximate the probability that an accepting BSCC is
reached. In order to do so, we explore the set of all run-prefixes in a breadth-first
manner. The breadth-first search maintains a FIFO queue, whose elements repre-
sent run-prefixes by pairs of state and probability. The exploration maintains two
aggregates, one for the probability of acceptance (reaching an accepting BSCC),
one for the probability of rejection (all accepting BSCCs becoming inaccessible).

The exploration starts from the initial state of the composite system: this
is the beginning of all runs, and has probability 1. At each step, the front of
the queue is popped. If the state of this element corresponds to a node of G
in an accepting BSCC, we add its probability to the acceptance aggregate; if
the state of the element corresponds to a node of G from which no accepting
BSCC is accessible, we add its probability to the rejection aggregate. Otherwise,
we compute successor elements by taking transitions from the state with their
respective probabilities, and add them to the exploration queue.

Note that the acceptance aggregate is an under-approximation for the accep-
tance probability, and 1 minus the rejection aggregate is an over-approximation.
Since the system is stochastic, the aggregates always add up to at most 1. The
approximations are sound by construction; we next prove that they can get
arbitrarily precise.

In order to prove that the approximation scheme terminates for any required
precision, we must show that the sum of the aggregates can get arbitrarily close
to 1. Markov transition fairness and memory fairness guarantee that a run will
eventually contribute to either aggregate with probability 1. Indeed, consider
the set of runs which do not have any prefix that contributes to either of the
aggregates. This can only be because:

– The run never visits an (annotated) plain configuration (violation of memory
fairness)

– The run never settles into a BSCC (violation of transition/Markov fairness)

These events occur with probability 0, and failing to account for such non-
contributing runs is inconsequential to quantitative verification.

5 Reachability Subroutines

We noted that our verification algorithms Turing-reduce to reachability prob-
lems to and from annotated control states and/or annotated plain configurations.
These are slightly refined versions of the regularly studied control state reacha-
bility problems. In this section, we comment on how existing techniques may be
adapted to solve our custom refinements.
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We first deal with the replacement of control states (as targets) and the
initial configuration (as the source) by plain configurations, and show that it
does not make the problem any harder. We then make an informal case for why
annotations may be handled by existing decision techniques without significant
adaptation. Formally, the addition of automaton-state annotations to the control
state is a caveat of a much more technical nature, and it is unclear how to
rigorously address it in any generality, given the nuance of different memory
models.

5.1 Plain Configurations as Checkpoints

Plain configurations are central to our verification techniques, because they serve
as “reachability checkpoints” in our algorithms. We record some of their prop-
erties in this section.

The invariants maintained by the propagation unit (Prop. 1) imply that:

– Each of the writes in the propagation unit may be used to source an RMW,
and no write is redundant to any process (due to Enabled Read and the
implementation of writes).

– Subsequent incoming writes will be coherence-after the writes in the present
configuration (due to Per-Location Coherence).

– Subsequent release writes will accumulate all of the writes in the present
configuration (from implementation of fences).

Lemma 1. The decision problem of plain configuration reachability reduces to
that of control state reachability.

Proof. We use a common trick to transform the given program P into an aug-
mented program P′ as follows.

1. Augment the datatype to D×Procs, where Procs is the finite set of processes.
Each value has two components, the value used in the computation of P,
and the identity of the writing process.

2. Declare a new shared variable to serve as a counter for a turnstile barrier.
3. At program counter labels of the desired control state in P, add branch

instructions that check whether the register values are as desired, and if so,
nondeterministically jump to distinguished code added in P′.

4. Having made the jump in P′, the processes execute the distinguished code
to fully synchronize via a turnstile barrier, and check whether the shared
variables of P hold values as desired by the plain configuration.

The turnstile barrier works as follows: each process atomically increments the
counter using an RMW instruction (with release-acquire semantics), and then
using an atomic RMW, busy-waits until the value of the counter is equal to the
number of processes. The process is then repeated a second time.

At this point, a plain configuration is guaranteed to have been reached. The
first round of the turnstile barrier ensures all buffers are flushed, and already



Unified Fairness for Weak Memory Verification 33

guarantees a plain configuration in multi-copy-atomic models. In non-multi-copy-
atomic models, the last RMW of the first round will have accumulated the knowl-
edge regarding writes to locations used in P of all processes. The second round
of the turnstile then synchronizes the processes as they acquire this knowledge
by reading the counter.

Crucially, when restricted to the values of the variables of P, the attained
plain configuration can be any of the plain configurations that could have been
reached without executing the RMWs, i.e. merely through flushes or silent up-
dates. Finally, each process, upon crossing the second turnstile, simply reads
all locations of P and checks that they hold the values stipulated by the plain
configuration. ⊓⊔

The above reduction only uses the strong cumulativity of RMWs and their
ability to work as fences (even for WRA, see [24, Example 3.9]). The proof works
for RA and WRA as well (because the read value also identifies the writing
thread, and all processes read to check).

The full synchronization used to enforce plain configurations in the above
reduction can also be used to prove the following.

Lemma 2. The problem of control state reachability from a given configuration
reduces to that of control state reachability (from the initial configuration).

The reduction constructs an augmented program that uses strong synchro-
nization to write the desired values to each location, and to ensure that each
process has seen these writes, and thereafter runs like the original program.

5.2 Accounting for Annotations

We argue that the refinement to the conventional decision problem by composing
control state with the state of an automaton is mostly syntactic in nature. For
memory models such as TSO, PSO (see [3,14] for expositions of the models and
decidability techniques), SRA, WRA (see [24] for a comprehensive exposition
and a proof of decidability), StrongCOH (the repaired C11 model restricted to
relaxed accesses; see [26, Section 2.3] for a definition, [4, Section 5] for proof
of decidability) where control state reachability is shown decidable, the tech-
niques naturally demarcate the control state from the memory subsystem (i.e.
the remaining part of the executing machine), and formulate the latter as a well-
structured transition system (WSTS) [1]. Recombining the finite control state
retains the WSTS property, and hence makes control state reachability decid-
able by virtue of being a coverability problem. The same techniques apply if the
control state were annotated, because it still remains finite.

Put differently, it is common to abstract the control state as a finite transi-
tion system. This automaton is highly “decoupled”: it has at least one strongly
connected component per process, that is disconnected from the rest of the sys-
tem. Composing the control state with an automaton to produce the annotated
control state has a “coupling” effect: the automaton is no longer disconnected.
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However, WSTS techniques seem to treat the control state as an abstract finite
object: they appear to be agnostic to the structure of the transition system. We
believe the techniques would often go through regardless, as long as the inter-
face between memory and control state remains unchanged, which in our case,
it does.

6 Related Work

6.1 Fairness

Only recently has fairness for weak memory started receiving increasing atten-
tion. The work closest to ours is by [3], who formulate a probabilistic extension
for the Total Store Order (TSO) memory model and show decidability results
for associated verification problems. Our treatment of fairness is richer, as we
relate same probabilistic fairness with two alternate logical fairness definitions.
Similar proof techniques notwithstanding, our verification results are also more
general, thanks to the development of a uniform framework that applies to a
landscape of models. The authors of [26] develop a novel formulation of fairness
as a declarative property of event structures. This notion informally translates
to “Each message is eventually propagated.” We forego axiomatic elegance to
motivate and develop stronger practical notions of fairness in our quest to verify
liveness.

6.2 Framework

As acknowledged in the Introduction, for formulating our framework, we draw
inspiration from the operational model in [11, Section 7], which is itself adapted
from the authors’ line of previous work, most notably [10]. We formulate our
models in the documentation-style of [9,32]. However, we distinguish ourselves
by choosing to enforce a minimal set of axioms by default, and putting simple,
garbage-collection-friendly data structures like queues and a partial order at
the forefront. This formulation easily keeps track of only the information that
is relevant to the future, and lends itself to memory fairness. To the best of
our knowledge, our work presents a unique combination of modeling, fairness
notions, and verification of ω-regular linear temporal properties.

On the modeling front, the ability to specify memory model semantics as first-
order constraints over the program-order, reads-from relation, and per-location
coherence order have led to elegant declarative frameworks based on event struc-
tures [8,11,18,20]. There are also approaches that, instead of natively character-
izing semantics, prescribe constraints on their ISA-level behaviors in terms of
program transformations [27]. On the operational front, there have been works
that model individual memory models [30,36] and clusters of similar models
[21,25], however we are not aware of any operational modeling framework that
encompasses as wide a range of models as we do. The operationalization in [17]
uses write buffers which resemble our channels, however, their operationalization
too focuses on a specific semantics.
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7 Future Work and Perspective

7.1 Future Work

There are multiple interesting directions for future work. It is interesting to
mix transition fairness with probabilistic fairness, i.e., use the former to solve
scheduler non-determinism and the latter to resolve memory non-determinism,
leading to (infinite-state) Markov Decision Process model. Along these lines, we
can also consider synthesis problems based on 2 1

2 -games. To solve such game
problems, we could extend the framework of Decisive Markov chains that have
been developed for probabilistic and game theoretic problems over infinite-state
systems [6] A natural next step is developing efficient algorithms for proving
liveness properties for programs running on weak memory models. In particu-
lar, since [5] reduce the verification of termination and repeated control state
reachability to simple reachability, there is high hope one can develop CEGAR
frameworks relying both on over-approximations, such as predicate abstraction,
and under-approximations such as bounded context-switching [33] and stateless
model checking [2,23].

7.2 Perspective

Leveraging techniques developed over the years by the program verification com-
munity, and using them to solve research problems in programming languages,
architectures, databases, etc., has substantial potential added value. Although it
requires a deep understanding of program behaviors running on such platforms,
we believe it is about finding the right concepts, combining them correctly, and
then applying the existing rich set of program verification techniques, albeit in
a non-trivial manner. The current paper is a case in point. Here, we have used a
combination of techniques developed for reactive systems [22], methods for the
analysis of infinite-state systems [6], and semantical models developed for weak
memory models [14,21,24,25] to obtain, for the first time, a framework for the
systematic analysis of liveness properties under weak memory models.
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