
Fairness and Liveness under Weak Consistency

Parosh Aziz Abdulla1[0000−0001−6832−6611]�, Mohamed Faouzi
Atig1[0000−0001−8229−3481], Adwait Godbole2[0000−0001−7704−304X],

Shankaranarayanan Krishna3[0000−0003−0925−398X], and Mihir
Vahanwala4[0009−0008−5709−899X]

1 Uppsala University, Uppsala, Sweden {parosh,mohamed faouzi.atig}@it.uu.se
2 University of California Berkeley, Berkeley, USA adwait@berkeley.edu

3 IIT Bombay, Mumbai, India krishnas@cse.iitb.ac.in
4 Max Planck Institute for Software Systems, Saarland Informatics Campus,

Saarbrcken, Germany mvahanwa@mpi-sws.org

Abstract. We consider the verification of concurrent programs running
on weakly consistent platforms, i.e., weaker semantics than the classical
Sequential Consistency (SC) semantics. We describe a framework for the
verification of liveness properties for such programs. To that end, we in-
troduce a notion of fairness that combines the classical transition fairness
condition with an additional condition that forbids demonic behaviors of
the memory system. We illustrate the framework by instantiating it for
the classical Total Store Order (TSO) memory model. The presentation
is tutorial-like and based on our previous works [3, 4].

1 Introduction

The ubiquity of parallel systems has resulted in an extensive research effort
to increase their efficiency, security, and reliability. While designing concurrent
systems has always been a difficult challenge, developing correct concurrent sys-
tems has become even more challenging in recent years. The main reason is that
computing platforms do not provide the fundamental guarantee of Sequential
Consistency (SC) anymore. The SC semantics interleaves the parallel executions
of different processes while preserving the order of actions performed by a sin-
gle process [19]. The SC model is easy to understand since all components are
strongly synchronized so that they all have a uniform view of the global state
of the system. The SC semantics is so intuitive that programmers of concurrent
applications often assume that it is guaranteed by the platforms on which they
run their applications. On the flip side, SC is too expensive to maintain since
it requires continuous synchronization of all system components. At the hard-
ware level, SC requires strong coherence; at the distributed system level, SC
requires that updates by a given site are immediately conveyed to all other sites.
Such strong consistency requirements are impossible to achieve with reasonable
efficiency and energy consumption. Therefore, modern platforms implement op-
timizations that lead to the relaxation of the inter-component synchronization,
offering only weak semantic guarantees. The problem is that program behaviors

2 P. A. Abdulla et. al.

may differ considerably from their behaviors under the SC semantics when run
on such platforms. Even standard textbook programs may exhibit faulty behav-
iors when run under weakly consistent semantics. This paper will describe the
classical Dekker mutual exclusion protocol as a case in point. The discrepancy
in program behaviors gives rise to new challenges to maintaining the reliability
and security of concurrent applications. Extensive research has been undertaken
to answer the challenges of modeling, testing, and verifying applications running
according to such semantics.

Historically, two classes of specifications have been prominent in program
verification, namely safety and liveness properties. Roughly speaking, a safety
property states that “nothing bad will happen during the execution of the pro-
gram” and a liveness property states that “something good will happen during
the execution of the program.” [16, 20]. Despite these properties being com-
plementary, verification frameworks for liveness are usually more complicated.
First, checking safety properties, in many cases, can be reduced to the (sim-
ple) reachability problem, while checking liveness properties usually amounts to
checking repeated reachability of states [22]. Second, concurrency comes with an
inherent scheduling non-determinism, i.e., at each step, the scheduler may non-
deterministically select the following process to run. Therefore, liveness proper-
ties must be accompanied by appropriate fairness conditions on the scheduling
policies to prohibit trivial blocking behaviors [20]. In the example of two pro-
cesses trying to acquire a lock, demonic non-determinism [15] may always favor
one process over the other, leading to starvation.

The verification of liveness properties (and also safety properties) has at-
tracted much research in the context of programs running under the classical
Sequential Consistency (SC) [19]. There is a clear gap in weakly consistent se-
mantics: most existing works concentrate on safety properties, and only recently
have works started to appear on verifying liveness properties.

This paper describes a framework introduced in [4] for verifying liveness
properties under weak memory models. In Section 2, we will recall general con-
cepts related to verification, concurrency, and weak memory models, and then
describe their instantiation to the SC case in Section 3. We illustrate the chal-
lenges that arise in the case of weak memory through the TSO semantics. We
recall the model in Section 4 and then study fairness and liveness properties for
TSO in Section 5. In particular, we show the equivalence of memory fairness
and probabilistic fairness. In Section 6, we consider the verification of Markov
chains induced by the probabilistic model of TSO. In Section 7, we give some
conclusions and directions for future work.

2 Concurrency, Shared Memory, and Verification

A concurrent program consists of multiple processes, or threads, whose execu-
tions depend on their scheduling, and communication via shared memory. Pro-
cesses are defined by the instructions they must execute; they have access to
local variables, or registers, in order to do so. The control state refers to the

Fairness and Liveness under Weak Consistency 3

position of the instruction pointers and the contents of the registers of each of
the processes. The shared memory consists of global variables, or locations, that
can be addressed by all processes.

For the sake of intuition, it might be helpful to anthropomorphize the pro-
cesses and think of the shared memory as a messaging service that operates
according to the protocol governed by the memory model. Processes interface
with the shared memory through write and read operations: these respectively
correspond to sending and fetching messages.

The verification problem for a fixed memory model asks, does the control
state satisfy the given specification along the run of the concurrent program?
For instance, when there is a critical shared resource, it is natural to ask whether
it will never be accessed simultaneously by two processes (mutual exclusion, an
example of safety) and whether each process is guaranteed to access it often
enough (an example of liveness). The answer to such synchronization decision
problems crucially depends on the underlying communication protocol, i.e. the
memory model.

As mentioned in the Introduction, safety properties specify that “bad things
never happen”. In the above example, in order to verify safety, the intuitive
idea is to prove (by the absence of a counterexample) that there is never a
fatal miscommunication. On the other hand, liveness, which specifies that “good
things are guaranteed to eventually happen,” is harder to meaningfully verify
because it often requires that the pivotal message delivery (and scheduling)
be consistently good: a requirement that is seldom built into the protocols we
consider. Therefore, we use judicious fairness conditions to rule out behaviors
that the protocol technically permits but are practically unreasonable in the long
term.

In this paper, we shall consider control state reachability as our canonical
safety problem, and termination and repeated state reachability as our canonical
liveness problems.

We shall now give an intuitive overview of the key aspects of some fundamen-
tal (weak) memory models, and motivate our notions of fairness. As we shall see
later, it turns out that under these fairness conditions, our liveness problems re-
duce to safety queries. We will rely on the intuition of anthropomorphic processes
using the shared memory as a messaging service (writes and reads respectively
correspond to sending and fetching messages) in the following subsection.

2.1 Memory Models: Intuition

Processes, as users of the messaging system, can only send or request messages
through an interface that is common for all protocols. We visualize each process
to have a separate mailbox for messages pertaining to each shared variable. To
send a message (i.e. write value v to variable x), a process submits it to the mes-
saging service, which then assumes the responsibility of annotating the message
with relevant metadata and delivering it to the other processes’ x-mailboxes. At
the other end, to fetch a message (i.e. to read from variable x), a process requests
a message from its x-mailbox, and the service grants one as per the messaging

4 P. A. Abdulla et. al.

protocol. We assume that on a given day, the service handles at most one write
or read.

Sequential Consistency (SC). This is the simplest protocol to reason about.
Whenever a process sends a message (writes value v to variable x), the service
broadcasts and delivers it immediately to all processes’ x-mailboxes. When a
process requests to fetch a message (read from variable x), the service gives it
the most recent message from the mailbox. In this protocol, one can see that the
service can discard all but the most recent messages to every variable.

TSO and PSO. As one would expect, it is costly and demanding to implement
the high degree of synchronization described above. A popular paradigm is that
of multi-copy atomicity, exemplified by Total Store Order (TSO) and Partial
Store Order (PSO) [21, Section 8 and Appendix D] (see also [14]) - it provides
performance by weakening SC’s consistency guarantees, while also keeping the
protocol centralized enough for its analysis to be manageable.

Total Store Order (TSO). This protocol is not as prompt as SC, but similar in
most aspects. The service maintains a buffer, or a FIFO queue, for the outgoing
messages of each process. When a process p sends a message (writes value v to
variable x), it is added to p’s mailbox immediately, but the broadcast is delayed:
the service adds it to the queue. To perform its broadcasting duties, the service
picks a queue, takes the message at the front, and delivers it to the appropriate
mailboxes of all the other processes. When a process p requests to fetch a message
(read from variable x), the service first checks p’s queue for an x-message and
returns the most recent one. If there aren’t any, the service returns the most
recent message from the mailbox.

Partial Store Order (PSO). PSO differs from TSO by allowing writes to race,
i.e. for each process, the service maintains a separate queue for every variable.
All other aspects of the protocol are the same. Once again, we observe that the
service need only keep track of the messages in the queues and most recently
broadcast messages of each variable.

SRA and WRA. As parallel systems get more distributed, the simplicity of
multi-copy atomicity no longer offsets the cost of simultaneous broadcasting. In
these settings, causal consistency, exemplified by Strong Release Acquire (SRA)
and Weak Release Acquire (WRA) [18, Sections 3-4] is the paradigm of choice.
The idea is that reading messages creates causal dependencies which must be
respected: let Alice write two messages to x, and Bob write a message to y after
reading them. Then, if Eve reads Bob’s message, the service is forbidden from
giving Eve Alice’s first message should she wish to read from x - in a certain
sense, this is causally far before the events Eve is already aware of, and too stale
an update.

Fairness and Liveness under Weak Consistency 5

Strong Release Acquire (SRA). The messaging service maintains a clock for each
variable, and a vector of timestamps for each process, with an entry correspond-
ing to each clock. The clocks are used to totally order all writes to the same
variable, the timestamps determine what messages have not been rendered re-
dundant to a process by causal dependencies. When process p sends a message
(writes value v to variable x): (i) The x-clock is incremented by 1; (ii) The
x-clock entry in p’s timestamp vector is updated to the current value; and (iii)
The message is annotated with p’s new timestamp vector. This message is deliv-
ered immediately to p’s mailbox, but to other processes, the service can deliver
it asynchronously and at leisure.

On the other hand, when p requests a message (reads from x), (i) the service
selects a message from p’s mailbox whose x-timestamp annotation is at least as
large as the x-clock entry in p’s vector of timestamps; (ii) the service hands this
message, which is guaranteed by construction to not be redundant, over; and
(iii) finally, to enforce new dependencies that are created by this read, for each
clock, the service updates the corresponding entry in p’s vector of timestamps to
be the maximum (a) of the old value and (b) the timestamp in the annotation
of the message.

Weak Release Acquire (WRA). The protocol is the same with respect to the
propagation of messages and updates of timestamps and clocks. The key differ-
ence that makes this model significantly weaker than SRA is that the service
maintains a clock for every (variable, process) pair. Hence, timestamp vectors
also have entries corresponding to each (variable, process) pair.

In these protocols too, the service can safely discard messages which it cannot
give to any process for reading: these are messages whose timestamps are smaller
than the timestamps of every process.

Remark: Other Models. In the multi-copy atomic models we considered,
reads had acquire semantics: they were not allowed to race. Relaxed Memory
Ordering (RMO) [21, Section 8 and Appendix D] is a multi-copy atomic model
that weakens PSO by allowing reads to race if they are sufficiently independent
of each other, and/or the writes they overtake. In such a protocol, the service
would be allowed to buffer read requests too, instead of being obliged to address
them immediately.

FIFO consistency [13] is a memory model that is neither multi-copy atomic
nor causally consistent. Like TSO, the messaging service maintains for each pro-
cess, a queue of its writes. However, unlike TSO, these writes are propagated to
other processes asynchronously, rather in the style of SRA. Unlike SRA though,
causal dependencies are not tracked. When a process wishes to read variable x,
the service hands it the most recent x-message that was delivered to it.

2.2 Memory Fairness: Intuition

A common observation for all weak memory models is that the messaging service,
i.e., memory, needs to store only those messages that are under propagation

6 P. A. Abdulla et. al.

and/or have not been rendered redundant by the protocol yet. If the service
is an efficient medium of communication, the number of such messages will be
minimal. In the extreme case, consider SC: it is the most efficient protocol, and
at any point, it only needs to store one message per variable.

We refer to the number of messages the service is keeping track of (in models
like RMO, this also includes buffered reads) as the size of the memory configu-
ration. Configurations with minimal size (one message per variable, no pending
reads) are called plain.

Recall the requirements for liveness properties we had outlined earlier: con-
sistently good communication between processes, facilitated by consistently ef-
ficient message delivery. The latter is what we intended to capture with fairness
conditions. The notion of configuration size allows us to accurately quantify the
efficiency of messaging, which is inversely related to the extent of weak behavior.
Hence, our plan will be to devise formal definitions of fairness that imply, for
example, that the configuration size is bounded, or that plain configurations are
visited infinitely often: such are the hallmarks of a well-functioning messaging
system.

In the following sections, we consider SC and TSO and use running examples
to examine the above concepts of shared memory, verification, and fairness no-
tions in more detail. We remark that one can indeed use the intuition of shared
memory as a medium of communication and notion of configuration size based
fairness described in this section to adapt the following technical discussion to
other memory models.

3 Sequential Consistency (SC)

We will first recall the SC semantics and describe the verification of safety prop-
erties. Then, we consider liveness properties and describe different fairness con-
ditions needed to verify such properties.

3.1 Model

To illustrate our framework, we consider a simple model for concurrent pro-
grams, consisting of processes that communicate by performing read (load) and
write (store) operations on a set of shared (global) variables. Fig. 1 depicts such
a program with two processes p1 and p2 sharing two shared variables x and y.
In this section, we consider the SC semantics for such programs where process
operations are atomic. When the process p1 performs the write operation, as-
signing the value 3 to the variable x, we simultaneously update the value of x in
the memory and, hence, the new value of x will be immediately readable by p2.
When p2 reads the value of x in the second transition, it sees the latest value
written to x, namely 3.

Fairness and Liveness under Weak Consistency 7

Sequential
Consistency

(SC)

• atomic writes
• read from memory

memory

process P1
P2process

x=0
shared

variable

y=1 shared
variable

3x:=3

+ simple & intuitive

- expensive

P1
P2

x=3
y=1

a:=x 3

Fig. 1. The SC semantics.

3.2 Safety Properties

The classical interpretation of a safety property is that “nothing bad will happen
during the program’s execution” [16, 20]. This means that we can reduce checking
safety properties to the reachability of a set of bad configurations that violate a
given requirement of the program. A typical example is mutual exclusion where
concurrent processes contend a shared resource. The bad configurations are those
in which multiple processes access the shared resource. We depict the classical
Dekker mutual exclusion protocol in Fig. 2. The program contains two processes
p1 and p2 sharing two variables x and y. The processes have a local variable
each, namely a resp. b. The goal of the protocol is to guarantee mutual exclusion,
i.e., to prevent the processes from entering their critical section, CS1 and CS2,
simultaneously. Before moving to its critical section, the process p1 declares its
intention by setting the shared variable x to 1, and then reads y’s value, storing
it in its local variable a. It halts its progress to its critical section if the value of
a is equal to one, i.e., if p2 is about to enter, or it is inside its critical section.
The process p2 uses the same scenario to synchronize with p1. Under the SC
semantics, the above scenario succeeds, and the program will satisfy mutual
exclusion. To see this, assume, without loss of generality, p1 executes the first
instruction. Since the transition assigns 1 to x, process p2 assigns the value 1 to
its local variable b when it executes its read instruction, and hence it will not be
able to cross to its critical section.

3.3 Fairness and Liveness

A liveness property states that “something good will eventually happen” during
the program’s execution. For the Dekker protocol, a typical liveness property is
that each process infinitely often enters its critical section during any program

8 P. A. Abdulla et. al.

not (CS1 and CS2)

P1
P2

x=1

y=1

x=0
y=0

Dekker Protocol

x:=1
a:=y

if a=0 then
CS1

while true

x:=0

y:=1
b:=x

if b=0 then
CS2

while true

y:=0
assertion

Fig. 2. The Dekker Protocol

run. Liveness properties can be trivially violated without some fairness condi-
tion that provide certain guarantees concerning the process scheduling. In the
case of Dekker, a run that never schedules p2 to run will trivially violate the
above liveness condition since p2 will never reach its critical section. The litera-
ture contains many fairness conditions for verifying liveness properties (see, e.g.,
[16, 20].). The classical strong fairness condition states that we must schedule
each process infinitely often along each program run. In the Dekker example, we
schedule both p1 and p2 infinitely often. While strong fairness ensures that p2
is scheduled infinitely often, it still fails to guarantee that p2 reaches its critical
section infinitely often (or even once). This can happen if p2 is always scheduled
to run when x = 1. Although p2 will perform infinitely many iterations of its
loop, it will always fail the if-statement guarding the critical section. A more ro-
bust and helpful notion of fairness is transition fairness (called strong transition
fairness in the comprehensive [17, Sections 4-5]): if a transition t in a process is
enabled infinitely often, then t will be taken infinitely often. Transition fairness
prevents the above demonic behavior and guarantees that both p1 and p2 in the
Dekker protocol visit their critical sections infinitely often.

As another example, consider the simple program of Fig. 3. We want to verify
that process p2 always terminates. Strong fairness is not enough to prove p2’s
termination. The following strongly fair but demonic scheduling policy prevents
p2 from ever terminating:

– p1 assigns 1 to the shared variable x.

– p2 assigns 2 to the shared variable x.

– p2 reads the value 2 of x and stores it in its local variable a.

Fairness and Liveness under Weak Consistency 9

memory

x=0
P1

P2

repeat
x:=1

repeat
x:=2
a:=x
if a=1 then

exit

x=1

memory

x=0
P1

P2

repeat
x:=1

repeat
x:=2
a:=x
if a=1 then

exit

x=1x=2

memory

x=0
P1

P2

repeat
x:=1

repeat
x:=2
a:=x
if x=1 then

exit

x=1x=2

//2memory

x=0
P1

P2

repeat
x:=1

repeat
x:=2
a:=x
if x=1 then

exit

x=1x=2

//2

memory

x=0
P1

P2

repeat
x:=1

repeat
x:=2
a:=x
if x=1 then

exit

x=1x=2

//2

Fig. 3. Simple Program.

– p2 fails the condition of the if-statement and re-starts the while-loop.
– p1 assigns 1 to the shared variable x, and we repeat the above sequence.

However, p2 is guaranteed to terminate under transition fairness since p1 is
guaranteed to be scheduled after p2 has executed the instruction x := 2. Hence,
the value of a will be one when p2 reaches its if-statement.

4 Total Store Order (TSO)

We consider one of the most fundamental weak memory models: the Total Store
Order (TSO) semantics. We depict the semantics in Fig. 4 for the case where we
have two processes p1 and p2 sharing two variables x and y. The operational se-
mantics of TSO make write instructions non-atomic by inserting an unbounded
FIFO buffer between each process and the globally visible memory. Technically,
the memory comprises both the process buffers and the globally visible com-
ponent. However, in the context of TSO, we will refer to the latter as “main
memory” or simply “memory” for convenience. We refer to the buffers as the
store buffer, or the pending buffer of p1 resp. p2. Fig. 5 illustrates a typical pro-
gram run, starting from a configuration γ0 where the store buffers are empty,

10 P. A. Abdulla et. al.

x=1 x=1 x=0
y=0

P1
P2

processes

store
buffers

unbounded
FIFO

memory

Fig. 4. The TSO architecture.

and the memory state is x = 0 and y = 0. To simplify the presentation, we omit
the local states of the processes p1 and p2 and only depict the store buffers and
the memory. In the first step, the process p1 writes the value 1 to the variable
x. Instead of immediately updating the memory, p1 appends a write message
x = 1 to the end of its store buffer, obtaining the configuration γ1. From γ1, the
process p1 writes the value 2 to the variable x, so it appends the message x = 2
to the store buffer. In γ2, the store buffer of p1 in γ2 contains two messages,
while the store buffer of p2 is still empty. Next, p1 tries to read the value of x.
To that end, it checks its store buffer. If the buffer contains a message on x, then
p1 fetches the value of the latest such a value (2, in the case of γ2). We say that
p1 performs a read-own-write operation since it reads a write instruction it has
issued. In γ3, the process p1 reads the value of the variable y. Since there are no
pending write messages on y in the buffer of p1 in γ3, it fetches the value 0 of y
from the memory. We all this a read-from-memory operation. We observe that
read operations do not change the states of the pending buffers or the memory.
In a similar manner, p2 reads the value of y in γ4. Although p1 has already
performed the write operations on x, their effects are invisible to p2 since the
corresponding message has still not reached the memory. From γ5, the program
performs an update operation, where it takes the message x = 1 at the head of
the buffer of p1 and uses it to update the value of x in the memory. This value
will now be visible to p2 in γ6. In a nutshell, the TSO semantics is defined by: (i)
writing-to-store-buffer, (ii) reading-own-writes. (iii) reading-from-memory. (iv)
updating the memory.

The TSO semantics is weaker than the SC semantics. In particular, TSO
can mimic any SC run by performing an update after each write instruction.
On the other hand, TSO allows more behaviors, introducing bugs in programs
that are correct under SC. The Dekker protocol of Section 3.1 is a case in point.
We will use the run of Fig. 6 to explain why the Dekker protocol does not
satisfy mutual exclusion under the TSO semantics. Recall that, before entering
its critical section, a process performs a write operation that prevents the other
process from moving towards its critical section. Since write operations are not

Fairness and Liveness under Weak Consistency 11

y=0
x=0

y=0
x=0

y=0
x=0

y=0
x=0x=1 x=1 P1: x:=2x=1x=1 x=1 P1: x:=1 x=1 x=1

P1: a:=x //2

x=1x=2

P1: b:=y //0 x=1 x=1x=1x=2x=1 x=1
y=0
x=0x=1x=2

y=0
x=1

x=1 x=1 P2: b:=x //0x=1x=2

x=1 x=1

P1: update

x=2 P2: c:=x //1

γ0 γ1 γ2

γ3γ4γ5

γ6

y=0
x=0

x=1 x=1x=2

γ7

y=0
x=1

Fig. 5. A run according to the TSO semantics

atomic in the case of TSO, the above scenario will fail, and both processes can
move to their critical sections simultaneously. Concretely, the processes p1 and
p2 perform their write operations appending the corresponding messages to their
buffers (the configurations γ2 and γ3). When p1 performs its read operation from
γ3, it does not find pending write messages on y in its buffer, and hence it fetches
the value of y from the memory. Since the message on y in process p2’s buffer
has not reached the memory, it is not visible to p1, and p1 will read the value
y = 0. Analogously, p2 reads the value x = 0; hence, both processes can enter
their critical sections.

5 Fairness and Liveness under TSO

5.1 Transition Fairness

While transition fairness allows the verification of liveness properties for a wide
range of concurrent programs under SC, it is too weak in the case of TSO.
In Fig. 7, we re-consider the program of Fig. 3 and run it under TSO. We
show that, in contrast to SC, there is now a transition-fair run in which P2

does not terminate. Roughly speaking, transition fairness implies, among other
things, that memory updates occur infinitely often, but it allows updates to occur
less frequently than write instructions. This means that we will have program
executions in which the process buffers always contain messages and never see

12 P. A. Abdulla et. al.

x=1 x=1 P2: y:=1

γ3

γ4

x=1x=1 x=1 P1: x:=1 x=1 x=1x=1
y=1

P1: a:=y //0

γ1γ1

update x=1 x=1 x=0
y=0

x=1
y=1

x=0
y=0

x=0
y=0

P2: b:=x //0x=1 x=1x=1
y=1

x=1 x=1

γ0 γ1 γ2

γ3γ4γ5

x=0
y=0

x=0
y=0

x=1
y=1

Fig. 6. A run of the Dekker Protocol under TSO semantics

the other processes’ write operations. We start from the configuration γ0 where
both buffers are empty. The processes p1 and p2 execute their write instructions,
and we obtain γ2. In γ2, the process p2 reads the value of x. It sees the value of 2
from its buffer, so it will not terminate at this stage. In γ3, the process p1 moves
the message in its buffer to update the value of x in the memory to 1. Although
the value of x in the memory is 1, which is what p2 needs to terminate, the latter
fails to terminate in γ4 since it still has the message x = 2 in its buffer. In the
rest of the configurations, this scenario is repeated. Although transition fairness
means that the value of x will be equal to 1 infinitely often. The messages from
the buffer of p2 are transferred to the memory infinitely often, p2’s buffer will
never become empty. Hence, p2 will never see x = 1 in the memory, meaning it
will not terminate.

5.2 Memory-Boundedness Transition (MBT) Fairness

As we observed in the previous sub-section, the problem with transition fair-
ness is that it allows runs in which the store buffers never become empty. The
non-empty buffers confine the processes to only reading their own writes, ef-
fectively preventing inter-process communication through the shared memory.
Therefore, we introduce a new notion of fairness, called Memory-Boundedness
(MB) fairness that we will use together with transition fairness to strengthen
the latter. MB-fairness means that we assume the existence of an (unknown)
upper bound on the number of messages that can reside inside the store buffers
at any point during the program runs. It is essential to notice that the upper
bound is not given and can be arbitrarily large; MB-fairness assumes its mere
existence. We use MBT-fairness to refer to the conjunction of MB-fairness and
transition fairness. MBT-fairness enjoys two properties that make it attractive
in the verification of liveness properties under weak memory models, namely (i)
modeling: it eliminates the demonic behaviors that arise due to bad scheduling
and buffer clogging; (ii) it allows algorithmic verification. We will consider the

Fairness and Liveness under Weak Consistency 13

x=1 x=1 P1: x:=1

γ3

γ4

x=2

x=1 x=1 P2: x:=2 x=1 x=1x=1
x=2

P2: a:=x //2

γ1

P1: updatex=1 x=1
x=2

x=1 x=1

γ0 γ1 γ2

γ3γ4γ5

x=1 x=1x=1
x=2x=2

γ1

x=1 x=1

x=2x=2

x=1 x=1

x=2

P2: update x=1 x=1x=1
x=2 x=1x=2

γ8γ7γ6

P2: a:=x //2

P2: x:=2

x=1

x=1 x=1 x=0

x=0x=0x=0

x=2

Fig. 7. A transition-fair run under the TSO semantics

modeling aspect in the rest of this section and discuss the verification aspect in
Section 6.

Let us study the behavior of the program of Fig. 3 under TSO and MBT-
fairness. Assume that the bound on the buffer size is (an unknown value) b.
Consider an (infinite) run ρ of the program. By MBT-fairness, all the configu-
rations have buffers of size at most b. Since the update operations are always
enabled, it follows by transition fairness that there are infinitely many config-
urations along ρ of size at most b − 1. By repeating the reasoning, there are
infinitely many configurations along ρ with empty buffers. For such configura-
tions, the program essentially behaves like in the case of SC. Using the same
reasoning as in Section 3.3, we conclude the p2 will terminate.

5.3 Probabilistic Memory Fairness

The notion of MBT-Fairness is arguably dependent on specific aspects of our
formalism of the memory. However, as observed in the previous paragraph, it
has a crucial consequence that can be expressed in terms of more universal
notions, viz. that plain configurations are necessarily visited infinitely often.
This property will be the backbone of the verification techniques we adopt.

In this subsection, we illustrate a natural alternative way of ensuring the
above property, namely, by viewing the underlying transition system from a
stochastic perspective. Interpreting transition systems as Markov Chains yields
not only insights on the phenomena being modeled but also a rich body of
algorithms to quantitatively understand their properties. Thus, we reinforce the
benefits of our fairness notions on both the modeling and algorithmic fronts.

14 P. A. Abdulla et. al.

The transition system modeling our concurrent program can be converted
into a Markov Chain by adding probabilities to the transitions: if there is a
transition from configuration γ to configuration γ′, then it is assigned a nonzero
probability. Probabilities of transitions originating at γ must sum up to 1. By
construction, an infinite run of a Markov Chain is transition fair with probability
1.

Probabilistic Memory Fairness. A Markov Chain representing a concur-
rent program satisfies Probabilistic Memory Fairness if an infinite run visits the
set of plain configurations (i.e. those with empty buffers) infinitely often with
probability 1.

5.4 Equivalence of Fairness Notions

We conclude this section by demonstrating the sense in which the two notions of
memory fairness we introduced are equivalent. This will help us appreciate and
leverage the algorithmic techniques presented in the next section.

Recall that our canonical liveness problems are repeated control state reach-
ability and termination. In this subsection, we will consider the former: it is
straightforward to adapt the arguments to the latter.

Equivalence Property. There exists N such that for all n ≥ N , all transition
fair runs with configuration size bounded by n visit control state c infinitely often
if and only if c is visited infinitely often with probability 1 under probabilistic
memory fairness.

Justification. We will demonstrate the equivalence by showing a canonical proce-
dure that decides both repeated reachability queries. Consider a (colored) graph
G(n) parametrized by n. The vertices are the finitely many plain configurations
(there are finitely many variables, and we assume that they can take finitely
many values; in the case of TSO, these are configurations with empty buffers).
We draw an edge from γ to γ′ if and only if γ′ is reachable from γ via con-
figurations of size at most n. Furthermore, nodes are colored green or black. A
node γ is colored green if and only if control state c is reachable from γ via
configurations of size at most n.

By construction, it is clear that for all n, strongly connected components
(SCCs) of the graph G(n) will be uniformly colored. Moreover, this is a finite
graph, and by construction, as n increases, edges can only be added, and vertices
can only go from black to green. Thus, the graph will saturate at some n = N ,
and be the same thereafter. Let this saturated graph be G, and consider n ≥ N .

Note that for G, the vertices are plain configurations, the edges and colors
indicate reachability without restrictions on the size of intermediate configura-
tions. A crucial remark is that G can be computed with conventional reachability
queries. This G will serve as our canonical construct.

Fairness and Liveness under Weak Consistency 15

Recall that any transition fair run with configuration size bounded by n nec-
essarily visits plain configurations infinitely often. Further, by transition fairness,
it is guaranteed to eventually sink into a bottom SCC of G(n) = G. By sim-
ilar reasoning, one can also argue that under probabilistic memory fairness, a
run eventually sinks into a bottom SCC and visits plain configurations infinitely
often with probability 1.

We are now ready to argue that the following three statements are equivalent:
(i) all transition fair runs with configuration size bounded by n visit c infinitely
often, and (ii) a run under probabilistic memory fairness visits c infinitely often
with probability 1, and (iii) all reachable bottom SCC’s (SCC’s with no outgoing
edges) of G are colored green.

The existence of a black reachable bottom SCC indicates a path where, after
a finite prefix of nonzero probability, c can never be visited again.

For the converse, recall that if a transition fair run visits a state γ infinitely
often, then it necessarily also visits each state γ′ reachable from γ infinitely
often. Similarly, if a run under probabilistic fairness visits a state γ infinitely
often, then under probabilistic memory fairness, each state γ′ reachable from γ
is also visited infinitely often with probability 1. We apply these observations to
the finite set of green nodes which is visited infinitely often, and from which c is
reachable, and we are done.

The Centrality of Reachability. As a corollary of the above justification, we
note that the core subroutines driving the algorithm deciding repeated reach-
ability (liveness) under our fairness conditions are simple reachability (safety)
queries. The construction of the canonical graph G(N) = G and indeed, the com-
putation of N reduces to safety queries. Established techniques to resolve them,
along with standard algorithms to study the special class of Markov Chains we
use, yield a solution to the problem of liveness verification.

6 Verification of Markov Chains

Having studied declarative formulations of fairness notions from the modeling
and stochastic perspectives, we now complete the picture by discussing the al-
gorithmic perspective. In particular, we consider the stochastic setting (the con-
current program induces a Markov Chain), where fairness is imposed through
conditions on the probabilities assigned to the transitions. We will take the TSO
memory model as a concrete example: one can use the intuition in Section 2 to
adapt the observations to other memory models too.

We have already observed how deciding the reachability of a given set F
plays a central role in verification. In the context of safety, F is a set of fatal
configurations: safety is disproven by showing a (necessarily finite) path to F ; it is
typically proven by giving an invariant, i.e. a subset G of the set of configurations
F̃ from which F is not reachable. We will assume that for any configuration γ,
we can decide whether γ ∈ F , and whether γ ∈ F̃ .

16 P. A. Abdulla et. al.

In the context of liveness, on the other hand, reaching F constitutes desirable
behavior that one would want to guarantee or, in the setting of Markov Chains,
quantify. More specifically, a decision problem could ask whether F is reached
with probability p± ε, i.e. whether |Probγ0 [F]− p| < ε.

The Algorithm. Given that we can detect both when a configuration γ is
in F , and when it is in F̃ , the following approach might immediately spring
to mind: maintain an under-approximation α− (initialized to 0) and an over-
approximation α+ (initialized to 1) of Probγ0 [F]. Starting from the initial
configuration, generate all runs through the transition system in a breadth-first
manner, and compute their probabilities up to the current step while doing so.
If a path reaches γ ∈ F , add its probability to α−; if a path reaches γ ∈ F̃ ,
subtract its probability from α+.

6.1 Necessity of Decisiveness

The under and over-approximations are clearly sound, but do they converge?
Observe that we keep track of paths until they reach either F or F̃ , and account
for their probabilities in the approximations only after they do. It is indeed
possible that the approximations do not converge because of infinite runs that
are “indecisive” with respect to F : they visit neither F nor F̃ .

It is precisely this indecision that we seek to tackle with fairness. A Markov
Chain is decisive [11, 6] with respect to a set of configurations F if for any config-
uration γ, a run starting from it is indecisive with respect to F with probability

0. Formally, for each configuration γ, it is the case that Probγ

(
F ∨ F̃

)
= 1.

Put differently, if F is always reachable along a run ρ then ρ will almost certainly
eventually reach F , i.e., Probγ(F | ∃ F) = 1.

Decisiveness ensures that the approximations converge and the algorithm
terminates because, by definition, the problematic indecisive paths collectively
have probability 0. We now turn to the enforcement of this property through
fairness. In fact, we will enforce a stronger condition: that the Markov Chain
itself be decisive, i.e. the property of decisiveness holds with respect to any set
F of configurations.

6.2 Attractors

We enforce decisiveness by asserting the existence of a finite attractor [10]. An
attractor A is a set of configurations, such that each run of the system will almost
certainly eventually reach A. Figure 6.2(a) illustrates an attractor. Formally, for
each configuration γ of the system, we have Probγ (A) = 1, i.e., we reach the
set A from γ with probability one.

Attractors satisfy an even stronger condition, namely any run of the system
will almost certainly visit A, not only once, but infinitely often. The reason (il-
lustrated in Figure 6.2(b)) is the following. Let us consider a run ρ of the system.

Fairness and Liveness under Weak Consistency 17

A

(a) A: An attractor. Under probabilis-
tic TSO, the set of configurations with
empty buffers is an attractor.

A S

(b) Repeated reachability of at-
tractors.

Fig. 8. Attractors.

By definition of an attractor, ρ will almost certainly eventually reach a config-
uration γ1 ∈ A. We apply the definition of an attractor to the continuation of
ρ from γ1. This continuation will almost certainly eventually reach a configura-
tion γ2 ∈ A. The reasoning can be repeated infinitely thus obtaining an infinite
sequence γ1, γ2, . . . of configurations inside A that will be visited. This means
that A will be visited infinitely often with probability 1.

By an identical line of reasoning, we can conclude that the property of deci-
siveness implies that Probγ(F | ∃ F) = 1, i.e. if F is always reachable
along a path, then the path almost certainly visits F not just once, but infinitely
often.

Recall the description of Probabilistic Memory Fairness in Section 5.3. We
declared that the set of plain configurations (for TSO, those with empty buffers)
be visited infinitely often with probability 1. This precisely asserts that the set of
plain configurations is an attractor. Moreover, when we assume that the processes
have finitely many control states and that shared variables can take finitely many
values, we get that the set of plain configurations is a finite attractor.

6.3 Sufficiency of Finite Attractors

Let us now motivate why our declaration of the existence of finite attractor
suffices to enforce decisiveness. (Fig. 9). We partition A into two sets: A0 := A∩F̃
and A1 := A ∩ ¬F̃ . In other words, the configurations in A0 cannot reach F (in
the underlying transition system), while from each configuration in A1 there is
a path to F . Consider a run ρ. We need to show that ρ will almost certainly
eventually either reach F̃ or reach F . We know that ρ will almost certainly visit
A infinitely often. By construction, exactly one of A0 or A1 is visited infinitely
often. If A0 is visited infinitely often, we are done, because A0 ⊆ F̃ . Otherwise,
ρ will visit A1 infinitely often with probability 1. Since A1 is a finite set, with
probability 1, there is a particular configuration γ ∈ A1 that will be visited
infinitely often by ρ. By definition, we know that F is reachable from γ, i.e.,
there is a path (say of length k) from γ to F . Let β be the probability that this
path is taken during the next k steps of the run. This means that each time ρ

18 P. A. Abdulla et. al.

F

F̃

A
A0 A1

Pre*(F)

γ

Fig. 9. Attractors and decisiveness.

visits γ, it will reach F during the next k steps with probability at least β, which
implies that ρ cannot avoid F forever. Thus ρ will almost certainly eventually
reach F .

The above observations allow us to use the framework of Section 5.4 and the
breadth-first exploration procedure described at the beginning of this section to
approximate Probγ0 [F] = 1−Probγ0 [F̃] = 1−Probγ0 [A0] too. The first
equality follows from decisiveness, the second from the attractor property. Here,
we decrement the over-approximation when a path reaches A0, and increment
the under-approximation when a path reaches a configuration in A1 from which
A0 is unreachable.

Notice how these queries crucially rely on the finite graph we described in
Section 5.4, as well as on the probabilistic fairness properties discussed in this
section for correctness.

6.4 Getting Desired Finite Attractors

In this section, we outlined a simple procedure to verify or quantify the satisfac-
tion of liveness specifications. We identified the notion of decisiveness, a property
of Markov Chains essential to the algorithm, and defined the concept of a finite
attractor as a means of ensuring decisiveness. This coincided with the fairness
notions we obtained from the modeling perspective. To reconcile the declarations
of the modeling with the requirements of the algorithm, we now briefly discuss
the assignment of transition probabilities to get the finite attractor we desire.

Recall that we consider systems that consist of finite sets of finite-state pro-
cesses, communicating through shared variables according to the TSO seman-
tics. Note that TSO uses unbounded store buffers to model message propaga-
tion: the underlying transition system is therefore infinite-state. To induce a
Markov Chain, choices between different enabled transitions are resolved proba-
bilistically, i.e. the scheduler uses a stochastic policy to pick an enabled process

Fairness and Liveness under Weak Consistency 19

store
buffer

x=1γ1 y=1

x=1 γ′￼2

x=1 y=1 x=1 y=1 x=1 y=1

x=1 y=1 x=1

γ2

γ′￼1

store
buffer

Fig. 10. Probabilistic Fairness under TSO semantics: half the buffers are flushed in
expectation

to execute. Furthermore, after each process step, the program probabilistically
performs memory updates as follows: from each process’ store buffer, it picks a
prefix whose length is chosen uniformly at random. Messages from the chosen
prefixes are randomly interleaved to generate the order in which they are flushed
to the main memory.

In this model, at every step, the length of each buffer is halved in expec-
tation. Intuitively, the run almost certainly “gravitates” toward configurations
with small buffers. The limit of this tendency, of course, is to (repeatedly) visit
the set of configurations with empty buffers. In formal terms, the transition prob-
abilities are chosen in such a way that a set of configurations with empty buffers
is an attractor. There are only finitely many such configurations: consequently,
the induced Markov chain is decisive.

7 Conclusions and Future Work

We have presented a framework for verifying liveness properties for concurrent
programs running under weak memory models. To that end, we have defined a
new notion of fairness corresponding to a natural restriction on program behavior
and equivalent to probabilistic fairness. In particular, the latter allows reducing
checking liveness properties to checking safety properties for programs running
under weak memory models.

There are several directions for future work:

– Applying automata inclusion techniques, such as the one in [7], to check
liveness properties efficiently.

– Designing abstraction algorithms for verifying parameterized systems, i.e.,
systems consisting of arbitrary many processes [8, 9, 1].

– Developing partial-order reduction technique for more scalable verification
[12, 5, 2].

20 P. A. Abdulla et. al.

Disclosure of Interests. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Parosh Aziz Abdulla. Regular model checking. STTT, 14(2):109–118, 2012.

2. Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Source sets: A foundation for optimal dynamic partial order reduction. J. ACM,
64(4):25:1–25:49, 2017.

3. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Raj Aryan Agarwal, Adwait Godbole,
and S. Krishna. Probabilistic total store ordering. In Ilya Sergey, editor, Program-
ming Languages and Systems - 31st European Symposium on Programming, ESOP
2022, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, volume
13240 of Lecture Notes in Computer Science, pages 317–345. Springer, 2022.

4. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, Shankaranarayanan
Krishna, and Mihir Vahanwala. Overcoming memory weakness with unified fair-
ness - systematic verification of liveness in weak memory models. In Constantin
Enea and Akash Lal, editors, Computer Aided Verification - 35th International
Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part I, vol-
ume 13964 of Lecture Notes in Computer Science, pages 184–205. Springer, 2023.

5. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus L̊ang,
Tuan Phong Ngo, and Konstantinos Sagonas. Optimal stateless model checking
for reads-from equivalence under sequential consistency. PACMPL, 3(OOPSLA),
2019.

6. Parosh Aziz Abdulla, Nathalie Bertrand, Alexander Moshe Rabinovich, and
Philippe Schnoebelen. Verification of probabilistic systems with faulty commu-
nication. Inf. Comput., 202(2):141–165, 2005.

7. Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukás Hoĺık, Chih-Duo
Hong, Richard Mayr, and Tomás Vojnar. Advanced ramsey-based büchi automata
inclusion testing. In Joost-Pieter Katoen and Barbara König, editors, CONCUR
2011 - Concurrency Theory - 22nd International Conference, CONCUR 2011,
Aachen, Germany, September 6-9, 2011. Proceedings, volume 6901 of Lecture Notes
in Computer Science, pages 187–202. Springer, 2011.

8. Parosh Aziz Abdulla, Frédéric Haziza, and Lukás Hoĺık. Parameterized verification
through view abstraction. STTT, 18(5):495–516, 2016.

9. Parosh Aziz Abdulla, Noomene Ben Henda, Giorgio Delzanno, and Ahmed Rezine.
Handling parameterized systems with non-atomic global conditions. In Francesco
Logozzo, Doron A. Peled, and Lenore D. Zuck, editors, Verification, Model Check-
ing, and Abstract Interpretation, 9th International Conference, VMCAI 2008, San
Francisco, USA, January 7-9, 2008, Proceedings, volume 4905 of Lecture Notes in
Computer Science, pages 22–36. Springer, 2008.

10. Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Verifying infinite
markov chains with a finite attractor or the global coarseness property. In 20th
IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29 June 2005,
Chicago, IL, USA, Proceedings, pages 127–136. IEEE Computer Society, 2005.

11. Parosh Aziz Abdulla, Noomene Ben Henda, and Richard Mayr. Decisive markov
chains. LMCS, 3(4), 2007.

Fairness and Liveness under Weak Consistency 21

12. Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general
approach to partial order reductions in symbolic verification. In CAV 98, volume
1427 of LNCS, pages 379–390, 1998.

13. Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.
Hutto. Causal memory: Definitions, implementation, and programming. Distrib.
Comput., 9(1):3749, mar 1995.

14. Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. On the verification problem for weak memory models. In Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’10, page 718, New York, NY, USA, 2010. Asso-
ciation for Computing Machinery.

15. Manfred Broy and Martin Wirsing. On the algebraic specification of nondetermin-
istic programming languages. In CAAP, 1981.

16. Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of tem-
poral property classes. In Werner Kuich, editor, Automata, Languages and Pro-
gramming, 19th International Colloquium, ICALP92, Vienna, Austria, July 13-17,
1992, Proceedings, volume 623 of Lecture Notes in Computer Science, pages 474–
486. Springer, 1992.

17. Rob Glabbeek and Peter Hfner. Progress, justness, and fairness. ACM Computing
Surveys, 52:1–38, 08 2019.

18. Ori Lahav and Udi Boker. Whats decidable about causally consistent shared mem-
ory? ACM Trans. Program. Lang. Syst., 44(2), apr 2022.

19. L. Lamport. How to make a multiprocessor that correctly executes multiprocess
programs. IEEE Trans. on Computers, C-28:690–691, 1979.

20. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems - specification. Springer, 1992.

21. CORPORATE SPARC International, Inc. The SPARC Architecture Manual (Ver-
sion 9). Prentice-Hall, Inc., USA, 1994.

22. Pierre Wolper. Expressing interesting properties of programs in propositional tem-
poral logic. In POPL, pages 184–193. ACM Press, 1986.

