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Abstract—A fundamental question in logic and verification,
whose origins lie in the seminal works of Büchi, Elgot, and
Rabin, is the following: for which unary predicates P1, . . . , Pk is
the monadic second-order theory of ⟨N;<,P1, . . . , Pk⟩ decidable?
Equivalently, for which infinite words α can we decide whether
a given automaton A accepts α? Carton and Thomas showed
decidability in case α is a fixed point of a letter-to-word
substitution σ, i.e., σ(α) = α. However, abundantly more words,
e.g., Sturmian words, are characterised by a broader notion of
self-similarity that uses a set S of substitutions. A word α is said
to be directed by a sequence s = (σn)n∈N over S if there is a
sequence of words (αn)n∈N such that α0 = α and αn = σn(αn+1)
for all n. We study the automaton acceptance problem for such
words and prove, among others, the following. Given S and an
automaton A, we can compute an automaton B that accepts
s ∈ Sω if and only if s directs a word α accepted by A.

I. INTRODUCTION

In 1962, Büchi proved that the monadic second-order
(MSO) theory of the structure ⟨N;<⟩ is decidable [1], and, in
doing so, laid the foundations of automata theory over infinite
words. Subsequently in 1966, Elgot and Rabin [2] adopted
automata-theoretic techniques to show how to decide the MSO
theory of ⟨N;<,P ⟩ for various interesting unary predicates P
including {n! : n ∈ N} and {2n : n ∈ N}. By then, it was
already known that unary predicates lay at the frontiers of
decidability: expanding ⟨N;<⟩ with most natural functions
(e.g., addition or doubling) or non-unary predicates yields un-
decidable MSO theories [3], [4], [5]. The question thus arose:
for which unary predicates P1, . . . , Pk is the MSO theory of
⟨N;<,P1, . . . , Pk⟩ decidable? Equivalently,1 for which infinite
words α is the automaton acceptance problem, which asks
whether a given automaton A accepts α, decidable?

The automaton acceptance problem under various assump-
tions on α has been studied, among others, by Semënov,
Carton and Thomas, and Rabinovich [6], [7], [8]. Semënov [6]
showed decidability for α that are effectively almost-periodic.
These include, for example, the Thue-Morse word and toric
words, which are obtained from certain compact dynamical

1We can encode the structure ⟨N;<,P1, · · · , Pk⟩ as a word α over the
alphabet {0, 1, · · · , 2k−1} where the k-bit binary representation of α(n)
indicates the predicates to which n belongs. An MSO formula φ is then
translated into an automaton A that accepts α if and only if φ holds in
the structure. Conversely, we can encode a word α ∈ {1, · · · , k}ω as the
structure ⟨N;<,P1, . . . , Pk⟩ where n ∈ Pi if and only if α(n) = i.

systems [9]. Recently, almost-periodic words and Semënov’s
decidability result have been identified as a powerful tool for
analysing linear while loops in program verification as well
as linear dynamical systems [10]. Carton and Thomas [7], on
the other hand, used algebraic methods to show decidability
for morphic α, which include α that can be constructed by
infinitely iterating a letter-to-word morphism σ on a starting
letter a. Their result implies, in one fell swoop, the decidability
of the MSO theory of ⟨N;<, {p(n)an : n ∈ N}⟩ where a ≥ 1
and p is a polynomial with integer coefficients satisfying
p(N) ⊆ N. Finally, Semënov [6] (also see [11]) as well as
Rabinovich and Thomas [12] gave two characterisations of P
such that the MSO theory of ⟨N;<,P ⟩ is decidable, with the
caveat that it is not possible to effectively verify either of their
criteria. In fact, it has been shown that determining whether
the MSO theory of ⟨N;<,P ⟩ is decidable for a given unary
predicate P is complete for the class Σ3 of the arithmetical
hierarchy [13].

In order to apply these results to solve a verification
problem, one needs to link the setting under consideration
to the generation of some combinatorially special word. As a
recent example, [14] showed decidability of the MSO theory of
⟨N;<,P1, . . . , Pk⟩ where P1, . . . , Pk belong to a large class of
predicates of arithmetic origin. In particular, the MSO theory
of ⟨N;<, aN, bN⟩ owes its decidability to the fact that the
order in which powers of coprime a and b occur is effectively
almost-periodic by dint of being a Sturmian word (Sec. III-A).
Sturmian words form an extremely well-studied and funda-
mental class of “special words” that appear naturally in a
range of fields including number theory, computer graphics,
astronomy, and music [15, Chap. 9.6], [16, Chap. 6]. They
are toric and contain a subset of morphic words. We refer
the reader to [9] for a more detailed survey of the role of
Sturmian words, and word combinatorics in general, in logic
and verification.

In this paper, we adopt the S-adic perspective, which is a
powerful tool for elucidating a vast array of combinatorial
properties of infinite words. Akin to a continued fraction
expansion of a real number, or even a Fourier decomposition
of a signal, we seek to write an infinite word α as an
infinite composition of (possibly different) substitutions. A
substitution σ over an alphabet Σ gives rules to replace each



letter a ∈ Σ with a non-empty word σ(a) ∈ Σ+. For example,
the Fibonacci substitution σfib over {0, 1} replaces 0 with
01 and 1 with 0; the Fibonacci word αfib = 01001010 · · ·
is obtained as the limit of iterating σfib infinitely on the
letter 0 (or, alternatively, the letter 1). Hence we have the
infinite decomposition αfib = σfib ◦ · · · ◦ σfib · · · . In general,
we have a set S of substitutions, and say that an infinite
sequence s over S directs a word α if there there exists
a sequence of words

(
α(n)

)
n∈N such that α(0) = α, and

α(n) = σn

(
α(n+1)

)
for all n. This gives us the S-adic

decomposition α = σ0 ◦ σ1 ◦ · · · .2 We refer to any s ∈ Sω

as a directive sequence. As hinted earlier, this transformation
immediately reveals many desirable properties of words from
the perspective of logical decidability. For example, if s is
weakly primitive, then any α it directs is uniformly recurrent
(Sec. III), which implies that α is almost-periodic (Sec. II-C).

Entire classes of words such as Sturmian (Sec. III-A) and
Arnoux-Rauzy (Sec. III-B) words can be defined in terms of
directive sequences over specific S; we call such a class W
S-adic. Many interesting S-adic families, including the ones
we consider in this paper are defined by weakly primitive
directive sequences, which implies that every α ∈ W is
uniformly recurrent and hence almost-periodic. By the result of
Semënov discussed above, under an effectiveness assumption,
such words have a decidable automaton acceptance problem
and MSO theory. It is thus natural to consider the decision
problem of the common MSO theory of such a class W of
words: given an automaton A, what is the set of all α ∈ W
that are accepted by A? Does there exist at least one such α?
Equivalently, given a formula φ, can we decide whether there
exists α ∈ W that induces a structure in which φ holds?

We remark that this question is similar in spirit to the
problem solved in [17]: given a formula φ, it is decidable
whether there exists a Sturmian word α such that φ holds
in the induced first-order structure ⟨N;<,+, P ⟩. The key
ingredient in this case is that Sturmian words have descriptions
in certain non-standard (compared to the usual binary or
decimal number systems) number systems that are amenable
to automata-theoretic tools. We refer the reader to [18] for
more on automatic structures that are used to decide various
extensions of Presburger arithmetic like the one above.

Our main contribution is showing that ω-regular speci-
fications on words in the Σ-space translate into ω-regular
constraints on their directive sequences in the S-space. Conse-
quently, the common MSO theory of an S-adic class of words
is decidable. This generalises the recent result of [19] that,
given a finite set S and an automaton A whose language
is closed (i.e., a non-deterministic Büchi automaton whose
states are all accepting), it is decidable whether A accepts
a word α directed by some S. Our results yield algorithms
that thoroughly answer questions of the kind “Which Sturmian
words are accepted by a given automaton A?”

2Of course, we are not interested in trivial decompositions that, for example,
just permute the letters back and fort, as these do not tell us anything new
about α.

Outline and contributions of the paper

In Sec. II we recall preliminaries from topology, algebra,
automata theory, word combinatorics, and number theory. In
Sec. III we formally define what it means for a directive
sequence to (i) generate a word, (ii) direct a word, and (iii)
generate a shift. Briefly, a sequence of substitutions (σn)n∈N
generates α if there exists a sequence of letters (an)n∈N such
that α = limn→∞ σ0 · · ·σn(an); generating a word is a strong
form of directing it. We then recall well-known properties of
directive sequences, the most important of them being weak
primitivity, and then describe Sturmian, Arnoux-Rauzy, as well
as dendric words (and shifts), which are all generated by
weakly primitive directive sequences.

In Sec. IV we study the structure of words directed or
generated by directive sequences. Our key new insight is
the augmentation of a directive sequence s over3 S into a
congenial expansion ŝ over S ×Σ (Def. 17), which generates
a word incrementally and predictably (Lem. 18). We prove the
following pivotal results.

• If s generates α, then it also directs α (Lem. 16).
• If s directs a word α, then α is a concatenation of words

generated congenially by s (Lem. 20).
• If s is weakly primitive, then s congenially generates α

if and only if s directs α (Lem. 22)

In Sec. V, we identify that substitutions over Σ, when consid-
ered relative to an automaton A over Σ, coalesce into finitely
many equivalence classes: we denote the set of classes as ΞA.
Given a sequence s over S, or ŝ over S × Σ, we naturally
define its trace to be a word over ΞA or over ΞA × Σ.

The series of developments in Sec. IV and Sec. V converge
in Sec. VI and Sec. VII, where we prove our main results.

Morphic Words Let A be an automaton over Σ, and let σ, π
be substitutions. Using only their respective equivalence
classes ξ, ζ ∈ ΞA, we can compute a regular language
L ⊆ Σ+ such that the word π(σω(u)) is well-defined and
accepted by A if and only if u ∈ L (Thm. 30). Hence we
can also characterise all such π, σ, u, which substantially
generalises the result of Carton and Thomas [7].

Generated Words Given an automaton A over Σ, we can
construct an automaton B over ΞA×Σ such that B accepts
the trace of ŝ if and only if ŝ is congenial and generates
a word accepted by A (Thm. 32).

Directed Words Given an automaton A over Σ, we can
construct an automaton B over ΞA such that B accepts
the trace of s if and only if s directs a word accepted
by A (Thm. 34).

Generated Shifts Given an automaton A over Σ that recog-
nises L(A), consider an automaton Asuf that recognises
Σ∗ · L(A). We can construct an automaton B over ΞAsuf

such that B accepts the trace of s if and only if s is
weakly primitive and generates a shift that contains a
word accepted by A (Thm. 37).

3Our set S of substitutions could possibly be infinite, which is the case
with, for example, dendric words.



In Sec. VIII, we refine our main results for Sturmian,
Arnoux-Rauzy, and (ternary) dendric words, which are gen-
erated by weakly primitive directive sequences, and have a
priori known factor complexity (Sec. II-C). We show that
for such classes, acceptance by A is completely determined
by the first N(A) partial quotients of the directive sequence
(Thm. 40). In the case of Sturmian words, this has a nice
geometric interpretation: an automaton can only resolve the
slope and intercept associated with a Sturmian word up to a
“pre-determined” finite precision.

II. PRELIMINARIES

An alphabet Σ is a finite and non-empty set of symbols.
We write ε for the empty word. A substitution σ is a non-
erasing morphism from Σ∗ to Σ∗, i.e., σ(v) = ε if and only
if v = ε. We denote the set of all such substitutions by S(Σ).
For substitutions µ, σ, we write µσ for µ ◦ σ. A substitution
is positive if every b ∈ Σ appears in σ(a) for all a ∈ Σ, and
left-proper if there exists b ∈ Σ such that σ(a) begins with b
for all a ∈ Σ.

For a word α, α(j) denotes the letter at the jth position
of α, α[i, j) denotes the finite word α(i) · · ·α(j − 1), and
α[j,∞) denotes the infinite word α(j)α(j + 1) · · · . A finite
word u is a factor of a word v if there exist indices i, j such
that v[i, j) = u. When we say that an object is effectively
computable, we mean that a representation in a scheme (that
will be clear from the context) is effectively computable.

A. Topology of finite and infinite words

We equip Σ∗ ∪ Σω with the product topology, and define
the distance between words u, v to be 2−n, where n is the
first position in which they differ. E.g., distinct a, b ∈ Σ are a
distance of 20 = 1 apart. A notion of convergence of sequences
of words follows naturally.

Definition 1. Let (un)n∈N be a sequence of finite words. We
define α = limn→∞ un ∈ Σ∞ = Σ∗ ∪ Σω ∪ {⊥} as follows.

• If there exists v ∈ Σ∗ and N such that for all n ≥ N ,
un = v, then α = v.

• If there exists β ∈ Σω such that for all j, un[0, j) =
β[0, j) for all sufficiently large n, then α = β.

• Otherwise, α = ⊥, which denotes lack of convergence.

The space X = Σ∗ ∪ Σω is compact. In particular, every
infinite sequence of words from X has some infinite subse-
quence that converges to an element of X . The cylinder sets
defined by fixing first N letters are both closed and open.

B. Monoids and automata theory

We consider infinite words from both the algebraic and com-
binatorial perspectives, and hence use monoids and automata
respectively

Recall that a monoid M is a set equipped with an associative
binary operation M × M → M (usually denoted by · and
written in infix notation) and a neutral element 1M with
respect to ·: for all m ∈ M , 1M · m = m · 1M = m. In
this paper, monoids serve as an alternate perspective through

which we view ω-regular languages.4 This is realised via
morphisms h from the free monoid Σ∗ (generated by letters of
the alphabet Σ with concatenation as the binary operation and
the empty word as the neutral element) into a finite monoid M .
Throughout this paper we shall work with monoids in which
m ·m′ = 1M if and only if m = m′ = 1M : this is justified
by the fact that the concatenation of two words is the empty
word ε if and only if both words are ε: for convenience of
exposition we shall say the monoid has no identity divisors.

Since we work with infinite words, it is necessary to have
a well-defined notion of an infinite product of elements of
a monoid M . This is obtained by extending M to an ω-
monoid M [20, Chap. 7], [21], whose elements fall into two
partitions, M and Mω . We additionally have that:

• M is a monoid.
• For an infinite sequence (mj)j∈N over M , the infinite

product m0 ·m1 · · · ∈ Mω , and is associative.
• If m ∈ Mω , then for all m′ we have that m · m′ = m

and m′ ·m ∈ Mω .
We extend the free monoid Σ∗ into Σ∞ = Σ∗ ∪ Σω ∪ {⊥},
where ⊥ as before is a construct to denote non-convergence.
We extend a substitution σ to also act on Σω in the natural
way, and define σ(⊥) = ⊥.

We next present the techniques for extending M to M for
completeness, since we slightly adapt them for our purposes.

Definition 2. Let M be a finite monoid. A linked pair (η, e) ∈
M × M is such that e is idempotent (i.e., e = e · e) and
η · e = η. Linked pairs (η, e) and (η′, e′) are conjugate if
there exist x, y ∈ M such that e = x · y, e′ = y · x, and
η′ = η · x (which together imply η = η′ · y).

We use [η, e] to denote the conjugacy class of the linked
pair (η, e). The definition of the infinite product hinges on the
following result.

Theorem 3. Let Σ be a finite alphabet, M be a finite monoid,
and h : Σ∗ → M be a morphism. For every α ∈ Σω there
exists a linked pair (η, e) ∈ M × M such that α can be
factorised into a sequence of words u0, u1, . . . ∈ Σ+ satisfying
h(u0) = η, and h(uj) = e for all j ≥ 1. Furthermore, the
linked pair (η, e) is unique up to conjugacy, i.e., if a different
linked pair (η′, e′) satisfies the above requirement, then it is
conjugate to (η, e).

The proof of Thm. 3 is an application of Ramsey’s theorem;
we provide it in App. A-A for completeness. Observe that this
theorem enables us to define the infinite product of elements
of M as a conjugacy class of linked pairs. Indeed, we can
apply the above theorem by taking Σ = M and h that maps
a word m1 · · ·mk to the monoid element m1 · · ·mk.

Definition 4. We extend a finite monoid M into an ω-monoid
M as follows.

• The elements of Mω consist of conjugacy classes of linked
pairs of M , along with a special error element ⊥.

4Semigroups are more common; we prefer monoids because of a technical
necessity to distinguish the empty word.



• Infinite products of elements of M are equal to a con-
jugacy class of linked pairs as per Thm. 3. As a single
exception, we define (1M )ω = 1M , which reflects the
convention that infinite concatenation of the empty word
yields the empty word.

• For all m ∈ M , we have that m ·⊥ = ⊥, and m · [η, e] =
[m · η, e].

We remark that mω ∈ Mω can readily be computed for any
m ∈ M that is not the identity. Recall that for every m ∈ M ,
there is an exponent p and an idempotent e such that mp = e.
Then mω = [e, e].

The definition above allows us to extend a morphism h :
Σ∗ → M to h : Σ∞ → M in the obvious way, which maps
α ∈ Σω to a conjugacy class of linked pairs per Thm. 3, and
⊥ to ⊥. We next note a compositional property.

Lemma 5. Let Σ be a finite alphabet, σ be a substitution, M
be a finite monoid, and h : Σ∗ → M be a morphism. We have
that h ◦ σ = h ◦ σ.

Proof. The two morphisms are trivially equal when applied to
finite words and ⊥. We thus only consider their applications
to α ∈ Σω . Let h ◦ σ(α) = [η, e], where α = u0u1 · · · with
h◦σ(u0) = η, and h◦σ(uj) = e for j ≥ 1. Now, we factorise
σ(α) = σ(u0)σ(u1) · · · , giving us h ◦ σ(α) = [η, e], in fact
with the same witness linked pair (η, e).

For the combinatorial perspective, we work with determin-
istic parity automata because some technical tools, particularly
those involving Semënov’s theorem, require the automaton to
be deterministic.

Definition 6. A deterministic parity automaton A over infinite
words is given by the tuple (Σ, Q, qinit, δ, index), where Σ is
the finite input alphabet, Q is the finite set of states, qinit ∈ Q is
the initial state, δ : Q×Σ → Q is the transition function, and
index : Q → N is a function that associates each state with a
natural number. The run rα ∈ Qω of A on α ∈ Σω satisfies
rα(0) = qinit, and for all n, δ(rα(n), α(n)) = rα(n+1). The
word α is accepted if lim supn index(rα(n)) is even. We write
L(A) for the set of all words accepted by A.

By an automaton we mean a deterministic parity automaton,
unless specified otherwise; in some proofs we will construct
nondeterministic (Büchi or parity) automata for technical con-
venience. The translation between these models is effective.
Deterministic parity automata recognise precisely the class of
ω-regular languages.

The following standard lemmata establish that monoids
and automata are equivalent perspectives to recognise ω-
regular languages; for completeness, we describe the relevant
constructions in App. A-B.

Lemma 7. Let A be an automaton over an alphabet Σ. We
can construct a finite monoid MA (with no identity divisors)
called the journey monoid of A, morphism hA from Σ∗ into
MA (with the trivial kernel), respectively extend them into an
ω-monoid MA, hA, and construct F ⊆ MA such that for all

α ∈ Σ∗ ∪Σω , α is (infinite and) accepted by A if and only if
hA(α) ∈ F .

Lemma 8. Let M be a finite monoid and x ∈ M . We can
construct an automaton Ax that accepts an infinite sequence
(xn)n∈N over M if and only if x =

∏∞
n=0 xn.

Proof. If x ∈ M , we check that there are only finitely many
terms that are not 1M , and that the product of these terms is x:
this can easily be done with a Büchi automaton. Suppose there-
fore x /∈ M . Write x = [η, e], and let (η1, e1), . . . , (ηk, ek) be
the linked pairs in this conjugacy class. It is straightforward
to construct a Büchi automaton that checks that the input
sequence admits one of these linked-pair factorisations.

C. Uniformly recurrent words

For a word α ∈ Σω , the set L(α) = {u : u is a factor of α}
is called the factor language (or when the context is clear,
simply language) of α. The factor complexity function pα
takes as input a number n and returns the number of factors
of α that have length n. For example, if α is Sturmian, then
pα(n) = n+ 1 for all n; if α is an Arnoux-Rauzy word over
a d-letter alphabet, then pα(n) = n(d− 1) + 1 for all n.

For an infinite word α and l ≥ 0, denote by Rα(l) the
smallest r ∈ N ∪ {∞} such that every factor of α of length
l is a factor of every factor of α of length r. We call Rα

the recurrence function of α. A word α ∈ Σω is said to be
uniformly recurrent if Rα(l) ∈ N for every l ∈ N. That is,
every u ∈ Σl either does not occur in α, or occurs infinitely
often with bounded gaps. It is clear from the definition that
for uniformly recurrent α, the value of Rα(l) only depends
on L(α). We record the following, which follows by brute
enumeration.

Lemma 9. Let α ∈ Σω be uniformly recurrent. Suppose we
have access to an oracle that, given u ∈ Σ∗, checks whether
u ∈ L(α). Then we can effectively compute Rα(l).

Semënov [6] gave an algorithm5 for determining whether
a given automaton A accepts a given uniformly recurrent
word α, which is represented by (A) an oracle computing
α(n) on input n and (B) an oracle computing an upper bound
Rα(l) on Rα(l) given l.

Theorem 10 (Semënov). Let A be an automaton and α be
a uniformly recurrent word represented by the oracles (A-B).
We can effectively compute M ∈ N such that a state q of A
appears infinitely often in A(α) if and only if it appears in
A(α)[M, 2M).

In other words, to check whether A accepts α, we simply
need to run A on α for 2M steps, and observe the states that
are visited. See [23, Chap. 3.1] for effective bounds on M ,
from which we can deduce the following.

Proposition 11. Let A be an automaton and α be a uniformly
recurrent word represented by the oracles (A-B). We can

5Semënov’s result applies to the more general family of effectively almost-
periodic words [22].



compute l,M such that for any uniformly recurrent β with
β[0,M) = α[0,M) and Rβ(n) = Rα(n) for all n ≤ l, we
have that A accepts α if and only if it accepts β.

The shift generated by α. The (one-sided) shift operator
T : Σω → Σω is defined by T ((an)n∈N) = (an+1)n∈N. A
shift is a closed subset X of Σω that satisfies T (X) ⊆ X .
A minimal shift is one that does not contain any proper sub-
shifts. The language L(X) of a shift X is the set of words u
that appear as factors of some α ∈ X . The factor complexity
function pX of a shift takes as input a number n and returns
that number of length-n words in L(X).

The shift generated by a word α ∈ Σω is the minimal shift
containing α. The following is well-known.

Lemma 12. The shift generated by a uniformly recurrent word
α ∈ Σω is the set of all uniformly recurrent β ∈ Σω satisfying
L(α) = L(β).

For an automaton A we denote by Asuf the automaton that
recognises the language Σ∗ · L(A). Applying Lem. 9 and
Semënov’s theorem to uniformly recurrent words, we obtain
the following.

Lemma 13. Let A be an automaton and α ∈ Σω be a
uniformly recurrent word. Define

Xα = {β : β is uniformly recurrent with L(α) = L(β)}.

Then L(A) ∩ Xα ̸= ∅ if and only if α is accepted by Asuf .
Consequently, L(Asuf) ∩Xα is either Xα or ∅.

Proof. Suppose Asuf accepts α. Then A accepts α[n,∞) for
some n ∈ N. It remains to observe that α[n,∞) ∈ Xa.

Now suppose there exists uniformly recurrent β ∈ Xα that
is accepted by A. Recall that L(α) = L(β). By uniform
recurrence, for any suffix γ of α we have L(γ) = L(β) and
hence Rγ(l) = Rβ(l) for all l. Invoking Prop. 11, let M
be such that for any such γ, if γ[0,M) = β[0,M) then A
accepts γ. Because β ∈ Xa, there must exist a suffix γ of α
such that γ[0,M) = β[0,M) and hence A accepts γ. Thus γ
is a witness that Asuf accepts α.

The consequence follows from the fact that if β ∈ Xα, then
Xβ = Xα. Hence Xα ∩ L(α) ̸= ∅ ⇔ Xβ ∩ L(α) ̸= ∅.

D. Ostrowski numeration systems

Let η ∈ (0, 1) \ Q. The continued fraction expansion of η
is the unique sequence (an)n≥1 of positive integers such that

η =
1

a1 +
1

a2 + · · ·

We write η = [0; a1, a2, . . .]. The convergents (pn/qn)n∈N of
η are obtained by truncating the expansion at the respective
n-th levels. The numerators and denominators satisfy the
recurrences p0 = 0, q0 = 1, p1 = 1, q1 = a1, and
(pn+2, qn+2) = an+2 · (pn+1, qn+1) + (pn, qn) for all n ≥ 0.

The convergents are the locally best approximants of η: for
every n ∈ N, p ∈ Z, and 0 < q < qn,

|qnη − pn| < min
p∈N

|qη − p|

which implies that∣∣∣∣η − pn
qn

∣∣∣∣ < min
p∈N

∣∣∣∣η − p

q

∣∣∣∣.
The Ostrowski numeration system in base η is based on6 the
sequence θn = qnη − pn. For any χ ∈ [−η, 1 − η], there
exists a sequence (bn)n≥1 over N such that (i) 0 ≤ b1 < a1,
(ii) 0 ≤ bn ≤ an for all n ≥ 2, (iii) for all n, bn = 0 if
bn+1 = an+1, and

χ =

∞∑
n=1

bnθn−1.

We refer to (bn)n≥1 as an Ostrowski expansion of χ in base η.
Conversely, every (bn)n∈N satisfying (i-iii) is an Ostrowski
expansion of some χ in base η, i.e., the infinite sum converges
to a value in [−η, 1− η].7 If ξ /∈ Z+ ηZ, then it has a unique
Ostrowski expansion in base η. Otherwise χ can have two
expansions in base η, one of which is ultimately zero.

III. S-ADIC WORDS AND SHIFTS

Let us begin to develop the technical tools we will need
to solve the automaton acceptance problem for Sturmian and
other families of words. Let Σ be an alphabet and S ⊆ S(Σ)
be a possibly infinite set of substitutions.

We refer to α ∈ Σ∗ ∪ Σω as S-directed if there exists a
sequence (σn)n∈N over S and a sequence of infinite words
(α(n))n∈N such that α(0) = α and σn(α

(n+1)) = α(n) for all
n ∈ N. We say that (σn)n∈N directs α. A word α ∈ Σ∗ ∪Σω

is called S-generated if there exists a sequence (σn, an)n∈N
over S(Σ)× Σ such that8

α = lim
n→∞

σ0 · · ·σn(an). (1)

We refer to (σn, an)n∈N as an S-adic expansion of α. For
finite or infinite α, whenever (1) holds we say that (σn, an)n∈N
generates α. In both the S-directed and the S-generated set-
tings (to which we collectively refer as S-adic), the sequence
(σn)n∈N is called a directive sequence.

Directive sequences have also been defined to generate
shifts (which we also call S-adic) as follows. For s =
(σn)n∈N, let L(s) to be the set of all u ∈ Σ+ such that u
is a factor of σ0 · · ·σn(a) for some n and a ∈ Σ. The shift
Xs is defined as {α ∈ Σω : L(α) ⊆ L(s)}. By definition,
any word generated by s is also in the shift Xs. We next
study properties of various special classes of S-adic words
with which we will work.

6The numeration system can also be defined in terms of |θn|; in this paper
we follow [24, Sec. 2.4] and work with the θn-based system.

7To check this, observe that θn alternates between positive and negative;
θ0 = η, θ1 = a1η − 1; θn+2 = an+2θn+1 + θn.

8In the most general definition, each σn is allowed to operate on a different
alphabet, i.e., σn : Σ∗

n+1 → Σ∗
n and an ∈ Σn+1 for a sequence of alphabets

(Σn)n∈N.



Definition 14. A sequence (σn)n∈N over S(Σ) is everywhere
growing if for any (an)n∈N over Σ we have that

lim
n→∞

|σ0 · · ·σn(an)| = ∞.

It is weakly primitive if for every n there exists m ≥ n such
that σn · · ·σm is positive, i.e., for every b, c ∈ Σ, b appears
in σn · · ·σm(c).

In order to justify our interest in weakly primitive expan-
sions, we state two standard facts, whose proofs we provide
in App. B for completeness.

Lemma 15. If s = (σn)n∈N is weakly primitive, then it is
everywhere growing. The generated shift

Xs = {α ∈ Σω : α is uniformly recurrent and L(α) = L(s)}.

We now illustrate the above concepts through example
classes of S-adic words.

A. Sturmian words

Let Σ = {0, 1} and η ∈ (0, 1) \ Q. The characteristic
Sturmian word with slope η is defined by

αη(n) = ⌊(n+ 2)η⌋ − ⌊(n+ 1)η⌋

for n ∈ N. For instance, the Fibonacci word has η = 1/ϕ2,
where ϕ is the golden ratio. Characteristic Sturmian words
are S-directed, where S is taken to be the set {λ0, λ1}. The
substitution λi maps i to i, and the other letter j to ij, i.e., it
inserts i to the left.

The word αη is intimately connected to the continued
fraction expansion of η. Suppose η = [0; 1 + a1, a2, . . .]. We
then have that αη is the unique word directed by the sequence

λ0, . . . , λ0︸ ︷︷ ︸
a1 times

, λ1, . . . , λ1︸ ︷︷ ︸
a2 times

, λ0, . . . , λ0︸ ︷︷ ︸
a3 times

, λ1, . . . , λ1︸ ︷︷ ︸
a4 times

, . . .

which we denote by sη . For example, 1/ϕ2 has the continued
fraction expansion [0; 2, 1, 1, . . .], and hence the Fibonacci
word is directed by (λ0λ1)

ω . Observe that λ0, λ1 are left-
proper. Moreover, for every k,m > 0, λk

0λ
m
1 is positive, and

hence sη is weakly primitive. For such sequences, the notions
of direction and generation coincide, and the word generated
is unique (Lem. 23).

A (general) Sturmian word α of slope η ∈ (0, 1) \ Q and
intercept χ ∈ [−η, 1− η] is given by one of the following:

α(n) = ⌊(n+ 2)η + χ⌋ − ⌊(n+ 1)η + χ⌋, (2)
α(n) = ⌈(n+ 2)η + χ⌉ − ⌈(n+ 1)η + χ⌉. (3)

Sturmian words are uniformly recurrent, and are equivalently
characterised by their factor complexity p(n) = n+ 1, which
is the lowest among non-periodic words. A Sturmian word α
with slope η and intercept χ satisfies L(α) = L(αη). Hence
the shift generated by sη , denoted by Xη , is the set of all
Sturmian words of slope η.

Sturmian words are not necessarily S-adic for S defined
above. However, they are S-adic for S = {λ0, λ1, ρ0, ρ1}
where the substitution ρi inserts i to the right, i.e, maps

i to i and j to ji. Let α be a Sturmian word with slope
η = [0; a1 + 1, a2, . . .] and intercept χ. Then there exists
[24, Prop. 2.7, also see remark after Thm. 2.10] an Ostrowski
expansion (bn)n∈N of χ in base η such that α is directed by
a sequence (τ)n∈N where

τn = λ
b2n+1

0 ρ
a2n+1−b2n+1

0 λ
b2n+2

1 ρ
a2n+2−b2n+2

1 . (4)

Conversely, the rules of Ostrowski expansion guarantee that
each such sequence obtained from the expansions (an)n∈N
and (bn)n∈N is weakly primitive and directs a Sturmian word.
Observe that we can unpack each τn to obtain a bona fide
directive sequence over S, and every morphism in S is left-
proper.

B. Arnoux-Rauzy and episturmian words

We generalise Sturmian words by considering the alphabet
Σ = {0, . . . , d−1}, and taking the set S of substitutions to be
{λ0, ρ0, . . . , λd−1, ρd−1}. As before, λi(i) = ρi(i) = i, and
for j ̸= i, λi(j) = ij, and ρi(j) = ji. Observe that each λi is
left-proper.

Similarly to the Sturmian case, characteristic Arnoux-
Rauzy words [25, Sec. 2.3] are those that are directed by
sequences over {λ0, . . . , λd−1} in which each λi occurs
infinitely often. Such directive sequences are weakly primitive
and by Lem. 22, direct and generate a unique word. For
instance, the Tribonacci word αtrib = 0102010 · · · ∈ {0, 1, 2}ω
is a characteristic Arnoux-Rauzy word, and is directed by the
sequence (λ0λ1λ2)

ω .
General Arnoux-Rauzy words [25, Sec. 5] are those directed

by sequences s in which each i ∈ {0, . . . , d− 1} is infinitely
represented. i.e., for any i, there are infinitely many λi or
infinitely many ρi in s. Such sequences are weakly primitive,
and Arnoux-Rauzy words are thus uniformly recurrent. In
order to ensure that each directive sequence directs a unique
word by the virtue of left-properness [25, Prop. 4.3], we
can further require that there be at least one i such that
there are infinitely many λi in s [25, Thm. 4.12]. Arnoux-
Rauzy words over a d-letter alphabet have factor complexity
p(n) = n(d−1)+1. Observe that Sturmian words are exactly
the two-letter Arnoux-Rauzy words.

An Arnoux-Rauzy word α directed by a sequence s ∈ Sω

is factor-equivalent to (i.e., has the same language as) the
word α′ directed by the sequence s′ obtained by replacing
each ρi in s with the corresponding λi [25, Rmk. 3.5].
Thus, any Arnoux-Rauzy word is in the shift generated by
a characteristic Arnoux-Rauzy word, and a directive sequence
over {λ0, . . . , λd−1}.

Episturmian words generalise Arnoux-Rauzy words as fol-
lows [25, Sec. 5]: any episturmian α ∈ {0, 1, · · · , d− 1}ω is
the image of some Arnoux-Rauzy word β ∈ {0, 1, · · · , c−1}ω
(c ≤ d) under a morphism σ0 · · ·σm, where each σm is
either in S, or is a permutation θij of letters that exchanges
i, j and fixes the other letters. Thus, episturmian words are
also uniformly recurrent. Any sequence s over S directs
some episturmian word, and this word is unique if s contains
infinitely many λi for some i [25, Prop. 4.3]. Conversely, any



episturmian word has a directive sequence with infinitely many
left-inserting substitutions [25, Thm. 4.12].

C. Dendric words

Dendric words over Σ = {0, . . . , d−1} generalise Arnoux-
Rauzy words from the perspective of word combinatorics.
They have striking combinatorial, algebraic, and ergodic prop-
erties, and their study has recently attracted sustained interest.

Consider a uniformly recurrent word α, and its factor
language L(α). We can define the extension graph G(u) of
every u ∈ L(α): this is a bipartite graph, whose left partition
VL(u) consists of vertices corresponding to letters a such that
au ∈ L(α), and right partition VR(u) consists of vertices
corresponding to letters b such that ub ∈ L(α). We draw an
edge between a ∈ VL(u) and b ∈ VR(u) if aub ∈ L(α). We
say that the factor u is dendric in L(α) if G(u) is a tree, and
the word α is dendric if all its factors are dendric in L(α).

Given a uniformly recurrent shift X and a factor u ∈ L(X),
we can similarly construct an extension graph G(u). The shift
X is dendric if G(u) is a tree for every u ∈ L(X). Dendric
words over a d-letter alphabet have factor complexity function
p(n) = n(d− 1) + 1. Arnoux-Rauzy words, in particular, are
dendric [26, Prop. 2.1].

Fix an alphabet Σ. There exists a finite set Se ⊆ S(Σ)
“elementary” substitutions such that every dendric word has
an Se-adic expansion, which is obtained as a decomposition
of dendric return substitutions [27, Thm. 6]. Not every Se-
adic expansion, however, generates a dendric word: in fact,
even a sequence of dendric return substitutions is subject to
constraints in order to generate a dendric shift [28, Thm. 1].

On the other hand, over the ternary alphabet, dendric shifts
have been characterised explicitly [26, Thm. 1.1]: we can com-
pute a set S (which is infinite but has a finite representation)
of left-proper substitutions, an effective finite partition Tden of
S [26, Figs. 5, 6], and an automaton Bden over Tden, such that
a shift X ⊂ {0, 1, 2}ω is minimal dendric if and only if it is
generated by a weakly primitive s = (σn)n∈N over S whose
trace9 t ∈ Tω

den is accepted by Bden. We remark that Bden, as
given by [26, Fig. 7], recognises a closed language, and clarify
that Bden itself does not check for weak primitivity.

IV. STRUCTURE THEOREMS FOR S-DIRECTED WORDS

Let s be a directive sequence over S(Σ) for an alphabet Σ.
In this section we will show that (i) a word α generated
by s is also directed by s, and (ii) a word directed by s
can be written as a product of congenial words generated
by s. Intuitively, such words are generated by (σn, an)n∈N
such that σ0 · · ·σn(an) monotonically converges to the limit.
Statement (ii) will play a key role in our analysis of the
automaton acceptance problem for S-adic and S-directed
words. We begin with (i).

Lemma 16. If α ∈ Σ∗ ∪ Σω is generated by s over S(Σ),
then it is also directed by s. Furthermore, s directs at least
one non-empty word β ∈ Σ+ ∪ Σω .

9The letter t(n) records which partition σn belongs to.

Proof. We will first prove a slightly more general version of
the first statement. Let (an)n∈N be a sequence of letters and
Um = {σm · · ·σn(an) : n ≥ m} for all m ∈ N. Suppose
α is an accumulation point of U0, which subsumes the case
of α being generated by (σn, an)n∈N. We shall inductively
prove the existence of (α(m))m∈N such that α(0) = α, α(m) =
σm

(
α(m+1)

)
, α(m) is an accumulation point of Um for all m.

The base case is immediate.
For the inductive step, suppose we have constructed

α(0), . . . , α(m) with the properties above. Write um,n =
σm · · ·σn(an), and observe that by the induction hypothesis,
α(m) is the limit of some sequence (σm(um+1,ni

))i∈N. By
compactness, the sequence (um+1,ni)i∈N itself has an infinite
subsequence (um+1,kj )j∈N that converges. We choose α(m+1)

to be the limit, which is an accumulation point of Um+1. By
the continuity of σm,

lim
j→∞

σm(um+1,kj ) = σm

(
lim
j→∞

um+1,kj

)
which implies that α(m) = σm(α(m+1)).

To prove the second claim, choose an arbitrary sequence
(an)n∈N of letters and let β be an accumulation point of
{σ0 · · ·σn(an) : n ∈ N}. Apply the preceding argument.

We next introduce congenial expansions, which form the
cornerstone of most of our technical results.

Definition 17. Let Σ be an alphabet. A sequence
((σn, an))n∈N over S(Σ) × Σ is congenial if σn+1(an+1)
begins with an for all n. A word α ∈ Σ+ ∪Σω is s-congenial
for a directive sequence s if α = limn→∞ σ0 · · ·σn(an) for a
congenial sequence ((σn, an))n∈N.

The most desirable property of congenial (σn, an)n∈N is
that limn→∞ σ0 · · ·σn(an) is guaranteed to exist, and has
every σ0 · · ·σn(an) as a prefix. The following lemma captures
this property, and is proven via a straightforward induction.

Lemma 18. Let ((σn, an))n∈N be congenial, and for n ≥ 1,
vn ∈ Σ∗ be such that σn(an) = an−1vn. For all n,

σ0 · · ·σn(an) = σ0(a0)·σ0(v1)·σ0σ1(v2) · · · (σ0 · · ·σn−1(vn)).

We will show in Sec. VII that, for any automaton A and
finite set S of substitutions, the set of all congenial S-adic
expansions that define a word accepted by A is ω-regular. To
apply this result to S-directed and general S-adic words we
need to argue that it suffices to consider congenial expansions.
For a directive sequence s, denote by congenialss the set of
all s-congenial α ∈ Σω . We next show that this set is finite.

Lemma 19. Let Σ be an alphabet and s = (σn)n∈N be a
directive sequence over S(Σ). There exist at least one and at
most |Σ| congenial expansions of the form (σn, an)n∈N, and
hence 1 ≤ |congenialss| ≤ |Σ|.

Proof. By Lem. 16, there exists (α(n))n∈N over Σω such that
σ0 · · ·σn(α

(n+1)) = α(0) for all n. Let an be the first letter
of α(n). We have that (σn, an+1) is congenial, and hence
|congenialss| ≥ 1.



Now suppose there exist m ≥ |Σ|+ 1 congenial sequences
(σn, a

(i)
n )n∈N. By a pigeonhole argument, there must exist

i ̸= j such that a
(i)
n = a

(j)
n for infinitely many n. From

congeniality it follows that a(i)n = a
(j)
n for all n.

Congenial words constitute the building blocks of directed
words. The “if” part of the following lemma follows by
definition; the “only if” part holds because a directed word can
naturally be factorised into a congenial prefix and a directed
suffix (if the former is finite). A detailed technical proof is
provided in App. C.

Lemma 20. Let Σ be an alphabet and s = (σn)n∈N be a
directive sequence over S(Σ). A word α ∈ Σ∗∪Σω is directed
by s if and only if it can be expressed as a (possibly infinite)
concatenation u0u1 · · · of s-congenial words.

If s is everywhere growing (and hence weakly primitive),
then have the following strengthening of Lem 20.

Lemma 21. Suppose s = (σn)n∈N is everywhere growing
and directs α ∈ Σω . Then α has a congenial expansion
(σn, an)n∈N.

Proof. Let (α(n))n∈N be such that α(0) = α and
σn(α

(n+1)) = α(n). Choose an to be the first letter of α(n+1).
Then (σn, an)n∈N is congenial, σ0 · · ·σn(an) is a prefix of α
for all n by construction, and limn→∞ σ0 · · ·σn = ∞ by the
growth assumption. Therefore, (σn, an)n∈N generates α.

Combining Lem. 16 and Lem. 21, we obtain the following.

Lemma 22. Let s be an everywhere growing directive se-
quence. A word α is directed by s if and only if it is congenially
generated by s.

Finally, we consider weakly primitive left-proper directive
sequences, which capture all special word classes we consider.

Lemma 23. Let s = (σn)n∈N be a weakly primitive sequence
of left-proper substitutions over S(Σ). Then there exists unique
α ∈ Σω that is directed (and by Lem. 22, generated) by s.

Proof. By left-properness, there exist exactly |Σ| congenial
sequences of the form (σn, an)n∈N; these differ only on the
first letter and generate the same word. Apply Lem. 22.

V. EQUIVALENCE OF SUBSTITUTIONS MODULO A
The idea of the monoid-based approach to the automaton ac-

ceptance problem is that, even though there are infinitely many
morphisms in S(Σ), from the perspective of an automaton A
they can be divided into finitely many equivalence classes,
which we now proceed to define. Let A be a deterministic par-
ity automaton over the alphabet Σ, MA be its journey monoid,
and hA : Σ∗ → MA be the characteristic morphism that maps
each word to its set of journeys. Denote by morphismsA the
finite set of monoid homomorphisms h from Σ∗ into MA such
that h(v) = 1MA if and only if v = ε; these are exactly the
monoid homomorphisms of type Σ∗ → MA that have the
trivial kernel. Note that because A is deterministic, hA ∈ MA.

We define an equivalence relation on the set of non-erasing
substitutions σ : Σ∗ → Σ∗. Let segmentsσ be the function that
takes a letter a ∈ Σ and h ∈ morphismsA, and returns a finite
sequence of pairs from Σ×MA, determined as follows. Write

σ(a) = b1v1 · · · bdvd

where b1, . . . , bd are distinct letters and vi ∈ {b1, . . . , bi}∗ for
all 1 ≤ i ≤ d. That is, we consider the factorisation of σ(a)
into segments based on the first occurrence of each letter. Then

segmentsσ(a, h) = ⟨(b1, h(v1)), . . . , (bd, h(vd))⟩.

Note that there are only finitely many possibilities segmentsσ .
For non-erasing σ, µ : Σ∗ → Σ∗, define

σ ≡A µ ⇔ segmentsσ = segmentsµ.

We denote the class of σ by [σ]A, and the finite set of the
equivalence classes by ΞA; we refer the reader to App. D for
a proof of their effectiveness.

Lemma 24. Given a deterministic automaton A, we can
compute σ1, . . . , σm such that [σi]A ̸= [σj ]A for all i ̸= j
and ΞA = {[σi]A : 1 ≤ i ≤ m}.

For technical convenience, we define the following auxiliary
functions that can be derived from segmentsσ; the first four
of them are independent of A.
(a) expandingσ records for each letter a whether |σ(a)| > 1.

It evaluates to false if and only if segmentsσ(a, h) =
⟨(b, 1MA)⟩ for all h.

(b) introducesσ maps each letter to a finite sequence of pairs
of letters with Boolean flags: if σ(a) = b1v1 · · · bdvd
when factorised as in the definition of segmentsσ , then

introducesσ(a) = ⟨(b1, f1), . . . , (bd, fd)⟩

where fi = 1 if and only if vi ̸= ε.
(c) headσ maps each letter a to the first letter in σ(a).
(d) lettersσ returns for each letter a the set of letters appear-

ing in σ(a).
(e) tailσ takes as input a letter a and a morphism h. Write

σ(a) = headσ(a) · v. We define tailσ(a, h) = h(v).
(f) composeσ takes h ∈ morphismsA → morphismsA and

returns h ◦ σ.
We next argue that composition of morphisms can be

defined on equivalence classes. Let σ, µ : Σ∗ → Σ∗ be
non-erasing. We show how to determine segmentsσ◦µ(a, h).
Suppose µ(a) = b1v1 · · · bmvm, where bi ∈ Σ and vi ∈
{b1, . . . , bi}∗ for all i. Then

σ(µ(a)) = σ(b1)σ(v1) · · ·σ(bm)σ(vm)

and each letter of σ(vi) already appears in one
of σ(b1), . . . , σ(bi). Write segmentsσ(bi, h) =
⟨(ci,1, h(wi,1)), . . . , (ci,ki

, h(wi,ki
))⟩. Then σ(µ(a)) is

equal to

c1,1w1,1 · · · c1,k1w1,k1σ(v1) · · · cm,1wm,1 · · · cm,kmwm,kmσ(vm).



Write ti = wi,ki
σ(vi). Observe that each letter of wi,j appears

as a factor ce,l before wi,j in the factorisation above; the same
applies to every ti. To compute segmentsσ◦µ(a, h) we begin
with the finite sequence

(c1,1, h(w1,1)), . . . , (c1,k1−1, h(w1,k1−1)), (c1,k1
, h(t1)) · · ·

(cm,1, h(wm,1)), . . . , (cm,km−1, h(wm,km−1)), (cm,km
, h(tm)).

Note that the above can be effectively computed from
segmentsσ and segmentsµ:

h(ti) = h(wi,ki
)h(σ(vi))

and the two factors can be gleaned from segmentsσ(bi, h) and
segmentsµ(a, composeσ(h)), respectively. Rename the indices
in the sequence above to obtain ⟨(c1, h(w1), . . . , (cM , h(wm)⟩
where ci ∈ Σ and wi ∈ Σ∗ for all i. Recall that
wi ∈ {c1, . . . , ci}∗ for all i. But it is possible that ci =
cj for some i, j. To eliminate these, we repeat the fol-
lowing process for as long as possible. Find the small-
est j such that ci = cj for some i < j. Replace
the two consecutive terms (cj−1, h(wj−1), (cj , h(wj)) with
(cj−1, h(wj−1)h(cj)h(wj)). In the end we are left with
segmentsσ◦µ(a, h).

To summarise, we have the following.

Lemma 25. The set ΞA is a finite monoid with the binary
operation [σ]A · [µ]A = [σ ◦ µ]A and the identity element
[id]A, where id(w) = w for all w ∈ Σ∗.

Proof. Observe that substitutions form a free monoid with
composition being the binary operation. The map from sub-
stitutions to their equivalence classes respects the binary
operation, by construction. Using this fact, it is straightforward
to check that the binary operation on equivalence classes is
associative, and that [id]A is indeed the identity element.

We will represent an element ξ ∈ ΞA with a substitution σ
such that [σ]A = ξ. For ξ ∈ ΞA, we denote by segmentsξ the
function segmentsσ for some [σ]A = ξ; note that the choice
of σ does not matter. We define expandingξ etc. similarly.
Next, we show that representatives of the equivalence classes
can be effectively computed.

Let (σn)n∈I be a sequence of non-erasing substitutions of
type Σ∗ → Σ∗ and (an)n∈I be a sequence of letters from Σ,
where I can be finite or infinite. Let ξn = [σn]A. We define
traceA((σn)n∈I) = (ξn)n∈I and traceA((σn, an)n∈I) =
(ξn, an)n∈I . We can extend the definition of [·]A to sequences
in the natural way: [(σn)n∈I ]A is the (possibly infinite) product∏

n∈I ξn ∈ ΞA.
We end this section by showing that for any infinite word α

and substitution σ, whether A accepts σ(α) can be determined
from [σ]A. Recall that for a morphism h : Σ∗ → M , where
M is a finite monoid, h denotes the extension of h to Σω .

Lemma 26. Let A be an automaton over alphabet Σ and α ∈
Σω . There exists Φ ⊆ ΞA such that for any σ : Σ∗ → Σ∗, A
accepts σ(α) if and only if [σ]A ∈ Φ. Furthermore, Φ can be
effectively computed if we know h(α) for all h ∈ morphismsA.

Proof. By Lem. 7, we can compute a set F ⊆ MA such that,
for all α, A accepts α if and only if hA(α) ∈ F . Applying
Lem. 5,

hA(σ(α)) = (hA ◦ σ)(α) = compose[σ]A(hA)(α).

We thus define Φ = {ξ ∈ Ξ: composeξ(hA)(α) ∈ F}. The
effectiveness claim follows from the fact that composeξ(hA) ∈
morphismsA for all ξ.

VI. MORPHIC WORDS ACCEPTED BY A

In this section, we shall use the algebraic machinery de-
veloped in Sec. V to characterise the set of morphic words
accepted by A, which generalises the main result of [7]. A
word α ∈ Σω is substitutive if it is a fixed point of a non-trivial
substitution, i.e., if there exists σ ∈ S(Σ) not the identity such
that σ(α) = α. A word α ∈ Σω is morphic if it is of the form
π(α) for π ∈ S(Σ) and α a substitutive word. For u ∈ Σ∗

and substitutions σ, π, define σω(u) = limn→∞ σn(u) and
π ◦ σω(u) = π(σω(u)). We say that α ∈ Σω is constructibly
morphic if α = π ◦ σω(u) for substitutions σ, π and u ∈ Σ∗.
For such words, given an automaton A, we will show that the
respective equivalence classes ξ, ζ ∈ ΞA of substitutions σ, π
determine:

• Whether σ has a fixed point accepted by A (Thm. 31).
• A regular language L(ξ, ζ) ⊆ Σ+ such that π ◦ σω(u) is

accepted by A if and only if u ∈ L(ξ, ζ) (Thm. 30).
We have the following properties, whose proofs are in App. E.

Lemma 27. Let Σ be a finite alphabet and σ be a substitution.
The following properties hold.

Saturation For u ∈ Σ∗, we have that σω(u) = σω(σ(u)).
Distributivity For u, v ∈ Σ∗, σω(uv) = σω(u) · σω(v).
Left-expansion For a ∈ Σ, u ∈ Σ+, v ∈ Σ∗,

if σω(a) = u · σω(a) · σω(v), then σω(a) = uω .
Right-expansion For a ∈ Σ, u ∈ Σ∗, if σ(a) = au, then

σω(a) = a · u · σ(u) · · ·σn(u) · · · .
Cycle of Contradiction Let a0, . . . , ap−1, with p > 1 be

distinct letters such that headσp(a0) = a0, and for any
r ∈ {1, . . . , p− 1}, headσr (a0) = ar. We have that
σω(a0) = · · · = σω(ap−1) = ⊥.

Terminal Letters If, for a letter a, σω(a) = u ∈ Σ+, then
for all n ≥ |Σ|, σn(a) = u.

The following result, along with distributivity, implies that
whether σω(u) for a finite word u is an infinite word accepted
by A is determined by the equivalence class [σ]A; this is the
main technical novelty of this section.

Theorem 28. Let A be an automaton. For any h ∈
morphismsA, substitutions σ, τ with σ ≡A τ , and letter a,
we have that h◦σω(a) = h◦τω(a). Moreover, this element in
MA can be computed given only the equivalence class ξ ∈ ΞA
of σ, τ along with the values of h, a.

Proof sketch. By Lem. 27, we have a dynamic programming
algorithm to compute h ◦ σω(a) in a “depth first” manner.



We defer the technical details to App. E. The key insight that
structures this approach is that we can write

h ◦ σω(b) = h ◦ σω(c1) · h ◦ σω(v1) · · ·h ◦ σω(ck) · h ◦ σω(vk)

= h ◦ σω(c1) · g(v1) · · ·h ◦ σω(ck) · g(vk),

where g(vi) = h ◦ σ|Σ|(vi), and can be obtained from
segmentsξ(b, g) = segmentsξ(b, composeξ|Σ|(h)).

As a corollary, we obtain that whether a substitution π,
when applied to the word obtained by iterating σ infinitely on
u, produces a word accepted by A, is also determined by the
equivalence classes [σ]A and [π]A: indeed, acceptance only
depends on h ◦ π ◦ σω(u) where h = hA, which by Lem. 26
is equivalent to h ◦ π ◦ σω(u). The latter, in turn, is the same
as compose[π]A(h) applied to σω(u).

Corollary 29. Let A be an automaton. For any letter a and
h ∈ morphismsA we can compute h ◦ π ◦ σω(a) given only
h, a, [σ]A, [π]A.

We thus arrive at the following.

Theorem 30. Let A be an automaton over Σ and σ, π be
substitutions with respective equivalence classes ξ, ζ ∈ ΞA.
We can compute a regular language L(ξ, ζ) ⊆ Σ+ such that
A accepts π ◦ σω(u) if and only if u ∈ L(ξ, ζ).

Proof. We construct a deterministic finite-word automaton
recognising L(ξ, ζ). The set of states are the elements of
MA, the initial state is 1MA , the set of accepting states is F
(as in Lem. 7), and the transition function maps (m, a) to
m · (hA ◦ π ◦ σω)(a). The latter is effective by Cor. 29.

Finally, the following result implies that whether σ has a
fixed point accepted by A is effectively determined by [σ]A.

Theorem 31. Let A be an automaton and σ be a substitution.
Given [σ]A and h ∈ morphismsA, we can compute the set
{h(α) : σ(α) = α} ⊆ MA.

Proof. We observe that any fixed point of σ must be a
concatenation of words σω(a), where σ(a) = au for u ∈ Σ∗.
Write A for the set of all such letters a, which can be extrracted
from introducesσ . The required set is then the submonoid of
MA generated by {h◦σω(a) : a ∈ A}, whose elements in turn
can be computed using Thm. 28.

VII. THE AUTOMATON ACCEPTANCE PROBLEM

In this section we present our main results: solutions to
the automaton acceptance problem for S-adic words and
shifts. Thm. 32 addresses generated words, Thm. 34 addresses
directed words, and finally Thm. 37 addresses generated shifts.

We make the following remark. Assuming that the set S ⊆
S(Σ) is such that for every automaton A we can compute the
finite set ΞA,S = {[σ]A : σ ∈ S}, we can characterise the set
of all α accepted by A that have a congenial S-adic expansion:
in this case we restrict the automata we construct to run over
the alphabet ΞA,S ×Σ. Note that in particular, finite S given
explicitly satisfy the above effectiveness requirement.

Already, these results can directly be applied to Sturmian
words (Sec. III-A), Arnoux-Rauzy words (Sec. III-B), and
ternary dendric shifts (Sec. III-C); we shall obtain case-specific
refinements in Sec. VIII. For an automaton A, recall that MA
is the journey monoid of A, S(Σ) denotes the set of all non-
erasing substitutions of type Σ∗ → Σ∗, and ΞA denotes the
equivalence classes on S(Σ) constructed from A.

A. Generated and directed words

We will prove that for congenial ŝ over S(Σ)×Σ, defining
a word accepted by A is a property of traceA(s), and the set
of all such traces is ω-regular.

Theorem 32 (Main Result for Generated Words). Given an
automaton A over Σ, we can compute an automaton B over
ΞA ×Σ such that for all infinite sequences ŝ over S(Σ)×Σ,
B accepts traceA(ŝ) if and only if ŝ is congenial and generates
a word accepted by A.

To prove Thm. 32, let F ⊆ MA be as in Lem. 7. The
automaton B accepts t ∈ (ΞA×Σ)ω if and only if t is accepted
by Bx (as constructed by Thm. 33) for some x ∈ F .

Theorem 33. Let A be an automaton over an alphabet Σ and
x ∈ MA. We can construct an automaton Bx over ΞA×Σ such
that for all infinite sequences ŝ over S(Σ) × Σ, Bx accepts
traceA(ŝ) if and only if ŝ is congenial and hA(αŝ) = x, where
αŝ is the word generated by ŝ.

Proof. Recall that a sequence s = (σn, an)n∈N over Σ× ΞA
is congenial if and only if headξn(an) = an−1 for all n ≥ 1,
where ξn = [σn]A. Observe that this property only depends
on traceA(s). The automaton Bx, first and foremost, checks
this condition for all n ≥ 1, and permanently transitions into
a rejecting state if it observes violating ξn, an, an−1.

Now suppose s = (σn, an)n∈N is congenial, and define ξn
as above. As shown in Lem. 18,

σ0 · · ·σn(an) = σ0(a0)·σ0(v1)·σ0σ1(v2) · · · (σ0 · · ·σn−1(vn))

for all n, where vn satisfies σn(an) = an−1vn. Let u0 =
σ0(a0) and un = σ0 · · ·σn−1(vn) for n ≥ 1. By the properties
of infinite products in MA (see Sec. II-B) we have that
hA(αs) = x if and only if

∏∞
n=0 hA(un) = x. The automaton

Bx simulates the run of the automaton Ax of Lem. 8 on the
sequence (hA(un))n∈N. It remains to show how the automaton
keeps track of hA(un) as it reads (ξn, an)n∈N. We have that

hA(u0) = (composeξ0(hA))(a0),

hA(un) = tailξn(an, composeξ0···ξn−1
(hA))

for n ≥ 1. The state of the automaton Bx keeps track of one
piece of information ξ ∈ ΞA, in addition to the state required
for simulating a run of Ax on (hA(un))n∈N. For all n, before
reading (ξn, an) the value of ξ is ξ0 · · · ξn−1, where the empty
product (corresponding to the initial value of ξ) is the identity
element of ΞA. Upon reading (ξn, an), the automaton Bx first
computes hA(un), in which the value of ξ is used, then feeds
the computed value to Ax, and finally updates ξ to ξ · ξn.



Finally, Bx accepts (σn, an)n∈N if and only if Ax accepts
(hA(un))n∈N.

We arrive at the representative result from the abstract.

Theorem 34 (Main Result for Directed Words). Given an
automaton A over Σ, we can construct an automaton B
over ΞA such that for all s ∈ S(Σ)ω , B accepts traceA(s) if
and only if A accepts some α ∈ Σω that is directed by s.

Proof. We use Xs ⊂ MA to denote the image of congenialss
under hA. Recall (Lem. 20) that directed words are obtained
by concatenating congenial words. To prove Thm. 34, we
need to recognise the set of traces for which the submonoid
generated by Xs intersects the accepting set F ⊆ MA (from
Lem. 7). We can precompute a set X of sets X that generate
submonoids intersecting F . Our automaton B needs to check
that Xs contains at least one such set X . We denote by Cx the
projection of Bx from Thm. 33 to ΞA, and observe: s ∈ L(B)
if and only if

∨
X∈X

∧
x∈X x ∈ L(Cx).

Recall that for everywhere growing directive sequences,
the notions of direction and congenial generation coincide
(Lem. 21). We can therefore give a characterisation, similarly
to Thm. 34, of all α accepted by A that are generated by some
everywhere growing s ∈ S(Σ). We only additionally need the
following lemma, proven in Sec. F.

Lemma 35. Let A be an automaton. We can construct an
automaton Beg over ΞA such that for every s ∈ S(Σ)ω ,
B accepts traceA(s) if and only if s is everywhere growing.

B. Generated shifts

We now show how to compute an effective representation
of the set of all weakly primitive directive sequences s that
generate a shift Xs intersecting L(A).

Theorem 36. Let A be an automaton. The shift Xs generated
by a weakly primitive directive sequence s = (σn)n∈N inter-
sects L(A) if and only if s directs (equivalently, congenially
generates) a word α ∈ Σ∗ · L(A) = L(Asuf).

Proof. Since s is weakly primitive, by Lem. 15 that it is
everywhere growing, and hence by Lem. 22 the notions of
being directed and congenially generated coincide. Recall that
by definition, any word α generated by s is in Xs, and
moreover by Lem. 15, we have that

Xs = {β ∈ Σω : β is uniformly recurrent and L(β) = L(s)}.

Applying Lem. 13 completes the proof.

Theorem 37 (Main Result for Generated Shifts). Let A be an
automaton over an alphabet Σ, and let Asuf be an automaton
that recognises the language Σ∗L(A). We can compute an
automaton B over ΞAsuf

such that for all infinite sequences
s over S(Σ), B accepts traceA(s) if and only if s is weakly
primitive and generates a shift Xs that intersects L(A).

Proof. Recall Thm. 36: given s is weakly primitive (which
we use Lem. 38 to check), it suffices to check that s directs a

word that is accepted by Asuf (whose language is Σ∗L(A)).
It remains to apply Thm. 34 to Asuf .

Lemma 38. Let A be an automaton over Σ. We can construct
an automaton Bwp over ΞA such that for every s ∈ S(Σ)ω ,
Bwp accepts traceA(s) if and only if s is weakly primitive.

Proof. We will construct an automaton that recognises exactly
the traces of sequences that are not weakly primitive. On input
(ξn)n∈N ∈ Ξω

A, it simply guesses n and checks whether for
all µn = ξm · · · ξn, lettersµn

(a) ̸= Σ for some a ∈ Σ.

Note that whether s is weakly primitive or not does not
depend on A; our formulation merely has the advantage of
being convenient.

VIII. PARTIAL QUOTIENTS

In this section, we refine our main results for the classes
presented in Sec. III through a synergy of word combinatorics,
algebra, and topology. We shall first demonstrate our key
ideas for Sturmian (Sec. III-A) and Arnoux-Rauzy words
(Sec. III-B), and subsequently discuss how the techniques can
be generalised to handle the case of ternary dendric shifts
(Sec. III-C).

A. Partial quotients for Sturmian and Arnoux-Rauzy words

We work with a class W of words over Σ and a set S ⊆
S(Σ) such that
(A) α ∈ W if and only if α is directed by some weakly

primitive s over Sω , and
(B) there exists effectively computable function p such that

the factor complexity pα(n) = p(n) for all α ∈ W and
n ∈ N.

Characteristic Sturmian, Sturmian, and d-letter Arnoux-Rauzy
words are captured, respectively, with S = {λ0, ρ0}, p(n) =
n + 1; S = {λ0, ρ0, λ1, ρ1}, p(n) = n + 1; and S =
{λ0, . . . , λd−1, ρ0, . . . , ρd−1}, p(n) = n(d− 1) + 1.

The main idea is that every uniformly recurrent α ∈ W
with factor-complexity function p has a prefix u that is p-
saturated with respect to a given automaton A: any uniformly
recurrent extension β of u with factor-complexity function p
agrees with α upon acceptance by A (Lem. 39). The proof
involves a careful consideration of Semënov’s algorithm for
deciding whether an automaton accepts a uniformly recurrent
word (App. F).

Lemma 39. Let A be an automaton and α be a uniformly
recurrent word such that α(n) and pα(n) can be effectively
computed for all n. We can compute N such that any uniformly
recurrent β with β[0, N) = α[0, N) and pβ(n) = pα(n) for
all n is accepted by A if and only if α is accepted by A.

Recall that a directive sequence (σn)n∈N is weakly primitive
if for every n, there exists r such that σn · · ·σn+r is positive:
for every letter a, the image σn · · ·σn+r(a) contains all letters.
Therefore, given a congenial expansion (σn, an)n∈N of α, we
can compute an increasing sequence (kn)n∈N with k0 = 0
such that, writing ln = kn+1 − 1, τn = σkn · · ·σln and



bn = aln , each τn is positive, all strict prefixes of the
composition σkn · · ·σln are not positive, and (τn, bn)n∈N is
also a congenial expansion of α. We refer to (τn, bn)n∈N as the
sequence of partial quotients of (σn, an)n∈N. By construction,
the sequence of partial quotients is weakly primitive. The main
result of this section is the following.

Theorem 40. Let W, S be as above. Given an automaton A,
we can compute N with the following property. Let α, α′ ∈ W
with congenial S-adic expansions (τn, an)n∈N, (τ

′
n, a

′
n)n∈N

and partial quotients (πn, bn)n∈N and (π′
n, b

′
n)n∈N, respec-

tively. If πn ≡A π′
n and bn = b′n for all n ≤ N then A

accepts α if and only if it accepts α′.

Proof. Let P be the set of all positive σ1 · · ·σr such that σi ∈
S for all i and σ1 · · ·σi is not positive for all i < r. Construct
finite Π ⊆ P such that {[π]A : π ∈ P} = {[π]A : π ∈ Π}, and
let Ω be the set of all congenial (πn, bn)n∈N over Π × Σ.
Because congeniality is a local condition, Ω is a compact
subset of (Π × Σ)ω . Next, consider α generated by some
ŝ = (πn, bn)n∈N ∈ Ω. By Lem. 39 there exists M such
that α[0,M) is p-saturated. Write ΩM for the set of all
ŝ ∈ Ω whose first M terms generate a p-saturated finite word,
observing that each ΩM is open. From Lem. 39 it follows
that {ΩM : M ∈ N} is an open cover of Ω., which, by
compactness, admits a finite sub-cover. That is, there exists
N (which we can effectively computed by enumeration) such
that for every (πn, bn)n∈N ∈ Ω, (πn, bn)

N
n=0 generates a finite

word that is p-saturated.
Now consider α ∈ W with a weakly primitive and congenial

S-adic expansion (µn, an)n∈N and partial quotients sequence
ŝ := (τn, bn)n∈N. Let (πn)n∈N over Π be such that τn ≡A πn

for all n, and observe that ŝ := (πn, bn)n∈N is also conge-
nial. Let β be the word generated by ŝ. By Thm. 33 and
Lem. 7, A accepts α if and only if it accepts β. In particular,
acceptance by A only depends on the trace ([τn]A, bn)n∈N.
By the earlier argument, whether A accepts β only depends
on ([πn]A, bn)n∈N. It follows that whether A accepts α only
depends on ([τn]A, bn)

N
n=0.

We illustrate this result on Sturmian words. Given an
automaton A, apply Thm. 40 with the class of Sturmian words,
S = {λ0, λ1, ρ0, ρ1}, and p(n) = n + 1 to compute N . Let
η ∈ (0, 1) \ Q, χ ∈ [−η, 1 − η], [0; a1 + 1, a2, . . .] be the
continued fraction expansion of η, (bn)n∈N be an Ostrowski
expansion of χ in base η, and α be the corresponding
Sturmian word with slope η and intercept χ. Recall that α is
directed (and, thanks to weak primitivity and left-properness,
congenially generated; see Lem. 23) by the sequence

(σn)n∈N = ⟨λb1
0 , ρc10 , λb2

1 , ρc21 , λb3
0 , ρc30 , λb4

1 , ρc41 . . .⟩

where ci = ai − bi. By the rules of Ostrowski expansion, at
least one of cn, cn+1 is non-zero for all n. Moreover, every
composition of morphisms from {λ0, λ1, ρ0, ρ1} that includes
two morphisms with differing indices is positive. Since at least
one of bn, cn is non-zero for all n > 1 (we could, however,
have a1 = b1 = c1 = 0), we have that for every n, σn · · ·σn+5

is positive. Applying Thm. 40 we conclude that whether α is
accepted by A can be determined by looking at the first 6N
digits of the expansions of η and χ, since these are guaranteed
to generate at least the first N partial quotients of the unique S-
adic expansion of α. In fact, because ([σn]A)n∈N is ultimately
periodic, the acceptance of α by A can be formulated as
a Boolean combination of formulas in modular arithmetic
involving the first N digits of the expansions of η and χ.

B. Partial quotients for ternary dendric shifts

Recall from Sec. III-C that ternary dendric shifts have factor
complexity p(n) = 2n+ 1, and that we can compute a set S
(which is infinite but has a finite representation) of left-proper
substitutions, an effective finite partition [26, Figs. 5, 6] Tden

of S, and a closed language L(den) ⊂ Tω
den (recognised by

an automaton constructed from [26, Fig. 7]), such that a shift
X ⊂ {0, 1, 2}ω is minimal dendric if and only if it is generated
by a weakly primitive s ∈ Sω whose trace 10 t ∈ L(den).

We can generalise the techniques of Sec. VIII-A to the
setting of a class X of shifts, a set S ⊆ S(Σ) of left-proper
substitutions that is finitely and effectively partitioned into TX ,
and a closed ω-regular language L(X ) ⊆ Tω

X such that:
(A) A shift X ∈ X if and only if it is generated by a weakly

primitive sequence s over S whose trace t ∈ L(X ).
(B) There exists effectively computable function p such that

for all X ∈ X , the factor complexity function pX(n) =
p(n) for all n.

We seek to characterise the shifts X ∈ X which intersect
the language of a given automaton A′. These shifts consist
of uniformly recurrent words. Hence by Thm. 36 we have to
determine whether the directive sequence generates a word
accepted by A = A′

suf . The directive sequences that we work
with are left-proper and weakly primitive, and hence generate
a unique congenial word. By the assumptions on X , a finite
prefix of a valid directive sequence s will generate a prefix11

of α ∈ Xs that is p-saturated with respect to A (Lem. 39). We
next sketch that we again need only N(A) partial quotients.

In this setting, we additionally rely upon the morphism
hX from TX into the monoid ΞX recognising the language
L(X ) to represent our partial quotients. Given an automaton
A = A′

suf , a positive subsequence σn · · ·σn+r is said to
be (X ,A)-represented by π if: (i) [π]A = [σn · · ·σn+r]A;
(ii) π = τ1 · · · τk, where τ1, . . . , τk ∈ S; (iii) the trace
of τ1 · · · τk ∈ T+

X and the trace of σn · · ·σn+r ∈ T+
X

agree upon hX . It is clear that we can compute a finite set
ΠX ,A ⊂ S(Σ) of representatives.

By construction, any directive sequence over ΠX ,A is
weakly primitive, and the set Ω of X -valid sequences is
closed in Πω

X ,A, thus forming a compact space. Furthermore,
a weakly primitive directive sequence over S can be replaced
by its sequence of representatives, which results in a directive
sequence over ΠX ,A. By construction, the shift generated by

10The letter t(n) records the set in the partition to which σn belongs.
11Take σ0 · · ·σn+1 to generate σ0 · · ·σn(an+1), where each image of

σn+1 starts with an+1.



the new directive sequence agrees with the original upon mem-
bership in X and containment in L(A) (due to equivalence
modulo both ΞX and ΞA). It suffices to look at only the first
N(A) terms of this new sequence because the compactness
arguments in the proof of Thm. 40 apply mutatis mutandis.

IX. DISCUSSION

For an automaton A over Σ, we gave a non-trivial equiv-
alence relation ≡A over substitutions of type Σ∗ → Σ∗ such
that acceptance (by A) properties of α ∈ Σω associated with
a substitution σ or directive sequence (σn)n∈N can be inferred
from [σ]A and ([σn]A)n∈N, respectively. We also completely
characterised the set of S-directed words accepted by A. The
next step is to consider billiard words, which play a key role
in decidability of the MSO theory of ⟨N;<, aN, bN, cN⟩ and
are not known to have good S-adic representations [9].
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[6] A. Semënov, “Logical theories of one-place functions on the set of
natural numbers,” Mathematics of the USSR-Izvestiya, vol. 22, no. 3,
p. 587, 1984.

[7] O. Carton and W. Thomas, “The monadic theory of morphic infinite
words and generalizations,” Information and Computation, vol. 176,
no. 1, pp. 51–65, 2002.

[8] A. Rabinovich, “On decidability of monadic logic of order over the nat-
urals extended by monadic predicates,” Information and Computation,
vol. 205, no. 6, pp. 870–889, 2007.
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Z. Ésik, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp.
562–574.

[13] D. Kuske, J. Liu, and A. Moskvina, “Infinite and bi-infinite words
with decidable monadic theories,” in 24th EACSL Annual Conference
on Computer Science Logic (CSL 2015), S. Kreutzer, Ed., vol. 41.
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2015, pp. 472–486.
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APPENDIX A
PROOFS FROM SEC. II

A. The linked pair construction

Proof of Thm. 3. We apply Ramsey’s theorem.

Theorem 41 (Ramsey). Let V be an infinite set, M be a finite
set of colours, and h : [V ]2 → M map each subset of V of
size 2 to a colour. Then there exists some infinite subset U
such that h assigns all size-2 subsets of U the same colour.

Recall that α ∈ Σω , and h : Σ∗ → M .
Existence. We first prove the existence of a linked pair with

an appropriate factorisation. Let V = N, and we assign a set
{i, j} (with i < j) the colour h(α(i, j)) ∈ M . By Ramsey’s
theorem, there must exist a set of indices i0 < i1 < · · ·
such that for all k < ℓ, h(α(ik, iℓ)) = e. This e is indeed
idempotent: observe that

e = h(α(i0, i2)) = h(α(i0, i1)) · h(α(i1, i2)) = e · e.

Now, let h(α(0, i0)) = m. Let m · e = η. Observe that η · e =
m ·e ·e = m ·e = η, establishing that (η, e) is a desired linked
pair, and the factorisation is α(0, i1), α(i1, i2), . . . .

Uniqueness. We now prove that (η, e) is unique up to
conjugacy. Suppose we have another linked pair (η′, e′) and
its corresponding factorisation α(0, j1), α(j1, j2), . . . . We ob-
serve that for all k ≥ 1, we have h(α(0, ik)) = η, and
h(α(0, jk)) = η′.

Now, for each k, let ℓ be the smallest index such that
jℓ ≥ ik, and let h(α(ik, jℓ)) = x′

k. We argue (similarly to
how we obtained the component η to show the existence of a
linked pair) that for each p > ℓ, h(α(ik, jp)) = xk = x′

k · e′.
By pigeonhole principle, there exists an x such that xk = x
for infinitely many k. In other words, for this x, there exist

https://arxiv.org/abs/2206.00333


infinitely many k such that h(α(ik, jp)) = x for all but finitely
many p. Let the set of such k be K. Reasoning symmetrically,
there exists y for which there exist infinitely many ℓ such that
h(α(jℓ, iq)) = y for all but finitely many q. Let the set of such
ℓ be L.

Now, consider k ∈ K, and ℓ ∈ L such that h(α(ik, jℓ)) = x.
We immediately deduce that η′ = η · x. Furthermore, there
exists k′ ∈ K such that h(α(jℓ, ik′)) = y, whence we deduce
that x · y = e. Reasoning symmetrically, we also deduce that
η = η′ ·y, and y ·x = e′, thus establishing conjugacy of (η, e)
with (η′, e′).

B. Automata to Monoid construction

We largely follow [14]. In order to reason about a run of an
automaton A on α, we introduce the notion of a journey, which
is a tuple in Q×Q× (N ∪ {−1}). A word u of length ℓ can
make a journey (ρ(0), ρ(ℓ), c) in A if δ(ρ(j), u(j)) = ρ(j+1)
for all j < ℓ, and c = max1≤j≤ℓ index(ρ(j)). The empty
word can only make journeys of the form (q, q,−1). By
construction, journeys aggregate a segment of a run. Journeys
also compose: if u can make the journey (q1, q2, c1) and
v can make the journey (q2, q3, c2), then uv can make the
journey (q1, q3,max(c1, c2)). We record the following, which
will allow us to factor α as we wish.

Lemma 42. Let A be an automaton over the alphabet Σ and
α ∈ Σω . Further let (un)n∈N be a sequence of finite words
such that α = u0u1 · · · , and

(q0, q1, c0), (q1, q2, c1), . . .

be a sequence of journeys such that q0 = qinit, and the word
up can make the journey (qp, qp+1, cp) for all n. Then

lim sup
k→∞

index(rα(k)) = lim sup
p→∞

cp

where rα is the run of A on α.

We define a congruence ∼A on finite words: u ∼A v if and
only if the sets of journeys (which have exactly one element
per starting state) that u and v can undertake in A are equal.
Observe that if u ∼A v and x ∼A y then ux ∼A vy. Since
there are only finitely many sets of possible journeys, there
are finitely many congruence classes. We define the journey
monoid MA to be the monoid of congruence classes, and the
morphism hA to map each word to its congruence class. Ob-
serve that MA is generated by {m : hA(a) = m, a ∈ Σ} and
has 1MA = hA(ε) as its neutral element. In fact hA(v) = 1MA

if and only if v = ε. An element m of MA may be presented
as a representative word u such that hA(u) = m. We extend
MA into MA, and hA into hA as defined in Sec. II-B.

Let α ∈ Σω with hA(α) = [η, e]. Consider a linked
pair (η, e) such that α = u0u1 · · · where hA(u0) = η,
and hA(uj) = e for all j ≥ 1. This linked pair pre-
scribes a decomposition of the run of A on α into journeys
(q0, q1, c0), (q1, q2, c1), . . . such that q0 = qinit, words in the
congruence class η undertake the journey (q0, q1, c0), and for
all j ≥ 1, words in the congruence class e undertake the

journey (qj , qj+1, cj). The following lemma shows that hA(α)
determines acceptance of α by A.

Lemma 43. Let A be an automaton over the alphabet Σ, and
α, α′ ∈ Σω be such that hA(α) = hA(α

′). We have that A
accepts α if and only if it accepts α′. More specifically,

lim sup
k→∞

index(rα(k)) = lim sup
k→∞

index(rα′(k)).

Proof. Let (η, e) and (η′, e′) be linked pairs respectively
corresponding to α and α′ and let x, y be witnesses of their
conjugacy, i.e., η′ = η · x, η = η′ · y, e = x · y, e′ = y · x.
Let (q0, q1, c0), (q1, q2, c1), . . . and (q0, q

′
1, c

′
0), (q

′
1, q

′
2, c

′
1), . . .

respectively be the sequences of journeys prescribed for α
and α′. By Lem. 42, it suffices to prove that lim supk ck =
lim supk c

′
k.

For each k ≥ 1, let words in the congruence class
x make journeys (qk, q

′′
k , d2k−1) and those in the congru-

ence class y make journeys (q′′k , qk+1, d2k) such that ck =
max(d2k−1, d2k). Indeed, this property must hold because
x · y = e. In particular, this implies that lim supℓ dℓ =
lim supk ck.

We now use the facts that η′ = η · x and e′ = y · x.
This means that words in the class η′ can make the journey
(q0, q

′
1, c

′
0) as well as (q0, q

′′
1 ,max(c0, d1)), giving us q′1 = q′′1

and c′0 = max(c0, d1). Continuing inductively, we get that for
all k > 1, q′k = q′′k , and c′k = max(d2k, d2k+1) by equating
journeys words in the class e′ can undertake starting in q′k.
This gives us that lim supk c

′
k = lim supℓ dℓ = lim supk ck,

completing the proof.

Consequently, we have that we can equivalently recognise
the language of A through the ω-monoid MA.

APPENDIX B
PROOFS FROM SEC. III

Proof of Lem. 15. We first prove the directive sequence is
everywhere growing. Let (an)n∈N be a sequence of letters
and k ∈ N. Let m ≥ k be such that σk+1 · · ·σm is positive.
Then for every n ≥ m, σk+1 · · ·σn is positive and hence ak
appears in σk+1 · · ·σn(an). It follows that

|σ0 · · ·σn(an)| = |σ0 · · ·σk(σk+1 · · ·σn(an))|
> |σ0 · · ·σk(ak)|,

as required.
We now establish uniform recurrence. Suppose w ∈ L(s).

We have that for some n, a, σ0 · · ·σn(a) has w as a factor.
By weak primitivity, there exists r such that every image
of σn+1 · · ·σn+r contains a, and hence every image of
σ0 · · ·σn+r contains w as a factor. It follows that there exists
ℓ such that every length-ℓ word in L(s) has w as a factor.

Finally, suppose for the sake of contradiction that w /∈ L(α)
for some α ∈ Xs. We thus have that α has a length-ℓ factor v
that does not contain w, contradicting that L(α) ⊆ L(s).



APPENDIX C
PROOFS FROM SEC. IV

Proof of Lem. 20. Suppose α = u0u1 · · · , where ui ∈
congenialss for all i. Let (σn, a

(i)
n )n∈N be a congenial se-

quence generating ui, and u
(n)
i = limk→∞ σn · · ·σk(a

(i)
k )

for all i. We have that u
(i)
n = σn(u

(i)
n+1) for all n. It

remains to define α(n) = u
(n)
0 u

(n)
1 · · · . Then α(0) = α and

α
(i)
n = σn(α

(i)
n+1) for all n.

Now suppose α is s-directed, and let (α(n))n∈N be the
witnessing sequence of words with α(0) = α. Write an for
the first letter of α(n). We construct the desired factorisation
inductively. Let v be the word defined by the congenial
sequence (σn, an+1)n∈N. By the choice of (an)n∈N, v is a
prefix of α. If v = α, then we are done. Otherwise, v must be
finite. Let (vn)n∈N be the unique sequence of finite words
such that v0 = v, vn is a prefix of α(n) for all n, and
σn(vn+1) = vn for all n. Write α(n) = vnγ

(n) for all n.
Because σn(α

(n+1)) = α(n) for all n and σn(vn+1) = vn, we
have that σn(γ

(n+1)) = γ(n). That is, γ = γ(0) is a suffix of
α directed by s. Set u0 = v, and repeat the process on γ.

APPENDIX D
PROOFS FROM SEC. V

Proof of Lem. 24. We simply iterate over each syntactic pos-
sibility for segmentsσ , and check if it is realised by a non-
erasing substitution. In order to do so, for each letter a,
we will find a word wa such that assigning σ(a) = wa

is consistent with segmentsσ(a, h) for all h. For a ∈ Σ
and h ∈ morphismsA under consideration, let the purported
segmentsσ(a, h) = ⟨(b1, x1), . . . , (bk, xk)⟩ with k ≥ 1 such
that bi ̸= bj for all i ̸= j and xi ∈ MA, bi ∈ Σ for all i. We
can compute regular languages L1, . . . , Lk ⊆ Σ∗ such that
for all i and w ∈ Σ∗, w ∈ Li if and only if h(wi) = xi and
wi ∈ {1, . . . , bi}∗. Denote La,h = b1L1 · · · bkLk.

We can effectively check whether La =
⋂

h∈morphismsA
La,h

is non-empty, and if yes, effectively compute wa ∈ La. Such
a word can be computed as an image for every letter (if
and) only if the purported segmentsσ is indeed realisable by
assigning each σ(a) to the corresponding wa.

APPENDIX E
PROOFS FROM SEC. VI

Proof of Lem. 27. Saturation. The sequences (σn(a))n and
(σn+1(a))n+1 have the same limit.

Distributivity. We have that for all n, σn(uv) =
σn(u)σn(v). If σω(u) = µ ∈ Σ∗, then for all large n,
σn(uv) = µ · σn(v). Taking the limit, we get σω(uv) =
µ · σω(v). If σω(u) ∈ Σω , then for every position j, there
exists N such that for all n ≥ N , |σn(u)| > j. In other
words, every position j is eventually part of σn(u). Thus,
σω(uv) = σω(u). However, if β ∈ Σω , then βµ = β for all
µ ∈ Σ∞. If σω(u) = ⊥, there is some position j such that the
letter σn(u)(j) fluctuates with n. This means that the limit of
σn(u)σn(v) must also be mapped to ⊥.

Left-expansion. Follows by repeatedly unrolling the equal-
ity.

Right-expansion. Follows by repeatedly applying σ.
Cycle of Contradiction. The limit must be ⊥ as the first

letter of σn(ar) keeps alternating between a0, . . . , ap−1.
Terminal Letters. We find the set A of letters a such that

σω(a) = u ∈ Σ+ by saturation. The key idea is that if σω(a)
converges within n iterations, then σω(σ(a)) must converge
within n − 1 iterations, i.e., for every letter b in σ(a), σω(b)
must converge within n− 1 iterations.

We start with the set A0 of letters a0 such that σ(a0) = a0.
We construct An+1 as the union of An with the set of letters
an+1 such that σ(an+1) only contains letters from An. This
construction will saturate within |Σ| steps. The invariant is that
Aj is the set of a such that σω(a) converges within j iterations.
We conclude that since for n ≥ |Σ|, An = A|Σ|, if σω(a)
converges in n steps then it must have already converged
within |Σ| steps.

Detailed proof of Thm. 28. By Lem. 27, we have a dynamic
programming algorithm to compute h◦σω(a) in a “depth first”
manner.

Indeed, assume that σ(b) = c1v1 · · · ckvk (where the fac-
torisation is based on the first occurrence of each letter; we
get c1, . . . , ck from introducesξ). By Saturation, we have that

h ◦σω(b) = h ◦σω(c1) ·h ◦σω(v1) · · ·h ◦σω(ck) ·h ◦σω(vk).

We observe that the terms h◦σω(vi) will affect the result only
if all h ◦ σω(cj) for j ≤ i are elements of MA. In this case,
σω(vi) will also be a finite word, and by the Terminal Letters
property, be σ|Σ|(vi). We denote h ◦ σ|Σ| by g; thus in this
case, we have h ◦ σω(vi) = g(vi). We can rewrite

h ◦ σω(b) = h ◦ σω(c1) · g(v1) · · ·h ◦ σω(ck) · g(vk). (5)

The elements g(v1), . . . , g(vk) can be obtained from
segmentsξ(b, g).

If c1 = b, we are in the simpler case of Right-expansion
where σ(b) = bu, and we have that

h ◦ σω(b) = h(b) · h(u) · h ◦ σ(u) · h ◦ σ2(u) · · · .

The first two terms are easily obtained through tailξ. We
observe that h ◦ σn(u) = tailξ(b, composeξn(h)). Since the
sequence of monoid elements ξn is effectively ultimately
periodic, so is the sequence of factors in the above infinite
product, allowing us to compute it.

If c1 ̸= b, we first check that there is no r such that σr(c1) =
b: this can be done with access to headξr for r ≤ |Σ|. If this
check fails, we have a Cycle of Contradiction, and have that
h ◦ σω(b) = ⊥.

We now evaluate expansion 5. Write m0 = 1MA , and

mi = h ◦ σω(c1) · g(v1) · · ·h ◦ σω(ck) · g(vi).

Clearly, mi+1 = mi · h ◦ σω(ci+1) · g(vi+1), and

h ◦ σω(b) = mi · h ◦ σω(ci+1) · g(vi+1) · · ·h ◦ σω(ck) · g(vk).



In particular when mi /∈ MA for some i, then h◦σω(b) = mi.
For each i, if ci ̸= b, we evaluate h ◦ σω(ci) (we make a
recursive call if it has not been evaluated before, otherwise
we look up the memoized value). Otherwise, we are in the
case of Left-expansion, and get that h◦σω(b) = mω

i−1. In any
case, we will eventually compute mk = h ◦ σω(b).

Our desired result follows by applying the above depth-first
routine to compute h ◦ σω(a).

APPENDIX F
PROOF OF LEM. 35 FROM SEC. VII

We will need the following.

Lemma 44. A sequence (σn)n∈N of non-erasing substitutions
of the type Σ∗ → Σ∗ is not everywhere growing if and only
if there exist m ≥ 0 and a sequence of letters (bn)n≥m such
that for all n ≥ m, σn+1(bn+1) = bn.

Proof. If. This direction is trivial, as any sequence of letters
(an)n∈N satisfying an = bn for all n ≥ m is a witness for the
sequence not being everywhere growing.

Only If. Suppose (σn)n∈N is not everywhere growing. Let
ℓn = mina∈Σ |σ0 · · ·σn(a)| for n ∈ N. By construction,
(ℓn)n is monotone, and hence either converges to an integer
or becomes arbitrarily large. By the assumption on (σn)n∈N,
there exist ℓ,m such that ℓn = ℓ for all n ≥ m.

Let k > 0 and a ∈ Σ be such that |σ0 · · ·σm+k(a)| = ℓ.
Because ℓm, . . . , ℓm+k = ℓ, for every 0 ≤ s < k we have

|σ0 · · ·σm+k(a)| = |σ0 · · ·σm+s(σm+s+1 · · ·σm+k(a))|
≥ ℓ · |(σm+s+1 · · ·σm+k(a))|.

It follows that |(σm+s+1 · · ·σm+k(a))| = 1 for all 0 ≤ s < k.
Thus for every k > 0 there exist bm, . . . , bm+k ∈ Σ such
that σm+s+1(bm+s+1) = bm+s for all 0 ≤ s < k. It
then follows from König’s lemma that there exists an infinite
sequence (bn)n≥m of letters such that σn+1(bn+1) = bn for
all n ≥ m.

We can now finalise the proof. It suffices to construct an
automaton B′ over ΞA that recognises traces of sequences
that are not everywhere growing. The automaton B′, on input
(ξn)n∈N, simply guesses and verifies m and the sequence
(bn)n≥m in Lem. 44, by checking that expandingξn(bn)
evaluates to false and headξn(bn) = bn−1 for all n > m.

APPENDIX G
PROOFS FROM SEC. VIII

Proof of Lem. 39. Since we have access to the factor com-
plexity function of α (and β), we can evaluate Rα(n) for
all n: given n, enumerate prefixes α(0, L) until finding M
such that (i) γ[0, L) contains pα(M) distinct factors of length
M , and (ii) all of these pα(M) factors contain pα(n) distinct
factors of length n. Then M = Rα(n).

Applying Prop. 11, we obtain N1 and an ℓ such that if
α[0, N1) = β[0, N1) and Rα(n) = Rβ(n) for n ≤ ℓ, then α
and β agree upon acceptance by A. By the above paragraph,
we can compute N2 such that if α[0, N2) = β[0, N2), then

Rα(n) = Rβ(n) for n ≤ ℓ. It remains to take N =
max(N1, N2).
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