On Robustness for Linear Recurrence Sequences

Based on joint work with Akshay, Bazille, and Genest

Mihir Vahanwala ${ }^{1}$
${ }^{1}$ Max Planck Institute for Software Systems

April 5, 2023

A very well known example

$\cdot\langle 0,1,1,2,3,5,8,13,21,34, \ldots\rangle$

- The Recurrence Relation: $Y_{2}=Y_{1}+Y_{0}$
- The Characteristic Polynomial:

$$
X^{2}-X-1=(X-\phi)(X+1 / \phi), \text { where }
$$

$$
\phi=\frac{1+\sqrt{5}}{2}=1.61803398875 \ldots
$$

Linear Recurrence Sequences

Definition (Linear Recurrence Relation, LRR)
An LRR a of order k is a $(k+1)$-ary relation, given by a tuple $\left(a_{0}, \ldots, a_{k-1}\right)$ with $a_{0} \neq 0 . \mathbf{a}\left(Y_{0}, \ldots, Y_{k}\right)$ is interpreted as $Y_{k}=\sum_{i=0}^{k-1} a_{i} Y_{i}$

Definition (Characteristic Polynomial)
The characteristic polynomial of a Linear Recurrence a is $X^{k}-\sum_{i=0}^{k-1} a_{i} X^{i}$.

Definition (Linear Recurrence Sequences, LRS)
An LRS \mathbf{u} of order k is an infinite sequence $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$, given by a linear recurrence a of order k, and the initial k terms $\mathbf{c}=\left(u_{0}, \ldots, u_{k-1}\right)$. For all $n, \mathbf{a}\left(u_{n}, \ldots, u_{n+k}\right)$ holds.

Other Sequences satisfying $u_{n+2}=u_{n+1}+u_{n}$

- $2 \mathbf{f}=\langle 0,2,2,4,6,10,16,26,42,68, \ldots\rangle$
- $\mathbf{g}=\langle 7,4,11,15,26,41,67, \ldots\rangle$
- $2 \mathbf{f}+\mathbf{g}=\langle 7,6,13,19,32,51,83, \ldots\rangle$
- What does

$$
u_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

give?

For an LRR, one can easily check that

- The LRS satisfying the relation form a vector space
- If γ is a root of the characteristic polynomial with multiplicity m, then the sequences $\left\langle\gamma^{n}\right\rangle_{n=0}^{\infty},\left\langle n \gamma^{n}\right\rangle_{n=0}^{\infty}, \ldots,\left\langle n^{m-1} \gamma^{n}\right\rangle_{n=0}^{\infty}$ satisfy the LRR (take the derivatives of the polynomial!)
- Thus, LRS have a general "exponential polynomial" closed form, $u_{n}=\sum_{i} f_{i}(n) \gamma_{i}{ }^{n}$, where f_{i} are polynomials.
- From this characterisation, it is clear that LRS are closed under pointwise addition and multiplication.

Open Decision problems about LRS

We consider rational LRS, i.e whose recurrence a and initialisation clie in \mathbb{Q}^{k}.

Definition (Skolem Problem)
Given an LRS u, does there exist $n \in \mathbb{N}$ such that $u_{n}=0$?
Definition (Positivity Problem)
Given an LRS \mathbf{u}, is $u_{n} \geq 0$ for all $n \in \mathbb{N}$?
Definition (Ultimate Positivity Problem)
Given an LRS \mathbf{u}, does there exist an $n_{0} \in \mathbb{N}$ such that $u_{n} \geq 0$ for all $n \geq n_{0}, n \in \mathbb{N}$?

Remark
The Skolem Problem is known to reduce to the Positivity Problem.

Working with Algebraic Numbers

Since our problems are given over \mathbb{Q}, our computations involving the exponential polynomial closed form take us to $\overline{\mathbb{Q}}$, the "algebraic closure".

Roots of the minimum polynomial p of $\alpha \in \overline{\mathbb{Q}}$

LRS in Trajectories

$\begin{array}{r} \bullet \mathbf{M}^{3} \mathbf{s} \\ \\ \bullet \mathbf{M}^{4} \mathbf{s} \end{array}$	$\mathbf{M}=\left[\begin{array}{cc} 4 & -3 \\ 3 & 4 \end{array}\right] \quad \mathbf{s}=\left[\begin{array}{l} 1 \\ 0 \end{array}\right]$ $\bullet \mathbf{M}^{2} \mathbf{s}$
	$\mathbf{M}^{n} \mathbf{S}=\left[\begin{array}{c} \rho^{n} \cos n \theta \\ \rho^{n} \sin n \theta \end{array}\right]=\left[\begin{array}{c} \frac{1}{2}\left(\gamma^{n}+\bar{\gamma}^{n}\right) \\ \frac{1}{2 i}\left(\gamma^{n}-\bar{\gamma}^{n}\right) \end{array}\right]$ where $\rho=5, \theta=\arctan (3 / 4), \gamma=4+3 i$

LRS in Trajectories: Formally

Lemma
Let $\mathbf{M} \in \mathbb{Q}^{k \times k}, \mathrm{~s} \in \mathbb{Q}^{k}$. Then, $\left\langle\mathbf{M}^{n} \mathbf{s}_{1}\right\rangle_{n=0}^{\infty}$ is a rational $L R S$.
Proof.
Compute the characteristic polynomial of \mathbf{M}, and apply the Cayley-Hamilton Theorem.

Typical problem: Finite Markov Chains

Markov Chain, 7 states.
Transition Probabilities \mathbf{M} marked by prominence of arrows, Initial distribution s marked by darkness of colour

At every step, is the probability of being in the central state greater than the given threshold r ? Formally, is

$$
\forall n .\left(\mathbf{M}^{n} \mathbf{s}\right)_{1} \geq r
$$

Embedding LRS into powers of useful matrices

Lemma

For any rational LRS u of order k, one can efficiently compute an ergodic Markov Chain $\mathbf{M} \in \mathbb{Q}^{(k+1) \times(k+1)}$, along with rational
$\mathbf{S}, \mathbf{D}, \rho, \eta$ such that

- $\mathbf{M}=\mathbf{S}+\mathbf{D}$
- $\mathbf{M S}=\mathbf{S}$
- $\lim _{n \rightarrow \infty} \mathbf{D}^{n}=\mathbf{O}$
- $\mathbf{D}_{1,1}^{n}=\eta u_{n} / \rho^{n}$

Motivating Robustness

- Consider the Markov Chain reachability problem. The mathematical hardness shows up only when the threshold is equal to the limiting value!
- Real-world measurements are inherently imprecise, and practical guarantees need safety margins
- Is the delicate corner case practically significant?

Our notion of robustness

Given an LRR a and an initial point c, rather than considering only c as our initialisation, we ask,

Definition (Robustness)
Does initialising with an arbitrary point in a neighbourhood of \mathbf{c} guaranteed to give an LRS that is

- Positive?
- Ultimately Positive?
- always non-zero? ${ }^{1}$
${ }^{1}$ For robustness, we complement the Skolem problem

Painting with broad strokes: the growth argument

- Recall the exponential polynomial closed form,

$$
u_{n}=\sum_{i} \sum_{j=0}^{m_{i}-1} f_{i j}(\mathbf{c}) n^{j} \gamma_{i}^{n}
$$

and that $f_{i j}$ are linear.

- We can normalise this, and note we have a real sequence:

$$
u_{n} / n^{d} \rho^{n}=\left(\sum_{j=1}^{\ell} 2 \cdot \operatorname{Re}\left(f_{j}(\mathbf{c}) \cdot\left(\cos n \theta_{j}+i \sin n \theta_{j}\right)\right)\right)+r(n)
$$

where $r(n) \in o(1)$, eventually becoming negligible.

The Plan

1. Abstraction. Define a continuous multilinear function dominant : $\mathbb{R}^{k} \times \mathbb{R}^{2 \ell} \rightarrow \mathbb{R}$ as follows:

$$
\begin{aligned}
\operatorname{dominant}(\mathbf{c}, \mathbf{z}) & =\operatorname{dominant}\left(\mathbf{c}, x_{1}, y_{1}, \ldots x_{\ell}, y_{\ell}\right) \\
& =\sum_{j=1}^{\ell} 2 \cdot \operatorname{Re}\left(f_{j}(\mathbf{c}) \cdot\left(x_{j}+i y_{j}\right)\right)
\end{aligned}
$$

2. Number Theory. Find T, the minimal closed over-approximation of the set

$$
S=\left\{\left(\cos n \theta_{1}, \sin n \theta_{1}, \ldots, \cos n \theta_{\ell}, \sin n \theta_{\ell}\right): n \in \mathbb{N}\right\}
$$

3. Logic. Query $\nu(\mathbf{c})=\min _{\mathbf{z} \in T}$ dominant (\mathbf{c}, \mathbf{z}). For any \mathbf{c},

- $\nu(\mathrm{c})>0$ is sufficient for c to be Ultimately Positive
- $\nu(\mathrm{c})<0$ is sufficient for c to not be Ultimately Positive

The Plan, Visualised

The space of initialisations

The Number Theory

$\lambda_{1} \lambda_{2}^{-3}=1, \lambda_{j}=e^{i \theta_{j}}$

$=\cdots S_{\text {arg }}$
$\left\{\left(n \theta_{1}, n \theta_{2}\right) \bmod 2 \pi: n \in \mathbb{N}\right\}$
$-T_{\text {arg }}$
$\left\{\left(\varphi_{1}, \varphi_{2}\right): \varphi_{1}-3 \varphi_{2}=0 \bmod 2 \pi\right\}$
Theorem (Masser)
Integer multiplicative relationships between algebraic numbers of unit modulus correspond to additive relationships in the argument space. They can be computed in PSPACE.

Theorem (Kronecker)
$S_{\text {arg }}$ is dense in $T_{\text {arg }}$

Recall: Is the region between the red rays avoided?

The Logic: First Order Theory of the Reals

- Grammar for terms. $t:=0|1| x|t+t| t \cdot t$
- Grammar for formulae. $\varphi:=t \geq t|\neg \varphi| \varphi \vee \varphi \mid \exists x . \varphi$
- For simplicity, we assume access to the easily derivable all Boolean connectives, $=,>$ predicates, and universal quantifier.
- Intuitively, the propositional atoms are (in-)equalities involving multivariate polynomials with integer coefficients.

Quantifier Elimination

Variables can either be bound by a quantifier, or free. A formula without any free variables is called a sentence.

- Consider $\chi(a, b, c):=a \neq 0 \wedge \exists x \cdot a x^{2}+b x+c=0$
- What does it mean?
-What about $\psi(a, b, c):=a \neq 0 \wedge b^{2}-4 a c \geq 0$?

Decidability of the Theory

Theorem (Tarski)

The First Order Theory of the Reals admits quantifier elimination, i.e. for any formula $\chi(\mathbf{x})$, there is another formula $\psi(\mathbf{x})$ such that:

- ψ does not contain any quantifiers
- For all assignments $\mathbf{x}_{\mathbf{0}}, \chi\left(\mathbf{x}_{\mathbf{0}}\right)$ holds if and only if $\psi\left(\mathbf{x}_{\mathbf{0}}\right)$ holds.

Theorem
Evaluating the truth of a sentence is decidable. Moreover, the truth of sentences in the existential and universal fragments is decidable in PSPACE.

Applying decidability

There exists a neighbourhood of c that is Ultimately Positive, if and only if $\nu(\mathbf{c})=\min _{\mathbf{z} \in T}$ dominant $(\mathbf{c}, \mathbf{z})>0$

- Given a, the description of T is fixed, and can be hardcoded as multivariate polynomial equalities
- Thus, given c, one can encode $\forall \mathbf{z} . \mathbf{z} \in T \Rightarrow \operatorname{dominant}(\mathbf{c}, \mathbf{z})>0$ as a universal first order sentence in the theory of the reals.
- The minimum $\nu(\mathbf{c})$ itself is an algebraic number: it is the unique satisfying assignment to ν in the formula $(\forall \mathbf{z} \mathbf{z} \in T \Rightarrow \operatorname{dominant}(\mathbf{c}, \mathbf{z}) \geq \nu) \wedge(\exists \mathbf{z} \in T . \operatorname{dominant}(\mathbf{c}, \mathbf{z})=\nu)$

Robust Positivity Wrap-up: Accounting for the prefix

- In the case $\nu(\mathbf{c})=\min _{\mathbf{z} \in T}$ dominant $(\mathbf{c}, \mathbf{z})>0$, it is an effectively lower bounded algebraic number, and we can compute $n_{t h r}$ beyond which Positivity is robustly guaranteed.
- All we need to do is to explicitly check that terms of the sequence up to $n_{t h r}$ are greater than 0 .

Summary: How (and why) to tame your LRS

Roots of the minimum polynomial p of $\alpha \in \bar{Q}$

