On Robustness for Linear Recurrence Sequences Based on joint work with Akshay, Bazille, and Genest

Mihir Vahanwala $^{\rm 1}$

¹Max Planck Institute for Software Systems

April 5, 2023

A very well known example

•
$$\langle 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots \rangle$$

• The Recurrence Relation: $Y_2 = Y_1 + Y_0$

• The Characteristic Polynomial:

$$X^2 - X - 1 = (X - \phi)(X + 1/\phi)$$
, where
 $\phi = \frac{1 + \sqrt{5}}{2} = 1.61803398875...$

Linear Recurrence Sequences

Definition (Linear Recurrence Relation, LRR)

An LRR **a** of order *k* is a (k + 1)-ary relation, given by a tuple (a_0, \ldots, a_{k-1}) with $a_0 \neq 0$. $\mathbf{a}(Y_0, \ldots, Y_k)$ is interpreted as $Y_k = \sum_{i=0}^{k-1} a_i Y_i$

Definition (Characteristic Polynomial)

The characteristic polynomial of a Linear Recurrence **a** is $X^k - \sum_{i=0}^{k-1} a_i X^i$.

Definition (Linear Recurrence Sequences, LRS)

An LRS **u** of order k is an infinite sequence $\langle u_n \rangle_{n=0}^{\infty}$, given by a linear recurrence **a** of order k, and the initial k terms $\mathbf{c} = (u_0, \ldots, u_{k-1})$. For all n, $\mathbf{a}(u_n, \ldots, u_{n+k})$ holds.

Other Sequences satisfying $u_{n+2} = u_{n+1} + u_n$

• $2\mathbf{f} = \langle 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, \ldots \rangle$

•
$$\mathbf{g} = \langle 7, 4, 11, 15, 26, 41, 67, \ldots \rangle$$

•
$$2\mathbf{f} + \mathbf{g} = \langle 7, 6, 13, 19, 32, 51, 83, \ldots \rangle$$

What does

$$u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

give?

For an LRR, one can easily check that

- The LRS satisfying the relation form a vector space
- If γ is a root of the characteristic polynomial with multiplicity m, then the sequences ⟨γⁿ⟩_{n=0}[∞], ⟨nγⁿ⟩_{n=0}[∞], ..., ⟨n^{m-1}γⁿ⟩_{n=0}[∞] satisfy the LRR (take the derivatives of the polynomial!)
- Thus, LRS have a general "exponential polynomial" closed form, $u_n = \sum_i f_i(n)\gamma_i^n$, where f_i are polynomials.
- From this characterisation, it is clear that LRS are closed under pointwise addition and multiplication.

Open Decision problems about LRS

We consider rational LRS, i.e whose recurrence a and initialisation c lie in \mathbb{Q}^k .

Definition (Skolem Problem)

Given an LRS **u**, does there exist $n \in \mathbb{N}$ such that $u_n = 0$?

Definition (Positivity Problem)

Given an LRS **u**, is $u_n \ge 0$ for all $n \in \mathbb{N}$?

Definition (Ultimate Positivity Problem)

Given an LRS **u**, does there exist an $n_0 \in \mathbb{N}$ such that $u_n \ge 0$ for all $n \ge n_0, n \in \mathbb{N}$?

Remark

The Skolem Problem is known to reduce to the Positivity Problem.

Working with Algebraic Numbers

Since our problems are given over \mathbb{Q} , our computations involving the exponential polynomial closed form take us to $\overline{\mathbb{Q}}$, the "algebraic closure".

Roots of the minimum polynomial p of $\alpha \in \overline{\mathbb{Q}}$

LRS in Trajectories

LRS in Trajectories: Formally

Lemma Let $\mathbf{M} \in \mathbb{Q}^{k \times k}$, $\mathbf{s} \in \mathbb{Q}^k$. Then, $\langle \mathbf{M}^n \mathbf{s}_1 \rangle_{n=0}^{\infty}$ is a rational LRS.

Proof.

Compute the characteristic polynomial of ${\bf M},$ and apply the Cayley-Hamilton Theorem.

Typical problem: Finite Markov Chains

Markov Chain, 7 states. Transition Probabilities **M** marked by prominence of arrows, Initial distribution **s** marked by darkness of colour

At every step, is the probability of being in the central state greater than the given threshold r? Formally, is

 $\forall n . (\mathbf{M}^n \mathbf{s})_1 \geq r$

Embedding LRS into powers of useful matrices

Lemma

For any rational LRS **u** of order k, one can efficiently compute an ergodic Markov Chain $\mathbf{M} \in \mathbb{Q}^{(k+1) \times (k+1)}$, along with rational $\mathbf{S}, \mathbf{D}, \rho, \eta$ such that

- M = S + D
- MS = S
- $\lim_{n\to\infty} \mathbf{D}^n = \mathbf{0}$
- $\mathbf{D}_{1,1}^n = \eta u_n / \rho^n$

Motivating Robustness

- Consider the Markov Chain reachability problem. The mathematical hardness shows up only when the threshold is equal to the limiting value!
- Real-world measurements are **inherently imprecise**, and practical guarantees need **safety margins**
- Is the delicate corner case practically significant?

Our notion of robustness

Given an LRR a and an initial point c, rather than considering only c as our initialisation, we ask,

Definition (Robustness)

Does initialising with an **arbitrary point in a neighbourhood** of ${\bf c}$ guaranteed to give an LRS that is

- Positive?
- Ultimately Positive?
- always non-zero?¹

¹For robustness, we complement the Skolem problem

Painting with broad strokes: the growth argument

• Recall the exponential polynomial closed form,

$$u_n = \sum_i \sum_{j=0}^{m_i-1} f_{ij}(\mathbf{c}) n^j \gamma_i^{n}$$

and that f_{ij} are linear.

• We can normalise this, and note we have a real sequence:

$$u_n/n^d \rho^n = \left(\sum_{j=1}^{\ell} 2 \cdot \operatorname{Re}(f_j(\mathbf{c}) \cdot (\cos n\theta_j + i \sin n\theta_j))\right) + r(n)$$

where $r(n) \in o(1)$, eventually becoming negligible.

The Plan

1. Abstraction. Define a continuous multilinear function dominant : $\mathbb{R}^k \times \mathbb{R}^{2\ell} \to \mathbb{R}$ as follows:

$$egin{aligned} \mathsf{dominant}(\mathbf{c},\mathbf{z}) &= \mathsf{dominant}(\mathbf{c},x_1,y_1,\ldots x_\ell,y_\ell) \ &= \sum_{j=1}^\ell 2 \cdot \mathsf{Re}(f_j(\mathbf{c}) \cdot (x_j+iy_j)) \end{aligned}$$

 Number Theory. Find T, the minimal closed over-approximation of the set

 $S = \{(\cos n\theta_1, \sin n\theta_1, \dots, \cos n\theta_\ell, \sin n\theta_\ell) : n \in \mathbb{N}\}$

3. Logic. Query $\nu(\mathbf{c}) = \min_{\mathbf{z} \in T} \operatorname{dominant}(\mathbf{c}, \mathbf{z})$. For any \mathbf{c} ,

- ν(c) > 0 is sufficient for c to be Ultimately Positive
- $\nu(\mathbf{c}) < 0$ is sufficient for \mathbf{c} to not be Ultimately Positive

The Plan, Visualised

The Number Theory

Theorem (Masser)

C

Integer multiplicative relationships between algebraic numbers of unit modulus correspond to additive relationships in the argument space. They can be computed in PSPACE.

Theorem (Kronecker)

 $S_{\rm arg}$ is dense in $T_{\rm arg}$

Recall: Is the region between the red rays avoided?

The Logic: First Order Theory of the Reals

- Grammar for terms. $t := 0 \mid 1 \mid x \mid t + t \mid t \cdot t$
- Grammar for formulae. $\varphi := t \ge t \mid \neg \varphi \mid \varphi \lor \varphi \mid \exists x. \varphi$
- For simplicity, we assume access to the easily derivable all Boolean connectives, =, > predicates, and universal quantifier.
- Intuitively, the propositional atoms are (in-)equalities involving multivariate polynomials with integer coefficients.

Quantifier Elimination

Variables can either be bound by a quantifier, or free. A formula without any free variables is called a sentence.

- Consider $\chi(a, b, c) := a \neq 0 \land \exists x. ax^2 + bx + c = 0$
- What does it mean?
- What about $\psi(a, b, c) := a \neq 0 \land b^2 4ac \ge 0$?

Decidability of the Theory

Theorem (Tarski)

The First Order Theory of the Reals admits quantifier elimination, i.e. for any formula $\chi(\mathbf{x})$, there is another formula $\psi(\mathbf{x})$ such that:

- ψ does not contain any quantifiers
- For all assignments $\mathbf{x_0}$, $\chi(\mathbf{x_0})$ holds if and only if $\psi(\mathbf{x_0})$ holds.

Theorem

Evaluating the truth of a sentence is decidable. Moreover, the truth of sentences in the existential and universal fragments is decidable in PSPACE.

Applying decidability

There exists a neighbourhood of c that is Ultimately Positive, if and only if $\nu(c) = \min_{z \in T} \text{dominant}(c, z) > 0$

- Given **a**, the description of T is fixed, and can be hardcoded as multivariate polynomial equalities
- Thus, given c, one can encode
 ∀z. z ∈ T ⇒ dominant(c, z) > 0 as a universal first order sentence in the theory of the reals.
- The minimum $\nu(\mathbf{c})$ itself is an algebraic number: it is the unique satisfying assignment to ν in the formula

 $(\forall z. z \in T \Rightarrow \mathsf{dominant}(c, z) \ge \nu) \land (\exists z \in T. \mathsf{dominant}(c, z) = \nu)$

Robust Positivity Wrap-up: Accounting for the prefix

- In the case ν(c) = min_{z∈T} dominant(c, z) > 0, it is an effectively lower bounded algebraic number, and we can compute n_{thr} beyond which Positivity is robustly guaranteed.
- All we need to do is to explicitly check that terms of the sequence up to *n_{thr}* are greater than 0.

Summary: How (and why) to tame your LRS

