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Abstract

We consider the following Markov Reachability decision problems that view
Markov Chains as Linear Dynamical Systems: given a finite, rational Markov
Chain, source and target states, and a rational threshold, does the probability
of reaching the target from the source at the nth step: (i) equal the threshold
for some n? (ii) cross the threshold for some n? (iii) cross the threshold for
infinitely many n? These problems are respectively known to be equivalent to
the Skolem, Positivity, and Ultimate Positivity problems for Linear Recurrence
Sequences (LRS), number-theoretic problems whose decidability has been open
for decades. We present an elementary reduction from LRS Problems to Markov
Reachability Problems that improves the state of the art as follows. (a) We map
LRS to ergodic (irreducible and aperiodic) Markov Chains that are ubiquitous,
not least by virtue of their spectral structure, and (b) our reduction maps LRS
of order k to Markov Chains of order k + 1: a substantial improvement over
the previous reduction that mapped LRS of order k to reducible and periodic
Markov chains of order 4k + 5. This contribution is significant in view of the
fact that the number-theoretic hardness of verifying Linear Dynamical Systems
can often be mitigated by spectral assumptions and restrictions on order.

Keywords: Ergodic Markov Chains, Reachability, Model checking, Linear
Recurrence Sequences

1. Introduction

Markov Chains, owing to their formulation in terms of stochastic matri-
ces, are syntactically a special class of Linear Dynamical Systems. However, it
is their semantics as transformers of probability distributions that earns them
widespread attention as a natural mathematical framework to describe proba-
bilistic systems. Markov Decision Processes, for instance, extend Markov Chains
and are a probabilistic decision-making model fundamental to verification [1,
Chapter 10] and Reinforcement Learning [2, Section 3].

1The author is partially funded by DFG grant 389792660 as part of TRR 248 (see
https://perspicuous-computing.science).
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Given their importance, there is naturally an extensive body of work on
model checking Markov Chains: see [1] for a comprehensive set of references.
Most of the focus has been on the verification of linear- and branching-time
properties of Markov Chains through solving systems of linear equations, or lin-
ear programs. An alternative approach [3, 4, 5, 6] is to consider specifications on
the state distribution at each time step, e.g., whether the probability of being
in a given state at the nth step is at least 1/4. Decidability in this setting is
a lot more inaccessible: [3, 4] only present incomplete or approximate verifica-
tion procedures, while [5, 6] owe their model-checking procedures to additional
mathematical assumptions. The following decision problems are representative
of the fundamental difficulties this approach is fraught with:

Definition 1 (Markov Reachability Problems). Given a stochastic matrix M ∈
Qk×k (i.e. an order k Markov Chain), a threshold r ∈ Q, and indices i, j, decide
whether:

1. There exists an n ∈ N such that m
(n)
ij = r.

2. There exists an n ∈ N such that m
(n)
ij ∼ r.

3. There exist infinitely many n ∈ N such that m
(n)
ij ∼ r.2

where ∼ denotes one of {>,<} and m
(n)
ij denotes the entry in the ith row and

jth column of Mn.

It is here that the syntactic nature of Markov Chains as Linear Dynamical
Systems is brought to the fore. The essential tool we use to argue the diffi-
culty of these problems is the Linear Recurrence Sequence (LRS). An LRS over
Q of order k is an infinite sequence ⟨un⟩∞n=0 of rational numbers satisfying a
recurrence relation

un+k = ak−1un+k−1 + · · ·+ a0un

for all n ∈ N, where a0 ̸= 0, a1, . . . , ak−1 ∈ Q. An LRS over Q of order k is
uniquely specified by 2k rational numbers: a0, . . . , ak−1 for the recurrence rela-
tion, and u0, . . . , uk−1 for the initial terms. An LRS can be computed through
its companion matrix A:

An


u0

u1

...
uk−2

uk−1

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
a0 a1 a2 . . . ak−1


n 

u0

u1

...
uk−2

uk−1

 =


un

un+1

...
un+k−2

un+k−1

 .

The behaviour of an LRS is governed by the eigenvalues of A, or equivalently,
the roots of its characteristic polynomial Xk − ak−1X

k−1 − · · · − a0. The LRS

2For technical reasons discussed in §2.1 of the Preliminaries, deciding whether there exist

infinitely many n ∈ N such that m
(n)
ij = r is actually a tractable problem.
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is said to be non-degenerate if the ratio of two distinct characteristic roots is
never a root of unity, and simple if the characteristic polynomial has no repeated
roots.

The following are key number-theoretic open decision problems for LRS:

1. Skolem Problem: Does there exist n ∈ N such that un = 0?

2. Positivity Problem: Is un ≥ 0 for all n ∈ N?
3. Ultimate Positivity Problem: Is un ≥ 0 for all but finitely many n ∈ N?

Number-theoretic hardness is formally shown for the Positivity and Ultimate
Positivity Problems of order 6 LRS in [7]: decision procedures would enable
one to quantify how well the continued fraction expansion of a given irrational
number converges, an endeavour inaccessible to the means of contemporary
number theory.

On the other hand, decidability results have been obtained through suitable
restrictions. The Skolem Problem is known to be decidable for LRS of order up
to 4, see [8, 9]. Very recently, there have been conditional decidability results
for LRS of order 5, and simple LRS [10]. The Positivity Problem and Ultimate
Positivity Problems are decidable up to order 5 [7]. If we restrict ourselves to
simple LRS, then Ultimate Positivity is decidable [11], and Positivity is decid-
able up to order 9 [12]. Neither decidability nor hardness results are known for
the Positivity Problem for simple LRS of order 10 and above.

Returning to our stochastic setting, we note that techniques to reduce the
above LRS problems to Markov Reachability Problems were known since the
work of Turakainen [13], albeit in the context of probabilistic automata3. The
folkloric results are sharpened in [14]: it is shown that the LRS Problems for
order k LRS reduce to Markov Reachability Problems for reducible and periodic
Markov Chains of order 4k + 5.

Subsequent works on probabilistic systems such as [15, 16] that faced the
Markov Reachability Problems use [14] or similar arguments to justify the de-
velopment of solutions that are useful despite being restricted or incomplete,
rather than tackling the main problem head on. One can argue that this justi-
fication, as it stands, has the following deficiencies that need to be addressed:

1. The best known reduction demonstrates the hardness of verifying Markov
Chains that are reducible and periodic, rather than ergodic (irreducible
and aperiodic) Markov Chains that the community most often considers.

2. Breakthroughs in the verification of Linear Dynamical Systems often result
from restrictions on the dimensions [7, 8, 9, 12] or spectrum [11, 12, 17, 18]
of the underlying matrix. A strong reduction needs to show that hardness
persists despite the additional spectral properties (see, e.g. Theorem 2)
enjoyed by ergodic Markov Chains, and also be faithful with respect to
order while mapping LRS to stochastic matrices.

3It is not difficult to use the Cayley-Hamilton Theorem to show the reverse reduction, i.e.
that the Markov Reachability problems reduce to the corresponding LRS Problems.
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Our main result comprehensively addresses this issue.

Theorem 1 (Main Result). The Skolem, Positivity, and Ultimate Positivity
Problems for LRS of order k reduce to Markov Reachability Problems for ergodic
Markov Chains of order k + 1.

2. Preliminaries

2.1. Linear Recurrence Sequences

The celebrated Skolem-Mahler-Lech Theorem [19, 20, 21] states that the
set {n : un = 0} is the union of a finite set Z and finitely many arithmetic
progressions c1 + b1N, . . . , cd + bdN, where 0 ≤ ci < bi for all i. The values
of d, ci, bi can all be effectively computed, whereas determining whether Z is
nonempty is precisely the difficulty of the Skolem Problem. It is well known
[22, 23] that for any LRS ⟨un⟩∞n=0, one can compute B ≥ 1 such that for all
0 ≤ c < B, the subsequence ⟨unB+c⟩∞n=0 is a non-degenerate LRS which, by an
observation of Lech [21], is either identically zero or has finitely many zeroes.
It thus suffices to study non-degenerate LRS to solve the Skolem, Positivity
and Ultimate Positivity Problems.

2.2. Stochastic Matrices and Markov Chains

When the dimensions are clear from context, we use 1 to denote the column
vector whose entries are all 1, I to denote the identity matrix, 0 to denote the
zero column vector, and O to denote the zero matrix. Superscript T denotes
transposition. We use ei to denote the elementary column vector, i.e. the vector

whose ith entry is 1 and all other entries are 0, e.g. e1 =
[
1 0 . . . 0

]T
. We

use m
(n)
ij as shorthand to denote the entry in the ith row and jth column of the

matrix Mn, i.e. m
(n)
ij = ei

TMnej. When not specified, n = 1.
Distributions with finite support are represented by column vectors. Since

they denote probabilities of mutually exclusive and exhaustive events, their
entries are non-negative and sum up to 1. A finite k-state Markov Chain is
given by a (left) stochastic matrix M ∈ Qk×k, i.e. all entries of M are non-
negative and 1TM = 1T . Here mij denotes the probability of transitioning
from state j to state i. Each column of M is a distribution: the jth column
is the probability distribution over the states in the next step, given that the
current state is j. If the starting state is j, the probability of being in state i

after n steps is m
(n)
ij . If the current distribution over the states is s, then after

a transition, the distribution is transformed to Ms. A distribution such that
Ms = s is called a stationary distribution of the Markov Chain.

For any Markov Chain, we can construct a graph whose vertices correspond
to the states, and there is an edge from vertex i to j if and only if mji > 0, i.e.
there is a transition from state i to state j with nonzero probability. A Markov
Chain is said to be ergodic if its graph is aperiodic and irreducible (strongly
connected), i.e. there exists an N such that there is a path of length N between
any pair of (not necessarily distinct) vertices. An equivalent characterisation
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is: there exists an N such that all the entries of MN are strictly positive. For
completeness, we note some spectral properties ergodic Markov Chains enjoy
[24, Chapter 4, Theorem 6].

Theorem 2 (Standard). Let M ∈ Qk×k represent an ergodic Markov Chain.
Then λ0 = 1 is the largest real eigenvalue of M, and |λ| < 1 for all other
eigenvalues λ. Furthermore, limn→∞ Mn = S = s1T , where s is the unique
stationary distribution of M.

3. The Reduction

In this section, we prove Theorem 1. We shall start with the companion

matrix A and the vector u =
[
u0 . . . uk−1

]T
of the initial values of the LRS,

and construct the required ergodic Markov Chain. Recall from the preliminaries
that un = e1

TAnu. From the discussion in the preliminaries, we can also
assume that the given LRS is non-degenerate with finitely many zeroes. In
particular, by brute enumeration, we are guaranteed to find k consecutive indices
with nonzero entries. We will thus assume, without loss of generality, that
u0, . . . , uk−1 are all nonzero.4

The key idea is to construct a (k + 1)× (k + 1) stochastic matrix via a de-
composition M = S+D (intuitively, Stationary distribution plus Disturbance)
that represents an ergodic Markov Chain due to the following properties:

1. S = s1T is a stochastic matrix, each of whose columns are a distribution
s with strictly positive entries. The choice of such s can be completely
arbitrary: for simplicity, we choose each entry to be 1/(k + 1).

2. D is a matrix such that DS = SD = O, its entries are small enough to
ensure that the all entries of S+D are strictly positive, and finally, there
exist indices i, j, and positive constants η, ρ ∈ Q such that for all n ≥ 1,

d
(n)
ij = ηun/ρ

n.

From these properties, we first prove thatM is indeed a stochastic matrix. Since
all columns of S are identical and have strictly positive entries, the condition
SD = O is equivalent to 1TD = 0T , i.e. all columns of D sum up to zero. We
have that all entries of M are strictly positive, and 1TM = 1T (S +D) = 1T .
Further, since every entry of M is strictly positive, it immediately follows that
the Markov Chain is ergodic with N = 1.

We then observe that for all n ≥ 1, Sn = S and Mn = (S+D)n = S+Dn,
since DS = SD = O. The property that DS = O also gives us that s is the
stationary distribution of M: indeed, MS = S2 +DS = S. We let r = sij , and
complete the reduction as follows (note that we actually reduce the complements
of the Positivity and Ultimate Positivity Problems):

1. Skolem: Does there exist n such that m
(n)
ij = r?

4This assumption can be made trivially if we are reducing the Skolem Problem. Further,
for Positivity, we can trivially assume u0, . . . , uk−1 > 0.
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2. Positivity: Does there exist n such that m
(n)
ij < r?

3. Ultimate Positivity: Do there exist infinitely many n such that m
(n)
ij < r?

Since m
(n)
ij = sij+d

(n)
ij = r+d

(n)
ij , it only remains to construct D and choose

indices i, j, and constants η, ρ. We do so in a top-down fashion.
Let C ∈ Q(k+1)×(k+1) be a matrix, each of whose columns sum up to 0.

Similarly to the preceding discussion, it follows that SC = O. We argue that
we can set D to be of the form 1

ρ (C−CS), where ρ ∈ Q is chosen large enough
to ensure that all the entries of S +D are strictly positive, e.g. if the smallest
entry of S is σ and the largest entry (by magnitude) of C − CS is γ, then it
suffices to choose ρ = 2γ/σ. It also immediately follows by construction that
SD = O. Since we have noted that S2 = S, we also see that DS = O. We can
prove, by a simple induction, that for all n ≥ 1,

ρnDn = Cn −CnS = Cn(I− S).

The base case is satisfied by construction. For the induction step, we express

ρn+1Dn+1 = (Cn −CnS)(C−CS)

= Cn+1 −Cn+1S−CnSC+CnSCS

= Cn+1 −Cn+1S

using the fact that SC = O. Now, to ensure that d
(n)
ij = ηun/ρ

n for all n ≥ 1, we

can equivalently choose C, η, i, j such that ei
TCn(I−S)ej = ηun = e1

TAn(ηu).
Although C ∈ Q(k+1)×(k+1) and A ∈ Qk×k have different dimensions, we

begin to see a correspondence. We shall pick i = 1 and “map” ηu to (I− S)ej.
Since the former is a k dimensional vector, the intuition is to only consider the
first k entries of (I− S)ej. Thus, we shall choose C to be a matrix of the form[

B 0
−1TB 0

]
where B ∈ Qk×k. It is easy to see that 1TC = 0T for such a choice. We note,
by a simple induction, that for n ≥ 1

Cn =

[
Bn 0

−1TBn 0

]
.

The base case is satisfied by construction. For the inductive step, simplify

Cn+1 =

[
Bn 0

−1TBn 0

] [
B 0

−1TB 0

]
=

[
Bn ·B+ 0 · (−1TB) Bn · 0+ 0 · 0

(−1TBn) ·B+ 0 · (−1TB) (−1TBn) · 0+ 0 · 0

]
=

[
Bn+1 0

−1TBn+1 0

]
.
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Let yj ∈ Qk denote the vector obtained by deleting the last entry of (I−S)ej.
In other words, yj is the vector formed by the first k entries of the jth column
of I − S. We must now have that e1

TAn(ηu) = e1
TCn(I − S)ej = e1

TBnyj,
where the choice is over B ∈ Qk×k.

It suffices to pick B of the form F−1AF: this gives Bn = F−1AnF. We
then require that for all n ≥ 1, we must have

e1
TAn(ηu) = (e1

TF−1)An(Fyj).

We shall choose F, η > 0, j such that F is a diagonal matrix, e1
TF−1 = e1

T

(f11 = 1 ensures this), and Fyj = ηu. Recall that we assume all the entries
of u are nonzero, and the entries of yj are −s1, . . . , 1 − sj , . . . ,−sk, which are
also nonzero courtesy our choice of S. Since f11 = 1 and η must be positive,
u0 and the first entry of yj must have the same sign. If u0 > 0, we choose
j = 1, and η = (1 − s1)/u0. Otherwise, u0 < 0, in which case we choose
j = 2, and η = −s1/u0. Let the entries of yj thus chosen be µ1, . . . , µk. Note
that ηu0/µ1 = 1. Taking F = diag(1, ηu1/µ2, . . . , ηuk−1/µk), and thus F−1 =
diag(1, µ2/(ηu1), . . . , µk/(ηuk−1)) ensures that e1

TF−1 = e1
T and Fyk = ηu.

Propagating these choices to construct B,C, identify ρ, construct D and finally
M completes our reduction.

4. Discussion

To put our result in perspective, it is worth noting that Markov Reachability
Problems are a special class of model checking problems for Linear Dynamical
Systems as described in [25]. The problem considers the orbit ⟨Mns⟩∞n=0 given
by a matrix and a vector, a finite set of regions given by polynomial inequalities,
and asks whether the characteristic ω-word α that records which of the regions
the orbit visits at every time step belongs to a given ω-regular language. In
our setting, M is stochastic, and the regions, which are affine hyperplanes or
halfspaces, cannot be handled by the techniques of [25]. Techniques have been
developed to solve these problems for diagonalisable M and prefix-independent
ω-regular languages [17]. We assume neither prefix independence nor diagonal-
isability. The problem for diagonalisable M and general ω-regular languages is
shown to reduce to the Positivity Problem for simple LRS [18], which is analo-
gous but incomparable to the result we show.
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