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M’s Ultimate Positivity: Trajectory goes
underwater only finitely often
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Robust Positivity Problems

Our neighbourhoods are specified by positive definite X
(s'—s)/ X7 l(s"—s)< 1

Do all points 1n the neighbourhood 1nitialise trajectories that
avoid the water?
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The neighbourhood goes underwater

only finitely often
Uniform Non-uniform
There is a threshold step Each of the individual points
beyond which the have a different threshold

entire neighbourhood
stays above
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An equivalent encoding of the setting

A Linear Recurrence Sequence, indexed by n

A Linear Recurrence Sequence (LRS) of order k is
An infinite sequence of numbers (u, u,, u,, ...) satisfying

Vn. I/ln_I_k: ak_ll/lnlk 1+ +aol/ln

For some constants q, ..., q,_,
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5" cos né’]

h'M's =p'q, = (p.q,) = [ P2l |, .
5" sin nd@



Scenery 4=  LRS
Never Positivity Problem for LRS
underwater? Are all terms non-negative”?

Ultimate Positivity Problem

Are there finitely many
negative terms?

h'M”s > () U, = <p, qn> > ()

Underwater only
finitely often?




For all r such that r’X'r < 1
(p+r,q,) >0

I

(P, q,) = max(r,q,)
re/)f
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ldea: Consider the invertible linear map
from the neighbourhood to the
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maX(r, qn> — maX<da Bqn>
re.N des




Maximising a linear function over the
Euclidean unit ball

max{d,f) = [|f|| = /f? + ... + f
dexs
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(P q,) = ||1Bq,l| >0

IBq,|| =



To Solve Robust Uniform Positivity,
we heed to check the
(Ultimate) Positivity of two LRS

1, = (P> qp)
Vi = <pa qn>2 R <b19 qn>2 e <bk’ qn>2



To Solve Robust Non-uniform Positivity:

(1) check, using First Order Theory of the Reals, if the neighbourhood is contained
In an over-approximation of the region of Ultimately Positive Initialisations

(2) solve the boundary cases

Ball seated atop hyperplane Ball touching cone Ball nestled in cone




Executing these plans: the critical inequality

]l —cos(nb — @) < gn)

g(n) is asymptotically 0.
When does this have a solution? Infinitely many solutions?
Solutions correspond to n for which Positivity is violated



]l —cosnb < g(n)

30 0

né
0,27
30

How close can nO get to a multiple of 2mrt?
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Approximating irrational numbers through continued fractions

¢ 1

27 1 | .
aq 4+ — Rational approximation
1 obtained by truncating at the
H+— kth level

How well do these approximations converge?
L(t) =1infq,| gt — p, | Diophantine Approximation Type
k

L (1) = 1imkinf q.| gt — p;| Lagrange Constant
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What is known about these constants?

L(t) = infq, | q.t — p, | Diophantine Approximation IType
k
L (1) =liminfq,|qt — p,| Lagrange Constant
k
1

O0<L(t) L () L—
\/5
L_(t) =0 for most ¢ but

Given t, e.g. as e*™, computing L(¢), L_(?)
IS beyond contemporary number theory



Robust Uniform Positivity

| —cosnf < g(n)

o2(n) € ©(1/n) : Infinitely many solutions
g(n) € ©(1/n°) : depends on L(7), L_(?)

o2(n) = (0.99)" : finitely many solutions,
effectively enumerable



Robust Non-uniform Positivity

Ball seated atop hyperplane Ball touching cone Ball nestled in cone




Ball nestled in cone: Always a NO instance

Key technical Lemma

Let ¢ be strictly decreasing.

1 —cos(nfd — @) < (—1)"'¢n)

. In any non-empty interval (a, b), there exists ¢

such that the above inequality holds for
infinitely many n.

This ¢ corresponds to a point that violates Ultimate Positivity



When can we execute these plans?

Decidability for

Decidability for

Number-theoretic
hardness for

Ultimate Positivity

Simple LRS General LRS General LRS
Robust Positivity Up to Order 5 Up to Order 4 Order 5 and above
Robust Uniform
Ultimate Positivity All Orders Up to Order 4 Order 5 and above
Robust Non-uniform Up to Order 4 Up to Order 4 Order 6 and above




Thank You!

Decidability for
Simple LRS

Decidability for
General LRS

Number-theoretic
hardness for

General LRS
Robust Positivity Up to Order 5 Up to Order 4 Order 5 and above
Robust Uniform
Ultimate Positivity All Orders Up to Order 4 Order 5 and above
Robust Non-uniform Up to Order 4 Up to Order 4 Order 6 and above

Ultimate Positivity




