
Overcoming Memory Weakness with
Unified Fairness

• Parosh Aziz Abdulla (Uppsala University)

• Mohamed Faouzi Atig (Uppsala University)

• Adwait Godbole (University of California, Berkeley)

• Shankaranarayanan Krishna (IIT Bombay)

• Mihir Vahanwala (MPI-SWS, Saarbrücken)

RHPL 2023, Hyderabad

December 20

Concurrency and Memory: The Setup

Concurrent
Threads

Shared
Memory

W(x, 0);

$r=R(y);

if
{CAS(z,0,1
)}
…

Concurrent
Threads

Shared
Memory

Weak memory: an abstract idea

x z

yw

Liveness Verification:
-Program termination
-Repeated control state reachability

😈
Demonic, impractical

Non-determinism Algorithms: all at sea
Whole host of models⁇

Weak Memory: The challenge

Established techniques

Our connection

Systematic
verification of

liveness in
Weak Memory

Models

Liveness, verified

👿

Memory Fairness,
rooted in practicality

Unified framework

Concurrency and Memory: The Setup

Instruction
Pointer

Control
State

Concurrent
Threads

Shared
Memory

W(x, 0);

 $r= R(y);

if
{CAS(z,0,1)
}
…

Local Register
Contents

Finite Data
Domain!

Concurrent
Threads

Shared
Memory

Need for transition fairness

👿

do {
W(x, 1);
W(x, 2);
$r = R(y);
}
until
($r != 1);

do{
$s = R(x);
}
until
($s == 1);
W(y, 1);

Transition fairness

If a configuration c is visited infinitely often,
then every transition (c, c’) that is enabled from c

is taken infinitely often.
👿

Concurrent
Threads

Shared
Memory

The resolution

👿

do {
W(x, 1);
W(x, 2);
$r = R(y);
}
until
($r != 1);

do{
$s = R(x);
}
until
($s == 1);
W(y, 1);

Local Register
Contents

Instruction
Pointer

Control
State

Concurrent
Threads

Shared
Memory

Reality is more complex: example

Intermediate
Buffers

Transition fairness falls short

If a configuration c is visited infinitely often,
then every transition (c, c’) that is enabled from c

is taken infinitely often.

But what if there are infinitely many configurations?
An infinite run need not visit any configuration repeatedly!

Need for memory fairness

👿

Concurrent
Threads

Shared
Memory

Intermediate
Buffers

do
{
W(x, 1);
$r1 = R(x);
$r2 = R(y);
}
until
($r1 == 2
or $r2 == 1)
;
W(y, 1);

do
{
W(x, 2);
$s1 = R(x);
$s2 = R(y);
}
until
($s1 == 2
or $s2 == 1)
;
W(y, 1);

Memory fairness, informally

The “buffers” are flushed “regularly”.
👿

Local Register
Contents

Instruction
Pointer

Control
State

Concurrent
Threads

Shared
Memory

Weak memory: an abstract idea

x z

yw

How does weak memory propagate messages?
Consider writes by thread p to variable x.
They will always be observed in the same order in which they were
made!

<p, x> <q, x> <q, y><p, y>

FIFO

ARM

RMO

StrongCOH

WRA

RA SRA

PSO TSO SC

Relative Strength of Memory Models: An arrow from A to B
denotes that all behaviours of B are allowed by A.

Blue denotes that the underlying reachability is decidable, purple
denotes it is undecidable.

Turquoise arrows indicate that relative strength follows from design.
The orange arrow indicates the enforcement of acquire semantics on reads.
Brown arrows indicate the enforcement of multi copy atomicity on the
memory model.

Configuration Size

Constraints imposed by the memory model make messages
redundant as the run progresses

We only keep track of messages that are not
redundant!

The number of messages stored in a memory
configuration is called its size.

Memory Fairness

Unified framework

👿

Size Bounded Executions

An execution is called size bounded if
there exists an N such that each
configuration is of size at most N.

If N is specified, we refer to the
execution as N-bounded.

Concurrent
Threads

Shared
Memory

Configuration size and weakness

x zyw

An SC
configuration.

No weak behaviour.
Note its minimal

size, i.e. one
message per

variable

Plain Configurations

Configurations with exactly one message per
variable are called plain.

There are finitely many plain configurations

Memory Fairness

Unified framework

👿

Repeatedly Plain Executions

An infinite execution is repeatedly
plain if plain configurations occur
infinitely often.

Transition + Memory Fairness, Formally
Memory Fairness

Unified framework

👿
We have the following fairness conditions on
infinite executions

- N-bounded transition fairness

- Repeatedly plain transition fairness

A Probabilistic Analog
Memory Fairness

Unified framework

👿

A Markov chain induced by the system satisfies
Probabilistic Memory Fairness if the set of plain
configurations is visited infinitely often with
probability 1.

Such Markov Chains are "decisive" by dint of having
the set of plain configurations as a "finite attractor"

Decisive Markov Chains are well studied

The connection
The following fairness conditions are equivalent for termination and
repeated control state reachability

- Probabilisitic Memory Fairness

- N-bounded transition fairness for sufficiently large N

- Repeatedly plain transition fairness

Proof Sketch

Bad Good

1) For each N, construct a graph G(N) with
plain configurations as vertices

2) Draw an edge (γ, γ’) if γ’ is reachable
from γ via configurations of size at most N

3) Paint a node green if the control state of
interest is reachable via configurations of
size at most N

Proof Sketch

Bad Good

Notice, edges can only be added, and nodes can
only go from black to green!

The finite graph saturates; let it be G for all
sufficiently large N

For all our fairness notions, liveness holds if
and only if all bottom scc's of G are green

Bad Good

Liveness, Verified
All that remains is to construct G using
reachability queries

This can be done by translating our framework
into those used for verifying safety

Verifying concrete models

Reachability queries result in liveness
decision procedures

FIFO

ARM

RMO

StrongCOH

WRA

RA SRA

PSO TSO SC

The Setup The Model The Procedure

Thank You!

