
Introduction to LATEX

Rwitaban Goswami and Mihir Vahanwala

July 4, 2020

Contents

1 Welcome to LATEX 2
1.1 LATEX? What? Why? How? 2
1.2 Motivation . 2
1.3 Deciding your LATEX workflow 3
1.4 Writing your first LATEX document 10

2 LATEX Basics 12
2.1 The concept of environments 12
2.2 Playing around with text . 13
2.3 Paragraphs and Formatting 15
2.4 Lists . 18

3 Resources 19

1

1 Welcome to LATEX

1.1 LATEX? What? Why? How?

I know what you are thinking. Why do we need these fancy LATEX documents
that need a whole lot of hassle and pain to setup? Couldn’t we simply use
our trusty old MS-Word, or better still, Notepad? What is LATEX anyway?
Is it a software, or is it a programming language?

Simply put, it’s a document preparation system. Well, you may ask, so is
MS-Word, what’s the difference?

Well, MS-Word is a WYSIWYG processor (What You See Is What You Get).
Why is LATEX better? Because for many kind of things, what you want to
see is very hard to get in MS-Word, but in LATEX it is deadass easy, you write
a single line of code, and you’re done!

LATEX will help you draw diagrams, create table of contents, and of course,
write mathematical equations, which is what its most known for among non
LATEX people ;)

But the most important thing LATEX does is it separates the content from
the presentation. The content often goes between tags, and the presentation
of that content is defined by the properties of the tags. Sounds familiar?
Yes, Just like HTML, LATEX is also a markup language, so it is terribly easy
to understand.

1.2 Motivation

LATEX (pronounced lay-tech or laa-tech, and definitely not lay-teks which will
make others think you have some kind of a weird fetish) is a free, powerful,
and absolutely indispensable markup tool to typeset elegant technical doc-
uments. LATEX allows us to write complex mathematical equations without
much fuss; its environments save us the hassle of organising large documents
manually; with LATEX we can showcase code and render almost any scientific
illustration. LATEX is paradise for anyone who works in STEM. Once you
have experience, you can typeset assignments, papers, articles and theses
with unprecedented ease, using LATEX.

This popular graph from Marko Pinteric is indeed apt:

2

1.3 Deciding your LATEX workflow

Now if you want to work with LATEX, you have to decide your LATEX workflow.
What do we mean by that?

Well, by itself, LATEX is just a markup language. It just defines what your
text should look like in your final document. If you write a .tex file (yes, that
is the extension of LATEX files), it is not going to convert itself to the final
document (typically a pdf)

So you need some software to do that conversion for you. And as all software
go, you can have your software either in GUI (normal software with a graph-
ical interface) or CLI (like a PowerShell or a Bash terminal. Don’t worry if
you don’t recognize these terms, it is not necessary for LATEX)

If you are looking to work in development, or think you’ll be finding yourself
writing any sort of code in the future, I highly recommend switching to a CLI
workflow for all your work right now.

We have listed the possible workflows in order of the familiarity with code
writing or LATEX skillset required, so pick and choose as you see fit:

1. Overleaf

• Difficulty level:

3

• Flow: GUI

• OS: Any, use on web browser

• Setup time: None

• Description: If you don’t want to install any software, and have
no experience in writing code before, and don’t plan on writing
huge documents and/or environments of yourself, you can go for
this

• How to Use: Just log in on Overleaf.com, type your LATEX code on
the right hand and click ’Recompile’ or hit CTRL+S to see your
pdf appear magically on the left side

Figure 1: Overleaf

2. TeXStudio

• Difficulty level:

• Flow: GUI

• OS: Windows/Linux/OSX

• Setup time: As long as it takes to install

4

• Description: The wonder of this is that it provides an intuitive
GUI for you to use, but the LATEX distribution installation itself
is separate from the GUI. So all you need to do is install this,
and it takes care of the LATEX distribution by itself. If you find
the underlying distribution to be lacking in some packages, then
it may be a bit of some pain to first find out which distribution
TeXStudio is using behind the curtains, and then install packages
for that. This will work nicely if you want to do the 4th option
but with a GUI instead of the text editor.

• How to Use: You have to install the setup according to your OS
from https://www.texstudio.org/#download, and install the
application. It provides a similar intuitive GUI to overleaf

Figure 2: TexStudio

3. TeXWorks

• Difficulty level:

• Flow: GUI

• OS: Windows/Linux/OSX

• Setup time: As long as it takes to install

5

https://www.texstudio.org/#download

• Description: This works pretty similarly to 2. TeXStudio, in that
it provides an intuitive GUI to use independent of the LATEX dis-
tribution. It even lets you choose the LATEX distribution you want,
and you can setup packages for it accordingly.

• How to Use: You have to install the setup according to your OS
from http://www.tug.org/texworks/, and install the applica-
tion. It will provide a window for you to write your LATEX code
in, and when you compile it, it produces the pdf in a separate
window

Figure 3: TexWorks

4. TeXLive + GUI Text Editor

• Difficulty level:

• Flow: CLI + Text Editor

• OS: Windows/Linux/OSX

• Setup time: As long as it takes to understand your OS’s CLI, and
a hell lot of time for all of TexLive packages to install

• Description: Technically, TexLive, is one of the LATEX distribu-
tions that work under the hood for 2. TeXStudio or 3. TeXWorks.

6

http://www.tug.org/texworks/

Instead of using a GUI for utilizing the distribution, you are go-
ing to write your LATEX code in a editor itself, and call the CLI
command to compile your pdf file yourself.

• How to Use: Steps to get the TeXLive distribution depend on your
OS

(a) Linux: Open up your terminal and execute
sudo apt−get install texlive #to get the most common packages
(not including BiBLaTeX)

or
sudo apt−get install texlive−full #to get all of the packages

, but the install time is high
Now open up your favorite text editor (some non exhaustive
options: Notepad++, Sublime Text, VSCode) and write your
LATEX code. Open up a terminal side by side. Also open the
resulting pdf side by side. Whenever you want to see your pdf
update, execute
pdflatex /path/to/tex/file
and your pdf file will be created in the same directory

(b) Windows: Install TexLive from https://www.tug.org/texlive/

acquire-netinstall.html. The rest of the instructions are
the same as for Linux, except that you open a cmd terminal
or a powershell window instead of the Linux terminal. Also,
Windows may not automatically update your pdf once you
execute
pdflatex /path/to/tex/file
so you may need to keep refreshing your pdf if your reader is
a browser. Windows will also definitely now allow pdflatex to
execute if your pdf is open in a reader like Acrobat

(c) OSX: If you have homebrew, you can open your terminal and
install the distribution via
brew cask install mactex
This will also install the TexWorks GUI along with it, so you
could also use that. Otherwise it is pretty similar to working
with Linux

7

https://www.tug.org/texlive/acquire-netinstall.html
https://www.tug.org/texlive/acquire-netinstall.html

Figure 4: Sublime Text + TeXLive

5. TeXLive + VSCode + LATEX workshop plugin

• Difficulty level:

• Flow: VSCode CLI + VSCode Editor + VSCode plugin (to view
pdf)

• OS: Windows/Linux/OSX

• Setup time: Takes time and care to load plugin and all its depen-
dancies

• Description: Does everything, from the CLI, to the text editor, to
the pdf and its updation, from within VSCode itself

• How to Use: First install VSCode from https://code.visualstudio.

com/download. Then install the LATEX workshop plugin on VS-
Code by James Yu. Install TeXlive as from before. Install la-
texmk from https://ctan.org/pkg/latexmk. Once you finish
setting up your VSCode settings, you are good to go. The plugin
will automatically refresh the pdf for you as soon as the tex file
is saved. It even does things like compile the table of contents,

8

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://ctan.org/pkg/latexmk

the bibliography, and references in one go. It will even take your
cursor from the point in the code to the point in the pdf! The
only hassle is the installation

Figure 5: VSCode + TeXLive + Plugin

6. TeXLive + CLI Text Editor

• Difficulty level:

• Flow: CLI + CLI Editor

• OS: Linux/OSX (Windows but with WSL only)

• Setup time: Very steep learning curve to learn CLI text editors

• Description: Same as 4., but the text editor is now CLI. Do this
if you are extremely familiar and regularly use a CLI text editor
(like Vim, Nano, Emacs etc), or want to start learning it.

• How to Use: Setup of TeXLive is same as in 4. The CLI editor
can also be installed through CLI. Usage is same as before, except
that have only two windows open side by side, one with the pdf
open and one with your text editor (which should have its own
terminal inside it). You can also use this approach with Win-
dows, but you can only get a CLI editor (like Vim), through WSL

9

(Windows Subsystem for Linux), which basically runs a command
line version of Linux on your Windows (not like an emulator or a
virtual machine)

Figure 6: Vim + TeXLive

1.4 Writing your first LATEX document

LATEX is commonly used to typeset PDFs, and the typesetting code is written
in a .tex file. Make a file, say, first.tex.

Type in the following code and then hit typeset (or use whatever flow you
selected in the previous section):

1 \documentclass [12 pt , l e t t e r p a p e r]{ a r t i c l e }
2 %t h i s t e l l s LaTeX that the document i s to be t r ea t ed as

an a r t i c l e , and a c t i v a t e s f e a t u r e s a c co rd ing ly .
Optional in fo rmat ion about the font s i z e and type o f

paper i s a l s o supp l i ed .
3

4 %the percentage s i gn i s used to make comments ! This
w i l l not be read by the compi le r !

5

6 %This part o f the . tex f i l e , b e f o r e you d e c l a r e \begin {
document } , i s c a l l e d the PREAMBLE.

7

10

8 \begin{document}
9 \ t i t l e {My F i r s t Document}

10 \author{John Doe}
11

12 %i f you do not wr i t e the next l i n e , the compi le date
w i l l be type se t automat i ca l l y

13 \date{June 14 , 2020}
14

15 \maket i t l e
16

17 Hel lo World !
18 %This i s a qu i e t comment .
19

20 \end{document}

Look, we did it ourselves, and here’s what we got.

11

Try it!

2 LATEX Basics

2.1 The concept of environments

Observe the source code of your first document. It has a preamble, and a
body that is contained between \begin{document} and \end{document}.
Every document has this structure.

The pair \begin{document} and \end{document} are said to define the doc-
ument environment. All LATEX files have the document environment, and the

12

\documentclass{} in their preamble, but that is not the only environment
that is. Environments are used to format blocks of text in LATEX documents.
Environments are delimited by the opening tag \begin and the closing tag
\end Everything inside those tags will be formatted specially, depending
on the environment. Environments can be nested: of course, as a trivial
example, all the environments we will use are contained in the document
environment.

In this tutorial itself, we will see simple applications of environments to
center-align text, and also to create lists. Later on in the course, the usage
of environments will be much more involved.

2.2 Playing around with text

This is plain text. This is bold text. This is italicised text. Another
way. This is capitalised text. This is underlined text. This is
bold text. Oh wait, it’s italicised as well. This is blue text. I
made a command to turn the default colour violet for the rest of this
demo. Or do you prefer a touch of grey? I have fifty shades, actually.
Darker. This colour is what light of wavelength 600 nm looks like.
This turquoise is prepared by mixing blue, green and a hint of black.
This colour is the complement of green. I wonder if it has a name
more specific than pink. Back to violet, it’s default. This is tiny text. This

is small text. This is regular sized text. This is large text. The
\color and text size commands are switch commands.

They operate the same way. Observe the scope. This
is huge text. The font style and \textcolor commands
affect the immediate next character, or the argument supplied in
curly parenthesis.

In order to get these shades, we used the xcolor package. To make the
code below work, type \usepackage{xcolor} in the preamble, i.e. before
the declaration \begin{document}

Here’s how we did it.

1 This i s p l a i n tex t .

13

2 \textbf{This i s bold text } .
3 \ textit {This i s i t a l i c i s e d text .}
4 \emph{Another way .}
5 \textsc{This i s c a p i t a l i s e d text .}
6 \underline{This i s under l ined text .}
7 \textbf{\ textit {This i s bold text . Oh wait , i t ’ s

i t a l i c i s e d as we l l .}} \ t e x t c o l o r {blue }{This i s b lue
text .}

8 \ c o l o r { v i o l e t }
9 I made a command to turn the d e f a u l t co l ou r v i o l e t f o r

the r e s t o f t h i s demo .
10 \ t e x t c o l o r {black !70}{Or do you p r e f e r a touch o f grey ?}
11 \ t e x t c o l o r {black !30}{ I have f i f t y shades , a c t u a l l y .}
12 \ t e x t c o l o r {black }{Darker .}
13 \ t e x t c o l o r [wave]{600}{This co l ou r i s what l i g h t o f

wavelength 600 nm looks l i k e .}
14 \ t e x t c o l o r {blue ! 4 0 ! green ! 5 5 ! b lack }{This tu rquo i s e i s

prepared by mixing blue , green and a h int o f b lack .}
15 \ t e x t c o l o r{−green }{This co l ou r i s the complement o f

green . I wonder i f i t has a name more s p e c i f i c than
pink .}

16 Back to v i o l e t , i t ’ s d e f a u l t .
17 {\ tiny This i s t iny text .}
18 {\small This i s smal l t ex t .}
19 This i s r e g u l a r s i z e d text .
20 \ large This i s l a r g e t ext . The \verb !\ c o l o r ! and text

s i z e commands are switch commands . {\ c o l o r { red} They
operate the same way . Observe the scope .}

21 {\huge This i s huge text .}
22 \normalsize
23 \ c o l o r {black } The font s t y l e and \verb !\ t e x t c o l o r !

commands a f f e c t the immediate next character , or the
argument supp l i ed in cur l y p a r e n t h e s i s .

Play around with colours (or colors, if you prefer American), and show us a
glimpse your favourite shade in the assignments!

14

2.3 Paragraphs and Formatting

We recommend using the ragged2e package to toggle between justifications.
Type \usepackage{ragged2e} in the preamble.

The set of paragraphs in this box are Center Aligned using the
center environment. To finish this paragraph and start a new one,

you could use the enter key twice.
Like so. Another way to tell the ‘compiler’ that you’d like to

typeset a new line, is to use double backslash.
See? It worked. There’s yet another command to start a new

paragraph, as you will see in the code.
There we go. Observe the code. We have a way of introducing

vertical space between paragraphs.

Like this. We can also introduce horizontal space.

Here is the complete source code:

1 \begin{ c en te r }
2 The s e t o f paragraphs in t h i s box are Center

Aligned us ing the cente r environment . To f i n i s h
t h i s paragraph and s t a r t a new one , you could
use the ente r key twice .

3

4 Like so . Another way to t e l l the ‘ compiler ’ that
you ’ d l i k e to type se t a new l i n e , i s to use
double backs la sh . \\

5 See ? I t worked . There ’ s yet another command to
s t a r t a new paragraph , as you w i l l s e e in the
code . \par

6 There we go . Observe the code . We have a way o f
in t roduc ing v e r t i c a l space between paragraphs .

7

8 \vspace {1 .5em}
9

15

10 Like t h i s . \hspace {2 .5em} We can a l s o in t roduce
h o r i z o n t a l space .

11 \end{ c en te r }

Before beginning this paragraph, we declared the command \raggedright,
and now, as you can see, our text is left justified. We will now add a few
inconsequential lines, just to make the paragraph bigger, and the effect
more pronounced.

We will now add a few inconsequential lines, just to make the paragraph
bigger, and the effect more pronounced. The left justification is here to
stay, until we do something about it. Should we? Well, there’s a lesson to
teach, so...

Before beginning this paragraph, we declared the command \raggedleft,
and now, as you can see, our text is right justified. We will now add a few

inconsequential lines, just to make the paragraph bigger, and the effect
more pronounced.

We will now add a few inconsequential lines, just to make the paragraph
bigger, and the effect more pronounced. The right justification is here to

stay, until we do something about it. Should we? Well, there’s a lesson to
teach, so...

Finally, we declared the command \justifying right before this paragraph
so our text is justified as before, and all is good. We will now add a few
inconsequential lines, just to make the paragraph bigger, and the effect more
pronounced.

The beginning of this paragraph has a lot of indentation.
This is because we issued the command \setlength{\parindent}{7em}

right before it.

The super indentation is here to stay until we tinker with it
again.

This is reminiscent of the time we’d use our fingers to decide indentation
in our notebooks.

And this returns things to the way they were before.

All we did this time was declare \setlength{\parindent}{0em}. If you

16

want to switch off indentation for a particular paragraph, use \noindent

right before it.

This document has \usepackage[parfill]{parskip} declared in its pream-
ble. This is convenient to have vertical separation between paragraphs: a
series of empty lines in the source code is typeset as an empty line in the
PDF. And, for some reason, Mihir does not like the beginning of paragraphs
to be indented. Make sure you import this before ragged2e.

We will show you the source code for the next few lines. Honestly, we have
no idea why it sounds like ‘clickbait’.

Rwitaban and Mihir wondered what’s the best way to format paragraphs,
till they came across this package.

There’s enough space in the source to fit a truck, but they’ll have no idea
when we typeset it.

1 We w i l l show you the source code f o r the next few l i n e s
. Honestly , we have no idea why i t sounds l i k e ‘
c l i c k b a i t ’ .

2

3 Rwitaban and Mihir wondered what ’ s the best way to
format paragraphs , t i l l they came a c r o s s t h i s
package .

4

5

6

7

8 There ’ s enough space in the source to f i t a truck , but
they ’ l l have no idea when we typese t i t .

A question that must’ve popped in your mind: What exactly does 2.5em

mean in a command that deals with length? em is a unit of length that is
roughly equal to the width of an uppercase ‘M’ in the current font. The math
unit mu is related: em = 18 mu, where em is from the math symbols family.

Another unit defined this way is ex: roughly the height of a lowercase ‘x’ in
the current font.

Then of course, there are more standard units like pt, cm, mm and in (which

17

stands for inch).

The most commonly used lengths include \linewidth (width of the line in
the current environment), \parskip (vertical space between paragraphs),
\topmargin (length of the top margin). The linked Overleaf tutorial is a
helpful guide.

2.4 Lists

• This is a list.
• It is an unordered list.
• It is created using the ‘itemize’ environment.

– Environments can be nested.
– So can unordered lists.

• Look at the code below to see how it’s done.

1 \begin{ i t em i z e }
2 \item This i s a l i s t .
3 \item I t i s an unordered l i s t .
4 \item I t i s c r ea ted us ing the ‘ i t emize ’ environment

.
5 \begin{ i t em i z e }
6 \item Environments can be nested .
7 \item So can unordered l i s t s .
8 \end{ i t em i z e }
9 \item Look at the code below to see how i t ’ s done .

10 %This i s the code .
11 \end{ i t em i z e }

18

https://www.overleaf.com/learn/latex/Lengths_in_LaTeX

1. This is an ordered list.
2. The only difference in the code is, itemize is replaced by

enumerate.
(a) Nesting

i. More nesting
A. Man stop.
B. This is the deepest nesting that is supported.

LATEX automatically renders nested lists, both ordered and unordered, in
distinct styles. Changing these styles is, in our opinion, a bit too finicky, and
beyond the scope of this basic tutorial. You will learn more about it, once
you gain mastery over environments and commands.

Here’s a way to make descriptive lists:

MA 105 Calculus
MA 106 Linear Algebra
MA 108 Differential Equations

The code is simple enough:

1 \begin{ d e s c r i p t i o n }
2 \item [MA 105] Calcu lus
3 \item [MA 106] Linear Algebra
4 \item [MA 108] D i f f e r e n t i a l Equations
5 \end{ d e s c r i p t i o n }

3 Resources

This, and subsequent tutorials are written with the intention to motivate and
help you get started. We recommend you follow the tutorials and try out
what we demonstrate yourself. The majority of learning will take place on

19

the job, that is, when you type in code yourself. Here are pointers to some
helpful resources; they even helped us blatantly copy design this material.

• https://www.overleaf.com/learn/latex/Tutorials

• https://www.latex-tutorial.com/tutorials/

These sources are vast, and will prove useful whenever you sit down to write
LATEX. Also, if you run into a wall, a simple Google search is an underrated
trick; you’ll often find a helpful TeX StackExchange thread (or any similar
forum) in the first few results. Moreover, we encourage you to follow the
links in our tutorials, and check out the citations, if any.

20

https://www.overleaf.com/learn/latex/Tutorials
https://www.latex-tutorial.com/tutorials/

	Welcome to LaTeX
	LaTeX? What? Why? How?
	Motivation
	Deciding your LaTeX workflow
	Writing your first LaTeX document

	LaTeX Basics
	The concept of environments
	Playing around with text
	Paragraphs and Formatting
	Lists

	Resources

