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Robust property preservation. When reasoning about partial-

program security, a useful concept is that of robustness [Gor-

don and Jeffrey 2003; Grumberg and Long 1994]. A program

module is said to possess a (hyper)property robustly if the

(hyper)property holds when the module runs linked with an

arbitrary context, which may model untrusted third-party

libraries. Letting 𝐶 , 𝑃 , 𝜋 , ∪ and B denote contexts, pro-

gram modules, (hyper)properties, the language’s module

linking operator, and the mapping from whole programs

to behaviors, respectively, we say that 𝑃 has 𝜋 robustly if

B(𝐶 ∪ 𝑃) ∈ 𝜋 .

In prior work, compiler security has been characterized

as the preservation of a class of robust properties by the com-

piler’s transformation [Abadi 1999; Abate et al. 2021, 2019,

2018; Devriese et al. 2018; New et al. 2016; Patrignani et al.

2015, 2019, 2016]. For example, if ⋄ denotes all safety prop-

erties, the subscripts S and T denote the source and target

languages, and ⌈·⌉S⇌T is a mapping of source behaviors to

corresponding target behaviors, then the compiler ↓(·) satis-
fies the security criterion robust safety preservation or RSP

if

∀𝜋 ∈ ⋄, PS . (∀CS.B(CS ∪S PS) ∈ 𝜋)
=⇒ (∀CT .B(CT ∪T ↓PS) ∈ ⌈𝜋⌉S⇌T)

(1)

In words, for any safety property 𝜋 , if the source module PS
satisfies ⌈𝜋⌉S⇌T robustly, then the compiled module ↓PS sat-
isfies 𝜋 robustly. Stated differently, a compiler satisfying RSP

transfers any robust safety property of the source program to

the compiled output program. Indeed, a typical setup would

be to first prove a desired robust safety property of a source

program using, say, a program logic, and to then compile the

program with a RSP-satisfying compiler.
1

Challenges. Applying RSP to a realistic compiler runs into

two fundamental challenges that we seek to address.

(C1) If the source language has undefined behavior (UB),

then a source program module can robustly possess a prop-

erty 𝜋 only if 𝜋 includes UB (since the module’s context can

exhibit UB). However, most safety properties of interest ex-

clude UB, so we must either weaken the RSP definition to

account for source UB [Abate et al. 2018], or restrict source

contexts to those that do not exhibit UB. Both approaches

lead to robustness notions that are difficult to interpret.

1
We focus on RSP here, but we believe that our ideas will extend to

other robustness based compiler security criteria, e.g., those based on

hyperproperties.

(C2) A proof of RSP must show that if a target-language

context CT causes a compiled module ↓PS to violate 𝜋 , then

some source context CS causes PS to violate 𝜋 . This amounts

to a simulation of target contexts in the source language

– a proof step called backtranslation [Devriese et al. 2017;

El-Korashy et al. 2022, 2021]. Backtranslation is tedious, es-

pecially when source modules have private state that they

can share with the context dynamically as, in that case, the

simulating source context must maintain a lookup data struc-

ture with every memory location that was shared directly

or indirectly with the target context in the past. Doing this

bookkeeping using source syntax is an exercise in tedium – a

recent mechanized proof of backtranslation between two ide-

alized languages with dynamic memory sharing spans 29k

lines of Rocq proof, which is a 10x increase over an earlier

setting that excluded dynamic memory sharing [El-Korashy

et al. 2022].

Our proposal. Our insight is that both these problems can be

solved by moving to denotational semantics and defining RSP
denotationally. This approach is best suited to settings where

robust safety properties of source programs are established

using a program logic, LS , and we wish to transfer these

properties to compiled target programs.

Our design consists of three steps. 1) Pick suitable source

and target denotation domains, DS and DT; define denota-

tional semantics of the source and target program modules,

JPSKS and JPTKT; define linking operators, ⊕S and ⊕T in the

two domains. 2) Pick an object UNIV ∈ DT that is universal,
i.e., UNIV over-approximates the denotation of any target-

language program. 3) Pick an object SIM ∈ DS that satisfies

two conditions: (a) UNIV can be simulated by SIM up to

⌈·⌉S⇌T, i.e., the source semantic object SIM can simulate all

target language behavior, and (b) SIM keeps LS sound in

the following sense: If LS proves that PS has property 𝜋 ro-

bustly, then (JPSKS ⊕S SIM) ∈ 𝜋 . SIM does not have to over-

or under-approximate source contexts and, in particular, it

does not have to include UB.

We say that the compiler ↓· has semantic robust safety
preservation or semantic RSP if

∀𝜋 ∈ ⋄, PS. (JPSKS ⊕S SIM) ∈ 𝜋

=⇒ (J↓PSKT ⊕T UNIV) ∈ ⌈𝜋⌉S⇌T
(2)

or, equivalently,

∀PS. J↓PSKT ⊕T UNIV ⪯
⌈
JPSKS ⊕S SIM

⌉
S⇌T (3)

where ⪯ denote refinement of finite behavior in DT.
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Semantic RSP does not imply standard RSP (Eq. 1) because

SIM is not an underapproximation of source contexts. How-

ever, semantic RSP is a suitable replacement because, like

standard RSP, it transfers LS-provable robust source prop-
erties to the denotations of compiled programs (this is due

to the conditions on SIM).

Semantic RSP addresses the two challenges of standard

RSP by allowing us to pick a SIM that does not have UB, and

by eliminating the bureaucracy of syntax. We explain later

how we pick a suitable SIM for our concrete instantiation.

Remarkably, our proof of semantic RSP factors into purely

semantic reasoning for backtranslation, and a standard com-
piler correctness property, which is the only place where we

have to reason with syntax.

Instantiation. We are working on an instantiation of se-

mantic RSP in DimSum [Sammler et al. 2023], a foundational,

denotational framework for reasoningmodularly aboutmulti-

language programs. DimSum represents syntactic modules’

behavior as semantic modules – labeled transition systems

(LTSs) whose transition labels encode interactions with other

modules (such as external calls and returns) as well as side

conditions. The side conditions are assertions in a separa-

tion logic over all modules’ private and shared state. For a

transition to occur, its side conditions must hold.

DimSum provides generic libraries to define and reason

with different semantic linking operators (denoted ⊕𝑆 , ⊕𝑇 ),

wrappers that translate between traces of different LTSs (de-

noted ⌈·⌉S⇌T), and trace refinement (written ⪯). Refinement

is congruent w.r.t. ⊕ and ⌈·⌉S⇌T, and wrappers are homo-

morphic w.r.t. ⊕.

𝑀𝐿 ⪯ 𝑀 ′
𝐿 =⇒ 𝑀𝐿 ⊕𝐿 𝑀

′′
𝐿 ⪯ 𝑀 ′

𝐿 ⊕𝐿 𝑀
′′
𝐿 (4)

⌈MS⌉S⇌T ⊕𝑇

⌈
M′

S

⌉
S⇌T ⪯

⌈
MS ⊕S M′

S

⌉
S⇌T (5)

Our source language, Rec, has modules modeled after

C’s compilation units, recursive functions, stack-local and

module-local (static) variables, and pointers that can be passed

at runtime to share local variables with other modules. Our

target language, Cap, is an idealized assembly language with

capabilities inspired by Cerise [Georges et al. 2024] and

CHERI [Woodruff et al. 2014], and an in-built stack to pro-

tect return addresses (such a stack can be realized using

capabilities [Georges et al. 2022]).

Our Rec-to-Cap compiler builds on a compiler in DimSum.

The key additions are module-local variables, capabilities

and the new semantic RSP property.

Proof strategy. Figure 1 shows an outline of our proof of

semantic RSP in DimSum. The subscripts r and c represent
the source and target languages, Rec and Cap, respectively.
Step (I) follows immediately from the congruence prop-

erty (4) and standard compiler correctness, which is formal-

ized in DimSum as ∀P. J↓PKc ⪯
⌈
JPKr

⌉
r⇌c. This is the only

step in our proof that reasons with program syntax.

J↓PKc ⊕c UNIV

⪯
⌈
JPKr

⌉
r⇌c ⊕c UNIV Compiler correctness (I)

⪯
⌈
JPKr

⌉
r⇌c ⊕c ⌈SIM⌉r⇌c Semantic back-translation (II)

⪯
⌈
JPKr ⊕r SIM

⌉
r⇌c Compositionality (III)

Figure 1. Proof Outline

Step (II) follows from condition (a) on the choice of SIM,

formally UNIV ⪯ ⌈SIM⌉r⇌c, and property (4). This is the key

“backtranslation” step. Here, its statement and proof are both

semantic.

Step (III) is an instance of property (5).

UNIV and SIM as DimSum modules. The availability of

separation logic in DimSum lets us pick suitable UNIV and

SIM easily. Following prior work [Devriese et al. 2016, 2018;

Georges et al. 2024; Huyghebaert et al. 2023; Strydonck et al.

2022; Swasey et al. 2017], we define UNIV as a universal
contract for the target language in separation logic.

For the source language, we start with the program (sepa-

ration) logic LS that is used to establish robust safety prop-

erties of source programs. As in prior work [Swasey et al.

2017], such a logic features a separation logic predicate on

locations, low(ℓ), which semantically means that the module

being verified has no invariants associated with the trans-

lated target location ℓ and with any heap location reachable

from ℓ . Effectively, low(ℓ) models locations that have been

shared with the context. The logic features the following rule

for calling into the context adv with a pointer argument ℓ .

{low(ℓ)} adv(ℓ) {low(ℓ)} (Hoare-Adv)

Given this setup, we define SIM as a LTS with two labels: An

incoming label that models control transfer into the context
and an outgoing label that models control transfer from the

context. The incoming label’s side condition states that any

locations being shared with the context are low.
This definition of SIM precludes UB, and it is trivially com-

patible with LS (in particular, with Hoare-Adv). Further,

the proof of UNIV ⪯ ⌈SIM⌉r⇌c simplifies to the following:

Let C be a triggered incoming transition in SIM, ⌈C⌉r⇌c be

a corresponding incoming transition in UNIV, and D′
be an

immediately following outgoing transition in UNIV. Then,
there exists a SIM outgoing transition D such ⌈D⌉r⇌c = D′

.

To complete this proof, we must show that state updates

made by UNIV prior to D′
can be simulated by SIM. This

step is easy because all state private to or shared with SIM
is low from the linked module’s perspective, i.e., it is under

SIM’s control. Hence, we can update the state nondetermin-

istically to match D′
without violating any constraints.

The same proof done syntactically would additionally re-

quire the construction of syntactic source statements to per-

form those updates, which would be extremely tedious.
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