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Abstract
The Kleene-Post theorem and Post’s theorem are two central and historically important results in the
development of oracle computability theory, clarifying the structure of Turing reducibility degrees.
They state, respectively, that there are incomparable Turing degrees and that the arithmetical
hierarchy is connected to the relativised form of the halting problem defined via Turing jumps.

We study these two results in the calculus of inductive constructions (CIC), the constructive type
theory underlying the Coq proof assistant. CIC constitutes an ideal foundation for the formalisation
of computability theory for two reasons: First, like in other constructive foundations, computable
functions can be treated via axioms as a purely synthetic notion rather than being defined in terms
of a concrete analytic model of computation such as Turing machines. Furthermore and uniquely,
CIC allows consistently assuming classical logic via the law of excluded middle or weaker variants
on top of axioms for synthetic computability, enabling both fully classical developments and taking
the perspective of constructive reverse mathematics on computability theory.

In the present paper, we give a fully constructive construction of two Turing-incomparable
degrees à la Kleene-Post and observe that the classical content of Post’s theorem seems to be related
to the arithmetical hierarchy of the law of excluded middle due to Akama et. al. Technically, we base
our investigation on a previously studied notion of synthetic oracle computability and contribute
the first consistency proof of a suitable enumeration axiom. All results discussed in the paper are
mechanised and contributed to the Coq library of synthetic computability.
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37:2 The Kleene-Post and Post’s Theorem in the Calculus of Inductive Constructions

1 Introduction

We study two well-known results in computability theory from the perspective of synthetic
mathematics: the Kleene-Post theorem [31], stating that there are incomparable Turing
degrees,1 and Post’s theorem [41], establishing a close link between Turing jumps and the
arithmetical hierarchy due to Kleene [30] and Mostowski [35]. Both have been historically
important: The former clarifies that Turing degrees are not linearly ordered, whereas the
latter links a purely logical characterisation of sets of numbers with oracle computations.

Although still covered in the standard canon of computability textbooks [43, 38, 45],
these theorems pose an interesting benchmark for the synthetic approach since they involve
higher-order notions like Turing reductions and relative semi-decidability, that are not obvious
to represent synthetically, see e.g. the discussion in the PhD thesis of the first author [12, §9.2].
Furthermore, both results also crucially rely on an enumeration of oracle machines, which
has not been established as a consistent axiom in synthetic computability yet. Therefore in
previous work [15], we have first suggested a careful definition of oracle computability and
conjectured that it allows to derive the consistency of such an enumeration. In the present
paper, we confirm this conjecture by constructing an enumeration from the well-known axiom
Church’s thesis (CT) [33] and then use this enumeration to prove and analyse the Kleene-Post
and Post’s theorem.

Synthetic computability exploits the fact that in a constructive foundation of mathematics
only computable functions are definable a priori. Non-computable functions arise a posteriori
when combining function existence principles such as countable choice or unique choice with
classical axioms like the law of excluded middle (LEM) or weaker counter-parts such as
the limited principle of omniscience (LPO) or the weak limited principle of omniscience
(WLPO). In constructive settings, where such classical principles would have to be explicitly
assumed, the theory of computable functions can thus be studied by considering the whole
function space as computable: a so-called synthetic approach allowing for a concise but
precise mathematical development. In contrast, in classical settings such as ZFC set theory
one has to resort to an analytic model of computability like Turing machines or one of its
equivalents, cluttering formal definitions and proofs with computability conditions.

Synthetic approaches to computability have been expressed in several dialects of construct-
ive mathematics: Markov’s work in the Russian school of constructivism relies explicitly on a
computational background theory [34]. Kreisel’s formulation of the axiom CT internalises the
fact that every (definable) function is computable in a model of computation [33], e.g. working
over intuitionistic Heyting arithmetic. Working in Bishop-style constructive mathematics,
Richman [42] suggests an axiom stating that the partial function space is enumerable, which
can be stated without even defining models of computation. Bauer [2, 3] works in the effective
topos [23] where the set of enumerable sets is enumerable, formulated as the axiom EA, and
Swan and Uemura [46] establish the consistency of CT for univalent type theory.

For the specific case of Turing reductions, Bauer [4] characterises an oracle computation by
a higher-order functional with certain continuity and computability conditions. However, due
to countable choice being present, his setting based on the effective topos is inherently anti-
classical, i.e. no axioms like LPO or even WLPO can be assumed consistently on top of EA,

1 The seminal 1954 paper by Kleene and Post establishes various other results besides this one. In
particular, it also proves that both constructed degrees Turing reduce to the halting problem. We
follow the terminology to only use the incomparability part of the result used e.g. in the textbooks
by Odifreddi [38] and Cooper [6] as well as more recent work on (classical) reverse mathematics by
Sanders [44] and Brattka et. al [5].
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so one is bound to fully constructive reasoning. Recently proposing an alternative definition,
Swan [47] works around the incompatibility of univalent mathematics with classical axioms
in synthetic computability due to the presence of unique choice [11] by characterising oracle
computations via 0-truncated ¬¬-sheafification. As this implements a negative translation
making constructive distinctions invisible, one is bound to fully classical reasoning. Thus, both
settings are unusable for a sub-classical logical analysis of computability theory in the style of
constructive reverse mathematics [24, 10]. Offering a solution, such an analysis is possible in
our setting since the calculus of inductive constructions (CIC) [7, 8, 39] provides a universe of
(possibly classical) propositions mostly disconnected from the (possibly computable) function
spaces, so we can freely assume and distinguish classical axioms together with the base axiom
for synthetic computability.

In the case of the Kleene-Post theorem, we report on a fully constructive proof that can
be obtained by standard techniques of modelling mathematics in a constructive foundation.
In the case of Post’s theorem, we localise the use of classical logic: Based on Akama et. al’s
arithmetical hierarchy of the law of excluded middle [1] we derive that Σn-LEM is sufficient to
obtain Post’s theorem up to the same level n. This remains a preliminary analysis, however,
since we do not prove that Post’s theorem at level n in turn implies Σn-LEM. For many
auxiliary results, e.g. for closure properties of the arithmetical hierarchy, we conjecture
that weaker axioms would suffice. In particular, we observe a seemingly weaker variant of
Markov’s principle at play that appears not to have been treated in the literature before.

A preliminary proof of the Kleene-Post theorem with an assumed enumerator for a weaker
definition of Turing reductions has been discussed in an extended abstract at TYPES ’22 [26].
The same abstract discusses a proof of Post’s theorem with a similar assumption and using
the full law of excluded middle, based on the Bachelor’s thesis of the third author [37].

Contributions We contribute a consistency proof of an enumeration axiom for oracle
computable functionals, derived from the well-known axiom CT and its fully synthetic variant
EPF [13, 12]. Based on this axiom, we give a fully constructive synthetic proof of the
Kleene-Post theorem [31] following Odifreddi [38] and a synthetic definition of the Turing
jump. We then give the first formal definition of the arithmetical hierarchy in constructive
type theory and mechanise several proofs due to Akama et. al [1] about the arithmetical
hierarchy of classical axioms. We use axioms from the Σn-level of this hierarchy to prove
Post’s theorem [41] and discuss perspectives regarding a reverse analysis. Lastly, we give a
more traditional definition of the arithmetical hierarchy via a syntactic modeling of first-order
logic and prove that these hierarchies are equivalent if and only if CT holds. All proofs
are machine-checked using the Coq proof assistant [48] and all statements in this PDF are
hyperlinked with the HTML version of the proofs.

Outline After collecting some preliminary definitions and notations in Section 2, we recall
the concept and basic properties of synthetic oracle computability of [15] in Section 3. We
next derive an enumerator of oracle computations from established axioms for synthetic
computability (Section 4), followed by a first application of the enumerator to derive the
Kleene-Post theorem (Section 5). To prepare the second application regarding Post’s theorem
(Section 9), we first study Turing jumps (Section 6), the arithmetical hierarchy (Section 7),
and classical assumptions characterising the structure of arithmetical sets (Section 8). We
complement the technical development with a purely syntactic definition of the arithmetical
hierarchy in Section 10 and conclude in Section 11.

CSL 2024
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2 Preliminaries

We use inductive types of natural numbers N and booleans B with constructors true and
false, lists X∗ with constructors [ ] and x :: l and concatenation operation l1 ++ l2, the sum
type X + Y with constructors inl x and inr x, and vectors Xn with same notations as for lists.

We use a type of partial functions X ⇀ Y , and write fx ▷ y if fx is defined with value
y. The concrete implementation of partial functions is not important. Mathematically, we
abstract away from details, whereas in the Coq formalisation we work against an abstract
interface of partial functions, that can for instance be instantiated using step-indexing.

Two crucial properties are that the graph of partial functions should be testable via
step-indexing and that one can perform unbounded search:

Lemma 1. Partial functions have the following properties:
1. There is a function ϵ: (X⇀Y )→N→X→Y →B with fx ▷ y ↔ ∃n. ϵ f n x y = true.

2. There is a function µ: (N⇀B)⇀N with µf ▷ n ↔ fn ▷ true ∧ ∀m < n. fm ▷ false.

As is common in type theory we work with predicates instead of sets, a formality that does
not introduce any mathematical overhead or relevant change of presentation. Predicates are
defined as functions into the universe of propositions, i.e. p: X→P. We define the complement
of a predicate as px := ¬px. The universe of propositions is impredicative in CIC, which
plays no essential role. More relevantly, propositions in CIC cannot in general be analysed in
computations, meaning that e.g. projection functions of type (∃n : N. px) → N can only be
defined in special circumstances, not in general.

We now define basic notions of synthetic computability theory [16, 2]: decidability,
semi-decidability, and many-one reducibility.
A predicate p: X→P is decidable if it is reflected by a boolean function:

D(p) := ∃f : X→B. ∀x: X. px ↔ fx = true

We define semi-decidability using partial functions into the type 1 with only element ⋆:

S(p) := ∃g: X⇀1. ∀x: X. px ↔ gx ▷ ⋆

Lastly, a predicate p: X→P is many-one reducible to q: Y →P if p can be encoded into q:

p ⪯m q := ∃f : X→Y . ∀x. px ↔ q(fx)

The biggest deviation from paper presentations of computability theory is that we do not
consider equivalences classes w.r.t. any reducibility, which are notoriously hard to treat in
formalised approaches, but rather talk about concrete representatives of equivalence classes.

3 Oracle Computability and Turing Reducibility

We use the synthetic definition of oracle computability introduced in prior work [15]. It is
based on a notion of computability of functionals F : (Q→A→P)→I→O→P. The argument
R: Q→A→P is to be read as the oracle relating questions q : Q to answers a : A, i: I is the
input to the computation, and o: O is the output. Technically, synthetic oracle computability
of such functionals is based on a notion of continuity via a partial and more extensional
variant of dialogue trees [49]. Conceptually, considering oracle computations via continuous
functionals was introduced by Kleene [29] and Kreisel [32]. Kleene calls such functionals
countable, since they can analytically be represented in a model of computation. Synthetically,
they become countable using axioms for synthetic computability as discussed in Section 4.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Shared.partial.html#mu_hasvalue
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Shared.partial.html#mu_hasvalue
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A functional F : (Q→A→P)→I→O→P. is considered (oracle)-computable if there is an
underlying computation tree τ : I→A∗⇀Q + O capturing the extensional behaviour of F by

∀Rxb. FRxb ↔ ∃qs as. τx ; R ⊢ qs ; as ∧ τ x as ▷ out b

where the interrogation relation σ; R ⊢ qs; as is inductively defined for σ: A∗⇀Q + O as

σ ; R ⊢ [ ] ; [ ]
σ ; R ⊢ qs ; as σas ▷ ask q Rqa

σ ; R ⊢ qs ++ [q] ; as ++ [a]

and where we write ask q and out o for the respective injections into the sum type Q + O.
Intuitively, a computation tree takes as input a list of answers given already by the oracle.

It can then (1) ask another question to the oracle, (2) return an output, or (3) compute
forever while neither asking a question or returning an output. The computation on an input
then is described by a sequence of runs of the tree, first given the empty list [ ] as input, and
then subsequently the list of all answers produced by the oracle. We use τ as letter for trees
that take input and σ for trees that do not.

We now define Turing reducibility from p to q as computable functionals that map the
characteristic relation of q to the characteristic relation of p. To this end, given r: Z→P, we
define its characteristic relation r̂: Z→B→P as

r̂zb := if b then rz else ¬rz

Then a Turing reduction from p: X→P to q: Y →P is an oracle-computable functional
F : (Y →B→P)→X→B→P such that ∀xb. p̂xb ↔ F q̂xb and we write p ⪯T q if such F exists.

Technically we do not work explicitly with trees in this paper, but rely on the following
properties [15], establishing essentially the closure under a certain function algebra, containing
variants of applications, constants, identity, branching, composition, and unbounded search.

Lemma 2. The following functionals are computable provided the given functionals are:
1. λRio. F (gi)o of type (Q→A→P)→I→O→P given g: I→I ′ and F : (Q→A→P)→I→O→P,
2. λRio. ⊥ of type (Q→A→P)→I→O→P,
3. λRio. fi ▷ o of type (Q→A→P)→I→O→P given f : I⇀O,
4. λRio. fi = o of type (Q→A→P)→I→O→P given f : I→O,
5. λRio. o = v of type (Q→A→P)→I→O→P given v: O,
6. λRio. Rio of type (I→O→P)→I→O→P,
7. λRio. if fi then F1Rio else F2Rio of type (Q→A→P)→I→O→P given F1, F2 of the

same type and f : I → B,
8. λRio. ∃o′: O′. F1 R i o′ ∧ F2 R (i, o′) o of type (Q→A→P)→I→O→P given

F1: (Q→A→P)→(I→O′→P) and F2: (Q→A→P)→((I × O′)→O→P),
9. λRin. R (i, n) true ∧ ∀m < n. R (i, m) false of type ((I × N)→B→P)→I→N→P.

Lemma 3. If p ⪯m q, then p ⪯T q.

Proof. Let f be given such that ∀x. px ↔ q(fx). Define FRxb := R(fx)b, which is
computable with Lemma 2 (1) and (6). We have that p̂xb ↔ F q̂xb by case analysis on b. ◀

Turing reducibility can be seen as decidability of p relative to q. Similarly, we also define
the central notion of relative semi-decidability. A predicate p: X→P is semi-decidable in
q: Y →P if there is an oracle-computable functional F : (Y →B→P)→(X→1→P) such that
∀x. px ↔ F q̂x⋆ and we write Sq(p) if such F exists.

Lemma 4. If p ⪯T q, then Sq(p) and Sq(p) for the complement p x := ¬p x.

Proof. See Lemma 3 in [15]. ◀

CSL 2024
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4 Enumeration Axiom for Synthetic Oracle Computability

Non-relative synthetic computability uses an axiomatic assumption of an enumerator of all
partial functions [17], or equivalently of all enumerable predicates [14, 2], or equivalently a
step-indexed interpreter enumerating all total functions [13]. All are consequences of the
well-known axiom CT [33] stating that all total functions of type N→N are computable,
which is consistent in type theory [46, 13].

For relative synthetic computability, we introduce a novel axiom and derive its consistency
from the consistency of CT by constructing an enumerator of computable functionals based
on an enumerator of partial functions.

The axiom EPF, itself a consequence of CT [13] and thus consistent, states that there is
an enumerator θ:N→(N⇀N) universal for partial functions.

EPF := ∃θ:N→(N⇀N). ∀f :N⇀N.∃c:N. ∀xv. θcx ▷ v ↔ fx ▷ v

Note that EPF implies the existence and undecidability of a synthetic variant of the
self-halting problem Kx := ∃v. θxx ▷ v [12], and thus in particular we have e.g. K ̸⪯T ∅.

For various results we will need a version working with families of functions f :N→(N⇀N)
and consequently coding functions γ:N→N such that fn and θγn agree, in line with the
parametric version of the axiom EA used by Forster and Jahn [14]. Intuitively, this is related
to having an s-m-n operator for θ. We can construct such a stronger form of θ directly by
using a bijection between N and N × N. This pairing function is written as ⟨x, y⟩ and we use
the notation f⟨x, y⟩ := . . . to define a function which takes as argument one single natural
number, and uses the inverse of the pairing function to decompose it into x and y implicitly.

Lemma 5. EPF is equivalent to the following parametric form:

∃θ:N→(N⇀N). ∀f :N→(N⇀N).∃γ:N→N. ∀nxv. θγnx ▷ v ↔ fnx ▷ v

Proof. The direction from right to left is immediate. From left to right, take θ′ which enu-
merates all partial functions and define θ⟨c,n⟩x := θ′

c⟨n, x⟩. Now given a family f :N→(N⇀N),
use universality of θ′ on the function g⟨n, x⟩ := fnx to obtain c with ∗ : ∀av. θ′

ca ▷ v ↔ ga ▷ v.
Then for γn := ⟨c, n⟩ we have θγnx▷v

γ↔ θ⟨c,n⟩x▷v
θ↔ θ′

c⟨n, x⟩▷v
∗↔ g⟨n, x⟩▷v

g↔ fnx▷v. ◀

We now explicitly explain the construction for an enumeration of all relative semi-deciders,
but the same construction works for arbitrary computable functionals based on retracts
of N. To define an enumeration of all semi-deciders, we use retractions ι1,2: X1,2→N and
ρ1,2:N→X1,2 with ∀n. ι1,2(ρ1,2n) = n for X1 := N × B∗ and X2 := N + 1.

We define ξ:N→(N→B∗⇀N + 1) which then consequently parametrically enumerates
every family of trees τ by:

ξcxl := θc(ι1(x, l)) >>= λv. ret (ρ2v) with ∀τ. ∃γ. ∀n x l v. ξγnxl ▷ v ↔ τnxl ▷ v

The bind notation >>= evaluates the left hand side to a value if possible, and then passes
its value to the function on the right hand side. Given a tree τ :N→B∗⇀N + 1 we define
τ̂Rx := ∃qs as. σ ; R ⊢ qs ; as ∧ τ x as ▷ out ⋆ and finally ΞcRx := ξ̂cRx.

Lemma 6. The relation λR(c, x)o. ΞcRx is computable.

Proof. Use λ(c, x)l. ξcxl. ◀

Lemma 7. Given a family of trees, i.e. τi:N→B∗⇀N + 1, there exists a function γ:N→N
such that ∀iRx. ΞγiRx ↔ τ̂iRx.

https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Axioms.EPF.html#EPF_iff_nonparametric
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.Axioms.EPF.html#EPF_iff_nonparametric
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#computable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#computable
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#parametric
https://uds-psl.github.io/coq-synthetic-computability/oracle-computability/SyntheticComputability.PostsTheorem.TuringJump.html#parametric
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Corollary 8. Given a computable F there exists a code c such that ∀Rx. FRx⋆ ↔ ΞcRx.

We can give a similar enumerator for Turing reductions, which will be necessary for the
Kleene-Post theorem. Note that we do not require the enumerator there to be parametric.

Theorem 9. There is an enumerator of functionals χ:N→(N→B→P)→N→B→P such that
1. χc is computable and
2. given a computable F there exists a code c such that ∀Rxb. FRxb ↔ χcRxb.

In the remainder of this paper, we just need to assume the enumerators Ξ and χ without
any knowledge of their implementation. So their availability can be treated as an axiom for
synthetic oracle computability and the construction provided in this section amounts to a
consistency proof. In fact, this axiom likewise implies EPF:

Lemma 10. The statement of Theorem 9 implies EPF.

Proof. Instead of proving EPF, we prove the following version, which is equivalent [12]:

EPFB := ∃θ:N→(N⇀B). ∀f :N⇀B.∃c:N. ∀xv. θcx ▷ v ↔ fx ▷ v

The proof is straightforwad by using that one can turn any function f :N⇀B into an oracle-
computable F , such that F (λxv.⊥) agrees with f . ◀

5 The Kleene-Post Theorem

To establish incomparable Turing degrees, we adapt the proof given in Odifreddi’s text-
book [38] to our synthetic setting. Compared to the next sections, we here focus more on the
intuition of the synthetic and constructive setting and omit some formal details. The usual
strategy is to obtain said degrees as the unions A :=

⋃
n:N sn and B :=

⋃
n:N tn of cumulative

increasing sequences sn and tn of boolean strings (interpreted implicitly as the relation
arising from relating i to b for a string b0, . . . bi . . . bk) such that the former take care that no
χn induces a reduction B ⪯T A and the latter conversely rule out A ⪯T B. Naturally, in
our synthetic setting we are not able to define these sequences as functions N → B∗, as this
would force A and B decidable. Instead, we characterise both sequences simultaneously with
an inductive predicate ⇝: N → B∗ → B∗ → P such that n⇝ (s, t) represents sn as s and tn

as t, by adding to the base case 0⇝ ([], []) the following inductive rules:

2n⇝ (s, t)
s′ ⊒ s χn s′ |t| b ∀u < s′. ¬χn u |t| b

2n + 1⇝ (s′, t ++ [¬b])
E1

2n⇝ (s, t)
¬(∃s′b. s′ ⊒ s ∧ χn s′ |t| b)
2n + 1⇝ (s, t ++ [false])

E2

2n + 1⇝ (s, t)
t′ ⊒ t χn t′ |s| b ∀u < t′. ¬χn u |s| b

2n + 2⇝ (s ++ [¬b], t′)
O1

2n + 1⇝ (s, t)
¬(∃t′b. t′ ⊒ t ∧ χn t′ |s| b)
2n + 2⇝ (s ++ [false], t)

O2

In every even step with 2n⇝ (s, t) the sequences are extended such that χn applied to
any prefix of A differs from any prefix of B at position |t|, either by flipping the result if
χn already converges on some extension s′ ⊒ s least with respect to some ordering u < u′

of strings (E1) or by setting a dummy value if χn diverges on all extensions (E2). Dually,
in every odd step with 2n + 1⇝ (s′, t′) it is taken care that χe applied to any prefix of B

differs from any prefix of A.
We first show that the relation n⇝ (s, t) indeed captures a (classically total) cumulative

increasing sequence of boolean strings:
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Lemma 11. The following properties of n⇝ (s, t) hold.
1. For every n there not not exist s and t with n⇝ (s, t).
2. If n⇝ (s, t) and n′ ⇝ (s′, t′) for n ≤ n′, then s ⊑ s′ and t ⊑ t′.
3. If 2n⇝ (s, t) then n ≤ |s| and n ≤ |t|.

Proof. We give a detailed proof of (1) since it relies on careful constructive reasoning, the
proofs of (2) and (3) are by routine arguments. The proof of (1) is by induction on n, in
the case of 0 we just choose s := [] and t := [] and conclude with 0⇝ ([], []). In the case of
n + 1, we assume that there are no s′ and t′ with n + 1⇝ (s′, t′) and, given that we then
want to derive a contradiction, may use the inductive hypothesis to assume positively that
there are s and t with n⇝ (s, t). Since we still derive a contradiction, we can perform a case
analysis whether or not there are s′ ⊒ s and b with χn s′ |t| b, given that ¬¬(P ∨ ¬P ) holds
constructively for every P : P. If not, we just set s′ := s and t′ := t ++ [false] and conclude
n + 1⇝ (s′, t′) with (E2). If so, given the negative goal we can actually find a least such s′,
given that

(∃n. p n) → ¬¬∃n. p n ∧ ∀n′ < n. p n

holds constructively for every p : N → P. So for the least s′, we set t′ := t ++ [¬b] and
conclude n + 1⇝ (s′, t′) with (E1). ◀

We next formally define the incomparable degrees A and B by

A x := ∃n s t. n⇝ (s, t) ∧ sx = true B x := ∃n s t. n⇝ (s, t) ∧ tx = true

where sx denotes the x-th element in s and is false other otherwise and state the central
lemma used to show B ̸⪯T A, a dual version yields A ̸⪯T B.

Lemma 12. If 2n⇝ (s, t) and 2n + 1⇝ (s′, t′), then B̂ |t| b implies ¬χn Â |t| b.

Proof. We analyse how 2n + 1⇝ (s′, t′) could have been derived from 2n⇝ (s, t).
In the case (E1), we have that t′ = t ++ [¬b′] and χn s′ |t| b′ for s′ being the least such
extension of s. By the former and the assumption B̂ |t| b we derive b = ¬b′ using t′ ⊆ B̂

and t′
|t| = ¬b′. But then the further assumption χn Â |t| ¬b′ is in conflict with χn s′ |t| b′

via monotonicity of oracle computations [15, Lemma 41], using s′ ⊆ Â.
In the case (E2), we have that t′ = t ++ [false] and there is no extension s′ ⊒ s with
χn s′ |t| b′. However, if we now assume that χn Â |t| b, then by modulus-continuity of
oracle computations [15, Lemma 1] there is a finite prefix of Â determining the outcome
of χn Â, in fact there is N such that χn sN |t| b for all N ⇝ (sN , tN ). Now given the
negative goal, we can use (1) of Lemma 11 to actually obtain such sN and tN . Then by
comparing 2n with N we either obtain s ⊑ sN or sN ⊑ s by (2) of Lemma 11, so in either
case we find an extension s′ ⊒ s with χn s′ |t| b′, in contradiction to the assumption. ◀

From this lemma the Kleene-Post theorem then follows immediately.

Theorem 13. There are predicates A and B such that neither A ⪯T B nor B ⪯T A.

Proof. Suppose that B ⪯T A, so χc Â x b ↔ B̂xb for some c. Given that we have to derive a
contradiction, we can argue classically enough to obtain 2n⇝ (s, t), 2n + 1⇝ (s′, t′), and
B̂ |t| b. Then by Lemma 12 we obtain ¬χc Â |t| b, contradicting χc Â |t| b ↔ B̂|t|b. That also
A ̸⪯T B follows similarly. ◀
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6 The Turing Jump

The Turing jump is the relativised equivalent to the self-halting problem: a number c is
contained in the Turing jump of a predicate q if the c-th oracle machine halts on input c

while given q as oracle. Formally, we define the Turing jump q′ of a predicate q:N→P as

q′c := Ξc q̂ c ⋆ .

Crucially, the jump is semi-decidable in the predicate, but its complement is not.

Lemma 14. Sq(q′) and ¬Sq(q′).

Proof. Take λRco. ΞcRc for Sq(q′). For ¬Sq(q′), let F be computable and ∀x. ¬q′x ↔ F q̂x⋆.
By definition, ∀x. ¬q′x ↔ ¬Ξxq̂x. Using Corollary 8 we have c such that ∀x. F q̂x⋆ ↔ Ξcq̂x

and thus in particular ¬Ξcq̂c ↔ Ξcq̂c – a contradiction. ◀

We now prove two standard results: First, that the Turing jump of a predicate is strictly
higher in the order of Turing reducibility than the predicate itself, and secondly, that semi-
decidability of p in q can be expressed as many-one reducibility of p to q′. To do so, we
define an alternative Turing jump q◦ given q:N→P corresponding to a relativised halting
problem, rather than a relativised self-halting problem q′, as q◦⟨c, x⟩ := Ξc q̂ x.

Lemma 15. q′ ⪯m q◦ and q◦ ⪯m q′.

Proof. The first is by λc.⟨c, c⟩. For the second, use Lemma 7 for τ⟨c,x⟩nl := ξcxl. ◀

Lemma 16. q ⪯m q◦

Proof. Note that λRxo. R x true is computable. Via Corollary 8 this means we have c with
∀Rxo. ΞcRx ↔ Rxtrue. Now λx. ⟨c, x⟩ is the wanted many-one reduction. ◀

Lemma 17. q ⪯T q′ and q′ ̸⪯T q.

Proof. The first part is straightforward with the last two lemmas. For the second part, if
q′ ⪯T q we have with Lemma 4 that q′ is semi-decidable in q, contradicting Lemma 14. ◀

This lemma summarises the mentioned fact Turing jumps are strictly higher in terms
of Turing reducibility. We next establish the announced connection between relative semi-
decidability, (many-one) reducibility, and Turing jumps.

Lemma 18. If Sq(p), then p ⪯m q◦.

Proof. Let F be computable and ∀x. px ↔ F q̂x⋆. Using Corollary 8, we have c such that
Ξcq̂x ↔ F q̂x⋆. Now take λx. ⟨c, x⟩ as reduction. ◀

Lemma 19. If p ⪯m q′, then Sq(p).

Proof. Let f be the many-one reduction. It then suffices to prove that λx. q′(fx) is
semi-decidable in q. Take λRco. Ξfc R (fc). ◀

Corollary 20. Sq(p) if and only if p ⪯m q′.

Corollary 21. If p ⪯T q, then p′ ⪯m q′.
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We now define iterated Turing jumps from a predicate q:

q(0) := q q(n+1) := (q(n))′

In textbooks, one usually uses the empty predicate ∅ as basis, since it is Turing equivalent
to any other decidable predicate. In the context of many-one reductions, however not all
decidable predicates are equivalent: only non-trivial ones are. To obtain a more uniform
treatment that does not have to consider special cases for decidable predicates, we use as
basis the predicate that has sole element 0:

0 := λx. x = 0

We also remark that, working explicitly with the previously discussed axiom EPF would
allow us to prove that K is many-one equivalent to 0(1).

7 The Arithmetical Hierarchy

The arithmetical hierarchy was developed independently by Kleene [30] and Mostowski [35],
using models of computation to define the 0 level. In line with the rest of this paper, we here
define a synthetic variant relying on type-theoretic functions. In Section 10 we discuss the
connection to an alternative definition where the 0 level uses quantifier-free logical formulas
of a formal first-order syntax. Informally, a predicate p:Nk→P is in Σn if

∀v. pv ↔ ∃x1.∀x2. . . . .Qxn. f([xn, . . . , x2, x1] ++ v) = true

where Qn is either ∃ or ∀ depending on n being odd or even, i.e. if p can be characterised by
a first-order formula with n quantifier alternations before a boolean function application,
starting with an existential quantification. The definition of Πn is dual. Formally, we use
mutually defined inductive predicates:

∀v : Nk. pv ↔ fv = true
Σk

0p

Πk+1
n q ∀v : Nk. pv ↔ ∃x. q(x :: v)

Σk
n+1p

∀v : Nk. pv ↔ fv = true
Πk

0p

Σk+1
n q ∀v : Nk. pv ↔ ∀x. q(x :: v)

Πk
n+1p

One usually defines ∆k
np := Σk

np ∧ Πk
np, but we do not use this notion technically. From

now on, we leave out the arity k since it is always clear from context. In the remainder of
this section we collect closure properties that hold constructively, in the next section we
continue with some non-constructive closure properties.

The hierarchy treats predicates extensionally:

Lemma 22. Whenever ∀v. p1v ↔ p2v, then Σnp1 implies Σnp2 and Πnp1 implies Πnp2.

The 1 level of the hierarchy can be characterised using semi-decidability:

Lemma 23. A predicate p is semi-decidable if and only if Σ1p.

Proof. From left to right, let p be semi-decidable, i.e. ∀v : Nk. pv ↔ fv ▷ ⋆. The result
follows using Lemma 1 (1), because fv ▷ ⋆ ↔ ∃n. ϵ f n v ⋆ = true. From right to left, we use
unbounded search µ from Lemma 1 (2). ◀

By straightforward induction, we also obtain that the hierarchy is cumulative:
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Lemma 24. If n ≤ m then Σn ⊆ Σm as well as Πn ⊆ Πm.

Furthermore, it is closed under many-one reductions:

Lemma 25. If p1 ⪯m p2 then Σnp2 implies Σnp1 and Πnp2 implies Πnp1.

Proof. By mutual induction. The base cases are immediate. We prove that if p1 ⪯m p2 via
f , ∀v. p2v ↔ ∃x. q(x :: v), and Πnq, then Σn+1p1, the other case is similar.

We have that ∀v. p1v ↔ ∃x. q(x :: fv). By the induction hypothesis, it thus suffices to
prove (λ(x :: v). q(x :: fv)) ⪯m q, which is trivial. ◀

Note that in this proof, we use the notation λ(x :: v) . . . , which defines a function taking
as argument a non-empty vector, i.e. an argument of type Xn+1. We now show further
closure properties of the levels, crucially making use of Lemma 25 and pairing ⟨·, ·⟩.

Lemma 26. Σn(λv. ∃xy. p(x :: y :: v)) if Πnp, and Πn(λv. ∀xy. q(x :: y :: v)) if Σnq.

Corollary 27. Σnp implies Σn(λv. ∃x. p(x :: v)) and Πnq implies Πn(λv. ∀x. q(x :: v)).

By induction we then have:

Lemma 28. Σn ⊆ Πn+1 and Πn ⊆ Σn+1.

Lemma 29. If Σnp1and Σnp2 then Σn(λv.p1v∧p2v). If Πnq1 and Πnq2 then Πn(λv.q1v∧q2v).

Proof. By mutual induction. The base cases are easy.
We just show one inductive case, the other one is dual. Let ∀v. p1v ↔ ∃x. q′

1(x :: v),
∀v. p2v ↔ ∃y. q′

2(y :: v), and Πnq′
1 as well as Πnq′

2, then Σn+1(λv. p1v ∧ p2v).
Note that we have that λv. p1v ∧ p2v ↔ ∃xy. q′

1(x :: v) ∧ q′
2(y :: v). Using Lemma 26

and the induction hypothesis, it suffices to prove that Πnλ(x :: y :: v). q′
1(x :: v) and

Πnλ(x :: y :: v). q′
2(x :: v), which follows from Πnq′

1, Πnq′
2, and Lemma 25. ◀

The following two lemmas have similarly technical proofs, we omit the details.

Lemma 30. Let f :N→B. If Σnp1 and Σnp2, then Σn(λ(x :: v).if fx then p1v else p2v).
If Πnq1 and Πnq2 then Πn(λ(x :: v).if fx then q1v else q2v).

Lemma 31. If Σnp, then Σn(λ(N :: v). ∀x < N. p(x :: v)). Moreover, if Πnq, then
Πn(λ(N :: v). ∀x < N. q(x :: v)).

We prove closure under disjunction for Σn now:

Lemma 32. If Σnp1 and Σnp2 then Σn(λv.p1v ∨ p2v).

Proof. With p1v ∨ p2v ↔ ∃n. if n = 0 then p1v else p2v from Lemma 30 and corollary 27.
◀

The proof for Πn requires classical logic. We thus only give it in the next section, where
we introduce a fine-grained characterisation of classical logic for the arithmetical hierarchy,
allowing to state a stronger theorem for closure of Πn under disjunction.
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8 An Arithmetical Hierarchy of Classical Axioms

The most common axiom to enable classical logical reasoning in constructive foundations
is the law of excluded middle (LEM), or, equivalently, double negation elimination (DNE).
Both LEM and DNE can be weakened to apply to certain propositions only. If restricted to
apply to Σ1 propositions only, one obtains the limited principles of omniscience (LPO) and
Markov’s principle (MP), respectively.

LEM := ∀P :P. P ∨ ¬P LPO := ∀f :N→B. (∃n. fn = true) ∨ ¬(∃n. fn = true)

DNE := ∀P : P. ¬¬P → P MP := ∀f :N→B. ¬¬(∃n. fn = true) → (∃n. fn = true)

LPO implies MP, but the converse is well-known to not be provable [9].
Akama, Berardi, Hayashi, and Kohlenbach [1] introduce relativisations of the law of

excluded middle and double negation elimination to the arithmetical hierarchy, and prove
that they are in relation as displayed in Figure 1. We prove these implications formally in
CIC and using Coq, with the following definitions:

Σn-LEM := ∀k.∀p:Nk. Σnp → ∀v.pv ∨ ¬pv Σn-DNE := ∀k.∀p:Nk. Σnp → ∀v.¬¬pv → pv

Πn-LEM := ∀k.∀p:Nk. Πnp → ∀v.pv ∨ ¬pv Πn-DNE := ∀k.∀p:Nk. Πnp → ∀v.¬¬pv → pv

On the 0 and 1 levels these axioms have well-known connections to LPO and LEM:

Lemma 33. The following hold
1. Σ0-LEM holds constructively, and thus all 0 levels of the axioms,
2. Σ1-LEM ↔ LPO,
3. Σ1-DNE ↔ MP,
4. Π1-LEM ↔ WLPO with WLPO := ∀f :N→B. (∀n. fn = false) ∨ ¬(∀n. fn = false),
5. Π1-DNE holds constructively.

Σn-LEM

Πn-LEM Σn−1-LEM Σn-DNE

Πn−1-LEM Πn-DNE Σn−1-DNE,

Πn−1-DNE

Figure 1 Arithmetical hierarchy of the law of excluded middle and related principles [1].

To prove the implications from Figure 1, we need that the arithmetical hierarchy is closed
under complements and that Πn is closed under disjunction (which holds constructively for
Σn, see Lemma 32). We begin with the closures under complement:

Lemma 34. If Σnp and Πn-DNE, then Πnp, and if Πnp and Σn-DNE, then Σnp.

Proof. By mutual induction. The base cases hold constructively.
For the first inductive case, we prove that if ∀v. pv ↔ ∃x. p′(x :: v), Σnp′, and Σn+1-DNE,

then Σn+1p. By the inductive hypothesis we have Πnp provided Πn-DNE, which is a
consequence of Σn+1-DNE. It thus suffices to prove that ∀v. ¬pv ↔ ∀x. ¬p′(x :: v), which
holds constructively.
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For the other case, we prove that if ∀v. pv ↔ ∀x. p′(x :: v), Σnp′, and Σn+1-DNE, then
Σn+1p. By the induction hypothesis we have Πnp provided Πn-DNE, which is a consequence
of Σn+1-DNE. It thus suffices to prove that ∀v. ¬pv ↔ ∃x. ¬p′(x :: v). The direction from
right to left holds constructively. For the direction from left to right, assume ¬pv and prove
∃x. ¬p(x :: v). Since by the inductive hypothesis we have that Σn+1(λv. ∃x. ¬p′(x :: v) we
can use Σn+1-DNE and it suffices to prove ¬¬∃x. ¬p(x :: v), which follows constructively
from ¬pv. ◀

It is straightforward to prove that Πn is closed under disjunction assuming Πn-LEM:

Lemma 35. If Πn-LEM, Πnp, and Πnq then Πn(λv.pv ∨ qv).

We now prove the implications from Figure 1.

Lemma 36. 1. Σn-LEM → Σn-DNE
2. Πn-LEM → Πn-DNE
3. Σn-DNE ↔ Πn+1-DNE
4. Πn+1-LEM → Σn-LEM
5. Σn-LEM → Πn-LEM
6. Σn+1-DNE → Σn-LEM

Proof. (1) and (2) are immediate, because in general P ∨ ¬P → ¬¬P → P . (3) is by
induction. (4) follows by Σn ⊆ Πn+1.

(5) has a more interesting proof: Assume Σn-LEM. By the previous implications, we
can then use Σn-DNE and Πn-DNE. Let Πnp and v:Nk. We have to prove pv ∨ ¬pv. By
Lemma 34 and Σn-DNE, we have Σnp. Using Σn-LEM we have ¬pv ∨ ¬¬pv. Using Πn-DNE,
we have pv ∨ ¬pv.

For (6), assume Σn+1-DNE and Σnp. We prove pv ∨¬pv by applying Σn+1-DNE. Because
Σn+1 is closed under disjunction by Lemma 32, it suffices to prove that p is in Σn+1, which
is trivial, and that p is, which follows from Lemma 34. ◀

Note that the converses of the implications are not provable: For (1), MP does not imply
LPO (see e.g. [21]). For (2), Π1-LEM is WLPO, which is not provable, and Π1-DNE is provable.
For (4), since Σ0-LEM is provable, but Π1-LEM is WLPO. For (5), since (at level 1) WLPO is
strictly weaker than LPO [21]. We furthermore cannot prove that Σ1-DNE implies Π1-LEM,
because MP does not imply WLPO. For (6), since Σ0-LEM is provable, but Σ1-DNE is MP.

It seems that for both closure properties we proved the assumptions are stronger than
necessary. To prove closure under disjunction, it would suffice to assume DNE for disjunctions
where both sides of the disjunct are Πn formulas [1], but we avoid introducing this axiom.

We conjecture that for the purpose of proving that the arithmetical hierarchy is closed
under negation, Σn-DNE is also strictly stronger than necessary. This is because at level 1,
the theorem is equivalent to an axiom which seems to be weaker than MP (i.e. Σ1-DNE).

Lemma 37. Π1p → Σ1p iff ∀f :N→B.∃g:N→B. ¬¬(∃n. fn = true) ↔ (∃n. gn = true).

This principle can be seen as an “anonymised” Markov’s principle. It is an obvious
consequence of MP (with g := f), but it seems to be strictly weaker. We are not aware of
this axiom appearing in the literature, and we conjecture it to be non-provable. It can also
be seen as the level 1 instance of closure under double negation for the hierarchy.

We say that the arithmetical hierarchy is closed under double negations at level n if Σnp,
then Σnp, and if Πnp, then Πnp. And, as before, it is closed under complements at level n if
Σnp, then Πnp, and if Πnp, then Σnp.
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Lemma 38. If the arithmetical hierarchy is closed under complements at level n, it is
closed under double negations at level n.

For the converse, we need to assume that the hierarchy is closed under double negations
for all levels m ≤ n, because closure at level n + 1 seems not to imply closure at level n.
Furthermore, the proof seems to require Πn-DNE – a principle strictly weaker than Σn-DNE
which we used to prove closure under negation.

Lemma 39. Given Πn-DNE, if the arithmetical hierarchy is closed under double negation
at all levels m ≤ n, it is closed under complements at level n.

We conjecture that above level 1, this is not an equivalence, i.e. that some axiom potentially
weaker than Πn-DNE is needed.

9 Post’s Theorem

By composition of previous results, we now derive the statements comprising Post’s theorem.
We first explicitly capture the connection of relative semi-decidability and the arithmetical
hierarchy in the next two lemmas.

Lemma 40. Assume Πn-LEM. If Σn+1p, then p is semi-decidable relative to some q in Πn.

Proof. Let Σn+1, i.e. there is q in Πn such that pv ↔ ∃x.q(x :: v). We show that p is
semi-decidable in q by linearly searching for x, i.e. pick

FRvo := ∃x.R (x :: v) true ∧ ∀x′ < x.R (x′ :: v) false

which is oracle-computable by Lemma 2 (9). We need to prove that (∃x.q(x :: v)) ↔ F q̂v⋆.
The direction from right to left is immediate. For the direction from left to right we have to
prove that given x with q(x :: v), i.e. q̂(x :: v)true, there is a least x such that q̂(x :: v)true.
This follows from Πn-LEM and Πnq. ◀

Lemma 41. Assume Σn-DNE. If p is semi-decidable relative to some q in Πn, then Σn+1p.

Proof. Let ∀v. pv ↔ F q̂v⋆ for an oracle-computable F . This means we have τ such that

∀v. pv ↔ ∃qs as. τv ; q̂ ⊢ qs ; as ∧ τ v as ▷ out ⋆ .

Note that λ(as :: v). τ v as ▷ out ⋆ is in Σ1 ⊆ Σn+1, because it is trivially semi-decidable,
which makes Lemma 23 applicable. Using Corollary 27, it then suffices to prove that
λ(qs :: as :: v). τv ; q̂ ⊢ qs ; as is in Σn+1.

To do so, we prove that

τv ; q̂ ⊢ qs ; as ↔ ∀n < |as|. τ v (as ⇂n) ▷ ask qsn ∧ q̂(qsn)(asn)

where as ⇂n is the list with the first n elements of as, and qsn and asn are the n-th element of
qs and as, respectively. The direction from left to right is by induction on the interrogation,
from right to left by induction on as.

Using Lemma 31 and once again that ▷ is semi-decidable, it suffices to prove that
λ(y :: b :: [ ]). q̂yb is in Σn+1. Using Lemma 30, we have to prove that both q and its
complement are in Σn+1. The former holds because q is in Πn and Lemma 28. The latter
holds because q is in Πn, and thus its complement is in Σn using Σn-DNE and Lemma 34,
and thus in Σn+1 using Lemma 24. ◀
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Incidentally, apart from the 0 case, the inductive structure of all remaining proofs for
Theorem 43 is unchanged as long as the following holds:

Lemma 42. Σ00

Then finally, Post’s theorem can be stated as follows:

Theorem 43. The following hold assuming Σn-LEM:
1. Σn+1p if and only if Sq(p) for some q in Πn,
2. Σn+1p if and only if Sq(p) for some q in Σn,
3. Σn0

(n),
4. if Σnp then p ⪯m 0(n), so in particular p ⪯T 0(n),
5. Σn+1p if and only if S0(n)(p).

Note that, in light of Lemma 42, by further relativising the 0 level of the arithmetical
hierarchy to relative decidability one can obtain a relativised form of Post’s theorem from an
arbitrary base predicate, that does not even necessarily have to be arithmetical.

10 The Syntactic Arithmetical Hierarchy

We have defined the arithmetical hierarchy in a synthetic way, by defining the 0 level using
boolean functions rather than predicates decidable in a model of computation. Another
natural definition is syntactic, purely in terms of first-order logic, where the 0 level is
characterised by quantifier-free formulas, and where the ∆1 class can alternatively be
characterised by predicates that are decidable in a model of computation.

We define this syntactic arithmetical hierarchy now, show that it is included in the
previously defined synthetic arithmetical hierarchy, and show that the converse inclusion is
equivalent to the well-known constructive axiom CT, a strengthening of the axiom EPF.

As a basis, we employ the Coq library of first-order logic [27, 25] and recall the basic
framework. We use a de-Bruijn representation of first-order formulas φ over the term language
of arithmetic (i.e. with constant 0, unary successor function S, and binary operation symbols
for addition and multiplication). We use a type of variables V on paper, which we implement
using de Bruijn indices as V := N in Coq.

t : term ::= x | n | t1 +̇ t2 | t1 ×̇ t2 x: V , n:N

φ : form ::= ⊥̇ | t1=̇t2 | φ1∧̇φ2 | φ1∨̇φ2 | φ1→̇φ2 | ∀̇φ | ∃̇φ

A formula is quantifier-free if it does not use the constructors ∃̇ and ∀̇.
We furthermore use a Tarski-style satisfaction predicate ρ ⊨ φ for ρ < : V →N being

an assignment from de Bruijn indices to natural numbers which maps the terms to their
respective interpretation of natural numbers, and formulas to their respective interpretations
in the meta-logic.

JxKρ := ρx JnKρ := n Jt1 +̇ t2Kρ := Jt1Kρ + Jt2Kρ Jt1 ×̇ t2Kρ := Jt1Kρ · Jt2Kρ

ρ ⊨ ⊥̇ := ⊥ ρ ⊨ t1=̇t2 := Jt1Kρ = Jt2Kρ ρ ⊨ φ1∧̇φ2 := (ρ ⊨ φ1) ∧ (ρ ⊨ φ2)

ρ ⊨ φ1∨̇φ2 := (ρ ⊨ φ1) ∧ (ρ ⊨ φ2) ρ ⊨ φ1→̇φ2 := (ρ ⊨ φ1) → (ρ ⊨ φ2)

ρ ⊨ ∀̇φ := ∀d.(d; ρ) ⊨ φ ρ ⊨ ∃̇φ := ∃d.(d; ρ) ⊨ φ
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We then define when a formula φ is Σ̇n or respectively Π̇n.2

φ is quantifier-free
Σ̇nφ

Π̇nφ

Σ̇n+1∃̇φ

Σ̇n+1φ

Σ̇n+1∃̇φ

φ is quantifier-free
Π̇nφ

Σ̇nφ

Π̇n+1∀̇φ

Π̇n+1φ

Π̇n+1∀̇φ

Based on this, we define

Σ̇k
np := ∃φ. Σ̇nφ ∧ ∀v:Nk. pv ↔ ρv ⊨ φ Π̇k

np := ∃φ. Π̇nφ ∧ ∀v:Nk. pv ↔ ρv ⊨ φ

where ρv is a function mapping i to the i-th value in v (and 0 if v is not long enough).
As before, we leave out k from here on.

Lemma 44. Satisfaction of quantifier-free formulas is decidable.

Lemma 45. The syntactic arithmetical hierarchy is included in the synthetic arithmetical
hierarchy.

Proof. We prove by mutual induction that

(Σ̇nφ → Σn(λv. ρv ⊨ φ)) ∧ (Π̇nφ → Πn(λv. ρv ⊨ φ)).

The base cases follows by the last lemma. The cases of adding ∃̇ to a Π̇n formula, or ∀̇
to a Σ̇n formula follow by definition of Σ and Π. The cases of adding ∃̇ to a Σ̇n formula, or
∀̇ to a Π̇n formula follow by Corollary 27. ◀

The reverse direction is not provable without axioms. In fact, it is equivalent to the axiom
Church’s thesis (CT), stating that all functions are computable in a model of computation.
The axiom EPF we have used is a direct consequence of CT [11].

Let ϕn
c x be the execution of the c-th µ-recursive function according to an enumeration,

on input x for n steps.

CT := ∀f :N→N.∃c:N. ∀x.∃n. ϕn
c x = 1 + (fx)

Lemma 46. Assuming CT, Σ̇1(λv. fv = true).

Proof. See Hermes and Kirst [22] and Kirst and Peters [28]. ◀

Lemma 47. Assuming CT, Π̇1(λv. gv = true).

Proof. Let g be given. Using the last lemma with fv := ¬Bgv we have that Σ̇1(λv.¬Bgv =
true). The claim follows by proving that Σ̇1p → Π̇n(λv. ¬pv) in general, which holds

constructively without axioms. ◀

Corollary 48. Assuming CT, Σ1 ⊆ Σ̇1 and Π1 ⊆ Π̇1.

2 We use boldface fonts with a dot here to distinguish from the synthetic arithmetical hierarchy as
clearly as possible. Note that there is no connection to the so-called boldface and lightface pointclasses
from descriptive set theory, which are also based on hierarchies of formulas classified via quantifier
alternations.
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Note that for n = 0, the hiearchies are not equivalent, because not every decidable
predicate can be presented as quantifier-free formula.3 This however does not affect Post’s
theorem, since it only talks about n > 0.

Lemma 49. Assuming CT, the synthetic arithmetical hierarchy is included in the syntactic
arithmetical hierarchy on every level n > 0.

Proof. By induction, using the last lemma. ◀

To avoid reintroducing classical axioms for the syntactic arithmetical hierarchy, we re-state
Post’s theorem by using classical logic in general:

▶ Theorem 50. The following hold assuming the law of excluded middle and CT:
1. Σ̇n+1p if and only if Sq(p) for a q in Π̇n,
2. Σ̇n+1p if and only if Sq(p) for a q in Σ̇n,
3. Σ̇n0

(n),
4. if Σ̇np then p ⪯m 0(n), so in particular p ⪯T 0(n),
5. Σ̇n+1p if and only if S0(n)(p).

▶ Lemma 51. If the synthetic arithmetical hierarchy is included in the syntactic arithmetical
hierarchy on level 1 > 0, then CT holds.

Proof. Assume Σ1 ⊆ Σ̇1. The axiom that semi-decidable predicates are semi-decided by a
µ-recursive function is equivalent to CT [12]. Let p:N→P be semi-decidable. Then it is in Σ1.
By assumption, it then is in Σ̇1. Thus, it can be semi-decided by a µ-recursive function. ◀

Lemma 52. Given LEM, whenever a predicate p is definable via a first-order formula φ

one can compute n and either a proof of Σ̇np or Π̇np.

Note that the assumption of LEM could be weakened to Σ̇n-LEM [20, 19].

11 Conclusion

In this paper, we use the definition of oracle computability of [15] mostly abstractly, i.e.
through the closure properties in Lemma 2 as interface. While the invariants for the
constructions underlying these properties are intricate and often tedious, utilising the
properties themselves is straightforward. The only explicit uses of the underlying computation
trees are Lemma 41 and the construction of the enumerators Ξ and χ from EPF. The proof
of Post’s theorem can then be seen as a sanity check for our synthetic definition of Turing
reducibility: It agrees with analytic Turing reducibility on arithmetical predicates.

The Coq mechanisation, contributing roughly 3k lines of code (2k for the Kleene-Post and
Post’s theorem, 1k for the syntactic arithmetical hierarchy) to the Coq library of synthetic
computability, has proven beneficial besides the goals of formalising the foundations of
theoretical computer science and a constructive reverse analysis: Having a mechanisation
allows for quickly changing definitions without the need for extensive manual re-checking.
We have utilised this e.g. when changing the base of the hierarchy to 0 instead of ∅, which
was almost automatic. Furthermore, identifying and tracking classical assumptions manually
would be cumbersome, and is almost for free using a proof assistant.

3 The situation would be different if we would allow for bounded quantification on the 0 level of the
hierarchy, but we syntactically disallow any quantification to appear.
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Bauer [4] and Swan [47] suggest definitions of oracle computability and Turing reducibility
in unpublished work. Our definition of oracle computability is stronger than Bauer’s [15,
Lemmas 2 and 42]. However, the resulting notion of Turing reducibility might still be the
same – it hinges on the constructability of an enumerator for Bauer’s notion. Additionally,
our definition can be adapted to Swan’s setting in univalent type theory, potentially implying
his definition of Turing computability. Vice versa we expect the implication to be unprovable
because it would require a form of double negation elimination stronger than MP, which
seemingly implies LPO and thus is inconsistent in univalent synthetic computability. Swan’s
definition cannot be exactly reproduced in our setting, since it requires higher inductive
types. A version of CIC with higher inductives but without univalence could be suitable.

For future work, it first would be interesting to frame more results from the 1954 Kleene-
Post paper, e.g. that there are countably many incomparable Turing degrees with the order
structure of the rationals, in our setting of synthetic computability. Secondly, we would like
to carry out the full analysis of what classical axioms are implied by, and thus equivalent
to, Post’s theorem. Lastly, it would be intriguing to give a synthetic solution to Post’s
problem [40], e.g. via the Friedberg-Muchnik theorem and the priority method [18, 36].
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